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Protein–protein interactions are at the heart of biological processes. Understanding how proteins interact is

key for deciphering their roles in health and disease, and for therapeutic interventions. However, identifying

protein interaction sites, especially for intrinsically disordered proteins, is challenging. Here, we developed

a deep learning framework to predict potential protein binding sites to 14-3-3 – a ‘central hub’ protein

holding a key role in cellular signaling networks. After systematically testing multiple deep learning

approaches to predict sequence binding to 14-3-3, we developed an ensemble model that achieved

a 75% balanced accuracy on external sequences. Our approach was applied prospectively to identify

putative binding sites across medically relevant proteins (ranging from highly structured to intrinsically

disordered) for a total of approximately 300 sequences. The top eight predicted peptide sequences were

experimentally validated in the wet-lab, and binding to 14-3-3 was confirmed for five out of eight

sequences (Kd ranging from 1.6 ± 0.1 mM to 70 ± 5 mM). The relevance of our results was further

confirmed by X-ray crystallography and molecular dynamics simulations. These sequences represent

potential new binding sites within the 14-3-3 interactome (e.g., relating to Alzheimer's disease as the

binding to tau is not the new part), and provide opportunities to investigate their functional relevance.

Our results highlight the ability of deep learning to capture intricate patterns underlying protein–protein

interactions, even for challenging cases like intrinsically disordered proteins. To further the

understanding and targeting of 14-3-3/protein interactions, our model was provided as a freely

accessible web resource at the following URL: https://14-3-3-bindsite.streamlit.app/.
Introduction

Protein–protein interactions (PPIs) are fundamental to all bio-
logical processes, from maintaining cellular homeostasis1 to
driving disease mechanisms.2 Among the numerous protein
families facilitating PPIs, the family of 14-3-3 proteins stands
out due to their ubiquity and high conservation across iso-
forms.3,4 These ‘central hub’5 proteins hold a key role in cellular
signaling networks, as they are known to interact with over 1200
protein clients,6,7 and are involved in pathways related to
metabolism, apoptosis, cell signaling and tumor development.
Protein interaction with 14-3-3 can yield a multitude of effects,8

e.g., the structural stabilization of the client protein,9,10 the
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masking of functional sequences,11,12 or bringing two proteins
together.13,14 Owed to these reasons, elucidating the 14-3-3
interactome (protein clients and/or their binding sites) has
a key relevance to gain insights into cellular regulation and
mechanisms of disease, as well as to provide new avenues for
therapeutic intervention.

While it is important to identify 14-3-3 binding partners and
their binding sites, it is a daunting task. Proteins can interact
with each other in a wide variety of ways, and the exact protein
interaction sites and corresponding interaction effects are oen
unknown.15 Combinatorial exploration in the wet-lab is both
costly and time intensive.16–18 Owed to these reasons, deep
learning19 – a subeld of articial intelligence based on neural
networks – has gained signicant traction to predict PPIs.20–23

Deep learning, thanks to its ability to extract complex and non-
linear information from large and high-dimensional data,19

bears promise to accelerate the identication of unknown
binding sites involved in PPIs. To date, however, deep learning
approaches have found only limited experimental validation in
exploring protein interactomes,20,24 and only a few approaches
have focused on protein interactions with 14-3-3,25,26 or phos-
phorylated proteins in general. Furthermore, 14-3-3 proteins
© 2025 The Author(s). Published by the Royal Society of Chemistry
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interact with multiple and diverse intrinsically disordered
phosphorylated targets,27 which challenges the usage of estab-
lished deep learning approaches that rely on protein structure
to perform a prediction.23

Stemming from these observations, this work aims to aid in
binding site identication to explore the 14-3-3 protein inter-
actome, by leveraging deep learning on peptide sequences. Our
approach was designed to predict putative sites of proteins
binding to 14-3-3. Aer training our model on publicly available
data, and benchmarking it in comparison with existing
models,26 we validated it prospectively in the wet-lab. Via
a combination of model interpretation, crystal structure deter-
mination, and molecular dynamics, we show the potential of
the proposed approach to prioritize putative interaction sites of
proteins with 14-3-3.
Results and discussion
Predicting binding to 14-3-3 with deep learning

Study setup. Predicting PPI sites with machine learning is
a challenging endeavor, especially when dealing with intrinsi-
cally disordered proteins, like the typical 14-3-3 binding part-
ners.27 In these cases, structure-based approaches inevitably
fail.28 To this end, the prediction task was cast into modeling
the 14-3-3 interaction with the individual binding sites of
known clients using their amino acid (AA) sequences (Fig. 1a).
We used an existing dataset26 (Table 1), and represented each
binding site as a peptide sequence comprising the seven AAs
preceding and seven AAs following the phosphorylated site (for
a total of 15 AA per binding site, Fig. 1a). Moreover, an addi-
tional set of 92 phosphopeptides measured in-house for their
binding to 14-3-3 was used for model validation (Table 1).

Model training and benchmarking. The publicly available
data was used for model training, and it was split ten times into
training (67.5%), validation (22.5%), and test sets (10%). We
represented the AA sequences numerically using four
approaches (Fig. 1b):

� One-hot encoding, where each AA in the peptide is repre-
sented as a binary vector indicating its type. This representation
captures the information in the sequence without introducing
prior assumptions or additional knowledge about the AAs.29

� Learnable embeddings, where AAs are assigned different,
randomly initialized vectors.30 These embeddings are updated
during training to help capture contextual and relational
information about the AAs in the sequence.

� BLOcks SUbstitution Matrix (BLOSUM 62),31 where AAs are
encoded with substitution matrix scores, which reect evolu-
tionary conservation and property similarities between AAs.
This representation incorporates biochemically relevant infor-
mation about AA substitutions. Phosphorylated AAs were indi-
cated via a dedicated binary ag in the corresponding position
(see Materials and methods).

� Physico-chemical descriptors, where each AA in the peptide
is represented by 18 pre-computed numerical features32 (SI
Table S1). For each peptide, the computed AA features were
concatenated and used for the prediction.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Each representation was combined with the following deep
learning architectures (Fig. 1c):

� Multilayer perceptron (MLP),33 where complex peptide
features are progressively extracted through multiple layers of
fully-connected neurons,34 without explicitly considering posi-
tional information.

� Convolutional neural network (CNN),35 in which windows
(‘kernels’) slide over an input sequence, and learn to weight
input elements at each window. CNNs capture local patterns in
sequences, which are combined to predict the global properties
of a sequence (e.g., binding).

� Recurrent neural network with gated recurring units
(GRU),36 which iterates over the input sequence and encodes
information from the N- to the C-terminus, compresses the
information into a ‘hidden state’, which is then used to provide
a prediction.

For each representation-architecture combination, we per-
formed hyperparameter tuning and evaluated the model on the
10 test sets (obtained via stratied splitting). The best model for
each combination was evaluated on the test sets using balanced
accuracy (BA), which captures the global model performance
(Materials and methods, eqn (4)). In general, no statistically
signicant difference between model architectures was
observed (Wilcoxon signed rank test, a = 0.05). Moreover, the
chosen sequence representations were the main drivers of
performance, with different trends based on the chosen archi-
tecture (Fig. 1d). For each architecture, we chose the represen-
tation leading to the highest balanced accuracy (average over 10
test-set splits), resulting in: (a) MLP with learnable embedding
(BA = 77 ± 4%); (b) CNN with BLOSUM 62 encoding (BA = 73 ±

5%); and (c) GRU with BLOSUM 62 encoding (BA = 78 ± 6%).
Moreover, an ensemble model was obtained by averaging the
prediction of each model. While this model did not improve the
overall balanced accuracy (BA = 77 ± 5%), it increased the
capacity to correctly recognize binding sequences, as shown by
an increased recall (SI Table S2).

The models were then retrained with all available data. Their
performance was benchmarked in comparison with 14-3-3-
Pred.26 14-3-3-Pred also combines three machine learning
approaches (MLP, support vector machine [SVM], and position-
specic scoring matrix [PSSM]) into an ensemble model. Both
14-3-3-Pred and our models were validated on the in-house set
(92 peptides, Table 1), as it comprises peptides external to all
considered models and exhibiting diverse recurring AA motifs
(SI Fig. S1) – hence allowing us to assess the potential for
prospective validation. In addition to balanced accuracy, we
calculated the capacity of themodels to minimize false positives
(precision) and to correctly recognize binding and non-binding
sequences (recall and specicity, see Methods, eqn (1)–(3)). The
models developed in this work systematically outperformed 14-
3-3-Pred in global performance (balanced accuracy), and in
most cases in terms of identication of true positives (recall,
Table 2). Moreover, they consistently ranked second-best in the
ability to minimize false positives (precision and specicity,
Table 2). Finally, the ensemble approach balanced the strengths
and weaknesses of each individual deep learning model.
Digital Discovery, 2025, 4, 2602–2614 | 2603
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Fig. 1 Predicting peptide sequence binding to 14-3-3 with deep learning. (a) The information on tested 14-3-3 protein interactions (Table 1) was
converted into a ‘machine readable’ format. Seven amino acids (AAs) before and after the phosphorylated site were used to form a sequence for
deep learning, which is labeled according to its binding to 14-3-3 (yes/no). (b) Representations of AA sequences for model training. One-hot
encoding represents each AA with a unique binary vector. Learnable embedding starts with a random numerical vector per AA and updates the
vectors during training. BLOSUM62 uses substitution scores derived from evolutionary conservation. Descriptors are pre-defined features
capturing the physico-chemical properties of each AA. (c) Neural network architectures. Multilayer perceptron (MLP) consists of fully connected
layers. Convolutional neural networks (CNNs) slide windows over the input sequences, and gated recurrent units (GRU) iterate over the input AAs
in a stepwise manner. (d) Balanced accuracy per architecture-representation combination (computed on 10 test sets obtained via repeated
splitting). Statistically significant differences are marked with “*” (paired Wilcoxon test, a = 0.05). (e) Interpretation of the best models via input
perturbation. By randomly shuffling all AAs in any given position, we computed the relative change in the model predictions. Color indicates the
relevance of the perturbation in each position, normalized by maximum achieved change, ranging from 0% (white: no impact) to 100% (blue:
maximum impact).

2604 | Digital Discovery, 2025, 4, 2602–2614 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Datasets used in this study, along with the number of AA
sequences contained, and their labels (binders, non-binders). The
publicly available dataset was used for model training and selection,
and the in-house set for external validation

Dataset No. Binders Non-binders

Training/validation set26 715 360 (50%) 355a (50%)
In-house set 92 58 (63%) 34 (37%)

a 93 experimentally determined (26%), and 262 (74%) likely non-
binders.

Table 2 Model benchmarking on an external test set. Our model was
compared with an existing one (14-3-3-Pred) on a set of 92 external
peptides, across various classification metrics: balanced accuracy (BA),
precision (Pr), recall (Rc), and specificity (Sp) (Methods, eqn (1)–(4)). For
each classification metric, the best and second-best performance are
highlighted in boldface and with italics, respectively

Model Approach BA (%) Pr (%) Rc (%) Sp (%)

This work MLP (learnable) 71 81 84 59
CNN (BLOSUM 62) 71 82 75 67
GRU (BLOSUM 62) 73 82 84 63
Ensemble 75 82 91 59

14-3-3-Pred26 MLP 60 74 71 48
SVM 61 89 29 93
PSSM 60 74 71 48
Ensemble 65 82 64 67
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Model interpretation. To shed light onto the binding
patterns learned by the models, we conducted a virtual muta-
tion study. We randomly shuffled (15 times) AAs occurring in
each position, except for the phosphorylated AA, of the training
peptides and used each model to predict the binding proba-
bility of the ‘virtually mutated’ sequences (Fig. 1e). The AAs
comprised between −5 and +3 positions contributed the most
to the predictions across models, in alignment with previous
ndings.26 Moreover, the AAs in the −3 and +2 positions yielded
the largest average change in predictions when perturbed. This
is in line with structural biology observations, as the occurrence
of arginine and proline at these positions is the most common
binding motif for the interaction with 14-3-3.16 Finally, each
modeling approach has a ‘prediction hallmark’, with a main
focus on the AAs in the −5 and +3 position. Additional differ-
ences exist, albeit they are not particularly marked for CNN and
GRU (both based on BLOSUM62 representation, Fig. 1e). This
suggests that, although the individual models are trained on the
same data, they might capture slightly different sequence-
binding relationships. This might contribute to the increased
performance of the ensemble model for most metrics (Table 2).
Prospective model application

Experimental validation of binding sites to 14-3-3. We
applied our model prospectively to identify putative, previously
unidentied, binding sites with 14-3-3. As a case study, we
selected seven medically relevant proteins: forkhead box O3
(FOXO3),37 Tau,38 Myc,39 Bcl-2-associated agonist of cell death
© 2025 The Author(s). Published by the Royal Society of Chemistry
(BAD),40 Notch-4,41 Cystic brosis transmembrane conductance
regulator (CFTR),42 and p53.43 These proteins contribute to
a wide array of cellular processes37,40,44 (e.g., metabolism, cell
survival and death) and are involved in diseases like cancer45,46

(e.g., BAD, p53 and Notch-4), Alzheimer's (Tau) and cystic
brosis (CFTR).47 The structures of these proteins range from
ordered (CFTR and Notch-4: experimental/predicted disorder
ratio48,49 between 0% to 26%) to partially and highly disordered
(p53, Myc, FOXO3, BAD, Tau; experimental/predicted disorder
ratio48,49 ranging from 38% to 95%, SI Table S3). Hence, they
constitute an interesting and diverse test case for the 14-3-3
interactome.

For the selected proteins, their AA sequence was obtained
from UniProt.50 All serine and threonine residues were localized
and a sequence window of 15 AAs was obtained (−7 and +7
around such AAs), leading to a total of 830 sequences. These
sequences were further analyzed with PhosphositePlus51 to
verify whether they are phosphorylated in vivo. Only sequences
labeled as phosphorylated (either according to literature41 or to
PhosphositePlus) were retained, resulting in a library of 296
peptides. These sequences were ranked by the ensemble model
for their predicted binding to 14-3-3. Importantly, our model
identied known binding sites for all proteins (13 in total,
across Tau, BAD, FOXO3, Notch-4, CFTR, Myc and p53; SI Table
S4), further corroborating the predictive ability and applicability
of our approach.

From the model predictions, we ltered out the known
binders, and selected eight top-scoring sequences, rst ranked
based on the majority vote of the ensemble model, and then by
average prediction score across the three models (1–8, Table 3).
Moreover, two bottom-scoring sequences were picked as nega-
tive controls (9–10, Table 3). These peptide sequences were
obtained with a N-terminal uorescent label to measure their
binding affinity to 14-3-3g via uorescence anisotropy (FA)
assays (Fig. 2a). Three out of eight ‘positive’ peptides (37%)
showed strong, low-micromolar binding affinities (as measured
via their dissociation constant [Kd], Table 3), equal to Kd = 1.6±
0.1 mM (1, FOXO3 pS413), Kd = 8.6± 0.8 mM (2, Tau pT245), and
Kd = 15.9 ± 1.9 mM (6, BAD pS134). The remaining positive
sequences showed binding, albeit weaker (Kd ranging from 70
mM to larger than 100 mM), except for the CFTR-pS422 peptide,
which showed no binding in the FA assay (Fig. 2a). As expected,
the negative controls 9 and 10 did not bind, conrming the
correctness of the model-based ranking.

Interestingly, peptide 2 (Tau-pT245) showed higher binding
affinities than the known 14-3-3 interaction sites:52,53 Tau-pS214
(Kd = 16.4 ± 0.9 mM) and Tau-pS324 (Kd > 100 mM; SI Fig. S3).
This is especially interesting considering that Tau-pT245 is re-
ported to be only phosphorylated in a normal, non-Alzheimer
brain.54 The FOXO pS413 peptide showed similar affinity to
the known FOXO pS253 site.55 The p253 site is located near the
nuclear locator site, whilst pS413 is located close to the nuclear
exclusion site,56 suggesting a potential dual role by 14-3-3.

The experimental Kd values correlate well with the predicted
binding scores (r = 0.74). Discrepancies exist for peptides with
moderate predictions (scores ranging from 0.69 to 0.61), such as
5 (CFTR pS422) and 6 (BAD pS134). In this case, no evident
Digital Discovery, 2025, 4, 2602–2614 | 2605
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Table 3 Peptide selection and validation. Eight putative binding sites and two negative controls were selected for experimental validation, using
the model predictions. Peptides 1–8 were selected by maximizing the predicted binding score, while peptides 9–10 were selected as negative
controls (predicted to be non-binding with high confidence). Predicted outcome (binding and non binding, using a threshold above 0.5 in the
predicted binding score) is also reported. The protein, phosphosite, AA sequence (pS = phosphoserine, pT = phosphothreonine) and model
predictions are reported, along with the experimentally determined constant of dissociation (Kd [mean± SD, n= 3]). Binding curves are reported
in SI Fig. S2

ID Protein Phosphosite AA sequence

Model

Kd (mM)Predicted outcome Predicted binding scores

1 FOXO 3 413 GLMQRSS(pS)FPYTTKG Binding 0.98 � 0.02 1.6 � 0.1
2 Tau 245 SAKSRLQ(pT)APVPMPD Binding 0.94 � 0.05 8.6 � 0.8
3 Notch 4 1847 FPRARTV(pS)VSVPPHG Binding 0.87 � 0.08 70 � 1
4 Tau 198 SGDRSGY(pS)SPGSPGT Binding 0.85 � 0.06 71 � 11
5 CFTR 422 NNNNRKT(pS)NGDDSLF Binding 0.69 � 0.14 —
6 BAD 134 KGLPRPK(pS)AGTATQM Binding 0.68 � 0.14 15.9 � 1.9
7 BAD 118 GRELRRM(pS)DEFVDSF Binding 0.65 � 0.11 >100
8 Myc 294 APGKRSE(pS)GSPSAGG Binding 0.61 � 0.04 >100
9 Tau 111 EEAGIGD(pT)PSLEDEA No binding 0.000 � 0.0005 —
10 Myc 262 LHEETPP(pT)TSSDSEE No binding 0.001 � 0.0009 —
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relationship between AA similarity to training sequences and
predicted binding scores exists. While this success ratio is in
line with literature on machine learning for peptide
discovery,57–59 it underscores intrinsic model limitations, e.g.,
due to coverage of sequence-binding relationships, experi-
mental error, and the presence of likely non-binders in the
training set (Table 1). Moreover, binding data used for training
come from diverse experimental assays, potentially contrib-
uting to differences with the reported FA measurements.

Moreover, when comparing our predictions with those of 14-
3-3-Pred26 and with 14-3-3 Site Finder, we observe moderate to
no correlations between the predictions on the selected
sequences (ranging from 0.17 to 0.61). Finally, the ranking ob-
tained by our model correlates well with the observed Kd

predictions (0.74, SI Table S5). Additionally, when comparing
the peptides to the most common 14-3-3 binding motifs
(RSXpSXP,16 RXY/FXpSXP,16 pS/pT (X1–2)-COOH,60 with X being
any AA), seven out of eight sequences (except for sequence 1)
would not have been found. These results corroborate the pre-
dictivity of our approach and its relevance to rationalize
sequence binding to 14-3-3 beyond known common motifs.

X-ray crystallography. The binding of the selected sequences
was further conrmed and molecularly probed by X-ray crys-
tallography through co-crystallization of 14-3-3 with peptides 1–
8 (Fig. 2). Crystal structures were obtained for nearly all peptides
that demonstrated binding in the FA assay, except for BAD
pS134. These experiments validated the interaction of the newly
discovered phosphorylated peptides to 14-3-3, as evident from
the electron density maps which reveal the conformation of the
peptides within the 14-3-3 binding pocket (Fig. 2b–g). Structural
overlays with previously characterized 14-3-3/peptide complexes
show that the binding modes of these predicted peptides are
comparable to known interactions, indicating that these
sequences are likely physiologically relevant rather than arti-
cial (Fig. 2h–m).
2606 | Digital Discovery, 2025, 4, 2602–2614
The FOXO3 pS413 peptide exhibits an ‘open’ binding mode,
bending outward from the 14-3-3 pocket due to a proline
residue at the +2 position (Fig. 2b). A similar binding confor-
mation was observed for the GAB2 pT391 peptide,61 which
aligns perfectly at its +2 proline with FOXO3, and for p53
pT387,62 which bends out of the pocket due to glycine and
proline residues at the +2 and +3 positions, respectively
(Fig. 2h). The high affinity of FOXO3 pS413 can be attributed to
key interactions at the protein–peptide interface, including
hydrogen bonds between FOXO3 residues S411 and S412 and
14-3-3 residues D225, N226 and W230 (Fig. S5a). Additionally,
FOXO3 F414 interacts with the hydrophobic roof of the 14-3-3
pocket composed of L218, I219, and L222. A network of water-
mediated hydrogen bonds is formed between the FOXO3
backbone and K49, K122 and N175 of 14-3-3. The phosphory-
lated residue of FOXO3 (pS413) is also involved in this hydrogen
bond network, thereby stabilizing the bent conformation of the
peptide (SI Fig. S4a). The high-affinity binding of FOXO3 pS413
was further corroborated by molecular dynamics simulations
on the peptide (and the sequence extended by 40 AAs within the
full-FOXO3 protein, see Materials and methods), showing
consistently low root mean squared uctuation (RMSF) values
(SI Fig. S5).

Despite also containing a +2 proline, the Tau pT245 peptide
adopts a distinct binding mode, extending further into the 14-3-
3 pocket (Fig. 2c). The ‘extended’ binding mode is similar to
peptides such as CRAF pS259 63 and TFEB pS211,64 all of which
fold back into the pocket aer a minor turn induced by the +2
proline (Fig. 2i). Conformational variations at the N-terminal
side of the phospho-residue were observed, though the elec-
tron density in this region was not well-dened. Notably, all
newly identied peptide sequences contained a positively
charged arginine at the−3 or−4 position, consistent withmany
known 14-3-3 client peptides. The binding mode of Tau pT245
was also conrmed by molecular dynamics simulations on the
tested peptide sequence and its extended version (with 40
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Experimental characterization of the selected peptides. (a) Characterization via a fluorescence anisotropy assay. Binding curves are re-
ported on a logarithmic scale for each sequence, labeled as protein and phosphosite (pS= phosphoserine, pT= phosphothreonine), across three
independent repeats. (b–g) X-ray crystallography on selected peptide binders in comparison with known binders. Crystal structures of the
predicted peptide sequences (colored sticks) in complex with 14-3-3sigma (white surface). Final 2Fo − Fc electron density contoured at 1.0s. (b)
FOXO3 pS413 (orange), (c) Tau pT245 (cyan), (d) NOTCH pS1847 (purple), (e) Tau pS198 (pink), (f) BAD pS118 (green), (g) Myc pS294 (blue). (h–m)
Crystallographic overlay of predicted peptide sequences (h) FOXO3 pS413 (orange), (i) Tau pT245 (cyan), (j) NOTCH pS1847 (purple), (k) Tau
pS198 (pink), (l) BAD pS118 (green), (m) Myc pS294 (blue) with two known 14-3-3 binding peptides (colored sticks) in the 14-3-3 pocket (white
surface). Each figure includes a representation of the peptide backbones.
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additional AAs, see Materials and methods and SI Fig. S5b and
c). In this context, Tau pT245 exhibited limited uctuations in
its interactions with 14-3-3 over time, as assessed by RMSF
analysis (SI Fig. S5a).

For NOTCH4 pS1847, electron density was only observed up
to the +2 serine, suggesting that the remaining residues are
© 2025 The Author(s). Published by the Royal Society of Chemistry
disordered (Fig. 2d). Similar C-terminal disorder has been re-
ported in crystal structures of the 14-3-3 clients CIC pS173 65 and
Nedd4-2 pS342 66 (Fig. 2j). In addition, only the +1 and +2 resi-
dues were resolved in the Tau pS198 crystal structure (Fig. 2e).
The −1 tyrosine residue of Tau pS198 was observed in previ-
ously reported structures of USP8 pS718 67 and CRAF pS233,68
Digital Discovery, 2025, 4, 2602–2614 | 2607
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where it ts into a pocket at the top of the 14-3-3 binding groove
(Fig. 2k).

Although BAD pS118 and Myc pS294 exhibited the weakest
binding affinities among the tested peptides, their crystal struc-
tures displayed more ordered C-terminal regions compared to
Tau pS198 and NOTCH4 pS1847 (Fig. 2f and g). The +1 aspartate
residue of BAD pS118 is interacting with K122 of 14-3-3, followed
by a +3 phenylalanine that shields the negatively charged aspar-
tate (SI Fig. S5e) – an arrangement that appears unique among
known 14-3-3 binding proteins, as far as we know. Therefore, the
structural overlay for the BAD pS118 crystal structure showsmore
variation in the C-terminal side of the peptide (Fig. 2i). Never-
theless, some similarities were revealed in the overlay with BRAF
pS726 69 and LKB1 pT336,70 where BRAF's +1 glutamate aligns
with BAD's +2 glutamate, and LBK1's +3 proline and +5 leucine
occupy the same pocket as BAD's +3 phenylalanine. Moreover,
molecular dynamics simulations on the extended version of BAD
pS118 (by 20 residues on the N- and -C terminus of the original
BAD sequence) show improved stabilization, compared to the
shorter peptide, especially visible from the −4 leucine to the −2
arginine residues. These analyses further support pS118 as
a putative binding site of BAD to 14-3-3.

Finally, the Myc pS294 peptide forms a slight turn within the
14-3-3 pocket due to its +1 glycine, similar to CAMKK2 pS511 71

and Tau pS214,72 where this turn is induced by a +2 proline
(Fig. 2g and m). This leads to a highly comparable binding
mode among the 14-3-3 client peptides. In conclusion, the
predicted binding sites of clinically relevant 14-3-3 client
proteins demonstrated direct interactions with 14-3-3, exhibit-
ing binding modes consistent with previously characterized 14-
3-3/peptide complexes. This highlights the potential of our
approach for identifying physiologically relevant phosphory-
lated binding sites within 14-3-3 client proteins.

Conclusions and outlook

In this work, we developed and validated a deep learning
approach for predicting putative protein–protein interaction
sites between 14-3-3 proteins and phosphorylated client
proteins. By leveraging different amino-acid sequence repre-
sentations and neural network architectures, we demonstrated
that our models outperform existing tools in terms of global
performance, as captured by balanced accuracy. When
combined within an ensemble model, our approach provided
a robust predictive framework, enhancing the identication of
novel binding sites for prospective applications by minimizing
false positives compared to the state-of-the art.

Our model was applied to identify novel putative binding sites
on biologically relevant 14-3-3 client proteins (FOXO3, Myc, BAD,
Notch-4, CFTR and p53). The model was used to screen 296
potential binding sites and to select eight peptide sequences for
follow-up assays. Experimental validation conrmed the predic-
tive power of our model, with three out of eight newly predicted
phosphopeptides exhibiting low-micromolar binding affinities to
14-3-3, two weak binders and two binders with marginal affinity.
Structural characterization via X-ray crystallography further
substantiated our ndings, revealing binding modes consistent
2608 | Digital Discovery, 2025, 4, 2602–2614
with known 14-3-3-client interactions. This includes an ‘open’
binding mode, where peptides bend out of the 14-3-3 pocket, an
‘extended’ binding mode, in which peptides occupy the entire 14-
3-3 pocket, and peptides featuring a disordered C-terminus. The
identication of such structurally representative 14-3-3 binding
motifs, without having provided such structural information to
our models, testies to the strength of our deep learning
approach. These ndings were further corroborated by molecular
dynamics simulations on longer peptide versions of the putative
binding sites. Our study not only advances computational
predictions for 14-3-3 interactions, but also underscores the
importance of integrating deep learning with experimental vali-
dation. The results demonstrate that deep learning models can
reliably predict potentially relevant binding sites for follow-up
biological characterization, paving the way for more efficient
exploration of the 14-3-3 interactome.

Several challenges and opportunities for future research
remain. First, expanding the training dataset with additional
experimentally validated binding and non-binding sequences will
likely improve model generalizability. Incorporating sequence
context beyond the immediate phosphosite region may further
enhance predictive accuracy and facilitate the translation into
biologically relevant insights. While ourmodel effectively predicts
linear phosphopeptide binding motifs, potentially ideal for
disordered binding partners undergoing protein–protein inter-
actions, future work could integrate structural data more
comprehensively, potentially by incorporating protein tertiary and
especially quaternary structure information. Combined, this
might strongly aid addressing the challenge of rening interac-
tion predictions for disordered regions and transient interactions.

Applying this predictive framework to other phospho-
dependent interactions beyond 14-3-3 proteins could broaden
its impact, aiding in the discovery of new regulatory mecha-
nisms and therapeutic targets. Additionally, prospective vali-
dation of predicted binding sites in cellular models and in vivo
systems will be necessary to fully establish the physiological
relevance of our ndings. Our approach contributes to a deeper
understanding of peptide–14-3-3 interactions – supporting the
rational design of modulators, and expanding the available
hypotheses on 14-3-3 related cellular signaling. Furthermore, by
making our model freely available on an online platform
(https://14-3-3-bindsite.streamlit.app/), without requiring
expert deep learning knowledge, we provide an accessible tool
for researchers to explore 14-3-3 interactions in their own
studies, fostering further discoveries in the eld.

Materials and Methods
Data collection and curation

Publicly available data. We used a previously curated 14-3-3
binding site dataset,26 comprising 338 experimentally deter-
mined binding phosphosites,73 93 experimentally determined
non-binding phosphosites74 and 22 known binding sequences
from the literature.26 Moreover, 262 likely non-binding phos-
phosites obtained randomly were added from proteins of which
already two 14-3-3-binding sites were dened. In total the data
contained 360 sequences labelled as binding and 355 labelled
© 2025 The Author(s). Published by the Royal Society of Chemistry
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as non-binding. Sequences were centered around the phos-
phorylated AA and truncated or padded to 15 AAs, if necessary.

In-house test set. An in-house dataset of 92 phosphopeptides
tested for binding to 14-3-3 was used for model evaluation. 58 of
those phosphopeptides are annotated as binders (Kd < 200 mM)
and 34 were annotated as non-binders (Kd > 200 mM). In cases
with multiple affinity scores for different 14-3-3 isoforms, the
strongest binding affinity was picked. Last, we centered the
sequences around the phosphorylated residues to comply with
the training set format, considered 15 AAs, and applied padding
when necessary.

Model training

Training and hyperparameter tuning. The dataset was split
using 10-fold stratied cross-validation splitting. 10%was used as
the test set and the remaining data was split into training and
validation (67.5% and 22.5% of the total dataset, respectively).
Test peptides with an edit distance on the AA sequence equal to or
lower than four were removed to avoid data leakage or over-
estimation of model performance. We used a two-staged
approach for hyperparameter tuning. First, a ‘broad’ hyper-
parameter space was tested (as recently suggested75), and, later,
the top hyperparameter congurations (216 for GRU, 324 for
MLP, and 1500 for CNN) were further ne-tuned (SI Table S6).
Early stopping on F1 score was used starting from the h epoch,
with a patience of ve epochs. The model with the highest F1
score (eqn (5)) in 10-fold validation was selected. The nal
hyperparameters for each model are reported in SI Table S7.

Evaluation metrics. The capacity of the model to correctly
classify positive (binding) and negative (non-binding) peptides
was quantied via recall (Rc), precision (Pr) and specicity (Sp),
computed as follows:76

Rc ¼ TP

TPþ FN
(1)

Sp ¼ TN

TNþ FP
(2)

Pr ¼ TP

TPþ FP
(3)

where true negatives (TN) and true positives (TP) represent the
number of correctly identied non-binders and binders, respec-
tively. Conversely, false negatives (FN) and false positives (FP)
refer to the number of binders and non-binders that are mis-
classied. Recall (eqn (1)) indicates the proportion of actual
binders that themodel successfully identies, specicity (eqn (2))
assesses the reliability of non-binding predictions, and precision
(eqn (3)) measures the capability to minimize false positives.

Moreover, the models were assessed for their global predic-
tion ability, via balanced accuracy (BA) and F1-score:

BA ¼ Rcþ Sp

2
(4)

F1 ¼ 2
PrþRc

PrþRc
(5)
© 2025 The Author(s). Published by the Royal Society of Chemistry
Balanced accuracy captures the model performance (correct
predictions) normalized by the class imbalance, and F1 scores
provide an overall evaluation of the model's performance in
terms of minimizing false positives and negatives.

Peptide representation. The following settings were used for
each peptide representation.

� One-hot-encoding. Each AA is assigned a unique vector
with a single 1 corresponding to the respective index of that
amino acid in the amino acid alphabet, with values of 0 in the
remaining elements. Phosphorylated amino acids were enco-
ded as a distinct token (and the corresponding sparse vector).

� Learnable embeddings. AAs are assigned a unique and
randomly initialized vector. Phosphorylated AAs are assigned
their own random vector. Vectors are then updated during
model training.

� BLOSUM 62 representation was tested in two formats: (a)
by treating phosphorylated AAs as their non-modied versions,
and (b) by appending an additional numerical ag ([1,0] for
phosphoserine and [0,1] for phosphothreonine). Preliminary
results showed that the agged version performed better in
terms of F1 and balanced accuracy and hence it was used for
this study.

� Peptide descriptors. For each AA, 18 descriptors were
computed using the peptidy32 soware. Descriptors were
concatenated, obtaining a matrix of 15 × 18 descriptors per
peptide (see SI Table S1).
Prospective screening on selected proteins

Library preparation. The AA sequence for the selected
proteins was obtained from UniProt50 (UniProt IDs: Tau =

P10636-8; Myc = P01106; FOXO3 = O43524; Notch4 = Q99466;
BAD = Q92934; CFTR = P13569; p53 = Q761V2). All serine and
threonine residues were located and a window of 15 AAs was
obtained (−7 and +7 around such AAs), leading to a total of 830
sequences. These sequences were further analyzed with Phos-
phoSitePlus,51,77 to predict whether they are phosphorylated in
vivo. Only sequences phosphorylated were according to literature
or PhosphoSitePlus were retained, resulting in a library of 296
peptides. All sequences were predicted with the ensemble model
and ranked by scores (average predictions across the models).
The top scoring predictions were manually inspected, and known
binding sites identied and validated according to existing liter-
ature were excluded from the wet-lab validation (SI Table S4).
Experimental validation

Peptide materials. Selected peptides were ordered from
GenScript78 with a minimal purity of 85% with a N-terminal 6-
aminohexanoic acid (Ahx) linker followed by the uorescent dye
5-FAM. A C-terminal amidation served to mimic the lack of
a free C-terminus in the amino-acid sequence when it is part of
a larger protein. One of the top-scoring sequences was not
tested due to failed synthesis by the commercial provider, and
the next top-ranking sequence was picked instead. Acetylated
peptides were ordered for crystallography with a minimal purity
of 95%. Peptide sequences are reported in SI Table S8.
Digital Discovery, 2025, 4, 2602–2614 | 2609
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Protein expression and purication. The full-length (FL)
human 14-3-3g protein was expressed from a pPROEX plasmid
aer transformation to BL21(DE3) competent E. coli (Novagen).
Cultures were incubated at 37 °C, 140 rpm until OD600∼ 0.8 was
reached. Protein expression was induced by isopropyl b-D-1-
thiogalactopyranoside (IPTG; 0.4 mM) and cells were harvested
by centrifugation (10 min, 4 °C, 16 000 × g) aer overnight
expression (18 °C, 140 rpm). Pellets were resuspended in wash
buffer (50 mM Tris pH 8.0, 300 mM NaCl, 12.5 mM imidazole
and 2 mM b-mercaptoethanol (bME)). Aer homogenizing the
cells (40 bar, Emulsiex-C3 homogenizer), the soluble fraction
was collected by centrifugation (30 min, 4 °C, 40 000 × g) and
loaded onto a Ni2+-affinity column pre-equilibrated with wash
buffer. Aer a washing step (wash buffer + 20 mM imidazole),
the bound protein was eluted with 200 mM imidazole followed
by dialysis overnight at 4 °C (25 mM HEPES pH 8.0, 200 mM
NaCl, 10 mM MgCl2, 0.5 mM tris(2-carboxyethyl)phosphine
(TCEP)). The His6-tag of the DC variant (14-3-3s truncated
aer S232) for crystallography was cleaved with TEV-protease
during dialysis and subjected to an additional purication by
size exclusion chromatography (SEC; Superdex 75; buffer
20 mM HEPES pH 7.5, 100 mM NaCl, 10 mM MgCl2, 0.5 mM
TCEP). The pure protein was concentrated, aliquoted, ash-
frozen in liquid N2, and stored at −80 °C. Purity and exact
mass were determined (SI Fig. S6) using a high-resolution liquid
chromatography coupled with mass spectrometry (LC/MS)
system comprised of an I-Class Acquity UPLC (Waters) with
a Polaris C18A reverse-phase column 2.0 × 100 mm (Agilent),
coupled to a Xevo G2 Quadrupole Time of Flight mass spec-
trometer (Waters). A ow rate of 0.3 mL min−1 was used with
a gradient of acetonitrile + 0.1% formic acid (FA) in water + 0.1%
FA (acetonitrile 15–75%). Deconvolution of the m/z spectra was
done using the MaxENTI algorithm in the Masslynx v4.1
(SCN862) soware.

Fluorescence anisotropy assay. To study the binding of the
uorescently labelled peptides to 14-3-3, Fluorescence Anisot-
ropy (FA) assays were carried out.23 In the case of binding,
tumbling of the peptide with the attached uorophore will slow
down and the emitted light will be polarized. This will lead to
a higher anisotropy.79 For all experiments, 14-3-3gwas used as it
was shown in multiple experiments to be the strongest binding
variant suitable for experimental screening.80 The FAM-labeled
peptides and the 14-3-3g FL protein were diluted in buffer
(10 mM HEPES pH 7.4, 150 mM NaCl, 0.1% Tween20, 1 mg
mL−1 BSA).

Dilution series of 14-3-3g proteins (starting at 500 mM) were
made to 10 nM of the FAM-labeled peptides in black, round-
bottom 384-microwell (Corning) in a nal sample volume of
10 mL. Fluorescence anisotropy values were measured using
a Tecan Spark Control at room temperature lter set lex: 485 ±

20 nm, lem: 535 ± 25 nm, mirror: Dichroic 510, ashes: 30,
integration time: 40 ms, settle time: 1 ms; gain: optimized per
peptide, and Z-position: calculated from well. Wells containing
only FAM-peptide were used to set as G-factor. The KD values
were obtained from tting the data using Origin 2020 with
a Sigmoid Hill1 function (using the Hill equation). Data shown
2610 | Digital Discovery, 2025, 4, 2602–2614
is the average and standard deviation of triplicates. For dose–
response curves on a linear scale seep SI Fig. S2.
Co-crystallization

The 14-3-3sDC protein and the acetylated client peptides were
dissolved in complexation buffer (25 mM HEPES pH = 7.5,
2 mM MgCl2 and 100 mM TCEP) and mixed in a 1 : 2 or 1 : 4
molecular stoichiometry (protein : peptide) with a nal protein
concentration of 12 mg mL−1. The complex was set-up for
sitting-drop crystallization at 4 °C, in a custom crystallization
liquor (0.05 M HEPES (pH 7.1, 7.3, 7.5, 7.7), 0.19 M CaCl2, 24–
29% PEG400, and 5% (v/v) glycerol). Crystals grew within 10–14
days at 4 °C. Crystals were shed and ash-cooled in liquid
nitrogen. X-ray diffraction (XRD) data were collected at the
European Synchrotron Radiation Facility (ESRF Grenoble,
France, beamline ID23-2). Data was processed using CCP4i2
suite (version 8.0.019). Aer indexing and integrating the data,
scaling was done using AIMLESS. The data was phased with
MolRep, using PDB 3IQU as template. Model rebuilding and
renement was performed using REFMAC5. The PDB REDO
server (https://pdb-redo.edu) was used to complete the model
building and renement. The images were created using the
PyMOL Molecular Graphics System (Schrödinger LLC, version
4.6.0). See SI Table S9 for data collection and renement
statistics. The structures were deposited in the protein data
bank (PDB) with IDs: 9QNG (FOXO pS413), 9QNH (Myc
pS294), 9QNI (NOTCH4 pS1847), 9QNJ (Tau pS198), 9QNK
(Tau pT245), 9QNL (BAD pS118).
Molecular dynamics simulations

To investigate how our experimental results could be extended
beyond the experimentally determined peptides, we selected
three sequences: FOXO3 pS413 (1, Kd = 1.6 ± 0.1 mM), TAU
pT245 (2, Kd = 8.5 ± 0.2 mM), and BAD pS118 (7, Kd > 100 mM).
For each of these sequences, we obtained an ‘extended’
sequence from the corresponding full-protein sequence from
UniProt,50 by elongating the tested sequences with 20 AAs in
both N- and C-terminal directions (55 AAs in total). Our goal was
to assess whether the additional anking residues could alter
the binding properties of the peptide within the 14-3-3 binding
pocket and hence infer the plausibility of the predicted binding
sites. To this end, we performed molecular dynamics (MD) to
compare the stability of both sequence versions, ultimately to
assess how additional anking residues inuence stability and
to gain insights into these PPIs. For each peptide (initial
sequence), molecular dynamics (MD) simulations were per-
formed using GROMACS 2023 81 with three independent repli-
cates. The simulations were divided into three stages: energy
minimization, equilibration, and production. Energy minimi-
zation was performed using the steepest descent algorithm
until a convergence criterion of 1000 kJ mol−1 nm−1 was
reached. The equilibration phase was conducted under
position-restrained dynamics in the NVT and NPT ensembles,
using the V-rescale thermostat to maintain a temperature of
303.15 K and the Parrinello-Rahman barostat to regulate
© 2025 The Author(s). Published by the Royal Society of Chemistry
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pressure at 1 atm. The production phase involved MD simula-
tions for 300 ns with a 2 fs integration time step.

Following, the initial peptide structures were extended to
a sequence of 55 AAs using PyMOL.82 MD simulations were
performed following a ve-step protocol to ensure proper
system relaxation and equilibration. The rst step involved an
energy minimization using steepest descent, applying posi-
tional restraints on the backbone (force constant =

400 kJ mol−1 nm−2) and side chains (force constant =

40 kJ mol−1 nm−2). The peptide was frozen along all spatial
dimensions during this phase. In the second step, a 5 ns MD
simulation was carried out under NVT conditions, with posi-
tional restraints on the backbone and side chains. A time step of
1 fs was used, and the system was maintained at 303.15 K using
the V-rescale thermostat. The peptide remained frozen along all
spatial dimensions. Following this, a second round of energy
minimization was performed using the same parameters as in
the rst phase to allow for further relaxation of the solvent
environment around the peptide. The fourth phase involved a 5
ns MD simulation under NPT conditions to equilibrate the
system. Positional restraints were again applied to the peptide
backbone and side chains. Pressure was controlled isotropically
at 1 bar using the Parrinello-Rahman barostat, and temperature
was held at 303.15 K using the V-rescale thermostat. Finally, in
the h phase, a 300 ns production MD simulation was carried
out with a 2 fs time step, during which positional restraints were
removed, allowing the peptide to move freely. Temperature
(303.15 K) and pressure (1 bar) were controlled using the V-
rescale thermostat and Parrinello-Rahman barostat,83 respec-
tively. For the analysis of the root mean square uctuation
(RMSF) of the peptides, the rst 15 ns of the production phase
were excluded from the calculation to allow for system equili-
bration. The RMSF values were then computed over the
remaining trajectory, considering the uctuations across all
three replicates.
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