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Developing cost-effective organic molecules with robust redox activity and high solubility is crucial for

widespread acceptance and deployment of aqueous organic redox flow batteries (AORFBs). We present

RedCat, an automated workflow designed to accelerate the discovery of redox-active organic molecules

from extensive molecular databases. This workflow employs structure-based selection, machine learning

models for predicting redox reaction energy and aqueous solubility, and dynamically integrates up-to-

date pricing data to prioritize candidates. Applying this workflow to 112 million molecules from the

PubChem database, we identified 261 promising anolyte candidates. We validated their battery-related

properties through first-principles and molecular dynamics calculations and experimentally tested two

electrochemically active molecules. These molecules demonstrated higher energy densities than

previously reported compounds, confirming the robustness of our workflow in discovering electrolytes.

With its open-access code repository and modular design, RedCat is well-suited for integration into self-

driving labs, offering a scalable framework for autonomous, data-driven electrolyte discovery.
1 Introduction

Redox ow batteries (RFBs) are an emerging energy storage
technology characterized by decoupled power and energy
components, rendering them particularly suitable for long-
duration storage.1–3 However, the availability, cost, and envi-
ronmental burden associated with mining of the metal ore have
impelled the search of new electroactive energy storage mate-
rials.4 Electroactive organic molecules, like quinones, allox-
azines, and phenazines, have been extensively screened for
high-performance candidates in advanced aqueous organic
redox ow batteries (AORFBs) due to their potential advantage
toward achieving low-cost synthesis at scale, structural diver-
sity, and tailorability.5–7
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Data-driven workows, empowered by algorithms, compu-
tational tools, and machine learning (ML) models, have been
comprehensively applied inmaterial discovery.8–10 The design of
a workow, including the selection of applied methods and
tools, needs to be tailored to align with the material class and its
intended application.11 For the discovery of AORFB electrolyte
materials, customized workows that account for electrolyte-
related properties have been designed in previous studies.12,13

With the rapid advancement of ML in battery materials
research, ML-assisted DFT and molecular dynamics simula-
tions are increasingly integrated into data-driven workows to
predict physicochemical properties and understand kinetic
behavior,14,15 thereby shiing electrolyte materials design from
trial-and-error to rational strategies. Library generation has
been frequently integrated into the data-driven workows as the
starting point of the discovery process, focusing on a subset of
core structures within a known organic family and their
substituents, which are enumerated using selected electron-
withdrawing or donating groups. Therefore, screenings by the
workows based on virtual library generation conned to pre-
dened or localized chemical spaces. Furthermore, the mole-
cules identied through this approach may either be
commercially unavailable or exist only virtually, and thus have
not yet been synthesized. For example, simple functional
groups such as –NH2, –OH, –F, –COOH, –SO3H, and –PO3H2 are
widely chosen in library design. The introduction of intricate
chemical groups such as –O(CH2)3COOH, –O(CH2)3PO3H2, –
© 2025 The Author(s). Published by the Royal Society of Chemistry
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C(CH3)2CH2COOH, –(CH2)2SO3H2, –(CH2)2COOH, and
–(CH2)2PO3H2 was not considered until recent experimental
ndings16,17 demonstrated their potential to enhance the
stability and solubility of quinone-based electrolytes in AORFBs.
Consequently, breakthroughs in data-driven discovery have
been largely driven by chemical intuition and experimental
knowledge.

Publicly available chemical databases contain repositories of
millions of unique molecules, offering an extensive spectrum of
molecular diversity in redox moieties and functional groups.
However, identifying suitable electroactive molecules from such
an extensive dataset is akin to searching for a needle in
a haystack and requires intelligent strategies to efficiently
screen the entire database.

Recent advancements in materials science and electro-
chemistry have highlighted the transformative potential of self-
driving laboratories (SDLs) in accelerating discovery.18,19 Despite
their potential, current SDLs face signicant challenges. Many
existing systems are designed for specic tasks and lack the
exibility needed to coordinate complex, multi-component
workows in fully autonomous labs.20,21 To realize the full
capabilities of SDLs, it is essential to develop a modular, scal-
able infrastructure that can seamlessly integrate AI, DTs, and
orchestration systems for efficient and autonomous lab opera-
tions. In this study, we propose an SDL-compatible automated
workow, RedCat, to screen large databases for potential
AORFB electrolytes without human intervention.

In the following sections, we present the results of applying
our proposed RedCat workow to the PubChem22 database. We
begin by detailing the workow's ltering steps, which include
similarity-based, property-based, and availability-based
ltering, followed by physics-based simulations. These
ltering stages along with the number of molecules selected at
Fig. 1 Schematic overview of the study. The numbers within the blu
parentheses next to the arrows indicate the number of remaining molec

© 2025 The Author(s). Published by the Royal Society of Chemistry
each step are illustrated in Fig. 1. Finally, we discuss the
experimental results of the two top-ranking molecules.
2 Results
2.1 Similarity-based ltering

The objective of this step is to identify molecules in PubChem
that are similar to those in the reference database, RedDB,23

which contains electroactive compounds. Fig. 2 shows the
similarity-based ltering process of the RedCat workow. We
established three criteria for ltering PubChem molecules
based on their similarity to RedDB molecules:

� Chemical elements present in the structure
� Redox-active substructure match
� Structural similarity
Our reference database, RedDB, consists of molecules con-

taining only carbon (C), hydrogen (H), oxygen (O), uorine (F),
nitrogen (N), and sulfur (S). Therefore, we excluded any Pub-
Chem molecules that contained elements outside of this set.
Additionally, we removed compounds identied as mixtures,
which are indicated by the presence of “.” character in the
SMILES notation. This ltering reduced the dataset from 112
million to approximately 78 million molecules.

Next, we eliminated molecules that have no matching redox-
active substructure from the substructure list derived from
RedDB. We used 52 core structures from RedDB to extract these
redox-active substructures, as detailed in the Data section. Two
sets of substructures were used for ltering:

� Set-1: Minimum substructure. These are substructures
associated with potential redox activity.

� Set-2: Minimum full ring substructure. These are
substructures that include the complete redox-active ring.
e circles represent each distinct filtering step, while the numbers in
ules after each filtering stage.

Digital Discovery, 2025, 4, 1844–1855 | 1845
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Fig. 2 Screening of organic electroactive molecules from the PubChem database based on their similarity to molecules in the reference
database, RedDB.
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As a result of ltering based on substructure matching,
approximately 40M molecules remained in set-1 and 6M in set-
2.

Then, we ltered molecules based on their structural simi-
larity to RedDB molecules using the Tanimoto similarity of
ECFP24 ngerprints (see eqn (1) in the Methods section). The
process involved several key steps. First, for each PubChem
molecule that remained aer substructure ltering, the Tani-
moto similarity was calculated against every RedDB molecule
individually. Next, each PubChem molecule was assigned with
the highest similarity value obtained from these comparisons.
Molecules with similarity values below the chosen cut-off
thresholds were then excluded. The cut-off values were
selected to balance the number of selected molecules with their
similarity to the reference database, favoring a looser threshold
to maintain diversity. For set-1, which focused on minimum
substructure matching, a Tanimoto similarity cut-off of 0.5 was
applied. For set-2, which required minimum full ring
substructure matching, a cut-off of 0.4 was used, as stricter
ltering had already ensured the presence of complete redox-
Fig. 3 Selection of molecules based on predicted properties and vendo
RedPred and AqSolPred MLmodels, respectively. Shaded areas in the hist
predicted properties. The bar chart illustrates the proportion of molecule
vendors.

1846 | Digital Discovery, 2025, 4, 1844–1855
active ring structures. Aer this structural similarity ltering,
approximately 60k molecules remained in set-1, and 217k
molecules in set-2. Finally, we combined the two sets of mole-
cules and removed any duplicates, resulting in a dataset of
nearly 229k molecules.
2.2 Property-based ltering using machine learning
predictions

In this step, we ltered the molecules based on two key prop-
erties, namely reaction energy, which is used as a proxy for
redox potential, and solubility in water. These properties
signicantly inuence the energy density of AORFBs. Fig. 3
shows the property-based ltering process, and the data
distribution based on these properties. To obtain the reaction
energy and solubility values, we used two ML models developed
in previous studies, namely RedPred25 and AqSolPred.26

Detailed information about these ML models integrated into
the RedCat workow is provided in the Methods section. We
selected molecules that have reaction energy less than 0 eV and
solubility in water in terms of log S higher than −1 (i.e., greater
r availability. Reaction energy and solubility were predicted using the
ograms indicate molecules excluded due to the applied cut-off for ML-
s that are either unavailable or available with pricing information from

© 2025 The Author(s). Published by the Royal Society of Chemistry
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View Article Online
than 0.1 mol L−1). Applying these criteria resulted in 678
molecules.

2.3 Availability-based ltering

The goal of this step is to identify molecules that are commer-
cially available. To achieve this, we integrated ChemPrice,27

a Python library designed to programmatically collect infor-
mation on molecule availability and pricing, into the RedCat
workow. ChemPrice aggregates data from ChemSpace, Mcule,
and Molport which collectively source information from over
100 suppliers. We conducted a price search for the 678 mole-
cules obtained from the property-based ltering step. For these
molecules, 1248 price instances were collected from various
vendors. Molecules without available price information were
then ltered out, narrowing the selection to 261 commercially
available molecules.

2.4 Validation of selected molecules by physics-based
simulations

Physics-based simulations were performed using the Schrö-
dinger Materials Science Suite (SMSS) to rank the 261 selected
molecules. By visualizing the molecular geometries in SMSS, we
identied and removed 12 redox-inactive molecules. Although
these 12 molecules contained the same substructure (O]C–C]
C–C]O) as quinones, their moieties featured dual carboxyl
Fig. 4 Computational screening and analysis of 222 organic molecules. (
DFT-calculated redox potential (E0DFT). The vertical line marks the DErxn
denotes the region of filtered-out molecules. (b) Representative struc
molecules. (c) Distribution of carbonyl-based moieties (#1 and #2). (d) D
denote the top five molecules per moiety type, ranked by theoretical en

© 2025 The Author(s). Published by the Royal Society of Chemistry
groups in the ortho position of a ring, resulting in reversible
redox-inactivity. Additionally, we excluded 27 steric conformers
using the Filter Duplicates tool in SMSS. This process le us
with 222 electroactive molecules, which were then subjected to
density functional theory (DFT) simulations.

We calculated the DFT-level reaction energies of these
molecules and further determined the DFT-based redox
potentials using eqn (2), as described in the Methods section.
The scatter plot in Fig. 4a shows the distribution of the 222
molecules based on the calculated redox potential values
(E0DFT) and the ML-predicted solubility (SML) values. The same
cut-off criterion applied to the ML-predicted reaction energy
values (Fig. 3) was used for the DFT-computed reaction ener-
gies. Applying eqn (2) with a cut-off criterion of E0DFT < −0.63 V
vs. RHE, we selected 160 molecules located to the right of the
vertical line in Fig. 4a.

To evaluate the thermodynamic stability of the selected 160
electroactive molecules and their corresponding hydrogenated
(e.g., electrochemically reduced) products, we performed
molecular dynamics (MD) simulations. We used the average
root mean square deviation (RMSD) of all atoms and the
maximum root mean square uctuation (RMSF) of heavy atoms
as proxies for stability.28 The scatter plot showing the distribu-
tion of the 160 molecules based on these metrics is provided in
ESI Fig. S1.† The results show that the average RMSD values for
a) Distribution of molecules based on ML-predicted solubility (SML) and
= 0 eV cut-off applied in the current study, and the shaded rectangle
tures of five redox moiety types identified among the 160 retained
istribution of aza-aromatic moieties (#3, #4, and #5). Colored circles
ergy density.

Digital Discovery, 2025, 4, 1844–1855 | 1847
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all reactant and product molecules are below 1.5 Å, and the
maximum RMSF values are under 2.4 Å, indicating favorable
molecular stability at 300 K and 1 atm.

The selected 160 molecules comprise ve types of redox
moieties, with types #1 and #2 being carbonyl-based and the
remaining being aza-aromatic (Fig. 4b). These moieties are
distributed as follows: seven molecules for type #1, eight for
type #2, ninety-two for type #3, thirty-seven for type #4, and
sixteen for type #5. The distributions of these moiety groups
based on their ML-predicted solubility values and DFT-
calculated redox potential values are given in Fig. 4c and d.
2.5 Experimental validation of top-ranking molecules

In the nal step, we analyzed the top ve molecules for each
type of redox moiety, ranked based on their predicted energy
density as detailed in the Methods. These molecules are marked
by circled dots in Fig. 4c and d, and their 2D structural repre-
sentations and numerical data, including predicted redox
potential, solubility, energy density, average RMSD, maximum
RMSF, and available experimental values are listed in Table 1.

Among the 25 molecules, those containing the #1 redox
moiety exhibited high redox potential, while those with the #3
redox moiety demonstrated high energy density due to their
elevated solubility. The average RMSD and maximum RMSF
values for all 25 molecules and their product molecules were
below 1.40 Å and 1.80 Å, respectively. In addition, vibrational
frequency calculations for the optimized geometries of these
molecules showed no imaginary frequencies, conrming that
the structure optimizations converged to stable minima. Given
the goal of identifying candidate compounds for energy-dense
AORFB electrolytes, we selected two diaza compounds (group
#3), (2-aminoethyl)[(pyrazin-2-yl)methyl]amine and N-[(pyrazin-
2-yl)methyl]formamide, based on their predicted energy
density, cost, and availability, and then experimentally tested
them to validate the workow's output.

Redox activity was measured via cyclic voltammetry (CV)
using 1 mmol L−1 pyrazine solutions in 1 mol L−1 KCl, whereby
oxidation and reduction waves pertaining to the molecule were
observed compared to the background current (Fig. S2†). Fig. 5
shows the CVs recorded for the two pyrazines. It is worthwhile
noting that heterogeneous electron transfers for pyrazines can
occur at potentials outside the thermodynamic stability for
water, resulting in reactions at carbon surfaces (e.g., partial
reduction of oxidized species, hydrogen adsorption and evolu-
tion30,31) that produce background currents overlapping with
the CV response of the pyrazines. This effect is seen in Fig. 5,
where both oxidation and reduction peaks for the two pyrazines
appear exclusively in the cathodic (i.e., negative) current range.
Additionally, a peak separation greater than 0.4 V is observed in
the CV, indicating sluggish electron transfer, which could lead
to lower voltaic efficiencies in an AORFB. However, for the
purpose of validating the RedCat workow, the calculated redox
potentials align well with the experimentally determined values,
with differences of less than 0.1 V (Table 1).

Extended voltametric cycling provides a cursory indication of
reversibility, as the pyrazine's redox waves persist, suggesting
1848 | Digital Discovery, 2025, 4, 1844–1855
that battery electrolytes using the molecules could undergo
several charging and discharging cycles. Nonetheless, a slight
increase in peak separation for both species and a tendency
toward hydrogen gas evolution (particularly for (2-aminoethyl)
[(pyrazin-2-yl)methyl]amine) may result in lower round-trip
efficiency in a working AORFB system. Visual inspection at
the end of the cycling regime did not reveal coloration of the
solution or lm formation on the electrode surface, suggesting
that the electrochemical changes observed in the CVs are likely
due to alterations in functional groups at the glassy carbon
electrode surface. Precisely quantifying energy storage charac-
teristics, including any evolution in overpotentials or hydrogen
gas, is beyond the scope of this study and will require further
analysis in a ow cell conguration under appropriate
conditions.

In addition to redox potential, the concentration of the dis-
solved molecule in the electrolyte determines its volumetric
capacity (Ah L−1). Solubility was determined using UV-vis
spectroscopy by constructing a calibration curve based on
serial dilution of stock solutions. Using this method, the solu-
bility for N-[(pyrazin-2-yl)methyl]formamide wasmeasured to be
10.4 ± 0.1 mol L−1, translating to an anolyte with a theoretical
capacity of 557 Ah L−1, which is more than ten times higher
than the incumbent vanadium(II/III) system. In contrast, (2-
aminoethyl)[(pyrazin-2-yl)methyl]amine is a liquid at room
temperature and fully miscible with water. An anolyte
composed solely of this pyrazine32 (without additional solvent)
would have a volumetric capacity of approximately 400 Ah L−1,
signicantly higher than that of current systems. In comparison
to other aqueous organic anolytes, a recent review by P. Fischer
and co-workers provides a graphical summary of indicative
volumetric capacities based on solubility for commonly used
compounds in ow battery electrolytes. Therein, most reported
values fall between 10 and 100 Ah L−1.33 Additional recent
examples include 2,6-D2PEAQ, a substituted anthraquinone
with a theoretical capacity of 107 Ah L−1,34 AZON3, an N-alky-
lated uorenone (46.4 Ah L−1 (ref. 35)), 2,3-O-DBAP, a phena-
zine derivative (32 Ah L−1 (ref. 36)) and MBPE-Vi,
a bisphosphonated viologen (38.9 Ah L−1 (ref. 37)). However,
the volumetric capacities reported for the two pyrazines studied
here may be overly optimistic. In practical ow cell operation,
factors such as overpotentials, cell conguration, and electro-
lyte viscosity are likely to reduce the accessible capacity and
overall round-trip efficiency. Nonetheless, the estimated
capacity values for pyrazine-based anolytes are notable and
warrant continued investigation into this class of materials.
Furthermore, the high solubility and miscibility observed in
a near pH-neutral medium have practical implications for ow
batteries, as strongly acidic or alkaline electrolytes require
special considerations in terms of battery materials and elec-
trolyte handling procedures. Near-neutral pH electrolytes
simplify several of these constraints.

3 Discussion

In this study, we propose RedCat, an SDL-compatible auto-
mated workow for identifying promising organic electroactive
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Details of the top five molecules in each compound group, including PubChem CID, 2D molecular structures, DFT-computed redox
potential (E0DFT), ML-predicted solubility (SML), predicted energy density (Wpre), average RMSD and maximum RMSF for both reactant and product
molecules, and available experimental data (E0exp). Experimental redox potentials are provided at pH = 7

# PubChem CID 2D representation
E0DFT
(V vs. RHE)

SML

(mol L−1)
Wpre

(Wh L−1)
Average
RMSD (Å)

Maximum
RMSF (Å) E0exp (V vs. RHE)

#1 6712 −0.23 1.03 32.3 0.2 1.0 −0.21 (ref. 29)

0.3 0.9

412447 −0.25 0.33 10.9 0.7 1.3 −0.30 (ref. 29)

0.5 1.5

8329 −0.24 0.34 10.8 0.2 0.4 −0.18 (ref. 29)

0.8 1.4

84406 −0.18 0.23 6.7 0.6 1.5

0.6 1.5

84473 −0.18 0.22 6.3 0.6 1.6

0.5 1.5

#2 136476 −0.60 0.32 16.3 0.1 0.1

0.1 0.1

44718968 −0.58 0.14 7.3 0.3 0.8

0.3 0.5

65163 −0.52 0.13 6.1 0.4 0.8

0.5 0.9

21399352 −0.38 0.14 5.7 0.2 1.3

0.3 1.3

44718969 −0.63 0.11 5.6 1.2 1.7

1.1 1.7

#3 20389456 −0.56 0.78 38.4 0.7 1.0

0.7 0.8

13910894 −0.55 0.74 36.1 1.0 1.1 −0.48

0.8 1.2

292282 −0.56 0.56 27.5 0.8 0.9 −0.47

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 1844–1855 | 1849
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Table 1 (Contd. )

# PubChem CID 2D representation
E0DFT
(V vs. RHE)

SML

(mol L−1)
Wpre

(Wh L−1)
Average
RMSD (Å)

Maximum
RMSF (Å) E0exp (V vs. RHE)

0.7 0.9

104277027 −0.60 0.39 19.8 0.5 0.9

1.3 1.2

19797048 −0.47 0.37 16.4 0.8 1.3

0.6 1.0

#4 23498776 −0.58 0.57 28.6 0.7 0.9

0.8 0.7

67291481 −0.62 0.48 25.3 0.4 0.8

0.7 1.1

269369 −0.40 0.42 17.3 0.2 0.6

0.3 0.6

82418574 −0.42 0.35 14.7 0.2 0.5

0.3 0.9

115736040 −0.49 0.26 11.8 0.3 0.5

0.3 0.3

#5 12649778 −0.61 0.66 34.3 0.1 0.1

0.5 0.6

88038927 −0.57 0.33 16.5 0.6 0.9

0.7 0.9

107845553 −0.57 0.20 10.1 0.9 1.7

0.9 1.8

70140281 −0.10 0.32 8.0 0.1 0.2

0.4 1.0

81964837 −0.62 0.15 7.9 0.7 1.4

1.0 1.8
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molecules for AORFBs. As a proof of concept, we implemented
this workow using two databases: PubChem as the search
database and RedDB as the reference database. However, this
workow is highly adaptable and can be used with other data-
bases. For example, the search databases are represented as
lists of molecules in SMILES notation, a universally recognized
format used in nearly all molecular databases. Thus, by simply
substituting the search database (the list of SMILES), the same
1850 | Digital Discovery, 2025, 4, 1844–1855
screening process can be applied to different chemical search
spaces. Additionally, the set of target structures can be
expanded by adding new redox-active core structures, repre-
sented by SMARTS notations, to the reference database. This
modular approach allows the workow to be used for screening
new databases and reevaluating previously screened databases
in search of new chemical motifs.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Electrochemical characterization of two selected organic molecules. (a) Cyclic voltammogram of 1 mM (2-aminoethyl)[(pyrazin-2-yl)
methyl]amine in 1 M KCl aqueous solution. (b) Cyclic voltammogram of N-[(pyrazin-2-yl)methyl]formamide under the same conditions. Both
voltammograms were recorded at a scan rate of 20 mV s−1.
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Through screening the PubChem database, we identied two
molecules for potential use as AORFB electrolytes. We experi-
mentally validated their electrochemical activity and solubility.
Notably, (2-aminoethyl)[(pyrazin-2-yl)methyl]amine is liquid at
room temperature and fully miscible with water. From an
application perspective, identication of (2-aminoethyl)
[(pyrazin-2-yl)methyl]amine could be immensely useful as the
electrochemically active liquid can be used directly as a ow
battery anolyte with minimal or no solvent, resulting in a highly
energy-dense electrolyte.32 However, in general, deploying
highly concentrated solutions may not be practical, as electro-
chemical side reactions can be exacerbated, reducing the life-
time of the electrolyte. Additionally, high electrolyte viscosity or
low ionic conductivity can lead to lower roundtrip efficiency of
the battery system.32,38,39

Our workow successfully identied two high-potential
molecules, and several others may also be worth exploring. To
understand why some known molecules were excluded, we
retrospectively analyzed a dataset of 64 AORFB molecules (see
Table S1†) previously reported in the literature.29,40–44 Out of
these, only three molecules passed the full screening workow,
as shown in Fig. S4.† This analysis revealed thatmost exclusions
resulted from the strict ltering thresholds applied. However,
these thresholds are not xed and can be easily customized
based on research needs. For example, adjusting the Tanimoto
similarity threshold could allow structurally distinct molecules,
such as benzoquinones, to advance to later stages. Similarly,
relaxing the solubility cut-off from −1 to −2 log S, would
increase the number of retained candidates from six to sixteen.
The extent to which literature-reported molecules are retained
can serve as a useful guide for calibrating threshold values. All
relevant parameters are accessible through a conguration le
included with the code, allowing users to re-screen the molec-
ular dataset using customized settings tailored to their
objectives.

The property ltering phase relies on ML predictions,
making the accuracy of these predictions crucial for molecule
selection. While the accuracies of ML models have been re-
ported for specic test sets,25,26 their predictions may not be as
robust for chemical spaces that are less familiar to these
© 2025 The Author(s). Published by the Royal Society of Chemistry
models. Therefore, it is recommended to consider the trade-off
between the coverage of the applied chemical spaces and the
determined cut-off values. This requires a prior analysis by
comparing the diversity between the chemical space coverage of
the training data sets (ML models) and the screened mole-
cules.45 Another limitation arises from solubility models,
particularly for predictions of extremely large values. This stems
from the fact that experimental values for highly soluble
molecules used in training are oen reported as “higher than”
indications rather than exact values, which constrains the
prediction range of the model. For example, the predicted
solubility values of the two proposed molecules were
0.74 mol L−1 and 0.56 mol L−1, while their experimental
measurements were 10.4 mol L−1 and fully miscible in water,
respectively. Despite these apparent discrepancies, the pre-
dicted solubility values ranked among the top 0.1% soluble
molecules within the screened set (Fig. 3). Given this limitation,
it is important to evaluate a molecule's predicted solubility
relative to the predicted solubilities of other molecules rather
than relying on standalone values.

When evaluating electrochemical redox potentials, we con-
ducted a literature survey for experimental redox potentials and
identied three of the 25 highest-performing molecules that
had been previously evaluated experimentally. This provided
a means of validating our DFT calculations. Comparing the
calculated redox potentials with those reported in the literature
revealed differences of only 0.02, 0.05, and 0.06 V, for 1,8-
anthraquinonedisulfonic acid, 1,5-dihydroxy-9,10-
anthraquinone-2,6-disulfonic acid and 1,5-anthraquinonedi-
sulfonic acid, respectively.29 Additionally, the differences
between the calculated and experimental redox potentials for
the two proposed molecules, (2-aminoethyl)[(pyrazin-2-yl)
methyl]amine and N-[(pyrazin-2-yl)methyl]formamide, were
0.07 and 0.09 V, respectively. These minor discrepancies
underscore the reliability of the DFT calculated redox poten-
tials. In this study, three descriptors were used for high
throughput screening: reaction free energy (a proxy for redox
potential), aqueous solubility, and structural stability derived
from molecular dynamics simulations. While this triage
captures the key thermodynamic prerequisites for high energy
Digital Discovery, 2025, 4, 1844–1855 | 1851
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density anolytes, practical performance also depends on kinetic
parameters such as electron transfer rates and diffusion coef-
cients, membrane crossover, and overall round trip efficiency.
Incorporating these additional descriptors into future versions
of RedCat, along with ow cell validation, will further accelerate
the discovery of commercially viable aqueous organic
electrolytes.
4 Method
4.1 Data

4.1.1 PubChem. We used the PubChem22 database as the
primary resource for our search for candidate electroactive
compounds. PubChem serves as a data aggregator, gathering
chemical information from an extensive array of data sources,
making it invaluable for screening previously synthesized
molecules for application in AORFBs. For this study, we down-
loaded the complete set of molecules represented by their
SMILES notations from the PubChem File Transfer Protocol
(FTP) server.46 It is important to note that PubChem is contin-
uously updated, hence, our study reects the state of the data-
base on the access day.

4.1.2 RedDB. We used the RedDB23 database version 1.0 as
a reference source for electroactive compounds suitable for
AORFBs. RedDB contains 15 932 reversible two-electron two-
proton redox reaction pairs, with their reaction energies calcu-
lated by quantum chemical methods. The database is built on
52 core structures, and all molecules within RedDB are derived
through the R-group functionalization of these core structures.
We extracted redox-active substructures from these 52 core
structures to use as reference structures when screening the
PubChem database.
4.2 Similarity-based ltering methods

4.2.1 Substructure matching. To lter molecules based on
their substructures, we extracted redox-active substructures
from the core structures within the RedDB database. These
target substructures were represented using SMARTS notations,
and we employed the RDKit47 library to perform substructure
matching. Molecules were retained in the selection if they
contained at least one of these target substructures; those that
did not were excluded.

4.2.2 Similarity calculation. To assess the structural simi-
larity of the molecules, we converted their SMILES notations
into Extended-Connectivity Fingerprints (ECFPs).24 ECFPs are
binary vectors where each bit corresponds to the presence or
absence of a specic substructure. The algorithm works by
extracting substructures from the primary molecular structure,
starting from each non-hydrogen atom and extending to
neighboring atoms up to a specied radius. These substruc-
tures are then hashed and mapped to a xed-sized bit-vector. In
this study, we used the RDKit implementation of ECFP with
a vector length of 2048 and a radius encompassing two adjacent
atoms. We quantied the similarity between two molecules
using the Tanimoto similarity metric, calculated by dividing the
1852 | Digital Discovery, 2025, 4, 1844–1855
intersection of their ECFP binary vectors by their union, as
expressed in eqn (1):

TanimotoðU ;VÞ ¼ jUXV j
jUWV j (1)

where U and V are the binary vector representations of two
molecules.
4.3 Machine learning predictions

For the prediction of reaction energy values, we used RedPred25

model, trained on RedDB23 data. This model was tested on two
separate datasets based on chemical space coverage calculated by
ChemPlot,45 achieving amean absolute error of 0.99 eV within the
training chemical space and 1.16 eV outside it. For the prediction
of solubility values, we used AqSolPred26 model, trained using
AqSolDB,48 which contains nearly 10 000 molecules with curated
experimental aqueous solubility values. This model comprises
a consensus of three different ML models and achieved a mean
absolute error of 0.348 log S on a widely accepted dataset.49
4.4 Physics-based simulations

4.4.1 DFT simulations. All simulations were performed
using the Schrödinger Materials Science Suite (SMSS). Molec-
ular geometries were generated from the SMILES notations in
SMSS, and the lowest-energy conformers were identied using
the OPLS450 Force Field. Subsequently, density functional
theory (DFT) based structure optimizations, and single-point
energy calculations were conducted on these lowest-energy
conformers. The conformational search was performed using
the MacroModel51 module, while DFT calculations were
executed using the Jaguar52 package within SMSS. For DFT
calculations, the PBE53 exchange–correlation functional was
employed in conjunction with the LACVP++** basis set,54 which
includes polarization and diffuse functions. Convergence
criteria were set at 5.0 × 10−5 hartree for energy change and 5.0
× 10−6 hartree for root mean squared (RMS) density matrix
change. The ‘medium’ grid density and ‘quick’ accuracy level
were applied for DFT-based optimizations, while ‘ne’ grid
density and ‘accurate’ accuracy level were used for DFT single-
point calculations. For the latter, an implicit aqueous environ-
ment was modeled using the standard Poisson–Boltzmann
Formalism (PBF).55 Additionally, vibrational frequencies of the
top 25 molecules were calculated using the same basis set and
functional.

4.4.2 Molecular dynamics simulations. All molecular
dynamics (MD) simulations were performed using the Des-
mond56 package, within SMSS. Each molecule was placed in
a cubic box with an edge length of 50 Å, and the OPLS450 force
eld was applied to calculate the atomistic interactions. The
simulations were performed in the canonical NVT57 ensemble at
a temperature of 300 K and a pressure of 1 atm. Temperature
control was managed using the Nose–Hoover chain thermo-
stat58 with a relaxation time of 1.0 ps. A cut-off radius of 9 Å was
set for Coulomb interactions. Each system underwent 100 ns of
MD simulations, with trajectory frames saved at 100 ps inter-
vals. MD data analysis was performed using the Simulation
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Interactions Diagram tool in SMSS, calculating the root mean
square deviation (RMSD) of all atoms and the root mean square
uctuation (RMSF) of heavy (non-hydrogen) atoms in the
molecules. The average RMSD values were obtained from 1000
frames of each MD trajectory.

4.5 Energy-related performance calculations

4.5.1 Redox potential. Previous studies12,59 have demon-
strated that the reaction energy (DErxn) during the charge–
discharge process serves as an effective descriptor (R2 = 0.977,
RMSE = 0.051 V) for predicting the redox potential of quinone-
based molecules. Further details on reaction energy as a chem-
ical descriptor are provided in the ESI.† To develop a general-
ized linear regression (LR) equation for the electroactive
molecules in the PubChem database, we converted all experi-
mental redox potentials29,40–44 to neutral pH and used DErxn as
the descriptor. The resulting LR equation is shown below.

E0
DFT (V vs. RHE, pH = 7) = [−0.41 × DErxn (eV)] − 0.63 (2)

where E0DFT represents the predicted redox potential of the
organic electroactive molecule using the PBE functional.

4.5.2 Energy density. The theoretical energy density of
a redox ow battery can be expressed as:60

Wpre (Wh L−1) = nCFV/mv (3)

where n is the number of transferred electrons per electrolyte
molecule, C is the concentration of redox-active molecules dis-
solved in water, F is Faraday's constant (26.8 Ah mol−1), V is the
working voltage of the cell, and mv is the volume factor. In this
study, ferri/ferrocyanide, which exhibits a redox potential of
0.36 V vs. SHE at neutral pH, was used in conjunction with
candidate organic anolyte materials. Assuming mv = 1, the
theoretical energy density of the anolyte simplies to:

Wpre (Wh L−1) = 26.8 × n × SML × (0.36 − E0
DFT) (4)

where n = 2 for the current study, and SML represents the
solubility (in mol L−1) of the electroactive molecules as pre-
dicted by the ML model.

4.6 Experimental methods

4.6.1 Materials. Potassium hydroxide (Supelco, EMSURE)
and potassium chloride ($99.0%, Bioreagent) were purchased
from Merck. N-[(pyrazin-2-yl)methyl]formamide (95%) and (2-
aminoethyl)[(pyrazin-2-yl)methyl]amine dihydrochloride (95%)
were obtained from Enamine Ltd. Chloroform (99.8%) and
Na2SO4 (Anhydrous, EMPROVE® ESSENTIAL) were sourced
from Biosolve and Merck, respectively.

4.6.2 Neutralization of (2-aminoethyl)[(pyrazin-2-yl)
methyl]amine dihydrochloride. To neutralize (2-aminoethyl)
[(pyrazin-2-yl)methyl]amine dihydrochloride, 3 grams of the
solute were dissolved in 30 mL of distilled water. Five equiva-
lents of potassium hydroxide (KOH) were added to the solution
in a 100 mL glass round-bottom ask and stirred overnight.
Chloroform was added to the solution and the solute was
© 2025 The Author(s). Published by the Royal Society of Chemistry
extracted twice with 100 mL of organic solvent. To improve the
extraction efficiency, potassium chloride (KCl) was added to the
water phase until saturation, and the extraction was repeated
two more times until no coloration was observed in the organic
phase. The organic phase was then dried using anhydrous
Na2SO4, ltered, and the solvent was removed using rotary
evaporator at 40 °C and 20 mbar. The resulting brown liquid
was used without further purication (yield = 52%).

4.6.3 Cyclic voltammetry and UV-vis spectroscopy. Before
conducting any experiments, all equipment was thoroughly
cleaned with ultra-pure water (Type 1, 18.2 MU cm at 25 °C,
Ultrapure water system A series, Avantor) using ultrasonication
(Branson 5510) for 20 minutes. Electrodes were polished to
a mirror nish with diamond and alumina slurries (PK-4,
BASMF2060, Bioanalytical Systems Inc.), followed by an addi-
tional 10 minutes of ultrasonication. All components were then
dried at room temperature for one day.

4.6.4 Cyclic voltammetry. Electrochemical tests were con-
ducted using an Ivium Octostat 200 (Ivium Technologies) under
a nitrogen (N2) atmosphere with a gas bubbler lled with water,
maintained at 22.7 °C. Cyclic voltammetry (CV) measurements
were performed at a scan rate of 20mV s−1 using a glassy carbon
working electrode (2 mm active diameter, PEEK body 6 mm
diameter, Redoxme AB), a platinum sheet counter electrode (10
× 10 × 0.1 mm, Dek Research Instrumentation) and an Ag/AgCl
reference electrode (6 mm body diameter, Redox.me AB). The
electrochemical cells had a glass chamber with a total volume of
50 mL, equipped with a PEEK lid, gas inlet/outlet, and three
terminals for electrodes (Redox.me AB). Electrolyte solutions
were prepared with ultra-pure water (Type 1, 18.2 MU cm at 25 °
C, Ultrapure water system A series, Avantor). All experiments
were conducted with 30 mL of 1 mM solute in 1 M KCl elec-
trolytes, with solutions sparged with wet N2 for 30 minutes
before initiating any experiments.

4.6.5 UV-vis spectroscopy. UV-vis measurements were
conducted using a UV-vis spectrophotometer P9 (Avantor) at
22.7 °C. Quartz cuvettes (10 mm, Avantor) were cleaned with
ethanol (absolute, $99.5%, Merck) and dried with an N2 ow.
Calibration curves were constructed by preparing stock solu-
tions of 1 mM solute in three different electrolytes. From each
stock solution, 0.1, 0.2, 0.3, 0.4, and 0.5 mL were aliquoted into
new samples and diluted with 3 mL of the corresponding
electrolyte. These diluted solutions were measured with the UV-
vis spectrophotometer, and calibration curves were plotted
based on maximum absorbance as a function of concentration.
For saturated solutions, 1–2 mL of each electrolyte was used,
and solutes were gradually added and le to stir overnight. The
following day, any remaining solid indicated saturation. 0.1 mL
of these solutions were ltered using hydrophilic PTFE lters
(0.22 mm, Avantor) and diluted until their maximum absor-
bance fell within the calibration curve range.

Data availability

The reproducibility of the automated RedCat workow can be
veried by executing the provided scripts on Code Ocean
(https://codeocean.com/capsule/8660050/tree).
Digital Discovery, 2025, 4, 1844–1855 | 1853
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