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veals key predictors of thermal
conductivity in covalent organic frameworks
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and Siddhant Kumar *a

The thermal conductivity of covalent organic frameworks (COFs), an emerging class of nanoporous

polymeric materials, is crucial for many applications, yet the link between their structure and thermal

properties remains poorly understood. Analysis of a dataset containing over 2400 COFs reveals that

conventional features such as density, pore size, void fraction, and surface area do not reliably predict

thermal conductivity. To address this, an attention-based machine learning model was trained,

accurately predicting thermal conductivities even for structures outside the training set. The attention

mechanism was then utilized to investigate the model's success. The analysis identified dangling

molecular branches as a key predictor of thermal conductivity, leading us to define the dangling mass

ratio (DMR), a descriptor that quantifies the fraction of atomic mass in dangling branches relative to the

total COF mass. Feature importance assessments on regression models confirm the significance of DMR

in predicting thermal conductivity. These findings indicate that COFs with dangling functional groups

exhibit lower thermal transfer capabilities. Molecular dynamics simulations support this observation,

revealing significant mismatches in the vibrational density of states due to the presence of dangling

branches.
Introduction

Covalent organic frameworks1,2 (COFs) are an emerging class of
nanoporous polymeric materials. Compared to metal–organic
frameworks (MOFs)3,4 and zeolites,5 the crystalline backbone of
COFs is composed of organic building blocks – known as knots
and linkers – connected by strong covalent bonds, thereby
offering higher stability.6 The crystalline nature of COFs, along
with their high surface areas, tunable pore sizes, and functio-
nalizable organic linkers, make them exceptionally suited for
a wide range of promising applications. These applications
include (but are not limited to) photoconductivity,7,8 chemo-
sensing,9,10 catalysis,11 drug delivery,12,13 thermoelectrics,14,15

semiconductors,16 and gas storage and separation.17,18

A key property dictating the applications of COFs is thermal
transfer. For example, low thermal conductivity is desired for
thermoelectrics to maintain large internal thermal gradients
and increase efficiency.19 On the other hand, a high thermal
conductivity is desired for gas adsorption and separation where
efficient thermal transfer is important for the longevity and
stability of the nanoporous membranes.20 COFs are promising
ineering, Del University of Technology,

.Kumar@tudel.nl

iversity of Washington, Seattle, WA, USA.

is work.

y the Royal Society of Chemistry
nanoporous candidates for such applications as the ability to
design their crystalline topology (e.g., lattice type, pore size) and
chemistry via the choice of knots and linkers opens up a large
and diverse space of thermal conductivities.1,2,21–23 Therefore, it
is of great interest to gain a deeper understanding of the
thermal transfer mechanism and to obtain strong structure–
property trends, which in turn enables the application-specic
design of COFs.

Two approaches can be used to elucidate the thermal
structure–property relationships of COFs: experimental trial-
and-error methods which involve synthesis and characteriza-
tion,24,25 and computational high-throughput screening which
relies on rst-principles calculations.26–28 With COFs offering
practically an unlimited design space, an experimental trial-
and-error approach to screen new COF candidates (including
developing new synthesis routes for each candidate) is prohib-
itively inefficient. Moreover, experimentally synthesized COFs
will always contain crystalline defects,29,30 which greatly inu-
ence the thermal conductivity. This makes it difficult to relate
the thermal transfer mechanisms to the geometrical and
chemical make-up of a COF structure. In contrast, molecular
dynamics (MD) simulations31 offer a high-throughput virtual
screening alternative to lab-based experiments. However,
despite recent advances in computing hardware, even virtual
screening can be prohibitively inefficient for a large design
space. This is highlighted by the example that generating
a dataset of just 2471 two-dimensional COFs and their thermal
Digital Discovery
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conductivity for this study required 1.3 million CPU-hours in
cloud computing (translating into approximately four months
and $70 000 in time and cost, respectively). This underscores
the need for efficient structure–property maps that are accurate,
generalizable, and interpretable.

Recently, Islamov et al.32 performed a high-throughput
screening study of over 10 000 MOF structures and their
thermal conductivity (k) usingMD. They found that the majority
of the MOFs possess k < 1 W m−1 K−1 with a few exceptions
possessing ultra-high thermal conductivity (k > 10 W m−1 K−1).
While COFs are generally more thermally stable (owing to the
strong covalent bonding of the building blocks), a recent study
by Thakur et al.33 on a high-throughput screening study on over
10 000 COFs demonstrated that, generally, COFs also possess
a similar range of k, with the majority of the structures exhib-
iting k < 1 W m−1 K−1. Interestingly, MOFs and COFs possess
similar structure–property trends. (i) Increasing the pore size is
mostly sufficient to achieve a low thermal conductivity. (ii)
Additionally, one can increase the void fraction, the surface
area, or include heavy atoms to further decrease thermal
conductivity. (iii) However, to increase the thermal conductivity,
there are many factors that need to align. Islamov et al.32

demonstrated that while lowering the pore size and increasing
the density results in a higher ceiling of attainable thermal
conductivity, other factors, such as the topology, mass-
mismatch, and linker length also need to be accounted for.
Thakur et al.33 came to similar conclusions alongside the
observation that aligning the polymeric chains in the structure
to the heat ow direction raises the ceiling of attainable thermal
conductivity. However, these hand-craed guidelines and ad
hoc correlations are insufficient for developing an accurate and
generalizable predictive model that captures the thermal
conductivity structure–property relationships of COFs. Our
study shows that no combination of commonly used descriptors
consistently predicts thermal conductivity. Consequently,
a denitive method for identifying COFs with tailor-made
thermal properties for various applications remains elusive.

To address this knowledge gap, we turn to machine learning
(ML) with an emphasis on interpretability and explainability.
Previous efforts in ML-assisted design for thermally conductive
organic materials include the discovery of polymers with high k

through a hierarchical feature selection process,34 a reinforce-
ment learning approach using SMILES-based representations,35

and methods leveraging molecular ngerprints as input
features, such as ne-tuning a pre-trained regression model
followed by screening,36 training a neural network,37 and
employing an active learning approach.38 Hu et al.39 provide
a review of recent efforts and outlook on ML for thermally
conductive organic materials. For the ML modeling of struc-
ture–property maps of porous polymers (including but not
limited to COFs) there are primarily two routes:

� high interpretability, limited accuracy: using a hand-
craed and pre-extracted high-level of the crystalline network
(e.g., pore size, density, surface area, atomic composition) as
input to classical regression algorithms;40–42

� high accuracy, limited interpretability: using information-
rich but raw graph representation of the crystalline network
Digital Discovery
(where nodes denote atoms with features such as position and
atom type, and edges denote bonds with the bond order as the
feature) as input to end-to-end deep learning-based regression
algorithms.43–46

Here, we bridge the two routes to develop an accurate
predictive model using deep learning while also combining
interpretability insights from deep learning with prior knowl-
edge and descriptors to explain the thermal conductivity
structure–property relationships of COFs (see Fig. 1 for an
overview).

In the following, we rst conduct a large-scale data analysis
of the thermal conductivity structure–property relations of
COFs and identify the deciencies in commonly used descrip-
tors. Next, we provide a deep learning model that accurately
predicts the thermal conductivity of COFs. Subsequently, an
analysis of the attention scores of the deep learning model
uncovers the presence of dangling atoms in the crystalline
network of COFs as a strong and so-far missing key predictor for
thermal conductivity. Additional physics-based analysis sheds
light on the important role of dangling atoms in lowering the
thermal conductivity of COFs by disrupting heat transfer path-
ways. We close by utilizing the ML model for efficient high-
throughput screening and identifying COFs with extreme
thermal conductivities.

Results
High-throughput data analysis

We create a labelled dataset of COFs and their thermal
conductivities by selecting 2471 two-dimensional COFs from
the unlabelled dataset of Mercado et al.47 The COF structures in
this design space are made up of one type of nodal linker (also
referred to as a knot) and one type of connecting linker. The
sampled subset consists of COFs with 104 different linkers
arranged in 25 different topologies (e.g., honeycomb, kagome,
square lattice, etc.), and bonded by four different types of
covalent linkages (i.e., carbon–carbon, amine, amide, and
imine). We conduct non-equilibrium molecular dynamics
(NEMD) simulations to calculate thermal conductivities in two
orthogonal in-plane directions (see SI Section 1.1 for more
details). The resulting dataset shows a strong skew toward low
thermal conductivity values, with the majority of COFs exhib-
iting k < 1 W m−1 K−1. In SI Section 1.2, we show that there is
minimal in-plane anisotropy in thermal conductivity across the
dataset. Therefore, we utilize average thermal conductivity in
both directions, denoted as k, as the quantity of interest to
explore the structure–property relationships of COFs. In the
following and in Fig. 2, we present the observations from data
analysis of the key descriptors of COFs and thermal conduc-
tivities in our labelled dataset. The distribution of all features
and their correlations are detailed in Section 1.3 of the SI.

Density. Fig. 2a illustrates the distribution of k vs. density.
There is a large spread of densities within the dataset and the
majority of the COFs possess a density of 0.45–0.55 g cm−3.
Moreover, in accordance with previous ndings,33 we observe an
increasing trend in k with increasing density. The Pearson
correlation coefficient between k and density is r = 0.594,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of this study. A COF structure consists of molecular substructures called linkers and knots arranged in a periodic pattern
described by the topology. Through molecular dynamics, we construct a large dataset of 2471 COFs (with diverse linkers, knots, and topologies)
and their corresponding thermal conductivities. We demonstrate that conventional descriptors, such as density, pore size, void fraction, and
surface area, fail to predict the thermal conductivity reliably. We employ a machine learning framework based on an attention mechanism and
transformer architecture to uncover a novel predictor, thus enhancing our understanding of the structure–property relationship of thermal
conductivity of COFs.
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suggesting a moderate positive relationship. However,
increasing the density increases the ceiling of attainable k, but
does not guarantee a high value.

Pore size. The pore size of any COF is represented by the
largest pore diameter (LPD). Fig. 2b shows that the LPD in the
dataset is spread over a large range between 5 Å and 80 Å and
a concentration of structures in the 15–25 Å region. Moreover,
there is an inverse relationship between the pore size and the
thermal conductivity, as previously discovered by Freitas et al.,48

where the range of achievable k decreases signicantly with
increasing pore sizes. This is evidenced by the correlation
coefficient r = −0.508, indicating a moderate negative correla-
tion. Here again, a small pore size does not guarantee a high
thermal conductivity. On the other hand, the pore size can be
taken as the sole design parameter to effectively reduce the
thermal conductivity range (as mentioned in ref. 32 and 33).

Void fraction. Fig. 2c shows that the distribution of the void
fractions of COFs across the dataset is within the 0.5–0.96
range, with the biggest share of COFs possessing a void fraction
of around 0.85 and higher. Furthermore, a high void fraction of
around 0.85 delivers both the largest values and range of
attainable k within our dataset. This nding is counterintuitive.
Void fraction is typically inversely correlated with density (see SI
Section 1.3). Although low density is generally associated with
a low k value, as shown in Fig. 2a, the unexpected observation is
that a high void fraction (which corresponds to low density)
© 2025 The Author(s). Published by the Royal Society of Chemistry
surprisingly results in a high k value, as also depicted in Fig. 2c.
Beyond a favorable range of void fractions, no distinct trend
emerges in the relationship with k, as the correlation coefficient
r = −0.213 suggests only a weak negative relationship.

Surface area. Gravimetric surface area (GSA), i.e., surface
area per unit mass, varies highly across all the COF structures
(see Fig. 2d) with a larger cluster of points in the 7000–8000 m2

g−1 range. We also observe that around an intermediate GSA of
7000 m2 g−1, we have the widest spread and highest values of k.
The correlation coefficient of r = −0.147 indicates a very weak
negative relationship, suggesting that GSA is not a signicant
predictor.

From the above initial analysis, we notice that the geomet-
rical descriptors used here are insufficient to provide solid
trends with respect to thermal conductivity. For example, with
all the optimal descriptor values, i.e., a large density, a low pore
size, a large void fraction, and an intermediate GSA, it is still not
guaranteed that we will obtain a COF with a high k. To elucidate
this further, we choose four COFs – denoted by (i)–(iv) – and
compare them in Fig. 2a–d.

COF (i) has the highest thermal conductivity in the dataset
with k = 4.025 W m−1 K−1. The structure has a relatively small
pore size of 13.71 Å (see Fig. 2a), a medium density of
0.928 g cm−3 (see Fig. 2b), a relatively high void fraction of 0.844
(see Fig. 2c), and an intermediate surface area of 7381m2 g−1. In
contrast, the second COF (ii) possesses a similar pore size of
Digital Discovery
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Fig. 2 Distribution of (a) k versus density (with the color indicating data count per bin), (b) k versus largest pore diameter (LPD), (c) k versus void
fraction, and (d) k versus gravimetric surface area (GSA). Also shown are four COF structures (i–iv) with contrasting properties, marked by green
triangles in the plots above. The r-value indicates the Pearson correlation coefficient.
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9.88 Å, a similar density of 0.938 g cm−3, a similar void fraction
of 0.869, and a similar surface area of 7171 m2 g−1, but exhibits
thermal transfer capabilities almost seven times lower than that
of (i) with k = 0.603 W m−1 K−1.

The third COF (iii) has a pore size of 33.73 Å in the
intermediate-to-high range, a low density at 0.408 g cm−3,
a high void fraction of 0.932, and a slightly larger surface area of
8741 m2 g−1. Following the trends described in the litera-
ture,33,48 the geometrical descriptors are not optimal for a high
k. Nonetheless, COF (iii) has rather high k = 1.96 W m−1 K−1.
Lastly, COF (iv) has an exceptionally high pore size of 80.68 Å
and a low density of 0.262 g cm−3 but high void fraction of
0.958. Due to the extreme geometry, the COF (iv) has a very low
thermal conductivity of k = 0.289 W m−1 K−1.

Furthermore, we trained classical ensemble regression
models using these descriptors to predict thermal conductivity
(detailed results provided in SI Section 2) and observed that the
models yield poor prediction accuracy. In summary, the corre-
lation analysis with the previously introduced descriptors and
the presented examples illustrate the fact that the thermal
conductivity structure–property relationships are complex and
call for further examination.
Digital Discovery
Predicting thermal conductivity using deep learning

Our starting point is the deep learning-based Porous Material
Transformer (PMTransformer) developed by Park et al.46 The
PMTransformer is a multi-modal transformer49 model (see
Fig. 3 for a schematic) designed for universal transfer learning
for predicting the properties of porous materials, including
COFs, MOFs, and zeolites. It receives two distinct sets of inputs:
local and global features. Local features, which reect the
chemistry of building blocks and bonds, are derived from
a crystal graph convolutional neural network50 (CGCNN). The
CGCNN directly processes the crystal graph, where atoms and
bonds are nodes and edges, respectively, and generates
embeddings that capture essential chemical details. These
embeddings serve as local features in the PMTransformer.
Conversely, global features describe crystalline characteristics,
including topological and geometric descriptors such as pore
size and surface area. These features are derived from three-
dimensional energy grids, which are generated by calculating
the interaction energy between the material structure and
a methane gas molecule at each grid point using the package
GRIDAY.51 Similar to images in Vision Transformers,52 the
energy grids are divided into patches and attened through
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Schematic of the PMTransformer model. A sample COF structure is shown on the left. A crystal graph convolutional neural network
computes local embeddings of the COF graph, while GRIDAY computes a three-dimensional energy grid of the structure, which becomes the
global embeddings. These embeddings are combined and input into the PMTransformer (which includes a transformer encoder with an attention
mechanism and a prediction head) to predict k. On the right, a parity plot compares k predictions with ground truth values. We report the mean
and standard deviation of the goodness-of-fit across five random seeds. The random seeds affect the initialization of the prediction head, while
the rest of the model is initialized from the pre-trained PMTransformer weights. The dashed line represents the ideal line with zero intercept and
unit slope.
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linear projections. Eventually, both local and global embed-
dings are input into a transformer encoder, where the attention
mechanism49 helps the model focus on the most relevant parts
of the molecular structure for predicting (in our case) the
thermal conductivity.

To enable universal transfer learning, the transformer
encoder in PMTransformer is pre-trained on an extremely large
dataset of 1.9 million hypothetical porous materials to predict
easily obtainable yet essential properties such as topology, void
fraction, and building block prediction. This approach ensures
the encoder captures critical information necessary for accu-
rately predicting other, more complex properties in downstream
tasks with much smaller datasets. For more details regarding
the pre-training of PMTransformer, refer to ref. 46.

In this study, we leveraged the pre-trained transformer
encoder of the PMTransformer model to perform transfer
learning for the prediction of the thermal conductivity of COFs.
We ne-tune the transformer model using the pre-trained
weights as a starting point and jointly train a prediction head
based on a multi-layer perceptron architecture to map the
output of the transformer encoder to the thermal conductivity
of COFs. We used the mean squared error (MSE) as a loss
function for training. The dataset of 2471 COFs is randomly
split into two subsets: 90% of the data is used for training (out
of which 10% for validation), and the remaining data is used for
testing. We repeat the training across ve different random
seeds, where each seed initializes the prediction head randomly
while keeping the transformer initialized with the same pre-
trained weights. Additional details of the training protocol
and an ablation study are provided in SI Section 3.

We demonstrate the model's prediction accuracy on the test
dataset in Fig. 3, where it achieves a goodness-of-t R2 of 0.909
± 0.006 and a mean absolute error (MAE) of 0.075 W m−1 K−1
© 2025 The Author(s). Published by the Royal Society of Chemistry
for predicting k. The model's strong performance suggests that
there may be gaps in the feature sets typically used to describe
COFs. It also highlights the possibility that additional key
descriptors, beyond those commonly used, could play an
important role in predicting thermal conductivity, thus war-
ranting further exploration of structure–property relationships.
Discovering novel thermal transfer mechanisms for two-
dimensional COFs via self-attention

We leverage the multi-head self-attention mechanism49 of the
transformer architecture to interpret the predictions made by
the deep learning model. The attention mechanism in trans-
formers is designed to identify and assign weights, known as
attention scores, to the signicance of different parts of the
input data/encodings relative to all the other parts. When
applied to molecular structures, such as COFs, the attention
mechanism enables the model to dynamically focus attention
on key molecular substructures in relation to all the other
substructures present based on their relevance to the property
being predicted, in this case, thermal conductivity. In multi-
head attention, multiple attention heads are needed to
capture different aspects or relationships within the data
simultaneously. Specically, in the context of the PMTrans-
former model applied to a COF to predict its thermal conduc-
tivity, we calculate the attention for each atom in the COF by
averaging the attention scores from all attention heads and
computing the joint attention via multiplicative aggregation
across all layers of the transformer encoder.

Additionally, we identify the main branch of a COF as the
shortest continuous path connecting the boundary points
necessary for periodicity. We then classify all the atoms
extending and excluded from the main branch as dangling
Digital Discovery
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mass. More details on how we classify each atom as either part
of the main branch or part of a dangling side branch are pre-
sented in SI Section 4. We observe distinct patterns in the
attention assigned to various atomic sites within a COF's graph
representation, which correspond to the location of the
dangling masses. Two representative examples are shown in
Fig. 4 and 5.

Consider the rst example (see Fig. 4a and b). The top row
illustrates a COF structure (Fig. 4a) from the test dataset with
a thermal conductivity of 1.105 W m−1 K−1 and no dangling
masses except hydrogen atoms. Additionally, the atom-wise
attention scores are uniformly distributed and low for all the
carbon atoms with some elevated attention to the nitrogen
atoms. In the second row, we illustrate a COF structure (Fig. 4b)
with the same topology as the previous one, but with a much
lower thermal conductivity of 0.533 W m−1 K−1. Its attention
prole reveals that certain atom groups are being paid special
attention to by the transformer, i.e., specically the –NO2

functional group on the benzene ring that is dangling from the
main branch of the COF. Notably, the same groups of atoms
that exhibit higher attention scores are also classied as
dangling masses (see Fig. 4b attention prole & dangling mass).

In the second example (Fig. 5a and b), the COF structure on
the top does not contain any dangling mass except hydrogen
Fig. 4 An example pair of COFs with the same topologies and similar g
column illustrates the COF structures without (a) and with (b) dangling m
computed by the attention mechanism. The third column shows the sam
atoms (with separate distinction for hydrogen atoms). The fourth colu
corresponding COF structure with the overlapmetric S. The legend indica
The reported thermal conductivities are obtained from NEMD simulation

Digital Discovery
atoms and has a thermal conductivity of 2.715 W m−1 K−1 with
a highly uniform attention prole (see Fig. 5a). Analogously, we
pick a second COF structure with the same topology and
comparable geometrical descriptors. Once more, we observe
that the second structure contains a signicant amount of
dangling mass (i.e., –CN branches extending from the rings)
with corresponding elevated attention scores and has a lower
thermal conductivity of 1.611 W m−1 K−1.

The same trend is observed for numerous examples, with
additional ones presented in the SI, Section 5. We hypothesize
that this increased attention is indicative of the deep learning
model's understanding that these dangling masses are signi-
cant in predicting thermal conductivity. Furthermore, it
suggests that the presence of dangling masses disrupts the heat
transfer pathways and thereby reduces the thermal conductivity
through the material. A similar effect of dangling mass lowering
the thermal conductivity has been reported previously in
singular polymer chains53 and amorphous polymers.54 This
effect, while known in disordered systems, has not been
examined in crystalline COFs. Here, we demonstrate that it
remains relevant even in ordered, porous frameworks, inviting
future investigation with high-delity modeling methods (such
as density functional theory) to examine the underlying mech-
anism in more detail.
eometric descriptors, but contrasting thermal conductivities. The first
ass. The second column shows the atom-level attention score profile
e COF structure distinguishing atoms on the main branch and dangling
mn shows the VDOS profiles of various groups of atoms within the
tes the VDOS profile for main branch atoms (.) and dangling atoms (.)(d).
s, rather than being predicted by the PMTransformer model.
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Fig. 5 An example pair of COFs with the same topologies and similar geometric descriptors, but contrasting thermal conductivities. The first
column illustrates the COF structures without (a) and with (b) dangling mass. The second column shows the atom-level attention score profile
computed by the attention mechanism. The third column shows the same COF structure distinguishing atoms on the main branch and dangling
atoms (with separate distinction for hydrogen atoms). The fourth column shows the VDOS profiles of various groups of atoms within the
corresponding COF structure with the overlapmetric S. The legend indicates the VDOS profile for main branch atoms (.) and dangling atoms (.)(d).
The reported thermal conductivities are obtained from NEMD simulations, rather than being predicted by the PMTransformer model.
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To further validate the structure–property relationship
interpreted from the deep learning model, we examine the
impact of dangling atoms on the vibrational density of states
(VDOS) for the aforementioned contrasting COF examples.
VDOS, which characterizes the distribution of vibrational
modes in a system as a function of frequency, is known to
impact thermal transfer properties. Overlaps in VDOS proles
between different atoms have been shown to affect these
properties in both COFs55 and MOFs.56

Through MD simulations, the VDOS is calculated using the
Fourier transform of the normalized velocity autocorrelation
function of specic groups of atoms (see SI Section 6 for
details). Fig. 4 and 5 (third column) show the VDOS prole of
carbon, nitrogen, and oxygen atoms in the representative COF
examples. For any COF, we dene a VDOS overlap metric S as
the ratio of the area under the curve (AUC) of the minimum
VDOS across all atom types (at each frequency) and the AUC of
the maximum VDOS across all atom types (at each frequency),
i.e.,
S ¼

ð
u

min
�
f VC ðuÞ; f VN ðuÞ; f VO ðuÞ; f VB ðuÞð

u

max
�
f VC ðuÞ; f VN ðuÞ; f VO ðuÞ; f VB ðuÞ

© 2025 The Author(s). Published by the Royal Society of Chemistry
Here, u denotes the frequency; fVC(u), f
V
N(u), f

V
O(u), and fVB(u) denote

the VDOS at frequency u for the carbon, nitrogen, oxygen and
boron atoms, respectively. Additionally, we differentiate between
atoms in the main branch and dangling atoms, where the VDOS
proles for dangling atoms are denoted with a (.)d superscript. A
large overlap in VDOS proles of different atom types would result
in Sz 1, whereas a small overlap would yield Sz 0. A high overlap
indicates that phonon waves (i.e., quantized modes of vibrations
responsible for thermal energy transfer within the crystal lattice)
can propagate freely throughout the structure. This would lead to
minimized phonon scattering and facilitate efficient heat transfer
across the material.57

In the COF structures, which lack or have minimal dangling
atoms, the VDOS proles of the atoms are broad and overlap
signicantly, e.g., Sz 0.41 and 0.49 for examples in Fig. 4a and
5a, respectively. This results in an even distribution of vibra-
tional modes across a wide frequency spectrum for all atoms. In
contrast, the COFs with substantial dangling atoms exhibit
a VDOS prole with minimal overlap, e.g., Sz 0.08 and 0.09 for
; f V;dC ðuÞ; f V;dN ðuÞ; f V;dO ðuÞ; f V;dB ðuÞ�du
; f V;dC ðuÞ; f V;dN ðuÞ; f V;dO ðuÞ; f V;dB ðuÞ�du

: (1)

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00126a


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
27

/2
02

5 
6:

24
:3

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
examples in Fig. 4b and 5b, respectively. Notably, dangling
atoms signicantly reduce the VDOS overlap in both low-
frequency (0 to 20 THz) and high-frequency (40 to 60 THz)
modes. The vibrational modes of individual atoms in these
COFs are conned to much narrower frequency bands, which
leads to a less harmonized VDOS prole. The lack of overlap
suggests that the vibrations are highly localized around the
dangling atoms, which causes the phonon waves to be scat-
tered, disrupting their ability to transfer heat efficiently through
the material.58 We interpret the mismatch in the VDOS proles
as an energy barrier for phonon transport, where phonons
encounter resistance, preventing smooth energy transfer across
atoms. This suggests that the absence of dangling mass is
crucial for enhancing thermal conductivity in COFs. Dangling
atoms create these mismatches in VDOS, which in turn hinders
phonon transport and reduces thermal conductivity. A similar
trend is observed in additional pairs of COFs (Fig. S9, SI) and
the correlation between k and S for a selected representative set
of eight COFs is presented in Fig. S6c (SI).

To further conrm the effect of dangling atoms on phonon
dispersion in COFs, we calculate the phonon spectral energy
density (pSED) of the example COFs and their dangling coun-
terparts, as presented in Section 5 in the SI. The pSED of COFs
containing more dangling atoms exhibits higher magnitudes
and broadening bands, indicating stronger anharmonicity and
vibrational scattering in the vibrational modes, consequently
resulting in reduced thermal conductivity.

To quantify the role of dangling masses in the structure–
property relationship for thermal conductivity of COFs, we
introduce the dangling mass ratio (DMR). The DMR ˛ [0, 1]
quanties the ratio between themass of dangling atoms and the
total mass of the COF, i.e.,

DMR ¼
P
i˛D

mi

P
i˛D

mi þ
P
i˛M

mi

; (2)

where mi is the mass of the ith atom belonging to the set of
either dangling atoms or of non-dangling main branch atoms –
denoted by D and M , respectively. Higher DMR values indicate
a greater proportion of dangling masses relative to the COF's
total mass. In SI Section 1.3, we qualitatively show the rela-
tionship between DMR, the VDOS overlap S, and k.

We then introduce DMR as an additional feature, alongside
pore size, density, void fraction, and surface area, and train
classical ensemble regression models, such as the Random
Forest,59 Gradient Boosting,60 XGBoost,61 and AdaBoost62 and
outline their performances in Table 1. These simpler models are
Table 1 Performances of standard ensemble regression models at
predicting k by including DMR as an input feature. The table reports R2

scores obtained through 10-fold cross-validation

Regression model R2

Random Forest 0.728 � 0.069
Gradient Boosting 0.688 � 0.070
XGBoost 0.691 � 0.035
AdaBoost 0.416 � 0.125

Digital Discovery
employed not to compete with the PMTransformer in predictive
accuracy, but to provide directly interpretable feature impor-
tance scores and help in understanding the relevance of DMR.
In contrast, extracting meaningful and quantitative feature
importance from the PMTransformer is non-trivial due to its
complex model architecture and the absence of an explicit
correspondence between input features and learned represen-
tations. To assess the importance of individual features,
including DMR, we analyzed their Gini importance and con-
ducted a permutation feature importance analysis.63 These
values quantify the contribution of each feature to the overall
predictive power of the model. The Gini importance measures
how much each feature reduces the Gini impurity or random-
ness when making predictions in the ensemble model.59 On the
other hand, permutation feature importance measures the
impact of a feature by assessing how much the model's
performance decreases when the values of that feature are
randomly shuffled. A greater drop in performance indicates that
the feature is more important in predicting the target variable.59

We note that for the best performing regressor, the Random
Forest, DMR emerges as the second most inuential predictor
with 27.8% Gini importance, closely following behind density
(see Table 2). Similarly, the permutation feature importance
analysis also highlights DMR as a key feature, further support-
ing its signicant role in predicting thermal conductivity, with
its importance consistently ranking just below density. Finally,
we conducted SHAP analysis64 on the Random Forest to better
understand the impact of each feature on the individual test
data points. As shown in Fig. 6, the analysis reveals that higher
DMR values are associated with lower predicted k, conrming
the trend we observed. The consistency of these ndings across
different methods—Gini, permutation feature importance, and
SHAP—reinforces the importance of DMR as a key factor in
predicting thermal conductivity. We note that the computed
importance scores are inherently linked to the design space and
dataset introduced by Mercado et al.47 Specically, if the dataset
did not contain structures with dangling masses, the DMR
feature would naturally show little to no importance. Thus, the
relevance of DMR as a descriptor depends on its variability
within the dataset under consideration.
Generalizability and high-throughput screening for
discovering two-dimensional monolayer COFs with tailored
properties

To evaluate the generalization capabilities of the deep learning
model for high-throughput screening, we screen previously
Table 2 Feature importances for the best-performing regression
model, i.e., Random Forest. The table reports both Gini and Permu-
tation Feature Importance (PFI) values for all features

Feature Gini PFI

Density 0.397 0.670
DMR 0.278 0.511
LPD 0.185 0.455
Void Fraction 0.070 0.093
GSA 0.069 0.022

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Distribution of the effect of each feature on the model's predictions. Each point represents a SHAP value for a feature across all samples,
with the color intensity indicating feature values (ranging between minimum and maximum values). The position along the x-axis represents the
magnitude of the feature's impact.
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unseen 6170 two-dimensional COFs in the unlabelled dataset by
Mercado et al.47 from which our training and test sets were
originally subsampled. Moreover, we screen 35 638 two-
dimensional COFs in the unlabelled dataset by Lan et al.65

This dataset covers a vastly different design space with a variety
of linkers and knots previously unseen by our trained model.

The screening is performed with the objective of facilitating
the identication COFs with extremely high or low thermal
conductivity without resorting to computationally expensive
simulations. We observe an average screening rate of 0.07
seconds per COF structure (see SI Section 7 for details on
computational runtimes), thereby enabling a speedup of almost
seven orders of magnitude compared to MD-based screening.

Once potential candidates with extreme thermal conductivi-
ties are identied using the PMTransformer, we then calculate
their thermal conductivities through MD simulations for these
selected few, rather than for the entire datasets. This approach
circumvents reliance on the PMTransformer's absolute predic-
tions by validating promising candidates with high-delity MD
calculations. The results are summarized in Fig. 7. Our screening
process on the dataset by Mercado et al.47 revealed COFs exhib-
iting thermal conductivities up to twice the maximum value
observed in the training set, but stemming from the same design
space. By screening the dataset by Lan et al.,65 we discover COFs
with thermal conductivities ve times as high as the ones in our
training set. Additionally, we discovered several COFs with
thermal conductivities lower than any values previously recorded
in our dataset. A visual inspection reveals that these COFs feature
a combination of large pore sizes, low density, and a substantial
presence of dangling masses. For all the identied COFs, we
observe that thermal conductivity shows a strong trend with both
dangling mass ratio (DMR) and VDOS overlap ratio (S), which is
in agreement with the previous observations.
Discussion

In this study, we compiled an extensive dataset of thermal
conductivities for 2471 two-dimensional COFs, computed using
NEMD. Despite observing some structure–property trends with
conventional descriptors such as density, pore size, void
© 2025 The Author(s). Published by the Royal Society of Chemistry
fraction, and surface area, no single descriptor or combination
thereof consistently predicted thermal conductivity with high
accuracy, highlighting the complexity of COF structure–prop-
erty relationships. To enhance prediction accuracy, we trained
a transformer-based deep learning model incorporating
a multi-head attention mechanism. This model signicantly
outperformed traditional ensemble regression models,
achieving an R2 of 0.909 ± 0.006.

Further analysis using the transformer's attention mecha-
nism revealed that COFs with higher amounts of dangling
atoms exhibited lower thermal conductivities due to disrupted
heat transfer pathways, identifying a novel and signicant
predictor of thermal conductivity. The random forest regressor,
identied as the best-performing regression ensemble model,
was used primarily as a simple tool to assess feature importance
rather than to compare predictive performance with the
PMTransformer. It was analyzed using Gini importance,
permutation feature importance, and SHAP values. These
analyses consistently highlighted the dangling mass ratio as the
second most important predictor of thermal conductivity. The
vibrational density of states analysis further supported these
ndings, showing that dangling masses introduce mismatched
vibrational modes that hinder thermal transfer. While our
current analysis focuses on two-dimensional monolayer COFs,
additional mechanisms may emerge in three-dimensional
architectures and warrant a separate investigation.

We further leveraged the deep learning model to efficiently
screen thousands of COFs, both within and beyond the design
space we analyzed, to identify candidates with extreme thermal
conductivities. This approach provides a rapid and reliable
method as well as valuable insights for designing COFs with
tailored thermal characteristics. To support further research, we
release the dataset of COF thermal conductivities and
encourage the research community to utilize and expand upon
it. Finally, we emphasize the need to bridge high interpretability
with high accuracy in machine learning models to navigate the
complex structure–property space of COFs and other nano-
porous materials, thereby enabling the design of optimal
materials for applications such as gas separation and thermal
management.
Digital Discovery
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Fig. 7 High-throughput screening. (a) Distribution of k in the training dataset. Dashed lines indicated minimum, mean, and maximum k across
the training dataset. (b and c) Distribution of k of selected COF candidates identified in high-throughput screening for low and high k in the
unlabeled datasets of (b) Mercado et al.47 and (c) Lan et al.65 While the former dataset shares the same design space as the training dataset, the
latter has a different design space. All thermal conductivities shown here are computed using MD. (d) Representative COFs identified through
high-throughput screening with k lower and higher than theminimum andmaximum, respectively, across the training dataset. Also indicated are
their corresponding DMR and S values.
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Methods

The molecular dynamics setup, the distribution of in-plane
thermal conductivities, and feature correlations (including
DMR) (Section 1); implementation details of the ensemble
regression models and regression performances excluding
DMR (Section 2); the deep learning setup (Section 3); the
dangling mass computation (Section 4); additional compari-
sons of COFs with and without dangling mass, including
phonon dispersion maps for all examples (Section 5); details on
the VDOS and pSED computation (Section 6); and estimated
runtimes (Section 7) are summarized in the SI.
Digital Discovery
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Data availability

The code and data generated during this study are available in
the following repository: https://doi.org/10.4121/5866cc9a-78bf-
4a0c-9280-ae526da86ac9. The code and data are also available
at: https://github.com/mmc-group/deep-learning-thermal-
conductivity-of-COFs. The data includes unit-cell CIF les
obtained from the dataset of Mercado et al.47 available at
https://doi.org/10.24435/materialscloud:2018.0003/v2. We also
used the dataset provided by Lan et al.,65 which is available at
https://gshare.com/s/c7e3b7610a71b9d64210 with DOI:
https://doi.org/10.1038/s41467-018-07720-x for the associated
paper. The codes are built upon the open-source
MOFTransformer/PMTransformer repository by Park et al.,46

which can be accessed at https://github.com/hspark1212/
MOFTransformer with DOI: https://doi.org/10.1021/
acsami.3c10323 for the associated paper.

Supplementary information is available. See DOI: https://
doi.org/10.1039/d5dd00126a.
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