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ned synthesis planning using
chemically informed value functions

Daniel Armstrong, *a Zlatko Jončev,a Jeff Guo‡ ab and Philippe Schwaller*ab

Computer-aided synthesis planning (CASP) has made significant strides in generating retrosynthetic

pathways for simple molecules in a non-constrained fashion. Recent work has introduced specialized

bidirectional search algorithms to find synthesis pathways that incorporate pre-selected starting

materials, tackling a specific formulation of the starting material-constrained problem. In this work, we

introduce a simple guided search—Tango*-which allows solving the starting material-constrained

synthesis planning problem using an existing unidirectional search algorithm, Retro*. We show that by

optimising a single hyperparameter, Tango* outperforms existing methods in terms of efficiency and

solve rate. We also highlight the effectiveness of our computed node cost function in steering synthesis

pathways.
1 Introduction

Synthesis planning, where chemists design routes of chemical
reactions to synthesise a complex molecule from simple or
purchasable building blocks, is a key task in synthetic chem-
istry. The process used for this, retrosynthetic analysis, involves
recursively performing reversed reactions, where a bond is
broken to simplify a molecule into two or more component
precursors.1,2 Originally proposed by Corey in 1969, Computer-
Assisted Synthesis Planning (CASP) aims to automate this
process.3 Since the seminal patent mining work of Lowe, which
provided a large dataset of machine-readable chemical reac-
tions, the CASP eld has expanded signicantly, with a plethora
of approaches developed.4–10 CASP systems typically have two
primary components: a single-step retrosynthesis model, which
decomposes a molecule into simpler precursors, and a search
algorithm that explores the search graph constructed from
outputs of the single-step model.6,8,11–14 The iterative application
of single-step models and exploration of the generated search
space typically continues until a molecule is “solved,” which is
specied as having all leaf nodes belonging to a predened set
of purchasable building blocks. This approach of nding a path
to any available precursor differs substantially from the
approach expert chemists may take, where chemists can plan
a synthesis with numerous constraints in mind, such as
avoiding certain reactions and solvents, or starting from
a specic precursor, known as a “structure-goal”.2 By starting
from a building block containing a key structural motif, the
overall molecular complexity gain in a synthesis route can be
(EPFL), Lausanne, Switzerland. E-mail:
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lowered, a technique called “semi-synthesis”.15,16 There is also
considerable interest in repurposing waste compounds into
useful products, a technique called “waste valorisation”.17–19

While designing constrained and steerable chemical
synthesis is a daily practice in synthetic chemistry, it has
received little attention in the CASP literature, with existing
algorithms simply seeking to nd any “valid” pathway to
purchasable molecules (Fig. 1).

Recently, several approaches for starting material con-
strained synthesis planning have been proposed with prom-
ising results.20–22 Existing solutions either rely on rule-based
approaches or require complex systems with several inter-
acting parts. In this work, we show that a general-purpose and
data-driven retrosynthesis system can be adapted to starting
material constrained synthesis planning by the addition of
a computed node cost function. Our contribution is as follows:

1. We use a computed node cost function, TANimoto Group
Overlap (TANGO), to guide the retrosynthetic search process
towards enforced blocks. In this work, these blocks are limited
to starting materials but could include key intermediates or
molecular substructures.

2. We show that by integrating TANGO into an existing
general-purpose search algorithm, we can tackle the con-
strained synthesis planning problem with comparable or
superior results to existing, specialised methods.

3. We further show that the TANGO node cost function can
serve as a drop-in replacement for neural synthetic distance
networks in existing specialised starting material constrained
synthesis planning tools introduced by Yu et al.22.

4. We compare the outputs of existing retrosynthetic value
functions with the outputs of the TANGO node cost function and
present a plausible explanation for the improved performance over
existing starting material constrained synthesis planning tools.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Comparison of existing constrained synthesis planningmethods with Tango*. The approaches shown include: (1) unconstrained synthesis
planning, (2) starting material constrained synthesis planning through bidirectional (F2F or F2E) search introduced by Yu et al., and (3) our work,
Tango*, which implements starting material constrained synthesis planning using computed cost function guided unidirectional search.
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2 Related work

Computer-Assisted Synthesis Planning (CASP) tools typically
formulate synthesis planning as a tree search, with each step
corresponding to disconnecting a molecule into precursors
through a “retro” chemical reaction. Two primary approaches
are used for selecting retro reactions. Firstly, template-based
methods extract chemical graph transformations from
a corpus and train a neural network to select a transformation
given an input.6,11 Template-free methods frame single-step
retrosynthesis as a conditional language generation problem,
with molecules encoded as SMILES strings or as a graph-edit
prediction task.10,12,23,24 Additionally, models that leverage
graph features for direct generation have been developed.9,25

Signicant focus has been placed on how to use single-step
models in multi-step synthetic planning. Initial approaches
used hand-curated rules, while more recent methods use
neural-network guided graph exploration, such as Monte Carlo
Tree Search (MCTS) or AND-OR graph search
methods.8,11,13,14,26,27 A key development was driven by Chen
et al.,8 who proposed an A-star-like algorithm guided by a neural
network that estimates the cost to synthesise a molecule from
any arbitrary purchasable building block.8 More novel methods
have utilised self-play and experience-based learning to improve
navigation of the search space.28–31 While single-step model
performance continues to improve, this has not always been
translated into the real-world performance of multi-step CASP
systems.12,32–34

2.1 Constrained single-step retrosynthetic models

In recent years, there has been increased focus on introducing
constraints into single-step retrosynthesis models with specic
goals. Toniato et al. utilised reaction class tokens to steer the
© 2025 The Author(s). Published by the Royal Society of Chemistry
output of single-step retrosynthetic transformers towards
specic reaction classes.35 Following a similar approach,
Thakkar et al. introduced “disconnection prompts” to guide
single-step models to break specic bonds.36 In the multi-step
planning domain, Westerlund et al. proposed a disconnec-
tion-aware transformer to encourage the breaking of bonds
and allow the freezing of bonds during the search process, di-
scarding any reaction that violates the frozen bond constraint.37

Interestingly, such bond constraints do not appear to impede
the search process, indicating that simple, chemically informed
rules can be powerful in data-driven retrosynthesis techniques.

2.2 Starting material constrained synthesis planning

Despite its potential use in waste valorisation and semi-
synthesis, constrained synthesis planning has received limited
attention in the literature. This approach imposes an additional
constraint by focusing on the utilisation of specic starting
materials. The LHASA program included such rules; however,
they relied on expert-designed rules, limiting scalability.20

GRASP utilised reinforcement learning to develop a goal-driven
synthesis planning tool that can target either arbitrary products
or specic starting materials.21 Finally, some work has been
done on starting material limited synthesisable molecular
design, where the available set of building blocks is made
substantially smaller than average, with the study showing that
reducing the number of available building blocks from 17.4
million (Zinc) to 5955 (Led3), a decrease of approximately 3000-
fold, results in only a 12% reduction in synthesis planning
success rate when accepting synthesis routes that are, on
average, two reaction steps longer.38 It is worth noting that in
that work, a generative model proposes molecules satisfying the
synthesisability metric. This does not directly transfer to the
traditional CASP setting because the model has complete
Digital Discovery, 2025, 4, 2570–2578 | 2571
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freedom (within the synthesisability constraint) to generate
molecules. By contrast, our problem setting is that the target
molecule is given. Recent state-of-the-art work proposed a bidi-
rectional search algorithm, Double-Ended Synthesis Planning
(DESP), which uses both forward- and retro-expansion models,
guided by a value network that estimates the cost of synthesis-
ing molecule m2 specically from molecule m1.22 DESP
employs two search techniques, Frontier-to-Frontier (F2F)
which compares all the nodes of each frontier with one another
and Frontier-to-End (F2E) which compares the Retro* expan-
sion frontier with the target starting material. Constrained
synthesis planning has also emerged as a target in synthesisable
molecular design. Guo et al. introduced a method for the de
novo generation of synthesisable molecules using enforced
building blocks in the synthesis pathway.39 To date, all starting
material constrained synthesis planning tools have relied on
specialised architectures, reinforcement learning, or expert-
dened rules. In this work, we show instead that the problem
can be approached with a simple cheminformatics calculation.

3 Methods
3.1 Datasets

In choosing datasets for analysis, we aim for continuity with
prior work in starting material constrained synthesis planning
and use the datasets introduced by Yu et al.22. This includes the
common USPTO-190 dataset introduced by Chen et al.,8 which
is a set of 190 challenging target molecules extracted from
USPTO-Full. Additionally, we use the datasets introduced by Yu
et al.,22 namely Pistachio Reachable and Pistachio Hard. The
sets of target, starting material pairs are extracted for a set of
commercial building blocks; we use canonical SMILES strings
provided in the set of 23 million molecules from eMolecules
used by Chen et al.8 and Yu et al.22. Specically, we use the same
sets of target, starting material pairs extracted in the DESP
paper, which are extracted by nding the longest path from
target to leaf node then picking the leaf node with the most
2572 | Digital Discovery, 2025, 4, 2570–2578
heavy atoms. It is important to note that this experimental
setup, also used by Yu et al., means that the search is guided
towards a building block that is already known to be part of
a successful synthesis route for the target molecule. Therefore,
the task is to recover a known-good synthetic connection within
a pre-dened solution space, rather than discovering pathways
to arbitrary starting materials. As we are using previously
trainedmodels with undened Pistachio based training sets, we
avoid analysing the algorithms on PaRoutes due to concerns
about data leakage.

3.2 Machine learning models

To avoid variance due to subtle differences in data pre-
processing techniques and to ensure a meaningful compar-
ison, we use the Retro* value network and single-step retro-
synthesis model provided by in previous work.22,33 Further
details on model training can be provided in the Appendix A.4
of the DESP paper.22

3.3 Search algorithms

All algorithms are some variant of the best-rst type introduced
in Retro* by Chen et al.8. More details on this algorithm are
provided in the SI. The Retro* + D and Tango* are based off this
search algorithm with varying node cost functions. All algo-
rithms use the baseline Retro* value network, which estimates
the number of reactions required to synthesise molecule m1
from any commercially available starting material. The value
will be referred to as Synthetic Distance for the rest of the
manuscript. This cost is a positive real number, which is
assigned to the code. Retro* + D utilises the same concept as the
Retro* value network, but adapted to the starting material
constrained setting, instead estimating the synthetic distance
between a molecule and any starting material, it estimates the
synthetic distance between amolecule and a predened starting
material. The Retro* cost is then subtracted from this to
determine the overall node cost. Tango* replaces the D value
network with the TANGO node cost function in Algorithm 1. For
the Tango-F2F and Tango-F2E we replace the neural starting
material guidance function in the original DESP methods with
the TANGO node cost. Further details in the DESP paper.22

3.4 Tango* node cost function

The TANGO* node cost function uses a weighted sum of Tani-
moto Similarity and Fuzzy Matching Substructure (FMS). The
weighted FMS score is calculated by taking the number of heavy
atoms in the maximum common substructure between two
molecules, dividing by the number of heavy atoms in the
precursor molecule, and multiplying by a weighting factor. This
is formalised in 1.

3.5 Metrics

While there remains a lack of a clearly agreed-upon “gold
standard” for reporting the quality of synthetic routes generated
by CASP systems, a few metrics are commonly used. The Solve
Rate in traditional CASP systems refers to the fraction of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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molecules for which there exists a synthetic pathway where all
leaf nodes are in a set of purchasable building blocks. In this
work, we used amodication of the solve rate metric introduced
by Yu et al.,22 which we refer to as the constrained solve rate.
This measures the fraction of target molecules for which a valid
synthetic pathway exists, incorporating a predened starting
material (sm*), within an expansion budget E. This ensures
that:

� The target molecule is synthesised.
� All reactants are either purchasable or can be derived from

exclusively purchasable starting materials.
� The predened starting material (sm*) is incorporated into

the synthetic route.
� All requirements are met within the specied expansion

budget.
The expansion budget which refers to the maximum allowed

calls to the single step retrosynthesis model during the search
process. The average route length refers to the number of
reactions in the longest path from target to leaf node in the
solved synthetic route, which is commonly used in the CASP
literature as a proxy for route quality, as longer routes indicate
verbosity in the solution. To ensure consistency across search
algorithms, we only compare routes which all methods solved.
In addition to reporting metrics regarding the outputs of
Tango*, we aim to evaluate how efficient Tango* is at navigating
the retrosynthetic search space and assess the effect of
computational overhead on the system. We consider two
measures for assessing the computational cost of our methods:
average number of expansions (�N) per target molecule, and
average wall clock time per target molecule. The rst provides
a measure of how efficient our node cost function is at guiding
Table 1 Summary comparison between baseline methods and Tango* a
+ D and the DESP methods are taken from Yu et al.22. Solve rate is the frac
TangoDESPmethods use a (1, 0) weighting of Tanimoto Similarity to FMS.
underlined

Algorithm

USPTO-190 Pistachio

Constrained solve rate
(%) [

�N Y

Constrain
(%) [

Expansion budget Expansio

100 300 500 50

Random 4.2 4.7 4.7 479 16.0
BFS 12.1 20.0 24.2 413 48.7
MCTS 20.5 32.1 35.3 364 52.0
Retro* 25.8 33.2 35.8 351 70.7
GRASP 15.3 21.1 23.7 410 46.7
Retro* + D 27.4 32.6 37.4 348 77.3
DESP-F2E 30.0 35.3 39.5 340 84.0
DESP-F2F 29.5 34.2 39.5 336 84.5

Ours
Tango(1, 0)* 36.3 4:11 4:26 313 84.5
Tango(0.7, 0.3)* 35.7 40.5 4:21 316 86:7

Tango-F2E 33.1 40.0 41.5 317 88.7
Tango-F2F 33.2 45.3 53.7 291 91.3

© 2025 The Author(s). Published by the Royal Society of Chemistry
the search towards a solution, while wall clock time combines
this efficiency with the computational overheads of both the
search algorithm and node cost functions. This is important as
certain methods, particularly DESP-F2F, require substantially
more calls to the node cost function per node expansion than
unidirectional search methods.
3.6 Hyperparameter optimisation

We use a hyperparameter k to balance the starting material
guidance of TANGO with the general guidance of the Retro*
value network. To evaluate the ability of our method to gener-
alise from simpler to more complex molecules, we choose the
Pistachio Reachable dataset for hyperparameter tuning. We
nd a value of k = 25 optimises both constrained solve rate and
average number of expansions. We employ an additional
parameter, c, to specify the ratio of FMS to Tanimoto Similarity,
with c dening the FMS weight. Through empirical testing, we
determine the optimal value to be c= 0.3. In the results section,
we will refer to Tango with c= 0.0 as Tango(1, 0) and Tango with
c = 0.3 as Tango(0.7, 0.3).
4 Experiments

Our experiments are structured to answer the following
questions:

1. Can a non-neural network computed node cost function
be used to adapt general-purpose synthesis planning tools to
the constrained setting?

2. Can such a system outperform existing specialised models
for starting material-constrained planning?
cross the three benchmarks. Baseline results for Retro*, GRASP, Retro*
tion of (target, starting material) pairs solved within the expansion limit.
Best overall results are in bold and best unidirectional search results are

reachable Pistachio hard

ed solve rate

�NY

Constrained solve rate
(%) [

�N Y

n budget Expansion budget

100 300 100 300 500

26.7 40.7 325 6.0 12.0 13.0 452
57.3 74.0 169 16.0 26.0 29.0 390
72.7 85.3 111 27.0 31.0 32.0 361
78.0 92.7 73 32.0 35.0 37.0 342
51.3 66.7 198 14.0 22.0 29.0 402
87.3 96.0 49 31.0 40.0 42.0 323
90.0 96.0 41 35.0 44.0 50.0 300
88.9 97.3 38 39.0 45.0 48.0 293

90.6 97.3 32 40:0 45:0 47:0 290

94:0 98:0 4:26 29 39.0 44.0 46.0 295
92.0 98:7 27 39.0 45.0 49.0 290
95.3 99.3 18 47.0 59.0 63.0 231

Digital Discovery, 2025, 4, 2570–2578 | 2573
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Fig. 3 Here we demonstrate a feasible 10-step route generated by
Tango-DESP-F2F on a (target, starting material) pair not solved by the
neural guided DESP-F2F method. Constrained starting material is
highlighted in red; bonds/atoms disconnected are shown in red.
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3. Can the cost function additionally provide improvements
to existing bidirectional search methods?

4. As the TANGO function is empirically computed as
opposed to estimated, does TANGO generalise from simple to
harder datasets more effectively?

The primary results are displayed in Table 1. Tango(1, 0)*
demonstrates improvements in the starting material-
constrained setting and consistently outperforms the neural
network-enhanced Retro* (referred to as Retro* + D) across all
benchmarks and expansion limits while displaying greater
algorithmic efficiency, as measured by the average number of
expansions (�N). In addition, Tango(1, 0)* achieves higher or
comparable solve rates to both DESP methods across all three
datasets, doing so with a strictly lower average number of
expansion calls, clearly demonstrating the utility of the TANGO
reward to navigate the retrosynthetic action space (see for Fig. 2
an example). We nd that the value of k, optimised on Pistachio
Reachable, shows strong generalisation performance to the
more challenging datasets, with Tango* being the best-
performing method across all iteration levels on USPTO-190.

We perform an ablation of the Tanimoto Similarity: FMS
Similarity weighting in the TANGO cost function, which we refer
to as Tango(0.7, 0.3). We nd that although the incorporation of
FMS into the cost function improves the solve rate and reduces
expansion calls for Pistachio Reachable, such results do not
carry over to the more challenging datasets. We hypothesise
that Tanimoto Similarity offers greater granularity for guidance
than FMS, enabling higher performance on more complex
datasets.

To examine the general applicability of the TANGO cost in
guiding various search algorithms, we explore its integration into
the recently proposed bidirectional search methods, DESP-F2F
and DESP-F2E.22 This integration is achieved by replacing the
pairwise synthetic distance network, D, with the TANGO cost
function. The hyperparameters k and c are set to the same values
as Tango(1, 0). Our ndings show that the addition of TANGO
reward generally leads to a substantial increase in the solve rate
for both DESP methods, while also reducing the average number
of expansions and route length. Particularly noteworthy is the
impressive performance of Tango-F2F at high expansion budgets,
where it achieves a 99.3% solve rate on Pistachio Reachable and
improves accuracy by approximately 25% compared to the next
best method on the more challenging USPTO-190 and Pistachio
Fig. 2 Here we demonstrate a meaningful 12-step route generated by
our method on a (target, starting material) pair not solved by the best
performing DESP22 method. Constrained starting material highlighted
in red; bonds/atoms disconnected shown in red.

2574 | Digital Discovery, 2025, 4, 2570–2578
Hard datasets. An example of a successful route is shown in Fig. 3.
We note that as the added bidirectional search of DESP outper-
forms Retro* + D, TANGO-DESP methods should be expected to
outperform Tango*.

4.1 Wall clock time and route length ablations

As both DESP and Tango* introduce computational overhead
that may add ambiguity to the number of expansion calls
compared to the computational resources required, we report
the wall clock time. Tango* consistently achieves a lower wall
clock time than alternative starting material-constrained
methods (Table 2). Finally, we investigate the average number
of reactions per solved route for each method. Tango* achieves
shorter route lengths than all existing methods on USPTO-190,
but only matches existing methods on other datasets. The
strongest results in terms of route length come from the
combination of TANGO with the bidirectional search algo-
rithms F2E and F2F, one of them displaying the shortest routes
for all of the datasets. This result is revealing; existing methods
use a neural network directly trained to predict synthetic
distance, yet it fails to provide signicantly stronger guidance
towards shorter synthetic routes than a simple molecular
similarity measure. This leads to the question: just how effective
are such neural networks at estimating the synthetic distance of
a node, and how reliable is this estimation at test time?.

4.2 Why does Tango* work?

Despite access to a starting material constrained node cost
function (one with access to information from ground truth
routes at test time), Retro* + D does not show a substantial
increase in performance compared to Retro*. In contrast,
Tango*’s incorporation of a privileged node cost function
provides signicant performance improvements.

We hypothesize that, as a computed cost function, the
TANGO cost function should be relatively invariant to the
molecular inputs andmaintain strong performance at test time.
Let V : M/ℝ be a node cost function where M is the space of
molecules. For node cost to effectively guide retrosynthetic
search, the function should ideally provide consistent and
discriminative estimates across synthetic pathways. While
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 A comparison of node cost estimates for USPTO-190 routes
solved and not solved by Retro* search using the corresponding cost
function. (a) Tango cost for routes solved by Tango*, (b) SynDist cost
for routes solved by Retro* + D, (c) Retro* cost function estimates for
routes solved by Retro*, (d) Unweighted Tango cost for routes not
solved by Tango*, (e) SynDist cost for routes not solved by Retro* + D,
and (f) Retro* cost for routes not solved by Retro*. The values on the
top right of the plots indicate the Kendall's Tau coefficient of mono-
tonicity. The colours demark different ground truth synthetic

Table 2 Inference time andmean solved route length for the evaluatedmethods. Route length comparisons aremade on the routes solved by all
methods

Algorithm

USPTO-190 Pistachio reachable Pistachio hard

Route length
(61 routes)

Wall clock
time (s)

Route length
(114 routes)

Wall clock
time (s)

Route length
(36 routes)

Wall clock
time (s)

Retro* 5.30 58.1 4.64 10.2 4.67 56.3
Retro* + D 5.56 64.1 4.67 8.3 4.67 55.2
DESP-F2E 5.13 66.5 4.51 8.6 4.56 56.3
DESP-F2F 5.51 109.4 4.46 8.2 4.44 61.8
Tango(1, 0)* 5.06 55.8 4.56 5.8 4.67 47.5
Tango-F2E 4.44 75.3 4.24 6.5 4.29 54.2
Tango-F2F 5.06 146.4 4.04 4.9 4.40 72.8
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perfect monotonicity (where V(mi) > V(mi+1) for all i ˛ {1,., n −
1} along a synthetic path m1, ., mn from root to starting
material) would be desirable, we recognize that this may be
challenging to achieve in practice due to factors such as
“tactical combinations,” where synthetic complexity may
temporarily increase during retrosynthesis to enable major
complexity-reducing reactions Gajewska et al.40.

More fundamentally, we expect effective cost functions to
demonstrate two key properties: consistency—providing reli-
able estimates with low variance for molecules at similar
synthetic distances—and granularity—offering discriminative
power to distinguish between molecules at different synthetic
distances. We further expect these properties to be more
pronounced for routes that are solved by a method compared to
routes not solved, as this indicates that the node cost function
can effectively guide search tree exploration.

To systematically evaluate these hypotheses about TANGO's
effectiveness and empirically assess the relative strength of
different guidance functions, we analyse their behavior on
ground truth synthetic routes in the test set. Using the USPTO-
190 dataset, we extract the linear synthetic path from root
molecule mr to expert-dened starting material ms. We dene
synthetic distance d(m1, m2) as the minimum number of reac-
tions required to synthesise m1 from m2. For each molecule mi

in this path, we calculate the following values:
� d(mi, ms): ground truth synthetic distance.
� D(mi,ms): Neural network estimation of synthetic distance.
� T(mi, ms): TANGO cost molecular similarity.
To isolate the cost function, we x the search algorithm, in

this case focusing on the Retro* algorithm with either TANGO
or D as a starting material-guided cost function. We then take
the 4 sets of routes that are solved and not solved by Tango* and
Retro* + D. We plot the corresponding starting material con-
strained cost function, TANGO and D respectively, as costs for
each node in the ground truth synthetic routes.

We show the results of this experiment in Fig. 4 and Table 3.
The neural network estimated synthetic distance (b) and (e)
displays an unexpected bimodal distribution, with peaks at low
and high estimates. It displays consistently high absolute error
and is unable to provide a granular estimate of synthetic
distance. For routes that Retro* + D solves, the mean synthetic
© 2025 The Author(s). Published by the Royal Society of Chemistry
distance estimate shows high variability (mean distribution
overlap = 1.107, Table 3) and inconsistency (mean CV = 0.334),
with the estimation function struggling to provide reliable
distance estimates across the synthetic pathway. This is exac-
erbated for routes that Retro* + D does not solve, where the
synthetic distance estimation shows even greater distributional
overlap (2.555) and variability (CV = 0.310), consistently varying
around the xed training value of 10 regardless of the actual
ground truth distance.

We note that this ts with the training strategy of D
described in Yu et al.,22 which augments the training set with
synthetic “negative samples” of (target, starting material) pairs.
These samples are generated by selecting twomolecules that are
disconnected in the directed graphs formed by linking reactants
and products in USPTO, and are assigned a xed “distance”
value of 10.

In comparison, the computed TANGO cost function (a) and
(d) exhibits substantially improved consistency and granularity
distances.

Digital Discovery, 2025, 4, 2570–2578 | 2575
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Table 3 Consistency and granularity metrics for different cost functions on solved and unsolved routes. Lower mean distribution overlap and
mean coefficient of variation indicate better consistency and granularity, while Spearman's indicates monotonicity. We note that these metrics
are computed on the appropriated weighted TANGO node cost used in the implemented algorithm, while the violin plots in 4 displays 1 −
TANGO

Node cost function Route status Spearman's r Mean distribution overlap Mean coefficient of variation

TANGO Solved 0.553 0.478 0.141
Not solved 0.504 0.584 0.135

SynDist (D) Solved 0.645 1.107 0.334
Not solved 0.662 2.555 0.310

Retro* Solved 0.653 1.359 0.321
Not solved 0.524 1.822 0.366

Fig. 5 Here we show a feasible synthesis route to the chemotherapy
drug, Chlorambucil, a WHO essential medicine, synthesised entirely
from renewable or industrial waste feedstocks.
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(Table 3). For routes solved by Tango*, the cost function
demonstrates low distributional overlap between adjacent
synthetic distances (0.478), indicating clear separation between
cost estimates at different pathway positions. The function also
shows a high consistency within distance groups (CV = 0.141),
suggesting more reliable cost estimation. Importantly, TANGO
maintains reasonable performance even for unsolved routes,
with modest increases in overlap (0.584) and variability (CV =

0.135), indicating the function's robustness across different
route types.

The Spearman correlation values (ranging from 0.504 to
0.662 across all conditions, Table 3) suggest moderate but
consistent rank-order relationships between synthetic distance
and cost estimates for TANGO, while the neural distance func-
tion shows similar correlation values but with much higher
variance and overlap, indicating less reliable guidance for
search algorithms.

We hypothesize that this improved consistency and granu-
larity—rather than perfect monotonicity—enables TANGO cost-
guided search algorithms to achieve substantially improved
solve rates compared to neural network-guided methods. The
key advantage appears to be TANGO's ability to provide
discriminative and consistent cost estimates that effectively
separate molecules at different synthetic distances, while neural
approaches suffer from high variance and poor granularity that
hampers effective search guidance.

4.3 Case study: synthesis of useful compounds from
renewable/waste feedstock

A key aim of starting-material-constrained synthesis planning is
to enable the discovery of synthetic pathways to useful
2576 | Digital Discovery, 2025, 4, 2570–2578
compounds from renewable or waste feedstocks. Previous
evaluations relied on a database of 23million chemical building
blocks from the eMolecules database. We aim to demonstrate
the effectiveness of our method, Tango*, in nding synthesis
pathways to useful small molecules starting exclusively from
renewable or waste feedstocks. For renewable building blocks,
we use a set of 146 small molecules previously curated by Wołos
et al.17. For useful compounds, we extract a set of 110 small
molecules from a curation of the WHO list of essential medi-
cines, previously developed by Gao et al.41. We conduct the
search using the Tango(1, 0) set of hyperparameters previously
described, but set the expansion budget to 1000 model calls. In
Fig. 5, we present a strong route, discovered by Tango* but not
Retro*, to the chemotherapy drug Chlorambucil, starting
exclusively from renewable starting materials. We nd all
proposed reactions and the complete synthesis are directly re-
ported in the literature.42,43
5 Conclusion

In this work, we introduce Tango*, a simple adaptation of the
Retro* algorithm to the starting material-constrained setting
without any model retraining. We demonstrate that our TANGO
guided search method strictly outperforms the similar neural
network-guided Retro* + D. Despite relying on single-ended
search, Tango* either outperforms or matches the perfor-
mance of specialised DESP models and search algorithms,
providing routes that satisfy the specied goal for a greater
number of compounds. Application of the TANGO node cost
function to the DESP methods also yields substantial
improvements, particularly to the F2F method, which achieves
the strongest solve rate performance of all investigated systems.
It proposes routes with a comparable length and does so with
a lower number of expansion calls and reduced wall clock time.

We show that existing neural node cost functions fail to
provide a granular and monotonic decrease in node cost
throughout a retrosynthesis pathway, particularly struggling on
more challenging routes. In contrast, the computed Tango* cost
function displays better monotonicity and granularity on both
solved and unsolved routes. This work indicates that there may
be substantial room for improvement in developing novel
guidance functions for retrosynthesis tools.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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We anticipate that future developments in similar methods
will unlock synthesis planning tools with diverse and exible
structure constraints, allowing expert chemists to specify key
intermediates or predened substructure goals at any position
in the synthetic route.
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