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arning to map simulated noisy and
laser-limited multidimensional spectra to
molecular electronic couplings†

Jonathan D. Schultz, *a Kelsey A. Parker, *a Bashir Sbaiti ab

and David N. Beratan abc

Two-dimensional electronic spectroscopy (2DES) has enabled significant discoveries in both biological and

synthetic energy-transducing systems. Although deriving chemical information from 2DES is a complex

task, machine learning (ML) offers exciting opportunities to translate complicated spectroscopic data into

physical insight. Recent studies have found that neural networks (NNs) can map simulated

multidimensional spectra to molecular-scale properties with high accuracy. However, simulations often

do not capture experimental factors that influence real spectra, including noise and suboptimal pulse

resonance conditions, bringing into question the experimental utility of NNs trained on simulated data.

Here, we show how factors associated with experimental 2D spectral data influence the ability of NNs to

map simulated 2DES spectra onto underlying intermolecular electronic couplings. By systematically

introducing multisourced noise into a library of 356 000 simulated 2D spectra, we show that noise does

not hamper NN performance for spectra exceeding threshold signal-to-noise ratios (SNR) of ca. 12.4,

2.5, and 5.1 if uncorrelated additive, correlated additive, or intensity-dependent noise sources dominate,

respectively. In stark contrast to human-based analyses of 2DES data, we find that the NN accuracy

improves significantly (ca. 84% / 96%) when the data are constrained by the bandwidth and center

frequency of the pump pulses. This result is consistent with the NN learning the optical trends described

by Kasha's theory of molecular excitons. Our findings convey positive prospects for adapting simulation-

trained NNs to extract molecular properties from inherently imperfect experimental 2DES data. More

broadly, we propose that machine-learned perspectives of nonlinear spectroscopic data may produce

unique and perhaps counterintuitive guidelines for experimental design.
1 Introduction

Coherent multidimensional spectroscopies (CMDS) afford rich
insight into the mechanisms of light-driven molecular
processes.1–7 For example, studies using two-dimensional elec-
tronic spectroscopy (2DES) in the last two decades exposed the
central role that electron–vibrational (vibronic) coupling plays in
the excited-state photophysics of chemical and material systems,
including natural photosynthetic complexes,8–11 organic
semiconductors,12–16 and quantum dots.17,18 The abundance of
information within 2DES spectra, as with spectra from other
CMDS techniques, comes at the expense of interpretability;
results of early 2DESmeasurements sparked decade-long debates
of their physical interpretation.7,19–22 Developing robust methods
ity, Durham, NC 27708, USA. E-mail:
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tion (ESI) available. See DOI:

–1924
to derive accurate chemical information from 2DES will be
indispensable as this technique is used increasingly to probe
complex, device-relevant condensed-phase systems.

Spectroscopy is oen used to solve inverse problems, where
physical insight about a chemical system is sought from spec-
troscopic data. Machine learning (ML) models are uniquely
suited to solve inverse problems,23,24 and ML has already been
applied to many inverse chemical problems in spectroscopy.25–40

For example, Lansford et al.27 and Enders et al.28 used ML to
extract surface microstructure and functional group information,
respectively, from infrared spectra. Cui et al.41 demonstrated an
ML method that relates infrared and Raman spectra to the
electrocatalytic properties of CO2 reduction. Despite recent
progress in joint ML-spectroscopic approaches, time-evolving
nonlinear spectra are vastly more complicated than steady-state
linear spectra, and this is especially true for spectra derived
from multidimensional methods like 2DES. As a result, few
studies29,31–36 have demonstrated howML can be used to map the
properties of molecular systems directly from their multidimen-
sional spectra. However, innovations enabled by ML applied to
linear spectroscopy27,28,38,41,42 and magnetic resonance
© 2025 The Author(s). Published by the Royal Society of Chemistry
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spectroscopies37,43,44 clearly indicate the potential of using ML to
transform the interpretation of complicated spectroscopic data.

The data requirements of ML pose a signicant challenge in
applying ML to spectroscopy.24,29,43,45 There is currently no
public repository for experimental 2DES data. Of the experi-
mental data that accompany journal publications, factors such
as low molecular diversity, variation in data processing
methods, and insufficient sample characterization hinder the
prospects for training neural networks (NNs) with purely
experimental 2DES datasets. A viable and precedented alterna-
tive is to use simulated data to train NNs for experimental
applications.27,29,46–52 Simulated data offer the unique advan-
tages of practically innite availability and complete knowledge
of the underlying physical properties, which enabled several
recent studies29,31,33–36 that leverage ML to solve inverse prob-
lems with multidimensional spectra. Simulated data are,
however, pristine: they do not typically include the inuence of
experimental features in CMDS spectra, such as noise, nite
pulse bandwidths, and imperfect laser-sample resonance
conditions.2,51,53–55 It remains unknown how such experimental
aspects of 2DES might inuence the performance of ML-based
interpretation tools. This gap in knowledge contributes to the
already considerable challenge of adapting simulation-trained
NNs to experimental applications.

Here, we develop an expansive database of 356 000 vibronic
dimer 2DES spectra and use it to identify how experimental
constraints inuence inverse problem solving with a feed-
forward NN. When trained and evaluated on pristine simulated
data, the NN classies unseen spectra to one of 33 electronic
coupling categories with ∼84% accuracy. By systematically
introducing experimental constraints, or “data pollutants,” into
the spectra and performing repeated training and evaluation, we
nd how the pollutants inuence the testing performance of the
NN. We nd that the simulation-trained NNs are relatively robust
to additive noise sources with correlations along the probe axis
(e.g., intensity jitter of the local oscillator) and sources that
depend on the signal magnitude (e.g., uctuations in the pump
power or beam alignment). The NN performance appears to be
most susceptible to uncorrelated additive noise sources, such as
detector dark current or the readout electronics. We also nd that
NN performance increases signicantly (up to ∼96% accuracy)
when the effects of pump bandwidth and center frequency are
accounted for in the spectral dataset. We nd that this counter-
intuitive result provides fundamental insight into the machine
learnability of electronic coupling information in multidimen-
sional optical spectra. Ultimately, our study claries how the
performance of simulation-trained NNs may vary, potentially in
a positive or negative direction, as they are adapted for experi-
mental applications. These ndings encourage the use of ML to
derive chemical insight directly from multidimensional spec-
troscopy experiments.

2 Methods
2.1 Spectral database for machine learning

We performed nonlinear response simulations in Python to
generate our training and testing datasets. Because of
© 2025 The Author(s). Published by the Royal Society of Chemistry
computational costs and storage limitations, we limited the
scope of the current study to models for molecular dimers.
Studies from the last two decades found that simple molecular
models, such as the harmonic oscillator or purely electronic
dimer models, are oen insufficient to describe sub-picosecond
photophysics.8,10,56,57 Hence, we used a Holstein-like vibronic
exciton Hamiltonian, which was shown to be accurate for pre-
dicting features in experimental 2DES spectra of light-
harvesting systems.8,12,13,58–60 The system Hamiltonian is

Hsys = Hel + Hvib + Hel−vib, (1)

where Hel and Hvib are the electronic and vibrational Hamilto-
nians, and Hel–vib describes the electron–vibrational coupling.
The electronic portion of eqn (1) for a molecular dimer is
written in the Condon approximation as

Hel ¼
X

n

3nc
†
ncn þ JCoul

X

nsn
0
c†ncn0 ; (2)

where 3n is the electronic transition energy for molecule n, c†n
and cn are the electronic creation and annihilation operators,
respectively, such that c†ncn represents an exciton on site n, and
JCoul is the coulombic coupling. The vibrational and vibronic
Hamiltonians are:

Hvib ¼
X

m

ħumb
†
mbm; (3)

Hel�vib ¼
X

n

X

m

ħumc
†
ncn

�
lm

�
b†m þ bm

�þ lm
2
�
; (4)

where b†mðbmÞ creates (annihilates) vibrational quanta for
vibration m with frequency ħum and Huang–Rhys factor lm

2.
In generating the spectral database with the vibronic exciton

Hamiltonian (eqn (1)), we set ranges for all Hamiltonian
parameters so that the simulated spectra correspond to
molecular systems that are typically studied with 2DES. Fig. 1
shows the parameter distributions for the coulombic couplings
and the nuclear displacements. We varied the coulombic
coupling from JCoul = −800 to +800 cm−1 (Fig. 1a), which
corresponds to strong J- and H-type coupling interactions,
respectively.61 We previously found that NNs disproportionately
misclassify the value of JCoul that underpins the 2DES spectra of
J-type dimers.33,34 Thus, while we primarily used a 50 cm−1

increment as JCoul was varied, we used smaller increments in
varying JCoul < −550 cm−1 (see Fig. 1a).

We made two compromises to balance storage costs with the
generality of our data space. First, we considered only homo-
dimers (i.e., 31= 32= 3 in eqn (2)). We chose the specic value of
3 = 14 500 cm−1 to align with the approximate transition energy
of terrylenediimide, a prototypical organic chromophore with
extensive prior 2DES characterization.13,59,62–64 Second, we con-
strained eqn (3) and (4) to include two independent vibrational
modes. In a previous study, we considered systems with up to
three vibrational modes and analyzed how the number and
frequency of the modes impacted the machine learning.33 Here,
we prioritize the inclusion of one high-frequency (1300 cm−1)
and one low-frequency (200 cm−1) mode. This is because high-
frequency modes, especially C]C stretches, oen exhibit
Digital Discovery, 2025, 4, 1912–1924 | 1913
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Fig. 1 Values of the (a) coulombic coupling (JCoul) and nuclear
displacements (li) of the (b) i = 1300 and (c) i = 200 cm−1 modes (eqn
(2) through (4)) used in generating the spectral database. There are
356 000 unique 2DES spectra in the full dataset, reflecting 1424 unique
homodimers. Slice areas in each hollowed circle are proportional to
the amount of data they represent. Outward-facing ticks in (a) indicate
the boundaries of the 33 classes reflected in the output of the neural
network (vide infra). See Table S1† for further details.
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signicant Franck-Condon (FC) activity in organic chromo-
phores.61 Also, low-frequency modes are found to play signi-
cant roles in non-adiabatic excited-state dynamics.65–68 Further
details of the spectral database are provided in the ESI.†
Fig. 2 Schematic workflow of the spectral simulations, data processin
response function simulations to generate a spectral database for all syst
data pollutant, we operated on a copy of the clean spectral database and
data to train a categorical feed-forward neural network and the remaini

1914 | Digital Discovery, 2025, 4, 1912–1924
2.2 2DES simulations

We simulated absorptive 2DES signals (e.g., Fig. 3a) for each
model Hamiltonian using in-house Python codes (freely avail-
able in ref. 69). We calculated the third-order optical response
functions (ground-state bleach and stimulated emission path-
ways) as a function of the t1, t2, and t3 interpulse time delays
(Fig. 2a). We applied a phenomenological lineshape function70

to each dimension of the time-domain signals to account for
phenomenological system–bath interactions and to realize
nite linewidths. The nal absorptive 2DES spectra are
computed by fast Fourier transformation of the signal to the
pump (u1/(2pc)) and probe (u3/(2pc)) frequency domains
(abbreviated herein for clarity as u1 and u3, respectively). Table
S2† shows the parameters that were used in our nonlinear
response simulations. We selected parameters that reect
common scenarios encountered in 2DES experiments (e.g.,
spectral linewidths, time and frequency resolutions, etc.).
Further details of the simulations are described in the ESI.†
2.3 Data pollution

The simulations described above provide “clean” spectra, which
do not capture many features of experimentally measured 2DES
spectra. Noise and pulse properties can signicantly inuence
the results of 2DES experiments,2,53–55 yet such factors are
commonly neglected in simulations. To explore: (i) how exper-
imental effects (i.e. noise and laser-sample resonance
g, and machine learning trial employed here. (a) We used nonlinear
ems within the parameter space portrayed in Fig. 1. (b) For each type of
sent the polluted spectra to the ML algorithm. (c) We used 80% of the

ng 20% for testing.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) A representative “clean” spectrum generated with the
parameters provided in the inset table. We polluted the datasets by (b)
adding one of three types of experimental noise or (c) convoluting the
2DES signal with a Gaussian pump pulse. Representative images of the
isolated data pollutants are shown in the upper panels of (b) and (c);
the lower panels of (b) and (c) show the resulting polluted spectra. All
spectra and noise profiles are plotted against the color scale in (a).

Table 1 Variables and values therein for each form of data pollutant

Data pollutant Parameter (units) Values

Additive noise sadd (unitless) 0, 1 × 10−5, 2.5 × 10−5

5 × 10−5, 7.5 × 10−5

1 × 10−4, 2.5 × 10−4

5 × 10−4, 7.5 × 10−4

0.001, 0.0025, 0.005
0.0075, 0.01, 0.025
0.05, 0.075, 0.1, 0.25

Intensity-dependent
noise

sint (unitless) 0, 0.001, 0.0025, 0.005
0.0075, 0.01, 0.025
0.05, 0.075, 0.1, 0.25
0.5, 0.75, 1, 2.5, 5
7.5, 10, 25, 50

Pump spectrum Du (cm−1) 100, 250, 500, 1000, 1500
2000, 2500, 3000, 3500
4000, 5000, 7500, 10 000

uc (cm
−1) 12 000, 12 250, 12 500

12 750, 13 000, 13 250
13 500, 13 750, 14 000
14 250, 14 500, 14 750
15 000, 15 250, 15 500
15 750, 16 000, 16 250
16 500, 16 750, 17 000
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constraints) inuence the machine-learnability of 2D data and
(ii) bridge simulation-trained NNs toward applications to
experimental data, we “polluted” our ML datasets prior to both
training and testing and examined the resulting effects on NN
performance. Fig. 2b shows the strategy for introducing each
kind (vide infra) of pollutant; we applied the pollution operation
to a copy of the pristine dataset, trained the ML model on the
polluted data (Fig. 2c), and then computed the performance on
a test set of the polluted data.

Noise signatures, and the spectral characteristics of the
pump pulses, are key factors that augment experimental 2DES
spectra compared to their simulated counterparts. In nonlinear
spectroscopy experiments, noise manifests in numerous ways
that can vary depending on the signal acquisition geometry and
any procedures used for background removal (e.g., chopping
and phase cycling).51,55,71–73 Noise signatures are commonly
categorized as either “additive” or “multiplicative” in nature
(Fig. 3b). Additive noise refers to signal-independent uctua-
tions arising from sources such as local-oscillator intensity
jitter, detector dark current, and readout electronics.55,71,74 In
contrast, multiplicative or “convolutional” noise sources are
proportional to the analyte signal (f c(3)).71,72 Examples of
multiplicative noise, which we will denote as “intensity-depen-
dent” noise herein, are shot noise in the pump pulses and
uctuations in the beam overlap at the sample.73

Additive noise typically dominates the total noise present in
a 2DES experiment, and it is instructive to distinguish between
© 2025 The Author(s). Published by the Royal Society of Chemistry
two unique scenarios. In most set-ups, intensity jitter in the
local oscillator pulses leads to constant baseline offsets along u3

that uctuate along u1 (e.g., the le-most panel of Fig. 3b).51,71–73

We refer to this class of noise as correlated additive noise herein.
In contrast, detector dark current and read-out electronics
contribute noise that is uncorrelated between pixels, or Gaussian
pixel noise (e.g., the middle panel of Fig. 3b).

For each unique system Hamiltonian, we modeled noise at
every u1 × u3 × t2 data point using a normal distribution
centered around zero and with a standard deviation of s. Unlike
intensity-dependent noise and uncorrelated additive noise,
which are normally distributed along all dimensions, we con-
structed correlated additive noise proles that are Gaussian
distributed only along u1 × t2. All 2DES spectra associated with
a given model Hamiltonian were normalized to the maximum
signal magnitude at t2 = 0 prior to noise injection. As such,
a value of s= 1 corresponds to random noise comparable to the
signal magnitude (or SNR z 1 at t2 = 0). Table 1 provides the
values of s that we considered in this study, divided into addi-
tive (sadd) and intensity-dependent (sint) categories. Both
correlated and uncorrelated additive noise proles are simply
added to the 2D spectral data. In contrast, for intensity-
dependent noise, we multiply each 2D noise prole (size
nu1

$nu3
, where nu1

and nu3
are the number of “pixels” in the

pump and probe frequency dimensions, respectively) element-
wise by the corresponding 2D spectrum prior to addition.
Note that for a given value of sadd, the SNR of the noised spectra
may differ slightly between correlated and uncorrelated additive
noise (Fig. S3†). See the ESI† for details of the noise injection
procedures.

2DES signals depend critically on the spectral overlap
between the pump pulses and the sample absorption. Both the
Digital Discovery, 2025, 4, 1912–1924 | 1915
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spectral bandwidth (Du) and center frequency (uc) of the pump
pulses determine the spectral overlap. To introduce pump pulse
characteristics to our ML dataset, we convoluted the simulated
2DES spectra with Gaussian pulses (eqn (S9)†) parameterized
with realistic values of uc and Du (Table 1). We dened the
former to span the excited-state transition energies of the
molecular systems represented in our spectral database (ca. 12
000 to 18 500 cm−1). Depending on the experimental apparatus,
the Du of the pump pulses in conventional 2DES experiments
typically ranges between 1000 and 6000 cm−1.64,75,76 See the ESI†
for further information.
2.4 Machine learning

The machine-learning protocols used here are based on earlier
workows of Parker and coworkers33 that use the PyTorch
library77 in Python. Our codes are freely available to the public in
ref. 78. Here, we examined an inverse problem where we trained
feed-forward NNs (Fig. 2c) to classify 2DES spectra based on the
electronic couplings in the underlying model Hamiltonians.
The NN uses attened 2DES spectra (1D arrays of length nu1

$nu3
)

as inputs. We used an automated trimming algorithm on all
spectra (see the ESI† for details) to remove outer low-intensity
signals and to ensure that all nal spectra (i.e. NN inputs)
have size: nu1

= nu3
= 151. The NN applies linear trans-

formations and rectied linear unit (ReLU) activation functions
to connect the input layer (consisting of 22 801 neurons from
the spectra of size 151 × 151) to a single hidden layer with 300
neurons. Additional hidden layers produced marginal perfor-
mance gains, as discussed in the ESI.† We apply a dropout
operation on hidden layer neurons for regularization. Linear
transformations and somax activation functions connect the
hidden layer and output layer neurons. Each of the 33 neurons
in the output layer corresponds to a single class of electronic
coupling JCoul (see Fig. 1a for the class bounds in the JCoul
parameter space).

We conducted independent ML trials for each polluted
dataset (i.e., the NN was trained and tested on each polluted
dataset). For simplicity, we determined a set of hyperparameters
(Table 2) that optimizes NN performance when trained and
tested on clean data. We then kept the hyperparameters
constant for all ML trials with the polluted datasets. We also
Table 2 Hyperparameters used for all NN trials in this study

Hyperparameter Value

Activation function ReLU
Training-testing split 80 : 20
Learning ratea 0.001
Number of hidden
layers

1

Hidden layer sizea 300
Epochs 30
Dropout probabilitya 0.2
Batch size 100

a Optimized with a grid search for the unpolluted dataset (see Table S3
and Fig. S2).

1916 | Digital Discovery, 2025, 4, 1912–1924
used the same initializations for the trainable parameters (e.g.,
weights and biases) in each trial and kept the training and
testing subsets consistent by seeding data shuffling and split-
ting operations. See the ESI† for additional details of our ML
procedures and hyperparameter optimization (Fig. S2†).

In addition to the conventional accuracy metric that assesses
NN performance, we used the scikit-learn module79 in Python to
calculate F1 scores and top-k accuracies. Compared to accuracy,
the F1 score provides better accounting of false positives and
false negatives, as well as more robustness to class imbal-
ances.80 The top-k accuracy examines whether the true classi-
cation is in the top k most probable classications predicted by
the NN. Thus, the top-k accuracy provides additional insight
into the precision of NN classications (e.g., how far the
misclassications are from ground truth).
3 Results and discussion

The quality of NN classications when trained and tested on
clean (not polluted) spectra is a key reference point for this
study. We found that the NN classies clean 2DES spectra in
their correct JCoul category with an accuracy of 83.99% and an F1
score (macro-averaged) of 0.845. This high performance is
consistent with our previous study,33 in which we found an
accuracy of ca. 92% for a similar JCoul range subdivided into ve
categories (as opposed to the 33 used here). Note that, in
general, we observed that the accuracy and F1 scores were
approximately equal (within about one percentage point, as
shown in Fig. S8†). For clarity, we only report the F1 scores.

Fig. 4 shows the performance of the NN trained and tested
using clean spectra through the lens of a confusion matrix. In
the confusion matrix representation, correct and incorrect NN
classications are reected by on- and off-diagonal values,
respectively. We observe that while 16% of the NN classica-
tions are incorrect, the majority of misclassications occur only
Fig. 4 Confusion matrix comparing the true vs. NN-predicted values
of JCoul when trained and tested on clean data. Each row is normalized
to unity. Diagonal entries, indicated by the dotted white line, reflect
correct classifications; off-diagonal entries report on
misclassifications.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Performance of NNs trained and tested on datasets with varying amounts of (a) additive and (b) intensity-dependent noise. Representative
2DES spectra are included as insets with arrows pointing to the dataset from which they are derived.
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one category away from the ground truth. This observation is
consistent with the calculated 99.04% top-2 accuracy.
3.1 Inuence of noise on NN performance

The dependence of the NN performance on the amount of
additive noise in the dataset is shown in Fig. 5a (see the insets
for representative 2DES spectra). We nd that training and
testing F1 scores are relatively unaffected (remaining within 5%
of the F1z 0.845 observed on the clean dataset) by both types of
additive noise until sadd exceeds a threshold value, sadd. The
threshold level of uncorrelated additive noise, or sadd,uc, is
0.0005 (corresponding to SNR z 12.4). In contrast, the
threshold for correlated additive noise (sadd,c) is 0.0025, or SNR
z 2.5. This indicates that, with respect to additive noise, the NN
performance is more robust to correlated sources than it is to
uncorrelated sources. This is further supported by the testing F1
scores at increasingly large values of sadd, which drop expo-
nentially for datasets with uncorrelated additive noise. The
testing scores also decrease with increasing sadd for models
trained on data with correlated noise, but at a signicantly
slower rate.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Comparing the models' F1 scores on the training versus the
testing datasets provides information about over-tting.81 For
both correlated and uncorrelated sources, we observe small
amounts of over-tting to the training data when sadd is less
than the respective sadd, as indicated by the slightly higher
training F1 scores compared to the testing scores (Fig. 5a).
However, as sadd increases beyond the respective sadd, the extent
of over-tting substantially increases solely in the case of
uncorrelated additive noise. This result suggests that the NNs
‘memorize’ the uncorrelated noise signatures in the training
dataset. In ML approaches applied to other types of datasets,
noise injection is commonly performed82–85 to improve the
generalizability of NNs (e.g., to mitigate over-tting81). Still,
previous studies86–88 found that deep neural networks (DNNs)
tend to over-t when trained on data with noisy labels. This
tendency was shown to evince a shi in the DNN from learning
general features of the training data to memorizing the noise
patterns.88 The trends in Fig. 5a, as well as Fig. S7,† suggest
a similar effect when the feed-forward NN here is trained on
spectra with uncorrelated additive noise. Still, even for sadd =

0.25, the NN signicantly outperforms random guessing.
Digital Discovery, 2025, 4, 1912–1924 | 1917
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As in the case of additive noise, we nd that the training and
testing F1 scores are invariant with increasing intensity-
dependent noise (Fig. 5b) until a threshold is exceeded, i.e.
sint > sint = 0.25 (corresponding to SNR z 5.1). The intensity-
dependent threshold is thus signicantly higher than the
thresholds for both types of additive noise (i.e. sint > sadd,c >
sadd,uc). This makes sense, as increasing sadd leads to an
increase in SNR more quickly than increasing sint (see Fig. S3†).
With respect to SNR, the impact of intensity-dependent noise
on NN performance falls between that of correlated and
uncorrelated additive noise (SNR z 5.1 vs. 2.5 and 12.4,
respectively). Fig. 5b also shows that, for sint > sint, the NN
performance exhibits a logistic-like decay with increasing
intensity-dependent noise (compared to the exponential decay
found for additive noise). In contrast, the training F1 score
shows a slight growth from 0.882 to 0.913 between sint= 0.5 and
5, respectively, followed by an exponential decay for sint > 5.
Aside from indicating over-tting, this result suggests funda-
mental differences between the nature of over-tting for spec-
tral datasets with uncorrelated additive vs. intensity-dependent
noise.

The results in Fig. 5 show that each category of noise
explored here exhibits clear and distinct inuences on NN
classications of 2D spectra based on electronic couplings. We
nd that the NN performance is generally robust up to certain
threshold amounts of noise (sadd,uc = 0.0005, sadd,c = 0.0025,
and sint = 0.25). These thresholds predict reductions in NN
performance for spectra with SNR < 12.4, 2.5, and 5.1 if the total
Fig. 6 (a) NN F1 score for the testing data as a function of Du and uc of th
from the clean dataset (red and blue indicate higher and lower F1, respe
purely electronic J- versus H-type aggregates in Kasha's exciton mod
frequency of the pump pulses and the monomer optical response. (b) Ex
the (Du, uc) coordinates of the matching shape in (a).

1918 | Digital Discovery, 2025, 4, 1912–1924
noise is dominated by uncorrelated additive, correlated addi-
tive, or intensity-dependent noise, respectively. For s > s, the
NNs generally exhibit a mixture of learning and memorizing,
with memorization being particularly evident for datasets with
uncorrelated additive or intensity-dependent noise. Many of the
misclassications when s > s, as shown in Fig. S9,† occur more
than one category away from the true class. This is especially the
case for spectra from Hamiltonians that have weak-to-
intermediate electronic coupling values.

3.2 Inuence of pump characteristics on NN performance

Resonance between the pump pulses and the absorption spec-
trum of the sample in a 2DES experiment critically determines
the magnitude and shape of features in the 2DES spectra. As
described above and shown in Fig. 3c, we varied the spectral
bandwidth (Du) and center frequency (uc) of the pump pulses to
simulate experiments with varied resonance conditions. The
heatmap in Fig. 6a shows the testing F1 score aer training and
testing the NNs with datasets spanning each combination of the
Du and uc parameters. We observe rich variation in the NN
performance as Du and uc are varied. For all uc, the F1 scores
when Du = 10 000 cm−1 are similar to those obtained from the
clean dataset (ca. 0.845). As Du decreases, we observe that the
F1 scores increase and subsequently decrease. The values of Du
that yield the maximum F1 score depend strongly on uc. Several
combinations of Du and uc yield F1 scores above 0.95 (dark red
regions). Within the range 500# Du# 5000 cm−1, the F1 scores
are bi-modal with respect to uc. For uc # 14 000 cm−1 and$15
e pump pulses. The color scale is relative to the F1 score of 0.845 found
ctively). The upper panel illustrates the expected optical responses of
el. The dashed line indicates exact resonance between the center-
ample 2DES spectra and F1 scores from the corresponding datasets for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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000 cm−1, small values of Du result in F1 scores below the 0.845
score obtained with the clean dataset (blue regions). All trends
noted in Fig. 6a are also found in the training F1 scores
(Fig. S10†).

The dependencies of the F1 score on Du and uc are counter-
intuitive for two reasons. First, 2DES experiments are typically
designed with maximal pulse bandwidth.53,75 This is because
lower values of Du constrain the shape of the 2DES signal along
the pump axis, in turn obscuring information about the
molecular system. For example, compare the upper and middle
spectra in Fig. 6b to 3a. In contrast, we nd that smaller Du

values improve NN performance (to a limit). Second, we might
expect better NN performance when the pump pulse spectra are
resonant with the excited-state energy of the monomers in the
site basis (i.e., uc = 3 = 14 500 cm−1 in eqn (2)). Instead, we nd
that, for almost all Du values, the F1 scores increase when the
pump spectra are signicantly red- or blue-shied away from
the monomer transition energy.

Kasha's theory61,89,90 for the optical responses of molecular
aggregates predicts two exciton classications based on the sign
of the coulombic coupling. The theory predicts that the absorp-
tion spectrum of a dimer with JCoul < 0 (J-type) will be red-shied
compared to that of the isolated monomer (illustrated in the
upper portion of Fig. 6a). In contrast, dimers with JCoul > 0 (H-
type) yield blue-shied absorption spectra. The qualitative
predictions of Kasha's theory correlate well with both (i) the
bimodal dependence of NN accuracy on uc and (ii) the symmetry
of the bimodal trend about uc = 3 = 14 500 cm−1. Such a corre-
lation makes sense since, for all pump spectra except those with
uc = 14 500 cm−1, the pump biases the spectral dataset toward
one exciton response regime and, in turn, inuences how the NN
learns about the underlying electronic couplings. From the
trends in the F1 score as Du is varied, we posit that, for suffi-
ciently largeDu, biasing one exciton regime over the other boosts
NN performance by emphasizing the differences in the 2DES
signatures of H- vs. J-type aggregates. However, as Du is
decreased, the performance gains from biasing one exciton
regime should eventually be overcome by the erasure of infor-
mation contained in off-resonant regions of the 2DES spectra.We
observe this behavior for all uc, as the NN performance drops
substantially when Du drops below threshold values (e.g., for Du
< 1500 cm−1 when uc = 12 250 cm−1).

The ndings of Fig. 6 show that feed-forward NNs more
accurately map 2DES spectra to electronic couplings when the
datasets are spectrally constrained (polluted by pump reso-
nance). This result marks a signicant departure from human-
based designs and analyses of 2DES experiments. With few
exceptions,91 spectrally broadband and on-resonance pump
pulses are desired for 2DES experiments. Heisler and
coworkers54 showed that limited resonance between the pump
pulses in a 2DES experiment and the absorption spectrum of
the molecular monomer can articially manifest signatures of
electronic coherences in the spectra, which are physically
impossible for monomeric samples. While such unphysical
information may mislead human analysis of 2DES data, our
ndings show that some constraints on spectral resonance can
© 2025 The Author(s). Published by the Royal Society of Chemistry
positively inuence the ability of NNs to learn about spectral
signatures of electronic coupling.
3.3 Implications for applications to 2DES experiments

ML presents revolutionary opportunities for decoding infor-
mation from optical data.25,26 The results of our study suggest
that, despite the signal complexity of nonlinear multidimen-
sional spectroscopy, simple ML approaches like the feed-
forward NNs can learn information about the underlying
molecular properties in the face of experimental realities (noise
and pulse resonance conditions). Although each category of
noise investigated here degrades NN performance, this is only
the case for noise widths that exceed some threshold (s > s). For
additive noise, the thresholds vary signicantly depending on
whether the source adds correlated or uncorrelated noise in the
u1 × u3 dataspace. For uncorrelated additive sources, noise
levels exceeding sadd > sadd,uc = 0.0005, or SNR <12.4, yield NN
performance loss. This is compared to the case of correlated
additive sources, where sadd,c = 0.0025 (SNR z 2.5). For noise
sources that scale with the intensity of the analyte signal, we
nd NN performance is unaffected until sint > sint = 0.5 (SNR <
5.1). We infer from these results that sources of correlated
additive and intensity-dependent noise pose limited risk of
obscuring coupling information in experimental 2DES spectra.

In practice, the relative inuence of different noise sources
in CMDS experiments depends critically on factors such as the
experimental geometry, detection mechanism, and approaches
for background removal. Still, it is generally the case that
intensity-dependent noise sources are least problematic.71–73 In
contrast, power uctuations of the local oscillator, modeled
here as correlated additive noise, are oen the dominant noise
source.51 In this work, we nd that NN performance is less
susceptible to correlated additive noise in the training data
compared to uncorrelated noise (Fig. 5a). We thus anticipate
that noise sources such as the detector (i.e., dark current) and
read-out electronics, which contribute uncorrelated additive
noise, may be most disruptive to NN-based analyses of CMDS
data. Taken together, our ndings suggest that NN-based
approaches to extracting couplings from experimental data
should be robust to noise if the SNR is sufficiently high.
Increased reliance on noise-reduction methods, including
standard averaging and phase cycling procedures92 or post-
processing algorithms,93 may be warranted in experimental
scenarios prone to excessive noise.

The counterintuitive behavior revealed in Fig. 6 highlights
that NNs interface with spectroscopic signals in a fundamen-
tally different way compared to humans. We hypothesize that
ML tools may provide opportunities to leverage subtle proper-
ties of multidimensional spectra that are overlooked by tradi-
tional interpretation methods. For example, the traditional
workow to interpret 2DES spectra for complex molecular
systems follows insights gained from nonlinear optical
response theories.1,94,95 Theoretical models predict that cross-
peaks in rephasing 2DES spectra are particularly sensitive to
electronic and vibronic couplings.11,56,58,96 In turn, cross-peaks
are of central focus in the analysis of experimental 2DES
Digital Discovery, 2025, 4, 1912–1924 | 1919
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data.11,97–99 The salient trends in the predictions from nonlinear
optical response theories tend to guide human-based analyses
of spectra, but there may be a wealth of information contained
in the more eeting trends in the theoretical spectra. Our
observation that the NN-interpretability of 2DES data is maxi-
mized by sub-optimal (by human standards) resonance condi-
tions supports our hypothesis.

NNs elicit an information-centric perspective of spectroscopic
signals during training. In a recent study of Flores and
coworkers,38 the authors trained a CNN to classify linear
infrared spectra based on functional group information. In
addition to spectral features from fundamental vibrational
frequencies, they found that the model uses non-intuitive
features, such as the absence of specic peaks or peaks from
anharmonic modes, in its classications. Such ndings
emphasize the potential usefulness of traditionally overlooked
properties of spectra in enabling accurate spectral interpreta-
tions. Our ndings prompt further explorations of how
property-specic information is distributed throughout 2DES
datasets. Indeed, a recent study of Jakobsson and coworkers100

found patterns of Fisher information distribution in simulated
2DES spectra that differ from the typical spectral regions that
nonlinear response theories suggest for analysis.11,56,58,96

Information-based (machine-learned in our case) approaches
may guide experimental designs or spectral analyses that most
efficiently lead to molecular insight from multidimensional
spectra.

4 Conclusions

2DES spectroscopy is an increasingly accessible and powerful
tool that can probe ultrafast dynamics. Chemically meaningful
information is traditionally inferred from 2DES spectra through
extensive signal analysis, theoretical modeling, and human-led
comparisons of simulated and experimental spectra.58,98,99

Despite the time and effort required to perform such tasks,
misinterpretations of 2DES spectra are still possible and are
historically precedented.7,19–22 Misinterpretations pose
a concern, especially as 2DES is used to study increasingly
complicated condensed-phase systems. Being agnostic to
traditional strategies for interpreting spectra, ML offers
a promising route to translate experimental spectra to chemical
insight in a robust and data-driven manner. Indeed, there are
few studies29 that use ML as an inverse problem solving tool to
address experimental 2DES data.

We have shown that even when practical limitations such as
noise and pulse resonance conditions are included in the
spectral data, feed-forward NNs match simulated 2DES spectra
to electronic coupling strengths with high accuracy. We found
that uncorrelated additive (e.g., detector dark noise), correlated
additive (e.g., intensity uctuations in the local oscillator), and
intensity-dependent (e.g., laser power uctuations) noise
signatures degrade NN performance aer threshold amounts of
noise are exceeded. The threshold for the latter two categories of
noise is signicantly higher than for uncorrelated additive
noise, suggesting that correlated additive and intensity-
dependent noise sources pose a smaller risk of obscuring
1920 | Digital Discovery, 2025, 4, 1912–1924
information about electronic couplings in experimental 2DES
spectra. We also found that uncorrelated additive and intensity-
dependent noise lead to substantial over-tting, which aligns
with ndings of earlier studies of noise with deep neural
networks.85–88 Our results suggest that methods to mitigate the
presence of uncorrelated additive noise in 2DES experiments
may be necessary to enable ML-driven extractions of molecular
properties from measured spectra.

The results presented here convey positive prospects for
adapting ML-based tools to analyze and interpret complex
experimental 2DES data. Future directions toward ML-guided
analyses of experimental spectra may combine polluted simu-
lated data with established transfer learning tech-
niques.31,35,36,50,101,102 A potential approach could start with
pretraining on polluted simulated spectra to produce a general
ML model. Other research groups could then retrain the nal
layers of the general model (i.e., ne-tune)50,101,102 with local,
smaller experimental datasets. This ne-tuning would allow the
model to adapt to the molecular diversity, postprocessing
techniques, and noise sources represented in the experimental
dataset of interest. Transfer learning techniques have shown
promising results in other multidimensional spectroscopy
studies focused on protein structure classication.31,35,36

Finally, this study reveals signicant differences between the
human- and machine-based interpretation of 2DES signals. In
contrast to human-based analysis, we found that NNs exhibit
enhanced performance (exceeding an F1 score of 0.96) when the
data are constrained by the bandwidth and center-frequency of
the pump. We attribute such counterintuitive behavior to the
pulse resonance changing how the NN learns the optical prop-
erties of molecular excitons. In other words, biasing the spectral
data in either of the exciton absorption regimes (J- or H-type)
helps the NN learn how couplings manifest in the spectra.
This observation provides evidence that NNs accrue a radically
different, more information-centric perspective of electronic
coupling signatures in 2DES spectra. Further studies of the
machine learnability of CMDS spectra may afford guidelines for
experimental design as well as approaches to interpret experi-
mental datasets.
Data availability
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