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hmarks in AI-driven infrared
structure elucidation†

Marvin Alberts, *abc Federico Zipoliab and Teodoro Laino ab

Automated structure elucidation from infrared (IR) spectra represents a significant breakthrough in

analytical chemistry, having recently gained momentum through the application of Transformer-based

language models. In this work, we improve our original Transformer architecture, refine spectral data

representations, and implement novel augmentation and decoding strategies to significantly increase

performance. We report a Top-1 accuracy of 63.79% and a Top-10 accuracy of 83.95% compared to the

current performance of state-of-the-art models of 53.56% and 80.36%, respectively. Our findings not

only set a new performance benchmark but also strengthen confidence in the promising future of AI-

driven IR spectroscopy as a practical and powerful tool for structure elucidation. To facilitate broad

adoption among chemical laboratories and domain experts, we openly share our models and code.
1 Introduction

Infrared (IR) spectroscopy is a valuable analytical technique
widely utilised across chemistry, pharmaceuticals, environ-
mental science, and forensic investigations due to its rapid,
non-destructive, and cost-effective characterisation of molec-
ular structures and functional groups.1–4 Although nuclear
magnetic resonance (NMR) spectroscopy and tandem mass
spectrometry (MS/MS) have gained prominence in structure
elucidation,5,6 IR spectroscopy provides distinct advantages,
including minimal sample preparation, low operational costs,
rapid measurement times, and direct observation of vibrational
modes that correspond to specic functional groups. The
characteristic absorption bands in IR spectra enable rapid
identication of molecular features that may be challenging or
time-consuming to discern through other analytical methods.7

However, despite its widespread use, determining the
complete molecule structure from an IR spectrum remains
notoriously challenging. Interpretation of the spectra is oen
limited to the manual identication of a few functional groups
or relies on the use of spectral databases and reference tables
for comparison.8–10 The complexity of overlapping bands and
coupled vibrations in the ngerprint region (500–1500 cm−1)
further complicates the interpretation of the spectra.11 This
oen limits the amount of information that can be reliably
extracted to a few select functional groups (Fig. 1).
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6–1943
The emergence of computational chemistry provided new
a framework for understanding vibrational spectroscopy, with
various computational approaches enabling the simulation of
IR spectra. These techniques aided in the interpretation of IR
spectra based on the molecular structure and shed new insights
on the relation between vibrations in the molecular structures
and the peaks observed in the spectra.12–14 However, the inverse
problem, i.e. predicting molecular structures or functional
groups directly from experimental IR spectra, has remained
largely unsolved through traditional computational
approaches.

Recently, articial intelligence (AI) has developed into
a transformative tool across chemistry. Machine learning
approaches have shown remarkable success in interpreting
NMR spectra,15–21 analysing MS/MS spectra,22–24 and the
prediction of functional groups from IR spectra.25–29 These
developments have demonstrated the potential for AI-driven
Fig. 1 Whereas chemists are only able to identify functional groups
from IR spectra or need to rely on reference databases to assign
a molecular structure to an IR spectrum. Our approach leverages an AI
model to directly predict the molecular structure from a spectrum.
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methods to overcome traditional limitations in the analysis of
spectroscopic data.

Building on this foundation, it has been demonstrated that
articial intelligence can directly predict the molecular struc-
ture from IR spectra.30–32 This opened new avenues in analytical
chemistry and inspired subsequent perspectives33 and devel-
opments.34,35 Wu et al.34 advanced the methodology further,
achieving notable accuracy improvements, Kanakala et al.35

developed a contrastive retrieval system to match molecules
with spectra and Priessner et al.36 developed a multimodal
approach combining IR spectra with other spectroscopic
modalities. In this work, we push the boundaries even further
by addressing previous architectural limitations, adopting
a patch-based spectral representation method, and rening
augmentation and decoding strategies. These modications
substantially improve our model's performance, raising the
Top-1 accuracy from 44.39% to 63.79% and Top-10 accuracy
from 69.79% to 83.95%. The model presented in this work
exceeds the previous best-in-class by approximately 9%, effec-
tively becoming the new state-of-the-art. Our ndings redene
what is possible, showing that the full potential of IR spectra for
structure elucidation is now within reach through specically
tailored architecture and data engineering strategies.
2 Results and discussion
2.1 Model architecture ablation

Our model directly predicts chemical structures as SMILES37

using only a compound's chemical formula and its infrared (IR)
spectrum. Previously, we represented IR spectra as discretized
text, limiting each spectrum to 400 data points with absorbance
values quantized into 100 bins.32 Although effective, this dis-
cretization signicantly reduced spectral resolution, resulting
in a considerable loss of information.

Recently, Wu et al.34 addressed this limitation by introducing
a patch-based Transformer model for IR spectral analysis,
inspired by Vision Transformers (ViT) originally developed for
image data.38 This approach segments the IR spectrum into
smaller xed-size segments or “patches,” effectively preserving
richer, ne-grained spectral details. Patch-based Transformers
have proven successful across multiple data modalities beyond
images, including audio and time-series data, due to their
enhanced representational capabilities.39,40 Based on these
insights, we implemented a patch-based representation of IR
spectra, resulting in substantial improvements in performance.
Table 1 Ablations on different architectural choices for in the transform

Layer normalisation Pos. encoding GLUs Patch size

Pre- Sinusoidal 7 125
Post- Sinusoidal 7 125
Post- Learned 7 125
Post- Learned 3 125

© 2025 The Author(s). Published by the Royal Society of Chemistry
However, the patch-based representation is not the only
recent advancement in Transformer architectures. Xiong et al.41

introduced post-layer normalization, replacing the original pre-
layer normalization approach of the vanilla Transformer. This
modication optimizes gradient ow during training, leading
to more effective and efficient model convergence. Similarly,
Gated Linear Units (GLUs), introduced by Shazeer,42 represent
an improvement over traditional activation functions such as
the Rectied Linear Unit (ReLU) and the Gaussian Error Linear
Unit (GeLU). GLUs allow for enhanced model parametrization
without additional depth, thus improving model expressivity.43

In this study, we also replaced the standard sinusoidal posi-
tional encodings with learned positional embeddings,44

enabling the model to develop more adaptive sequence repre-
sentations throughout training.

We conducted comprehensive ablation studies evaluating
the impact of each of these architectural changes, summarized
in Table 1. During pretraining, we incorporated both simulated
data from our original study and additional spectra introduced
in our recent multimodal dataset,45 substantially increasing our
training samples from 634 585 to 1 399 806 spectra. For each
architectural conguration (as detailed in the table rows), we
pretrained a model on simulated spectra, followed by ne-
tuning on 3453 experimental spectra from the NIST data-
base—the same dataset utilized in our previous work, obtained
in full compliance with NIST's data usage policies.46 To ensure
robust evaluation, we implemented 5-fold cross-validation
during ne-tuning. Comprehensive results, including Top-5
accuracies, are provided in the ESI, Section 1.†

In Table 1, we demonstrate that each newly introduced
architectural component contributes incrementally to improved
performance. Throughout these experiments, we maintained
a xed patch size of 125 data points, corresponding to 15
patches per spectrum. Based on these ndings, all subsequent
experiments employed models incorporating post-layer
normalization, learned positional embeddings, and Gated
Linear Units (GLUs).

Next, we evaluated the optimal patch size by training models
with patch sizes ranging from 25 to 150 data points (Table 2).
Performance on experimental data steadily improved with
increasing patch sizes, reaching a maximum at a patch size of 75
before subsequently declining. Interestingly, this trend con-
trasted with the performance observed on simulated data, where
smaller patches consistently yielded better results. This
discrepancy suggests that, while smaller patches may enhance
the model's ability to capture detailed spectral features, they
er model

Simulated Experimental

Top-1 [ Top-10 [ Top-1 [ Top-10 [

20.84 47.29 42.59 � 2.64 78.04 � 2.81
39.86 66.52 48.36 � 3.14 81.58 � 2.08
39.78 67.19 49.55 � 1.77 82.39 � 0.83
42.94 69.47 50.01 � 1.53 83.09 � 1.83
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Table 2 Ablations on different patch sizes

Layer normalisation Pos. encoding GLUs Patch size

Simulated Experimental

Top-1 [ Top-10 [ Top-1 [ Top-10 [

Post- Learned 3 25 45.73 71.30 49.81 � 3.49 81.26 � 1.71
Post- Learned 3 50 44.48 70.89 51.03 � 2.82 82.35 � 2.83
Post- Learned 3 75 44.23 70.68 52.25 � 2.71 83.00 � 2.14
Post- Learned 3 100 43.49 69.72 51.72 � 3.08 82.62 � 2.19
Post- Learned 3 125 42.97 69.40 50.57 � 2.59 83.57 � 1.67
Post- Learned 3 150 41.52 68.93 48.36 � 3.11 82.07 � 2.13
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could also promote overtting during ne-tuning. Supporting
this interpretation, the training metrics showed that models
using a patch size of 25 had a higher average validation loss than
those using a patch size of 75. Complete validation loss curves
are provided in the ESI, Section 2.† Based on these results, we
selected a patch size of 75 for all subsequent experiments.
Fig. 2 Illustration of the transfer function. We trained a model to shift
the simulated spectrum to a representation more closely resembling
the experimental spectra. In addition to the simulated spectrum, the
model is given the fingerprint of the target molecule.
2.2 Augmentations

In our previous work,32 data augmentation proved to be one of the
most effective strategies to increase model performance. Among
the augmentation techniques evaluated, horizontal shiing
provided the greatest benet, followed by Gaussian smoothing of
spectra. In the current study, we further extend our augmentation
strategy by introducing two additional methods: SMILES
augmentation and pseudo-experimental spectra generation.

SMILES augmentation, originally proposed by Bjerrum,47

involves enriching the training dataset by including non-
canonical SMILES representations. This approach has success-
fully improved generalization in various molecular prediction
tasks, ranging from retrosynthesis to structure elucidation.48–50

By presenting the model with alternative yet chemically equiv-
alent SMILES representations, we encourage better generaliza-
tion and robustness.

The primary challenge in our pretraining–ne-tuning
approach is the signicant sim-to-real gap between simulated
and experimental IR spectra. This gap leads to a considerable
domain shi that the model must bridge during ne-tuning. To
address this issue, we introduce a novel augmentation method
called pseudo-experimental spectra, dened as simulated
spectra transformed to closely mimic experimental spectra. We
achieve this transformation using a transfer function imple-
mented as a multilayer perceptron (MLP) with a bottleneck
layer. Given the limited availability of experimental IR spectra,
we trained the transfer function on 2000 pairs of simulated and
experimental spectra. Additionally, molecular ngerprints were
included as auxiliary inputs to further improve transformation
accuracy. A visual overview of this methodology is provided in
Fig. 2, and further details on the architecture, hyperparameter
optimization, and performance evaluation are available in the
Methods section and ESI, Section 3.†

During pretraining, we expanded our dataset by adding 700
000 pseudo-experimental spectra. In the ne-tuning phase, we
incorporated an additional, smaller subset of 3000 pseudo-
experimental spectra matching the distribution of our
1938 | Digital Discovery, 2025, 4, 1936–1943
experimental dataset. For consistency, two additional
augmented spectra per sample were generated using all other
augmentation techniques. As shown in Table 3, we observed
substantial performance gains when augmenting the dataset
with non-canonical SMILES and pseudo-experimental spectra,
with all four augmentation techniques demonstrating a syner-
gistic effect when combined. Interestingly, different augmen-
tations contributed distinctly to model performance: pseudo-
experimental spectra primarily improved Top-5 and Top-10
accuracies (see ESI, Section 1†), likely due to increased molec-
ular diversity in the training data. In contrast, non-canonical
SMILES augmentation signicantly boosted Top-1 accuracy
but slightly reduced Top-5 and Top-10 accuracies, possibly due
to the model encountering multiple equivalent SMILES repre-
sentations—either facilitating precise prediction or increasing
ambiguity. Consequently, we employed all four augmentation
strategies for all subsequent experiments.
2.3 Formula constrained generation

During training, we provide the model with both the chemical
formula and the corresponding IR spectrum. However, the
generated molecular structures do not always strictly conform
to the provided chemical formula. To address this issue, we
introduce a formula-constrained generation method, inspired
by constrained decoding techniques developed within natural
language processing.51–55 Our approach enforces constraints
during model inference, ensuring that the generated molecules
exactly match the desired chemical formula.

Specically, we implement three constraint conditions: (1)
preventing sequence termination if the partially generated
molecule's chemical formula remains incomplete (e.g., missing
atoms); (2) enforcing immediate termination when the target
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Ablations on different augmentations. Augmentations of the pretraining set are evaluated first before assessing the performance when
also augmenting the fine tuning set

Pretraining augmentation Fine tuning augmentation

Simulated Experimental

Top-1 [ Top-10 [ Top-1 [ Top-10 [

Hori.a None 43.18 68.95 50.33 � 2.37 83.15 � 1.19
Smoothingb None 42.94 67.84 48.60 � 1.74 81.90 � 0.56
Pseudo None 45.26 73.97 50.45 � 1.13 83.64 � 0.93
SMILES None 50.86 70.51 54.62 � 3.06 82.65 � 1.51
Hori.a + smoothingb SMILES + pseudo None 50.62 72.39 55.58 � 1.75 84.19 � 1.78
Hori.a + smoothingb SMILES + pseudo Hori.a 50.62 72.39 57.49 � 1.86 84.25 � 1.46
Hori.a + smoothingb SMILES + pseudo Smoothingb 50.62 72.39 56.04 � 1.85 85.06 � 2.05
Hori.a + smoothingb SMILES + pseudo Pseudo 50.62 72.39 55.10 � 3.00 85.19 � 1.99
Hori.a + smoothingb SMILES + pseudo SMILES 50.62 72.39 59.80 � 1.64 80.99 � 1.33
Hori.a + smoothingb SMILES + pseudo Hori.a + smoothingb SMILES + pseudo 50.62 72.39 60.75 � 1.54 81.92 � 1.74

a Horizontal shiing as implemented in Alberts et al.32 b Gaussian smoothing as implemented in Alberts et al.32
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chemical formula is satised and the SMILES string is valid;
and (3) prohibiting token selections that would cause the
generated molecule to exceed the atom counts dened by the
target formula. This procedure is illustrated in Fig. 3. Applying
these constraints on both the ltered NIST dataset (containing
molecules with 6–13 heavy atoms) and the complete NIST
dataset model performance, achieving an approximately 2%
accuracy increase, as detailed in Table 4.

2.4 Comparison to baselines

In this section, we provide a comprehensive comparison
between our enhanced model (this work), our original model
(Alberts et al.32), and the recently published model by Wu et al.34
Fig. 3 At each decoding step the chemical formula of the partially
generated molecule is evaluated and tokens that would cause the
chemical formula of the molecule to exceed the correct chemical
formula are disallowed.

Table 4 Performance of the model on the NIST database when evaluate
a subset of the NIST database containing only molecules with a heavy a

Dataset N–Molecules Constrained gene

NIST (6-13 heavy atoms) 3455 7

NIST (6-13 heavy atoms) 3455 3

NIST (5-35 heavy atoms) 5024 7

NIST (5-35 heavy atoms) 5024 3

© 2025 The Author(s). Published by the Royal Society of Chemistry
The evaluation spans multiple aspects of the model's perfor-
mance, including molecular accuracy, scaffold accuracy, and
it's capability to accurately predict the presence of functional
groups within target molecules. To ensure an unbiased and
rigorous comparison, we ne-tuned the model proposed by Wu
et al.34 on the NIST dataset using ve-fold cross-validation.

Table 5 summarizes the performance of all three models
across the evaluation metrics. The results demonstrate that our
enhanced model consistently outperforms both our previous
model and the model by Wu et al.34 across all primary metrics.
Notably, for molecular prediction accuracy, our model improves
Top-1 accuracy by approximately 19 percentage points over our
original model, and by around 10 percentage points compared
to the model proposed by Wu et al.34

Additionally, to evaluate the accuracy of functional group
prediction, we employed three metrics: mean F1-score,
weighted average F1-score, and molecular perfection rate,
calculated across 16 functional groups as dened by Fine et al.56

These metrics provide complementary insights into the
predictive capabilities of the models. Specically, the molecular
perfection rate measures the model's ability to identify all
functional groups in a molecule without error. As shown in
Table 6, our enhanced model achieves superior performance
across all metrics, further underscoring its advantage over
existing alternatives.

To further characterise the performance of the three, we
analysed their performance with regards to the heavy atom
count, functional group composition, and Tanimoto similarity
d with and without constrained generation. The model is fine tuned on
tom count of 6 to 13 as well as one with 5 to 35

ration

Experimental

Top-1 [ Top-5 [ Top-10 [

60.75 � 1.54 77.12 � 1.43 81.92 � 1.74
63.25 � 1.95 79.15 � 1.09 83.56 � 1.91
56.71 � 1.40 71.64 � 1.68 75.62 � 1.88
59.94 � 1.18 74.96 � 0.86 78.46 � 0.25

Digital Discovery, 2025, 4, 1936–1943 | 1939
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Table 5 Comparison to baselines: Top-N Accuracies for predicting the complete chemical structure and scaffold of the target molecule

Structure Scaffold

Top-1 [ Top-5 [ Top-10 [ Top-1 [ Top-5 [ Top-10 [

Alberts et al.32 44.39 � 5.31 66.85 � 3.08 69.79 � 2.48 83.23 � 1.91 91.92 � 0.88 93.11 � 0.60
Wu et al.34 53.56 � 1.13 74.18 � 0.79 80.36 � 0.70 89.24 � 1.10 93.48 � 0.53 94.60 � 0.61
Ours 63.25 � 1.95 79.15 � 1.09 83.56 � 1.91 91.02 � 1.71 94.45 � 0.81 95.36 � 0.78

Table 6 Comparison to baselines: The mean F1 score, average weighted F1 score and molecular perfection rate is evaluated across the three
different models

Functional group accuracy

Mean F1 [ Avg. weighted F1 [ Molecular perfection [%] [

Alberts et al.32 0.803 � 0.021 0.926 � 0.008 78.52 � 1.77
Wu et al.34 0.887 � 0.004 0.969 � 0.003 89.21 � 0.76
Ours 0.943 � 0.011 0.973 � 0.004 90.32 � 1.44

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 3
:4

4:
02

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
between predicted and ground truth molecules. We observed
a decrease in model accuracy with an increase in the heavy atom
count across all three models. When examining performance on
subsets containing specic functional groups, our model
demonstrates superior Top-1 accuracy compared to Wu et al.
across all functional groups, while achieving better Top-5 and
Top-10 performance for 11 of 16 functional groups. These
ndings validate our approach, with further details on the
analysis provided in ESI Section 4.†
2.5 Limitations

The primary limitation of our work stems from the availability
of experimental data. As in our previous work,32 we utilised the
NIST EPA gas-phase database and consequently ne tuned our
models exclusively on gas-phase IR spectra. When applied
beyond this domain, such as to IR spectra obtained from other
instrument types (e.g., ATR-IR), degraded performance can be
expected. Similarly, we expect reduced performance for out-of-
distribution molecules, particularly those with signicantly
higher heavy atom counts. These limitations can be largely
addressed through the incorporation of additional experi-
mental datasets spanning different types of instruments and
larger molecular diversity.
3 Conclusion

In this paper, we demonstrate signicant performance
improvements in our transformer-based approach for auto-
mated prediction of chemical structures from IR spectra. By
adopting a patch-based spectral representation, developing
a novel constrained decoding strategy, and substantially
enhancing our data augmentation methods, we achieve
substantial improvements in predictive accuracy. Specically,
our enhanced model achieves a 19 percentage point increase in
Top-1 accuracy and a 14 percentage point increase in Top-5
accuracy compared to our original implementation.32
1940 | Digital Discovery, 2025, 4, 1936–1943
Furthermore, it outperforms the current state-of-the-art by 10
percentage points in Top-1 accuracy and 5 percentage points in
Top-5 accuracy, respectively.34

Rather than replacing human expertise, we envision these
models to be used within a collaborative workow where AI
models provide rapid initial predictions from spectroscopic data,
enabling chemists to concentrate their expertise on verication,
renement, and interpretation of results. Within such a frame-
work, performance improvements directly enhance system reli-
ability and usability. Our 10% accuracy improvement reduces
false suggestions requiring investigation, strengthens initial
hypotheses, and increases overall efficiency. These results
provide robust evidence that we are at the cusp of a new era in
analytical chemistry. Advanced language model architectures
hold the potential to revitalise analytical methods previously
overlooked due to their modest human interpretability, unlock-
ing unprecedented opportunities for rapid, precise molecular
identication using low-cost instrumentation.
4 Methods
4.1 Data processing

Our workow can be divided into two stages: Pretraining and
ne tuning. For pretraining we use the 634 585 IR spectra
published with our original article32 and add to this 794 403 IR
spectra sourced from Alberts et al.45 Spectra sourced from both
datasets were simulated using molecular dynamics with the
PCFF and GAFF forceeld respectively. From each spectrum we
sampled 1625 datapoints with the range of 650 to 3900 cm−1

and a resolution of 2 cm−1. No further preprocessing of the
spectra was performed. The heavy atom count of all molecules
in this combined dataset falls within the range of 5 to 35 and the
elements are limited to carbon, hydrogen, oxygen, nitrogen,
sulphur, phosphorus, silicon, boron and the halogens.

For ne tuning we use the NIST EPA Gas phase library con-
sisting of 5228 molecules.46 Two sets were selected from this
dataset: One matching the set used in our original paper,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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consisting of molecules with a heavy atom count ranging from 6
to 13 and elements only including carbon, oxygen, nitrogen,
sulphur, phosphorus and the halogens. This reduced the
number of samples from 5228 to 3455. We selected a second set
matching the heavy atom count and element distribution in our
pretraining set consisting of 5024 molecules. We sampled 1625
datapoints from the experimental spectra with the range and
resolution matching the spectra in the pretraining set.

4.2 Tokenisation

Chemical formulae were tokenised by splitting them into their
constituent elements and numbers. IR spectra were rst split
into patches based on a given patch size before being projected
into the embedding dimension with an MLP. SMILES were
tokenised using the following regular expression following
Schwaller et al.:48

(\[[^\]]+]jBr?jCl?jNjOjSjPjFjIjbjcjnjojsjpj\
(j\)j\.j=j#j-j\+j\\\\j\/j:j∼j@j\?j>j\j*\$j\%
[0-9]{2}j[0-9])

4.3 Model training

Our model adopts, an encoder-decoder architecture based on
the vanilla transformer. In addition, we investigate the effects of
post-layer normalisation, learned positional embeddings and
gated linear units. For each change to the original transformer
architecture, we follow the implementation outlined by Xiong
et al.,41 Gehring et al.44 and Shazeer42 respectively. Each model is
trained for 60 epochs before the best checkpoint is evaluated.
All further hyperparameters are listed below:

Layers: 6.
Heads: 8.
Embedding dimension: 512.
Feedforward dimension: 2048.
Optimiser: AdamW.
Learning rate: 0.001.
Dropout: 0.1.
Warmup steps: 8000.
Adam beta_1: 0.9.
Adam beta_2: 0.999.
Batch size: 128.

4.4 Augmentation

We used four different augmentation methods while training
our model. For both horizontal shiing and smoothing we used
the same implementation as described in Alberts et al.32 For the
SMILES augmentation, we use RDKit to generate non-canonical
SMILES strings. The last augmentation, pseudo experimental
spectra, requires a model to be trained to model a transfer
function from simulated to experimental spectra. The hyper-
parameters for the best model are shown below. More infor-
mation on the transfer function can be found in ESI† ??

Loss function: SID.
Activation function: Sigmoid.
Learning rate: 0.001.
Layer: 4.
Bottleneck dimension: 258.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4.5 Evaluation

During inference, ten ranked SMILES strings per sample are
generated using beam search or formula-constrained genera-
tion. Each generated SMILES string is canonicalised and
compared to the ground truth. The Top–N accuracy is dened as
the percentage of generated molecules exactly matching the
ground truth based on N. As an example, the Top-5 accuracy
measures whether the ground truth is present among the Top-5
generated molecules. Similarly, the Top–N scaffold accuracy
measures the occurrence of the ground truth scaffold among
the Top–N generated scaffolds. For this metric we used the
Murcko scaffold. [cite]

To evaluate the model's ability to predict the correct func-
tional groups, three metrics were used: Mean and average
weighted F1-score as well as the molecular perfection rate. The
metrics were calculated based on the Top-1 generated molecule
for each sample. For each of the 16 functional groups dened by
Fine et al.56 the F1-score was calculated and based on the mean
as well as average weighted F1-score across the 16 was
measured. The molecular perfection rate, as dened by Fine
et al.56 was measured by comparing the functional groups
present in the ground truth and those in the Top-1 generated
molecule.
Code availability

The code supporting the ndings of this work is available at:
https://github.com/rxn4chemistry/MultimodalAnalytical.
Specic instructions to reproduce the results can be found at
https://github.com/rxn4chemistry/MultimodalAnalytical/tree/
main/paper_replication/ir. A persistent record of the codebase
as of 18.06.2025 is available on Zenodo (DOI: 10.5281/
zenodo.15692637, https://zenodo.org/records/15692638).
Data availability

All data used in this study were either published with the
original article (https://zenodo.org/records/7928396, DOI:
10.5281/zenodo.7928395) or as part of our multimodal dataset
(https://zenodo.org/records/14770232, DOI: 10.5281/
zenodo.11611177). The NIST database was used for ne
tuning (https://www.nist.gov/srd/nist-standard-reference-
database-35).
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