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Plasmonic nanocavities are molecule-nanoparticle junctions that offer a promising approach to upconvert

terahertz radiation into visible or near-infrared light, enabling nanoscale detection at room temperature.

However, the identification of molecules with strong terahertz-to-visible frequency upconversion

efficiency is limited by the availability of suitable compounds in commercial databases. Here, we employ

the generative autoregressive deep neural network, G-SchNet, to perform property-driven design of

novel monothiolated molecules tailored for terahertz radiation detection. To design functional organic

molecules, we iteratively bias G-SchNet to drive molecular generation towards highly active and

synthesizable molecules based on machine learning-based property predictors, including molecular

fingerprints and state-of-the-art neural networks. We study the reliability of these property predictors for

generated molecules and analyze the chemical space and properties of generated molecules to identify

trends in activity. Finally, we filter generated molecules and plan retrosynthetic routes from commercially

available reactants to identify promising novel compounds and their most active vibrational modes in

terahertz-to-visible upconversion.
1 Introduction

Terahertz (THz) radiation has applications in numerous elds,
including medical diagnostics, security screening, communi-
cations, and astronomy.1,2 Historically, the development of both
powerful and affordable light sources, and efficient THz detec-
tors, has been technologically challenging.

Nanoscale, room-temperature detection of terahertz and
mid-infrared radiation is enabled by molecular optomechanical
devices utilizing the enhancement of electric elds in plas-
monic nanocavities to convert terahertz radiation into visible or
near-infrared light.3,4 These nanocavities can be assembled on
silicon-based photonic integrated circuits,5 opening possibili-
ties for low-cost fabrication and multiplexed detection. To
enhance the light–matter interaction, molecules are typically
placed between two metallic nanoantennas.4,6,7 One of the two
antennas focuses terahertz radiation at the design frequency
over the molecular sample volume to enhance the absorption of
terahertz radiation via the surface-enhanced infrared absorp-
tion8 mechanism. The second optical antenna connes visible
or near-infrared light to volumes below 100 nm3, which induces
surface-enhanced Raman scattering9 of molecules within the
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plasmonic nanocavity. Absorption of THz radiation by mole-
cules within the nanocavity results in the vibrational excitation
of a specic normal mode, which leads to an increase in the
measured Raman anti-Stokes intensity of the same normal
mode, similar to resonant sum-frequency generation spectros-
copy.10 For centrosymmetric molecules, simultaneous activity in
absorption and Raman scattering is not possible. Even in
asymmetric molecules, it is rare to have vibrational modes that
can efficiently upconvert the THz radiation signal, as this
requires a large change in both electronic dipole moment and
in polarizability along the vibrational mode. Vibrational modes
of organic molecules in the THz frequency range are oen
delocalized across several functional groups or across mole-
cules, which makes it challenging to use chemical intuition to
suggest promising candidates or dene molecular design rules.
This makes it necessary to use quantum chemical calculations
in connection with computational screening or design
approaches to identify good candidate molecules and their
active vibrational modes.11,12 Such computational predictions
motivate more detailed experimental investigations for the
fabrication and application of new molecular optomechanical
devices.5

Machine learning (ML) methods can facilitate the design
and discovery of new functional materials by enabling the fast
computational screening of large structural databases.13–15 ML-
based screening has previously been used to identify prom-
ising candidates for THz radiation detection from commercially
available compound databases.11 However, a drawback of this
Digital Discovery
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approach was that there was a limited search pool of molecules
that have an affinity to the gold surfaces of the nanoantennas
used in detector prototypes. Self-assembledmonolayers of thiol-
containing molecules have been shown to have high stability
and reproducibility on gold surfaces,16 which are oen used in
plasmonic devices. It is therefore prudent to focus on thiol-
containing molecules that are commercially available or easily
synthesizable. These requirements pose a challenge for high-
throughput screening methods as the number of thiol
compounds within large commercial databases is relatively low,
with only around 150 000 out of more than 20 million
compounds in the eMolecules database and 32 000 out of 8
million compounds from the MolPort database identied in
Koczor-Benda et al.11 being monothiols, respectively.

An alternative solution for accelerating the discovery of
promising molecules is generative deep learning, which in the
past has been used for the property-driven design of functional
organic molecules.17–22 Most proposed generative deep learning
models use text-based or two-dimensional (2D) molecular
representations.23,24 G-SchNet is a generative autoregressive
deep neural network that has the advantage of being able to
generate molecules in three-dimensional (3D) space.25 Previous
studies have shown that G-SchNet can be iteratively biased to
generate molecules satisfying certain target properties. W-
estermayr et al.17 coupled G-SchNet with a neural network that
predicts molecular quasiparticle energies26 to bias molecular
generation towards small fundamental gaps, low ionization
potentials, or high electron affinities, while conserving low
synthetic complexity of the molecules. Gebauer et al.18 devel-
oped conditional G-SchNet, which, in addition to structures,
trains on electronic property and structural motif labels to
condition molecular generation.

In this paper, we perform property-driven generative design
of functional organic molecules for THz radiation detection
using G-SchNet by driving the generative model to create novel
molecules with high frequency-upconversion efficiency, affinity
to gold surfaces, and synthetic accessibility. To predict the
upconversion properties of molecules, we use the target prop-
erty P introduced in Koczor-Benda et al.,11 which is based on the
total spectral intensity in a wide frequency window (30–
1000 cm−1) relevant for THz andmid-infrared applications. Due
to the challenges and high cost associated with experimental
preparation and characterization, the quantity P is not yet
experimentally validated as an established surrogate. We
therefore only use it as a semi-quantitative guide in the gener-
ative design. To increase the pool of candidates for this appli-
cation, we train G-SchNet models on a dataset of around 30 000
thiol-containing molecules and generate hundreds of thou-
sands of monothiolated molecules by iterative biasing. We
analyze chemical trends in the generated databases and identify
functional groups that correlate with high upconversion
intensity. Previously used ML predictors of the frequency
upconversion efficiency based on molecular ngerprints11

become unreliable as the property-driven generative biasing
workow explores novel molecules beyond the training dataset.
We replace them with more transferable equivariant graph
neural network (GNN) models that make use of the 3D
Digital Discovery
molecular conformations that G-SchNet generates. To train
these models, we use calculations based on density functional
theory (DFT) for P values contained in Molecular Vibration
Explorer,12 which are available for around 2800 gold-thiolate
molecules, and extend this database with new DFT calcula-
tions on generated molecules. Finally, highly spectroscopically
active compounds are identied by generative design and
further validated with quantum chemistry calculations and
retrosynthetic route planning to identify promising, novel
compounds for THz radiation detection.

2 Methods
2.1 Generative machine learning

2.1.1 Training dataset. A training dataset of 29246 mono-
thiolated molecules was compiled from the eMolecules27

commercial molecular database, that was previously used by
Koczor-Benda et al.11. This database contains over 20 million
readily available or custom-synthesized compounds from over
15 suppliers, aimed mainly at drug discovery applications.27

This training dataset was selected to ensure that the generative
model creates molecules that are chemically similar to known
synthesizable compounds, thus facilitating the search for viable
candidates. The eMolecules database was rst ltered for
monothiols based on the corresponding SMARTS pattern.
Charged molecules and duplicates were removed, resulting in
an initial pool of 147 623 molecules containing the following
elements: hydrogen (H), boron (B), carbon (C), nitrogen (N),
oxygen (O), uorine (F), silicon (Si), phosphorus (P), sulfur (S),
chlorine (Cl), selenium (Se), bromine (Br), tin (Sn), and iodine
(I). In contrast to Koczor-Benda et al.,11 molecular size and
number of rotatable bonds were not restricted, resulting in
a larger pool of molecules. Initial 3D structures for the unique
monothiolated molecules were created from Simplied Molec-
ular Input Line Entry System (SMILES) strings28 and relaxed
with the MMFF94 Merck molecular force eld29 using the RDKit
package.30 Tomaximize chemical diversity, a Smooth Overlap of
Atomic Positions (SOAP)31 descriptor with a local region cut-off
of 4.0 Å, 4 radial basis functions, and a maximal degree of
spherical harmonics of 3 was calculated for each molecule
(resulting in 6384 features), using the DScribe package.32 Aer
singular value decomposition with 500 components, 30 000
clusters were identied with k-means clustering using the sci-
kit-learn33 library. For each cluster, the molecule closest to the
cluster center was selected. Molecules that had already been
calculated in the THz database were removed (604 duplicates),
resulting in the nal training set of 29246 molecules. Structure
optimization was performed with the xTB soware package
using the GFN2-xTB parametrization,34 based on which the nal
database of 3D geometries for the generative model was con-
structed. For a discussion on using the computationally less
expensive xTB method instead of commonly used DFT for
structure optimisation, and a comparison of generated unre-
laxed and relaxed structures see Section S10 in the SI.

2.1.2 Training workow. The schnetpack-gschnet35,36

package was used to train G-SchNet models on the aforemen-
tioned training database. Each G-SchNet model was trained
© 2025 The Author(s). Published by the Royal Society of Chemistry
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using a SchNet37 neural network with 128 features, 9 interaction
blocks, a cut-off of 10 Å and 25 centers for the radial basis
expansion of distances. A learning rate of 0.0001 was used and 5
random atom placements per molecule per batch were drawn.
For all trained G-SchNet models, data were randomly split (as
implemented within schnetpack-gschnet) 80%/10%/10% for
training, validation and testing, respectively. Approximately
100 000 molecules were generated with each trained model,
with a maximum molecular size of 60 atoms. Non-unique,
disconnected, or invalid (incorrect valency) generated mole-
cules were discarded. Molecules were ltered to only contain
one thiol group, which can act as the linker to the gold nano-
antenna in a THz radiation detector device. The number of
molecules generated and remaining aer ltering are summa-
rized in the SI (Table SI).

2.1.3 Iterative biasing of G-SchNet. The generation of
molecules with desired properties was achieved by an iterative
workow similar to the one proposed by Westermayr et al.17

Herein, in each iteration, the G-SchNet model is trained,
molecules are generated, molecules are ltered with a property
prediction model, and a new training dataset is built that
contains the original and a subset of the novel generated
molecules with selected properties above or below a certain
threshold value. As a result, molecular generation is iteratively
biased towards molecules with desired properties. In each
iteration, G-SchNet was trained (from scratch) with the modi-
ed dataset. The sizes of the training databases for each of the
six biasing iterations are detailed in Table SII in the SI.

In each iteration, molecules were selected according to two
properties: THz upconversion efficiency, predicted with
a previously trained Kernel Ridge Regression (KRR) model,11

and the SCScore metric of synthetic complexity.38 The upcon-
version efficiency gure of merit, P, is dened as the logarithm
of the orientation-averaged upconversion intensity
(Icm) summed over all M vibrational frequencies in the 1–30 THz
frequency window (30–1000 cm−1):11

P ¼ log

 X
m˛M

�
I cm
�!

(1)

Higher P values correspond to greater total frequency upcon-
version capability of vibrations in the selected frequency range,
providing a semi-quantitative measure to guide the design
process. Icm is based on the absorption and Raman scattering
intensities of vibrational mode m (a full denition of Icm can be
found in Section S2 of the SI). Icm was calculated using DFT for
a simplied model of the molecule–metal interface in Koczor-
Benda et al.11 resulting in the Gold database of Molecular
Vibration Explorer,12 and used as training data for the KRR
model.11 We also discuss the details of these DFT calculations in
the next Section.

The SCScore neural network by Coley et al.38 was trained on 12
million reactions from the Reaxys39 database. The SCScore
correlates with the number of reaction steps required to synthe-
size the molecule from reasonable starting materials and ranges
between 1 and 5, where higher numbers indicate reduced syn-
thesizability.38 Canonical SMILES28 representations of molecules
© 2025 The Author(s). Published by the Royal Society of Chemistry
generated using Open Babel40 were used as input for the KRR
predictor and the SCScore calculator. To simultaneously bias
molecular generation towards large P (high THz upconversion
efficiency) and low SCScore (S, low synthetic complexity) values,
molecules with properties satisfying both P $ �P+0.5sP and S #
�S−0.5sSwere appended to the training dataset for the subsequent
training iteration, where �X and sX are the mean average and
standard deviation, respectively, of property X.

2.1.4 Reference calculations and property predictors. As
reference data for the ML models, a database of about 2800 gold-
thiolatemolecules, available fromMolecular Vibration Explorer,12

was used, henceforth referred to as the ‘THz database’. This
database was originally compiled in Koczor-Benda et al.11 and
contains P values calculated with Kohn–Sham DFT,41,42 using the
B3LYP43,44 hybrid generalized gradient approximation, the DFT-
D3 (ref. 45) dispersion correction, the Karlsruhe basis set with
split valence polarization (def2-SVP),46 and a tight energy
convergence threshold. The molecules were modeled as gold-
thiolates to consider the most immediate chemical effects of
the metal-molecule interface. This choice of modeling was also
validated against surface-enhanced Raman spectroscopy
measurements in Griffiths et al.,47 Boehmke Amoruso et al.,48 and
Wright et al.49. Koczor-Benda et al.11 validated the computational
approach in detail against Raman and infraredmeasurements for
powder, solution and nanoparticle-on-mirror constructs of a set
of test molecules and found that individual spectral features as
well as surface-enhanced Raman spectroscopy intensities inte-
grated over a wide spectral window correlate well with measure-
ments. However, for an accurate modeling of low-frequency
vibrational features (below 200 cm−1), considering the metal
facets as well as molecule–molecule interactions becomes
necessary,48 which increases computational costs. To enable
a fast computational assessment of a large number of molecules,
and benet from the existing, openly available database, we
follow the approach of Koczor-Benda et al.11. To assess the accu-
racy of ML property predictors along the biasing iterations,
additional reference calculations at the same level of theory were
performed whereby the thiol group in each molecule was modi-
ed to a gold-thiolate group. The Gaussian16 (ref. 50) soware
package was used to run DFT calculations and analysis tools from
Molecular Vibration Explorer12 were used to calculate P values.
The pretrained KRRmodel from Koczor-Benda et al.11was used to
predict P values; additionally, PaiNN51 and MACE52 equivariant
GNN models were trained on the P values of the DFT-optimized
structures of the THz database. Full details of training and
hyperparameter optimization, as well as learning curves, are
provided in the SI (Tables SIII, SIV and Fig. S1–S3). The PaiNN
and MACE predictions of P values are based on the unrelaxed 3D
structures of generated molecules, following Westermayr et al.17.
Section 10 of the SI discusses the effect of using unrelaxed
structures on the predicted P values for a subset of generated
molecules.
2.2 Dimensionality reduction and clustering

To visualize the chemical space spanned by molecules within
various datasets and to create inputs for subsequent cluster
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00106d


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 9
/1

3/
20

25
 2

:4
2:

03
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
analysis, dimensionality reduction via principal component
analysis (PCA) was applied. The inputs for PCA were one of two
applied molecular descriptors, henceforth referred to as
bonding and structural descriptors. Structural descriptors were
averaged SOAP31 descriptors, obtained using the DScribe53

package, which results in a 50820-dimensional description of
molecules that encodes the average atomic environment
around each atom. To obtain bonding descriptors from mole-
cules, the Open Babel40 and RDKit30 soware packages were
used to extract as many interesting features as possible relating
to molecular bonding. These ranged from simple quantities,
such as the number of different elements within the molecule,
to complex quantities such as the molecular aromaticity,
resulting in a 403-dimensional bonding descriptor. Descriptor
vectors were calculated for each molecule of the training data-
base and used as inputs for PCA. To visualize the chemical
space spanned by the training database in comparison with the
spaces spanned by the generated molecules, the descriptor for
generated molecules was represented using the same principal
components as obtained from the training database. For clus-
tering, a mixture of the balanced iterative reducing and clus-
tering using hierarchies (BIRCH)54 data mining algorithm and
agglomerative clustering55 was used to allow for uneven cluster
sizes. Clustering was performed across the rst three principal
components of the bonding and structural descriptors, in
addition to the PaiNN-predicted P values, weighted to achieve
an approximately equal contribution of the rst principal
components of each descriptor and the predicted P value across
all clusters.
2.3 Retrosynthetic planning

The AiZynthFinder56 soware was used for the retrosynthetic
planning of selected molecules. The retrosynthesis algorithm is
based on aMonte Carlo tree search that recursively breaks down
a molecule to existing precursor molecules56 based on a stock
from compounds available within the ZINC57 database. The tree
search itself is guided by a policy that suggests possible
precursors by utilizing a neural network trained on a library of
known reaction templates. The employed policy58 was trained
on US patent office data,59 as available within AiZynthFinder.
The SMILES strings of molecules with successful retrosynthetic
routes were cross-referenced against the PubChem60,61 database
using the PubChemPy62 package.
3 Results and discussion
3.1 Analysis of generated molecules

The G-SchNet generative model is initially trained on the orig-
inal dataset and used to generate novel and ‘unbiased’ mole-
cules. A subset of the generated molecules is selected according
to their predicted THz upconversion efficiency (high P value)
and synthetic complexity (low SCScore) and added to the data-
set. This process is repeated in six successive iterations during
which properties of the generated molecules are driven towards
the desired ranges (Fig. 1a and b). Iterative biased generation of
molecules successfully leads to molecules with higher P and
Digital Discovery
lower SCScore in later iterations when compared to the training
dataset (‘Train’) and the unbiased initial generation (‘Unbi-
ased’). Further shis in property values aer iteration 5 were not
signicant and biasing was stopped aer Iteration 6.

The composition of generated compounds differs signi-
cantly from the training set, as shown by the elemental
composition of molecules in Fig. 1d. The differences are largest
between the training set and the unbiased generated molecules,
which highlights the fact that G-SchNet, without biasing or
conditioning, does not fully reproduce the chemical features of
its training set. This shortcoming has been previously observed
by Westermayr et al.17 and Gebauer.63 This effect is more
signicant for models trained on diverse datasets featuring
many elements and molecular sizes than for models trained on
small and simple molecules (such as QM9 (ref. 64 and 65)). The
unbiased generated molecules feature a signicantly reduced
proportion of hydrogen atoms compared to the training dataset,
which suggests increased numbers of unsaturated bonds and
heteroatomic groups. The proportion of hydrogen atoms
slightly increases through the subsequent biased iterations.
Nitrogen atoms also become more prevalent in generated sets,
while the proportion of carbon and uorine atoms decreases.
There is a shi of the size distribution of molecules to smaller
values, as shown in Fig. S4a. While unbiased generation creates
signicant numbers of molecules with 30–60 atoms, generated
molecules in later iterations have, on average, about 20 atoms. A
signicant number of molecules generated by the unbiased
model have an SCScore above 4 (Fig. 1b), which was also
observed by Westermayr et al.17. We note that all training
molecules are commercially available so the SCScore metric
does not fully reect their accessibility but rather was used as an
indicative metric by which we lter out generated molecules
that are overly complex. For the most promising generated
candidate molecules, we perform comprehensive retrosynthetic
planning analysis to assess their synthesizability more accu-
rately (vide infra).

As the training database only contained monothiols, the
proportion of thiols in generated molecules is high, around
65% in the unbiased case, which increases in subsequent iter-
ations to around 85%, as shown in Fig. S5 in the SI. It is
interesting to see that the frequency of certain functional
groups is signicantly increased throughout the biasing itera-
tions. An example of this is the aromatic amine group, which is
present in only 0.5% of trainingmolecules, but found in 9.8% of
molecules generated by the unbiased G-SchNet model (Fig. 1c).
By Iteration 6, 58.7% of generated molecules contain one or
more aromatic amine groups. Simultaneously, the number of
instances of this functional group per molecule also increases
with iterations, as shown in Fig. 1c, with some of the generated
molecules having as much as ve aromatic amine groups. This
functional group was identied by Koczor-Benda et al.11 to
correlate with high P values according to the ML predictor and
as shown in Fig. 1e, the presence of this functional group also
correlates with signicantly higher predicted P values. We note
that the sudden increase in the presence of this and other
functional groups between the training and the unbiased
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Distribution of (a) predicted P values and (b) SCScore for molecules used for training G-SchNet (thiol database) and molecules generated
in the biasing iterations. (c) Increase in relative occurrence and number of aromatic amine groups in molecules through the biasing iterations, (d)
the average elemental composition of training and generated molecules; and (e) the distribution and mean average of P values predicted by the
KRR model for molecules in which an aromatic amine is absent or present.
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generated molecules could explain the signicant shi in the
predicted P value distribution between the two sets in Fig. 1a.
3.2 Evaluation and improvement of property predictors

As shown above, generated molecules signicantly differ in
chemical composition from the training molecules. This raises
the question of whether the KRR predictor of the THz upcon-
version efficiency metric, P, provides transferable prediction
accuracy for the novel, generated molecules – a crucial prereq-
uisite for targeted property-driven molecular design. To assess
this, DFT structure optimizations and vibrational spectrum
calculations were performed on randomly selected molecules
from the thiol database that was used to train the G-SchNet
model and from the dataset generated in Iteration 6. Table 1
shows the performance of the KRR predictor on these mole-
cules. The mean absolute error (MAE) on the Thiol database is
Table 1 Performance of different ML models for P prediction, re-
ported as mean absolute error for test molecules from the THz
database, thiol database, and molecules generated in Iteration 6. EN
and KRR models are taken from Koczor-Benda et al.11 with predictions
based on SMILES strings of molecules. In the case of MACE and PaiNN,
predictions are based on DFT-optimized molecular structures

Dataset

Model THz Thiol Iteration 6
EN11 0.60 — —
KRR11 0.59 0.62 0.89
MACE 0.46 — —
PaiNN 0.41 0.53 0.73

© 2025 The Author(s). Published by the Royal Society of Chemistry
similar to the MAE on the test set of the THz database, while the
MAE increases signicantly for molecules generated in Iteration
6. In particular, the KRR model severely underestimates the P
values of high-P molecules, as shown in the SI (Fig. S6), which
suggests that the true P values of molecules generated in the
biasing workow reach much higher values than what is pre-
dicted in Fig. 1a.

As the KRR predictor uses SMILES strings as input and is
based on 2D Morgan ngerprints, it does not benet from the
information contained in the 3D structures generated by G-
SchNet. As the THz upconversion efficiency sensitively
depends on the molecular conformation and vibrational
frequencies, this limits the expressiveness and prediction
accuracy of the model. We therefore trained two equivariant
GNN models with 3D atom-wise embeddings on the same THz
dataset, namely the MACE and PaiNN models. Table 1
compares the MAE of the different ML models for the reference
DFT-calculated P values, determined for the DFT-optimized
structures of test molecules from the THz dataset. Both MACE
and PaiNN provide improved predictions compared to the EN
and KRR models of Koczor-Benda et al.,11 with PaiNN providing
the best prediction. PaiNN also learns faster than MACE from
less data, as shown by the learning curves in the SI (Fig. S3); for
this reason, the PaiNN predictor was used for all subsequent
analyses. When testing the PaiNN model on the molecules
generated in Iteration 6, the MAE is larger with 0.73 (Table 1).
PaiNN also underestimates the P values of high-P value mole-
cules, as shown in the SI (Fig. S6), though this is slightly less
pronounced than with KRR. Therefore, all tested models show
reduced prediction accuracy when applied to the iteratively
Digital Discovery
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biased datasets, suggesting that themodels are forced to predict
outside of the chemical space spanned by the training data.
This severely limits their ability to act as a transferable property
predictor that drives molecule generation. The deterioration of
the model accuracy for the THz upconversion efficiency is more
signicant than what was observed by Westermayr et al.17 for
electronic property prediction. We hypothesize that this is due
to the integrated nature of the THz upconversion metric P and
its sensitive dependence on collective low-frequency molecular
vibrations and the molecular polarizability.

To alleviate the problem of underestimated high P values
and the lack of transferability of the PaiNN predictor across the
biased generation runs, the PaiNN predictor was retrained on
a random subset of DFT-calculated P values from molecules
generated in Iteration 6 and molecules from the thiol database.
A committee of 5 PaiNN models was trained on different train/
validation splits, and the mean average and standard deviation
of their predictions were analyzed (SI, Fig. S7). The standard
deviation of predictions was found to not correlate strongly with
the absolute error of the prediction, indicating that the uncer-
tainty of predictions cannot be used in an active learning-type
workow for augmenting the training set in a data-efficient
way. Aer retraining, the mean average of the prediction
becomes signicantly more accurate for high P values, as shown
in the SI (Fig. S8). The retrained PaiNN model achieves an MAE
of 0.43 in P prediction on the Iteration 6 dataset which is
consistent with the MAE previously achieved on the validation
set when training on only the THz dataset (Table 1).

Equipped with a robust and transferable P predictor, new P
values were predicted using the committee of 5 PaiNN models
for all molecules in the training and generated molecule data-
sets (Fig. 2). Compared to the KRR predictions, the distribution
of PaiNN-predicted P values for the generated molecules shis
to signicantly higher values, with the highest predicted P value
reaching 7.30. The presence of specic functional groups can be
analyzed alongside the PaiNN predictions for P values. This
analysis (SI, Fig. S9), indicates that some of the promising
features identied by Koczor-Benda et al.,11 such as the aromatic
Fig. 2 Distribution of PaiNN predictions (full lines) and original KRR
predictions (dotted lines) for P values on all training and generated
molecules. In the case of PaiNN, the distributions show the mean
predicted P value by a committee of 5 PaiNNmodels that were trained
on the original THz database augmented by randomly selected
molecules from the G-SchNet training database (thiols) andmolecules
generated in Iteration 6.

Digital Discovery
amine group (Fig. 1d), correlate with higher P values in the
generated molecules as well as in the training set of commercial
thiols.
3.3 Analysis of the chemical space of generated molecules

Structural and bonding descriptors were calculated for all
generated molecules. Principal components of these descrip-
tors span a latent representation of the chemical space covered
by the molecules. A heat map of the distribution of molecules in
this latent space is projected into the basal plane of Fig. 3a,
where it is clear that molecular generation is prioritized in
a specic region of latent space. Previous efforts at biasing G-
SchNet have shown signicant localization in such latent
chemical spaces as biasing iterations proceed.17 This can be
visualized by separating out the contributions of each iteration,
as shown in the SI (Fig. S10). However, unlike in Westermayr
et al.,17 in this work, we did not nd a clear correlation between
the progression of biasing iterations and the occupied chemical
space decreasing in size; while there was an initial decrease in
the covered area for the molecules of the unbiased generation,
the molecules in successive iterations did not localize any
further to one particular area of chemical space. This is because
we retain original molecules in each biasing iteration, but will
likely also relate to the P value biasing target being less related
to specic changes in functional groups and chemical compo-
sition. The P value is likely more closely related to several
features that can appear across a diverse range of molecules.

To better resolve the types of molecules that were being
generated in different areas of the latent space, the heat map in
Fig. 3a was expanded through the inclusion of the PaiNN-
predicted P values and was clustered as previously described.
These clusters are also shown in Fig. 3a, with data points cor-
responding to their counterparts in the heat map. Many of the
clusters span a wide range of P values and a large area of latent
space, indicating that there is little correlation between the
latent space and the THz radiation sensitivity of each molecule,
again signifying that the P value is a complex biasing target.
This leads to inefficiency in the biasing procedure, as struc-
turally similar molecules can result in dramatically different P
value predictions. The high-density region of the heat map
results in many closely packed clusters, while the lower-density
regions are inhabited by fewer large clusters. We note that while
the sheer number of data points makes it difficult to see all the
clusters, it is clear that some generated molecules with high P
values, clustered near the top of Fig. 3a, have the potential to
perform very well for THz radiation detection.

To perform further analysis, each cluster was subsampled to
nd the twenty closest molecules to the centroid of each cluster
(Fig. 3b). While the subsampling omits molecules at the edges
of the respective clusters, it allows for analysis of the nature of
the molecules that exist in each cluster. The densely packed
region of the latent space is now more visible, with over half of
the clusters localized in a narrow slice of the bonding/structural
principal component space on the right of the plot.

Five subclusters (labeled C1–C5 and indicated in Fig. 3b)
were chosen for detailed analysis, to establish trends in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Latent chemical space clustering results for all generated molecules. Shown are: (a) generated molecules in the latent space formed by
the first principal components (PCs) of the bonding and structural descriptors, separated vertically by their predicted P values and clustered with
respect to these axes. The bottom plane depicts the density of points within the principal component space, with darker areas indicating regions
of high density; (b) subsamples of clusters around their centroids to reveal the 20most representative molecules for each cluster, with illustrative
examples from five such subclusters (C1–C5) shown; (c) separation of molecules in their respective clusters from (a) into contributions from each
biasing iteration to reveal trends in the types of molecules that are prioritized and penalized during iterative biasing.
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types of molecules that were being predicted and the features
that increase or reduce the predicted P value. Statistics for the
molecules in these subclusters are shown in Table 2. Subclus-
ters C1 and C2 show high average P values. They are both
composed of highly conjugated molecules with numerous
aromatic rings. These contained a variety of heteroatomic
functional groups, including alcohols and aromatic amines, as
previously noted in Fig. 1c, and both subclusters contained very
few molecules with halogen substituents. The main difference
between molecules in these subclusters was their overall size –

molecules in C1 were generally larger and contained more
aromatic rings.

Subcluster C5 also exhibits a large average P value, although
it differed from subclusters C1 and C2 due to all of its molecules
Table 2 Statistics for the generated molecules in the chosen
subclusters shown in Fig. 3, including PaiNN-predicted P values

Subcluster Average P value SCScore Number of atoms

C1 4.1 3.9–4.9 50–59
C2 3.2 3.3–3.4 35–40
C3 0.1 2.7–3.8 28–33
C4 −0.2 1.6–2.9 17–0
C5 3.4 2.2–3.0 21–25

© 2025 The Author(s). Published by the Royal Society of Chemistry
being much smaller and centred around a single highly
substituted benzene ring. Molecules in this subcluster contain
a high proportion of aromatic amine groups, in addition to
other oxygen- and nitrogen-containing groups. Again, there
were very few halogenated molecules present. This is in direct
contrast to the molecules of subcluster C4, which were also
based around a single benzene ring but were predicted to have
a very low P value. These rings were characterized by being less
heavily substituted than those in C5 and contained a compara-
tively high proportion of halogens and nitro groups, the latter of
which were not found in any high-P value clusters. It is notable
that these subclusters, and indeed all of those in the previously
noted high-density region of the latent space heat map, were
based around substituted benzene molecules.

Finally, molecules within subclusters C3 and C2 are struc-
turally very similar when judged from their vicinity in the
principal component latent space. However, molecules in
subcluster C3 exhibit much lower P values than molecules in
C2. While C3 molecules contain aromatic rings, all molecules
lacked conjugation between these rings due to aliphatic joining
chains. Compared to the other high-P value subclusters, their
rings were also signicantly less substituted, and molecules
were less heteroatomic overall.

We can conclude that molecules with high predicted P values
fall into one of two categories: either they are large, conjugated
Digital Discovery
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aromatic systems, or they are smaller, highly substituted
benzene rings. In both cases, the presence of oxygen and
nitrogen-based substituents (particularly amines) was desired,
while halogenation and nitro groups lead to lower P values.

To establish how the presence of each of these types of
molecules varied over the biasing iterations, each analyzed
subcluster's respective full cluster was separated out into
a percentage contribution to each iteration, as shown in Fig. 3c.
While C1, C2, C3 and C4 all contributed less to each iteration as
biasing proceeded, C5 contributed signicantly more, indi-
cating that G-SchNet was consistently biased towards molecules
similar to those in subcluster C5. This is sensible when the
multi-property biasing task that was undertaken is considered,
as the molecules in subcluster C5 were smaller and chemically
simpler than those in subclusters C1 and C2, thereby receiving
a lower SCScore since they would be simpler to synthesize. Since
molecules in subcluster C5 have a relatively high P value and
a relatively low SCScore, they were prioritized; molecules in
subclusters C1 and C2 were too complex, yielding a higher
SCScore, while molecules in subclusters C3 and C4 were simpler
but had a low predicted P value, so molecules from these clus-
ters did not full the multi-property biasing criteria.
Fig. 4 Properties of the top candidate molecule, 2-amino-5-(4-
aminophenylamino)pyridine-4-thiol, generated by G-SchNet. Density
functional theory (DFT)-calculated (PDFT) and PaiNN-predicted
(Ppredicted) P values, predicted SCScore, as well as DFT-calculated
terahertz (THz)/infrared (IR) radiation absorption, Raman scattering
and frequency upconversion spectra are shown. The two most
intensive vibrational modes for frequency upconversion are also
depicted.
3.4 Identication of candidate molecules

We selected generated molecules with P $ 4.25 (based on
predictions by the retrained PaiNN predictor) and employed
AiZynthFinder to perform retrosynthetic planning. From the
1011 molecules satisfying this selection criterion, only 34 were
predicted to have retrosynthetic routes from purchasable
precursors56 based on a stock from compounds available within
the ZINC57 database; retrosynthetic paths for these molecules
can be found in Fig. S11–S17. Notably, all 34 molecules belong
to clusters from which subclusters C2 and C5 were drawn (SI,
Table SVI).

To conrm the suitability of these molecules for THz radia-
tion detection, their absorption, Raman scattering and
frequency upconversion spectra were calculated, and their P
values were determined using DFT. Fig. 4 shows the relevant
properties and vibrational spectra of the top candidate, while
vibrational spectra and properties of other candidate molecules
with DFT-calculated P values above 5.20 are shown in the SI
(Fig. S18–S21). The top candidate, 2-amino-5-(4-
aminophenylamino)pyridine-4-thiol, has a DFT-calculated P
value of 7.88. Considering that the P value is a logarithmic
quantity (eqn (1)), this is signicantly higher than any of the
molecules previously identied within commercial databases in
Koczor-Benda et al.,11 where the top 5 candidates had P values
between 5.30 and 6.18. For the h top molecule from Koczor-
Benda et al.,11 5-amino-2-mercaptobenzimidazole, Redolat
et al.5 developed a functionalization technique to prepare self-
assembled molecular monolayers in gold-based plasmonic
nanocavities and successfully integrated these nanocavities on
a silicon-based photonic chip. While frequency upconversion
measurements are not yet available for this compound, our DFT
simulations suggest about 14 times higher upconversion capa-
bility in the THz/mid-infrared range for the most active mode
Digital Discovery
(559 cm−1) of our top candidate compared to the most active
mode (458 cm−1) of 5-amino-2-mercaptobenzimidazole (see
Fig. S22 in SI).

The top molecule has two vibrational modes that are highly
active in frequency upconversion, which are located at 515 cm−1

and 559 cm−1. Both modes involve an out-of-plane (umbrella)
motion of one of the amino groups that is coupled to out-of-
plane motion of hydrogen atoms of the neighboring ring. This
out-of-plane motion of the amino group is also responsible for
the highest intensity peaks of other top candidates, as shown in
the SI (Fig. S18–S21). This provides evidence that the aromatic
amine functional group not only correlates with high P values,
but is also directly involved in the upconversion process. The
highly active mode appears in the 515–832 cm−1 spectral range
for the top candidates, showing that the chemical environment
and the coupling of the out-of-plane motion of the amino group
with other vibrations of the molecule have a signicant effect on
the position of the peak. This can be advantageous for the
tuning of narrowband THz radiation detectors operating at
different frequencies. We note that this does not mean that all
molecules that contain amino groups are necessarily good
© 2025 The Author(s). Published by the Royal Society of Chemistry
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candidates for frequency upconversion: the spectral intensities
are heavily inuenced by other functional groups within the
molecule, such as the thiol group, and the top candidates rely
on the intricate interplay of atomic motion from the whole
molecule to achieve outstanding frequency upconversion
properties. We also note that within the top candidates, mole-
cules with the same SMILES string were generated multiple
times with different 3D structures in the different biasing iter-
ations. As the SCScore and KRR-predicted P values depend only
on 2D information, they remain the same for different
conformers. However, the PaiNN-predicted P values for raw
generated structures and DFT-calculated P values for structures
that have undergone geometry optimization can differ, as
shown in Section S10 and Fig. S24 of the SI. This further high-
lights the benets of working with property predictors that are
based on 3D descriptors.

Of the 34 molecules listed in Table SVI, only one compound
(generated three times as different conformers, all sharing the
same SMILES string) was identied in the PubChem60,61 data-
base, Nc1cc(S)c(cc1N)N, which corresponds to 2,4,5-tri-
aminobenzenethiol (Compound Identier 67981805 (ref. 66)).
The remaining 31 molecules were not found in PubChem, likely
representing novel candidate structures for THz upconversion
applications.

4 Conclusions and outlook

Generative design of functional organic molecules can be
biased towards certain properties by iteratively adapting the
underlying training dataset. Here, we do this to design candi-
date molecules for THz radiation detection by mixing molecules
from an existing database with selected molecules created by
the autoregressive generative deep learning model G-SchNet.
This enables us to perform property-driven design of novel
and synthesizable monothiolated molecules with high THz-to-
visible upconversion efficiencies. By performing a comprehen-
sive structural analysis on the dataset of generated molecules,
we have revealed key chemical trends among generated mole-
cules and identied functional groups that contribute to
enhanced upconversion, such as aromatic amines. From the
novel, generated molecules, we were able to select several
candidates and provide potential retrosynthetic pathways from
commercially available reactants. The top candidate molecule
has a DFT-calculated THz upconversion efficiency of 7.88,
which is signicantly higher than any of the molecules previ-
ously identied from commercial databases.

This work also revealed several practical challenges associ-
ated with property-driven generative design that require careful
consideration when designing such workows. First of all, we
have seen that even unbiased molecular generation in G-SchNet
creates a distribution of molecules that signicantly differs
from the training dataset in terms of elemental and functional
group composition. If the model cannot capture the chemical
space spanned by the data, this means that the ability of the
property-driven design workow to drive the generation in
a directed way is limited. The performance of G-SchNet and
other generative algorithms in this regard needs to be analysed
© 2025 The Author(s). Published by the Royal Society of Chemistry
in greater detail in the future. Secondly, during sequential
iterations of biasing with a changing training dataset, the ML-
based property predictor that selects suitable molecules must
continue to provide accurate predictions. We showed that GNN-
based ML predictors, based on MACE and PaiNN models and
3D input structures, gave more accurate P values than predic-
tors based on 2D molecular ngerprints. The gure of merit of
THz upconversion efficiency, P, was shown to be a highly inte-
grated quantity that is challenging to learn due to its depen-
dence on low-lying vibrational modes. Careful validation
revealed that contrary to previous work on the property-driven
generative design of fundamental electronic gaps17 none of
the P predictors trained on the original data set were transfer-
able to the newly generated molecules. Their prediction accu-
racy deteriorated during the iterative biasing workow.
Therefore, the PaiNN predictor had to be retrained based on
new DFT training data. Uncertainty-based active learning
during biasing iterations would not have been a robust strategy
due to the lack of correlation between prediction accuracy and
uncertainty in highly regularized GNNs. Therefore, active
learning based on structural diversity sampling is likely a more
robust choice to retain ML predictor performance throughout
the iterative biasing procedure.

Signicant future work will be needed to make property-
driven generative design workows more efficient and robust.
To this end, constrained generation with (semi-)supervised
generative models such as constrained G-SchNet18 that can
constrain specic functional groups or diffusion models able to
perform inpainting tasks will likely be benecial. This would
reduce the portion of generated molecules that are discarded
during the workow due to the absence of a thiol group. The
question of whether generative models faithfully represent the
structural and functional group distribution of the underlying
training dataset requires further attention. Commonly, gener-
ative models are only assessed on their ability to generate valid
and unique molecules, which is insufficient when aiming to
employ models for directed exploration of chemical space.

Both the property-driven design workow and the novel
candidate molecules we have identied in this study will
contribute to advancing the discovery of functional organic
materials for nanosensor applications such as THz radiation
detection. Our results highlight the potential of generative
models to not only expand the chemical space of viable mole-
cules but also to guide future experimental and computational
efforts in the molecular design of plasmonic nanocavities.
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ASE databases for xTB calculations are available online: https://
doi.org/10.6084/m9.gshare.28539995.v3.67 The repository also
contains the trained ML models, and Jupyter Notebooks and
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scripts associated with the generation, prediction, and analysis
workows described in this work. Code for the extraction of
bonding features from molecular databases and obtaining the
principal components of the structural/bonding descriptors
has been released in our GSchNetTools package, available at
https://github.com/maurergroup/GSchNetTools. The SCScore
model used in this work is publicly available at https://
github.com/connorcoley/scscore, and les pertaining to
retrosynthetic planning with AiZynthFinder are publicly
available at https://gshare.com/articles/dataset/
AiZynthFinder_a_fast_robust_and_exible_open-
source_soware_for_retrosynthetic_planning/12334577.

Supplementary data including numerical convergence
results and additional data is available. See DOI: https://doi.org/
10.1039/d5dd00106d.
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