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hot generalisation behaviour in
graph-neural-network interatomic potentials

Chiheb Ben Mahmoud, * Zakariya El-Machachi, Krystian A. Gierczak,
John L. A. Gardner and Volker L. Deringer

With the rapidly growing availability of machine-learned interatomic potential (MLIP) models for chemistry,

much current research focuses on the development of generally applicable and “foundational” MLIPs. An

important question in this context is whether, and how well, such models can transfer from one

application domain to another. Here, we assess this transferability for an MLIP model at the interface of

materials and molecular chemistry. Specifically, we study GO-MACE-23, a model designed for the

extended covalent network of graphene oxide, and quantify its zero-shot performance for small, isolated

molecules outside its direct scope, as well as for examples of chemical reactions. Our work provides

quantitative insight into the generalisation ability of graph-based MLIP models and, by exploring their

limits, can help to inform future developments.
Introduction

Machine-learned interatomic potentials (MLIPs) for atomistic
simulations, trained on quantum-mechanical energy and force
data, have advanced remarkably in recent years1–3 and now
almost routinely allow researchers to address a wide range of
questions in chemistry and materials science.4–7 Recently,
MLIPs incorporating graph-based representations, commonly
referred to as graph neural networks (GNNs),8–12 have emerged
as cost-effective yet chemically rich models of atomic interac-
tions. The favourable constant scaling of GNN-based MLIPs
with the number of atomic species means that they are, in
principle, able to cover many elements from across the Periodic
Table all in a single model.12–15

The enhanced chemical versatility provided by GNNs has
inspired the development of so-called “pre-trained”,12 “foun-
dational”,13 or “universal”15,16 interatomic potentials. These
models have been trained on large, structurally and chemically
diverse datasets; they show promising baseline performance for
a range of systems17,18 and thus provide a practical tool for
starting computational projects, as well as a basis for ne-
tuning.19 In the long run, one might want to employ these pre-
trainedMLIPs “as is”, in a zero-shot manner, without additional
training or adaptation. Zero-shot performance also yields an
important indication of how well the underlying model gener-
alises to unseen tasks and chemistries. Understanding and
improving the zero-shot behaviour of MLIPs is therefore an
important challenge.
ent of Chemistry, University of Oxford,
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the Royal Society of Chemistry
Herein, we study the zero-shot generalisation behaviour of
GO-MACE-23 (ref. 20), anMLIPmodel that was initially developed
specically for graphene oxide (GO). Conceptually, GO bridges
the gap between pristine graphene and organic chemistry: its
structural landscape involves a variety of bonding motifs from
sp2 carbon sheets to oxygen-rich domains and reactive edge
sites.21 We test whether this structural and chemical complexity
may serve as a basis for transferability (albeit initially we
thought of GO-MACE-23 as a single-purpose MLIP!), subjecting
GO-MACE-23 to a range of out-of-domain benchmarks, from
energetics to high-temperature molecular-dynamics (MD)
simulations of chemical reactions. In this way, our present
study explores: (i) the role of a chemically rich training dataset
in building robust and generalisable MLIPs;22 (ii) the impor-
tance of GNN-based architectures in doing so; and (iii) the
question whether GO-MACE-23 could form a starting point for
foundational MLIPs bridging materials and molecular chem-
istry. Data and code supporting this work are publicly available
(see “Data availability” statement below).
Methodology
The GO-MACE-23 and MACE-OFF24 models

We focus on the GO-MACE-23 model, which was built using the
MACE architecture10,11 together with a bespoke data-generation
protocol.20 Initial training data were generated “from scratch”
using CASTEP + ML23 (accelerating ab initioMD through on-the-
y tting of GAP models24), and then largely augmented
through subsequent iterative training from MD trajectories
driven by intermediate versions of MACE models. Over multiple
iterations, congurations with functionalised edges, involving
hydroxyl (–OH), aldehyde (–CHO), and carboxylic acid (–CO2H)
Digital Discovery, 2025, 4, 3389–3399 | 3389
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Fig. 1 Visualising the structural and chemical space explored in the
present study. We show a two-dimensional embedding of the MACE
descriptor trained on the GO dataset,20 using principal component
analysis. The points of the map correspond to the training set of GO-
MACE-23 (blue), molecules containing C, H, and O atoms, representing
z5% of the SPICE (version 1 and 2) datasets28 (red), selected config-
urations from rMD17 trajectories34 (purple) and the QM7-X dataset35

(grey), a series of fullerenes with sizes ranging between 20 and 100
(magenta), fivemolecules encapsulated in C60 fullerene cages (yellow),
and the same molecules in vacuum (black crosses).
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moieties, were added to ensure good coverage of the structural
and chemical features that might be expected to appear in
a “real-world” GO sheet. Training labels, viz. total energies and
forces, were obtained from density-functional-theory (DFT)
computations performed with the plane-wave soware
CASTEP25 using on-the-y generated pseudopotentials, the
Perdew–Burke–Ernzerhof (PBE) exchange–correlation func-
tional,26 and a plane-wave energy cutoff of 550 eV. An overview
of the GO dataset is available in the SI.

As a baseline for current practice in modelling organic
molecules, we choose two variants of the MACE-OFF family of
MLIPs:27 the “large” version of MACE-OFF23 commonly referred
to as MACE-OFF23(L), which is trained on the SPICE dataset of
molecular data version 1,28 and the “medium” version of MACE-
OFF24 commonly referred to as MACE-OFF24(M), which is trained
on the SPICE dataset version 2.29 MACE-OFF24(M) is more similar
to GO-MACE-23 in terms of architecture, with the exception of
the radial cut-off: 3.7 Å for GO-MACE-23 and 6.0 Å for MACE-

OFF24. More details about the hyperparameters of the GNNs
used in this work are provided in the SI. In the remainder of this
work, we refer to MACE-OFF23(L) simply as MACE-OFF23 and to
MACE-OFF24(M) as MACE-OFF24. In using MACE-OFF24 models as
benchmarks, it is important to note the different DFT levels of
theory compared to GO-MACE-23 the SPICE labels were obtained
using DFT with the uB97M-D3(BJ) exchange–correlation func-
tional30,31 and the def2-TZVPPD basis set.32,33

Benchmark data

We carry out numerical experiments using the revised version of
the MD17 dataset (rMD17)34 as well as the QM7-X dataset.35 We
select the 6 molecules from rMD17 that only contain the
elements C, H, and O—the only ones in the GO dataset, and
thus the only ones that GO-MACE-23 and other models directly
tted to its dataset can handle. For each molecule, we randomly
select 1000 congurations from the available trajectories. The
rMD17 labels were obtained in the original work using the PBE
functional and the def2-SVP basis set.26,32 As for QM7-X, we
randomly choose 100 congurations from each of the 6 most
common chemical formulae that only include C, H, and O.

The other test sets used in the present study are generated
either by running MD simulations in the NVT ensemble or by
relaxing molecules. In both cases, we use GO-MACE-23 to
perform these tasks. We compute reference data using DFT,
matching the settings for GO-MACE-23 and MACE-OFF24, where
applicable. For comparison to GO-MACE-23 labels are obtained
from CASTEP by placing the molecules in large periodic cells
(>20 Å). For MACE-OFF24 compatible labels are obtained using
the Atomic Simulation Environment (ASE)36 Python interface of
Psi4,37 version 1.4.

Data overlap between molecules and graphene oxide

Before benchmarking GO-MACE-23 it is important to set
performance expectations based on the similarity of the various
test sets and the GO training set. In Fig. 1, we present a two-
dimensional embedding, from principal component analysis
(PCA), of the average atomistic features per snapshot as learned
3390 | Digital Discovery, 2025, 4, 3389–3399
by GO-MACE-23. The use of average features eliminates the
system-size dependence of the descriptors. In the map of Fig. 1,
static rMD17 molecules lie outside the scope of the training
data (blue), but fall within the SPICE dataset domain (red),
which constitutes the training data of MACE-OFF24. We should
thus expect MACE-OFF24 to outperform GO-MACE-23 for static
molecules. Fullerenes (magenta) and encapsulated molecular
species (“M @ C60”, yellow) are located on the outskirts of the
GO region of the map—this is unexpected at rst glance, as
fullerenes are not part of the GO training data. However, some
of their key characteristics can be learned from the GO
backbone.

Zero-shot performance of GO-MACE-23

In this section, we evaluate the performance of GO-MACE-23 in
predicting the energies and forces of small molecules, as well as
vibrational spectra. Throughout this section, we use the terms
“error” and “root mean square error” (RMSE) interchangeably.

Numerical performance for rMD17 and QM7-X

A common starting point in evaluating MLIP performance is to
test prediction errors for energies and forces. These tests can be
more complex than they look at rst glance, because their
outcome will strongly depend on the type of data used for
testing (see, e.g., ref. 38–44). In the present work, we are
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 As Fig. 2, but for configurations from the QM7-X dataset. We
group the results based on the smallest ring found in the respective
molecule. Four examples are highlighted: A and B, showing the highest
and lowest energy error among all structures where the smallest ring is
3-membered, and C andD, showing the highest and lowest force error
among those.
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interested in zero-shot generalisability (without further modi-
cation of the model), which we here test by changing the
application domain from extended GO structures to isolated
small molecules.

We begin our series of zero-shot tests by evaluating the
performance of GO-MACE-23 for the relevant trajectories from
the rMD17 dataset. In Fig. 2, we summarise prediction errors on
total energies and atomic forces relative to the recomputed QM
targets using the same level of theory as that of GO-MACE-23. We
obtain energy RMSE values below the oen-quoted “chemical
accuracy” of 1 kcal mol−1 or z40 meV at.−1. However, these
errors can be signicantly higher than the model's internal
validation error for GO (1.8 meV atom−1 for energies and 109
meV Å−1 for forces, shown as dashed lines in Fig. 2). For aspirin,
naphthalene, and salicylic acid from the rMD17 dataset,
prediction errors of GO-MACE-23 for both energies and forces are
compatible with the MLIP's validation errors on the GO dataset.

We next study the performance of GO-MACE-23 for molecules
drawn from the more diverse QM7-X dataset (Fig. 3). Grouping
the energy and force prediction errors according to the smallest
ring size in any molecule (or the absence of any rings) reveals
that the model's performance appears to correlate to some
extent with the size and chemical nature of the smallest ring in
the system. We select molecules containing 3-membered rings
to illustrate this point: structure A has a cyclopropyl (C3) ring,
unlikely to be present in a well-annealed GO structure, and
shows the highest energy RMSE of all selected structures con-
taining any three-membered ring; by contrast, the 3-membered
ring in B is an epoxy (C–O–C) moiety, a well-known structural
motif in GO,20,21 and this molecule has the lowest energy RMSE
among those characterised in Fig. 3. Similar arguments can be
made for the molecules with the highest and lowest force error,
respectively: C contains a 3-membered cyclopropyl as well as a 4-
Fig. 2 Energy and force errors on six trajectories from the revised
MD17 dataset for GO-MACE-23. The bars represent the RMSE of quan-
tities between GO-MACE-23 predictions and its DFT level of theory. The
dashed line is the internal validation error of GO-MACE-23.

© 2025 The Author(s). Published by the Royal Society of Chemistry
membered oxetane ring, whereas D again shows an epoxy group
as the 3-membered structural unit.

We note that despite these relatively large numerical errors,
GO-MACE-23 is still robust: it yields stable MD trajectories of all
molecules from rMD17 and QM7-X in the NVT ensemble at T =

500 K for 1 ns.
This evaluation highlights the importance of contextualising

zero-shot performance of pretrained ML models across data-
sets. Most of the force prediction errors stem from the presence
of under-represented geometries in the training set, as sug-
gested by Fig. 2 where molecules with structural motifs resem-
bling those in a GO sheet are better captured by GO-MACE-23

reinforcing the importance of dataset choice for gene-
ralisability. In the following subsection, we analyse one of these
cases in detail: toluene from rMD17. It is worth noting that,
although we were able to recompute DFT labels for all test
molecules in our work, this is not a typical scenario. In many
cases, comparisons are made across different levels of theory,
meaning that systematic errors arising from the labels are
entangled with, but distinct from, the model's own uncer-
tainties. This underscores the importance of robust contextual
analysis in ML model evaluation.
Toluene as a special case

To better understand the performance limits of GO-MACE-23 we
analyse the errors for toluene in more detail, as it exhibits the
Digital Discovery, 2025, 4, 3389–3399 | 3391
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highest force prediction RMSE among all 6 rMD17 molecules
considered here. Fig. 4 summarises our approach to exploring
possible sources of error. The toluene molecule contains an
aromatic carbon atom directly bonded to an sp3 carbon atom in
a methyl group (–CH3), coloured in red and blue in Fig. 4a,
respectively. These two carbon atoms have the highest overall
force errors exceeding 1.2 eV Å−1 (Fig. 4b). The high force errors
on these specic atoms indicate that GO-MACE-23 cannot
faithfully model their behaviour, due to the under-
representation of similar atomic environments in the training
set.

Most current MLIPs (including the MACE architecture)
describe the total energy of a chemical system as a sum of
atomic energies, following ref. 46 and 24. While this decom-
position is useful for training and extrapolating MLmodels, it is
not inherently physical and has no direct counterpart in
a quantum-mechanical computation: so it is possible for the
MLIP to reproduce the global behaviour without capturing the
expected local energy distribution. This issue is evident in the
present case of toluene (Fig. 4c): the combined error for the sum
of the forces is only one-third of the individual force-component
errors. The predicted atomic energies conrm this limitation
(Fig. S2): the “red” atom of the aromatic ring has the lowest
predicted atomic energy of all the carbon atoms, while the
“blue” atom of the methyl group has the highest. When aver-
aging the energies of these two atoms, the methyl carbon and its
direct neighbour have the lowest local energy across the
randomly selected 200 snapshots in the trajectory (Fig. S2). The
atomic decomposition ansatz provides a partial explanation in
this case. More generally, further work is necessary to fully
understand the local predictions of MLIPs, and steps towards
this goal have been made.47–49
Vibrational spectra

The vibrational spectrum—which provides information about
bending, twisting, stretching, etc., of individual bonds—is
a ngerprint of a molecule (and experimentally accessible), and
reproducing it accurately is therefore an important test for an
MLIP. To assess the ability of GO-MACE-23 to predict vibrational
Fig. 4 (a) Visualisation of a toluenemolecule obtained using OVITO.45 Re
and the attached methyl group, respectively. (b) Force components pari
carbon atoms labelled red and blue in panel (a). (c) Force parity plot of t

3392 | Digital Discovery, 2025, 4, 3389–3399
spectra, we focus on three molecules from the rMD17 dataset:
naphthalene and toluene representing the best and worst force
predictions, respectively (cf. Fig. 2), and malonaldehyde as an
example of a molecule without a 6-membered aromatic ring (the
principal structural fragment of graphene). We also include one
conformer each representing C5H8O2, C6H12O, and C6H10O
from the QM7-X dataset. We start by selecting a random snap-
shot from the six subsets, then relax the molecules using GO-

MACE-23. The force errors for the relaxed structures are 0.05,
0.32, and 0.22 eV Å−1 for naphthalene, toluene, and malon-
aldehyde, respectively, and 0.31, 0.66, and 0.33 eV Å−1 for the
selected C5H8O2, C6H12O, and C6H10O structures, respectively.
Then, we compute the vibrational spectra with the MLIP and
DFT at the corresponding level, using nite displacements, with
phonopy.50,51 We present the resulting spectra in the upper
panels of Fig. 5. The GO-MACE-23-predicted spectra agree qual-
itatively with their DFT counterparts, and the quality of the
prediction correlates well with the model's force accuracy. The
low-frequency modes, in particular, are well reproduced, while
the accuracy decreases for the high-frequency modes. Addi-
tionally, we relaxed these molecules using DFT and report, in
the SI, the root-mean-square displacement between geometries
optimised with DFT and GO-MACE-23. We note that the
discrepancies are relatively high, ranging between 0.17 Å and
0.28 Å. A recent study in ref. 52 suggests that these discrep-
ancies may arise from a soened potential-energy surface near
the relevant snapshots, which could explain the reduced accu-
racy for high-frequency modes.

We compare GO-MACE-23 to MACE-OFF23 and MACE-OFF24,
two molecular MLIP models trained on different versions of the
SPICE molecular dataset (see Methodology section). We
compute the vibrational spectra on the GO-MACE-23-relaxed
molecules using MACE-OFF24 and their corresponding DFT level
of theory. The force errors of MACE-OFF23 are 0.003, 0.002, 0.016,
0.023, 0.015, and 0.008 eV Å−1 for naphthalene, toluene,
malonaldehyde, C5H8O2, C6H12O, and C6H10O respectively. The
force errors of MACE-OFF24 are 0.005, 0.003, and 0.005, 0.033,
0.03, 0.016 eV Å−1 for naphthalene, toluene, malonaldehyde,
C5H8O2, C6H12O, and C6H10O respectively. We report the spectra
in the lower panels of Fig. 5. As shown in Fig. 1, the rMD17
d- and blue-coloured atoms are carbon atoms part of the aromatic ring
ty plot of the DFT-computed and GO-MACE-23-predicted forces for the
he sum of forces of the red- and blue-labelled carbon atoms.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00103j


Fig. 5 Molecular vibrational spectra computed with MLIPs (solid lines) and DFT (“QM”, dashed lines) for GO-MACE-23-relaxed naphthalene,
toluene, malonaldehyde, C5H8O2, C6H12O, and C6H10Omolecules. The upper row characterises the out-of-domain performance of GO-MACE-
23 (red). The lower row shows the performance of MLIPs trained for molecules, viz. MACE-OFF27 (dark and light blue, visually indistinguishable).
Note that the DFT data have been computed at the level corresponding to the training data of the respective MLIP model; the DFT data in the
upper and lower rows are therefore slightly different.
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molecules are structurally similar to the training domain of the
MACE-OFF24models, which explains the models' high accuracy in
predicting atomic forces. As a result, both MACE-OFF24 models
produce more accurate vibrational spectra, reproducing both
high- and low-frequency modes.
Fig. 6 Evolution of the prediction errors of the per-atom energy and
forces of fullerenes, obtained from ref. 53, of sizes between 20 and 100
atoms computed with GO-MACE-23 and its corresponding DFT level of
theory (red), and MACE-OFF and their corresponding DFT level of theory
(dark and light blue). Similar to Fig. 5, lines represent the ML predic-
tions, and the dashed lines represent the QM reference calculations.
The rendered images show three fullerenes: C20, C60, and C100.
Fullerenes and encapsulated molecules

We use a series of fullerene molecules as another benchmark to
quantify the transferability of GO-MACE-23 (and MACE-OFF24).
The smallest fullerene is C20, containing only 5-membered rings
of carbon atoms and no 6-membered ones; consequently, its
curvature is large. Yet, the fullerene was found to be the most
stable C20 isomer using MP2 computations.54 Larger fullerenes
are structurally closer to graphene and graphite, and should
therefore be closer to the training domain of GO-MACE-23 (cf.
Fig. 1).

We rst test the stability of GO-MACE-23 in generating MD
trajectories for fullerenes. We run NVT simulations for C20, C60,
and C100 for 1 ns, targeting T = 500 K. We nd that GO-MACE-23
maintained structural integrity throughout the simulations,
producing stable trajectories without signs of unphysical
distortions. Both GO-MACE-23 and the MACE-OFF24 variants
reproduce the general trend of growing stabilisation with
fullerene size (Fig. 6). Prediction errors are highest for the
smaller fullerenes, with energy errors of >100 meV at.−1, and
force RMSE >2 eV Å−1, likely due to their high curvature. For C60,
the energy errors decrease to around 50 meV at.−1 for all MLIPs,
and force errors to around 250 meV Å−1 for GO-MACE-23 and
MACE-OFF24. For small fullerenes (<60 carbon atoms), GO-MACE-
23 performs better than both MACE-OFF24 models: we presume
that this is due to the fact that it has encountered some curved
© 2025 The Author(s). Published by the Royal Society of Chemistry
graphene sheets (SI), including various odd-membered rings,
during training. Note, however, that the latter are only a small
fraction of the training data: the ring-size distribution in the GO-
Digital Discovery, 2025, 4, 3389–3399 | 3393
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MACE-23 dataset is 1 : 600 for 5 : 6-membered rings. MACE-OFF24
notably outperforms both GO-MACE-23 and MACE-OFF23 for
fullerenes with 42 and 50 atoms. Analysis of the overlap between
atomic environments in the SPICE datasets and the fullerene
set (Fig. S4) shows that this overlap is limited to smaller
fullerenes (<40 atoms for SPICE 1 and <50 atoms for SPICE 2),
suggesting that the strong performance of MACE-OFF24 cannot
be explained solely by training–test similarity. As a further test,
we use GO-MACE-23 and both MACE-OFF24 models to calculate
the vibrational spectra of two fullerenes, C20 and C60, using the
same protocol as for the rM17 and QM7-X molecules (Fig. S5).
We nd that GO-MACE-23 yields good accuracy compared to its
DFT reference, while both MACE-OFF24 models fail to reproduce
the spectrum of C20.

In a recent study, Vyas et al. showed how formaldehyde
(CH2O) can be inserted into a C60 molecule by subsequent
organic reaction steps,55 expanding on existing work on endo-
hedral fullerenes.56,57 In the context of the present work, we
show in Fig. 7 three case studies that have been discussed in the
literature: encapsulated water (written as “H2O@C60”),58

encapsulated methane (“CH4@C60”),59 and encapsulated form-
aldehyde (“CH2O@C60”).55

We use GO-MACE-23 to drive long MD trajectories of the three
species in the NVT ensemble at T = 500 K, for 1 ns with a 0.5 fs
timestep. Such simulations can be challenging test cases,60

especially given the fusion temperature of C60 is estimated to be
Fig. 7 Evolution of energy and force RMSE between GO-MACE-23
predictions and the corresponding DFT level of theory (left column), as
well as between both MACE-OFF variants and their respective DFT levels
of theory (middle and right columns). The errors are calculated from 1
ns trajectories at 500 K for H2O, CH4, and CH2O enclosed in a C60

fullerene. The trajectories are driven by GO-MACE-23.

3394 | Digital Discovery, 2025, 4, 3389–3399
around 550 K.61We re-label snapshots from theseMD trajectories
with GO-MACE-23 and its corresponding DFT method, as well as
MACE-OFF24 and its corresponding DFT method. In Fig. 7, we
show the errors, expressed as absolute error (AE) values for
energies and RMSE for forces. Both MLIPs exhibit similar energy
prediction errors, with GO-MACE-23 performing better for the
larger encapsulated molecules, and MACE-OFF23 for H2O@C60.
However, GO-MACE-23 consistently yields lower force prediction
errors across all of the test cases. This poorer performance of
MACE-OFF23 and MACE-OFF24 may be attributed to the fact that
fullerenes and encapsulatedmolecules are not present within the
two versions of the SPICE training set. Additionally, GO-MACE-23
has encountered small molecules, such as CO and H2O, near GO
surfaces in its training data. Also, it is possible that GO-MACE-23 is
accessing regions of congurational space that would be deemed
unphysical by MACE-OFF24. To test this hypothesis, we run the
same MD trajectories with MACE-OFF23 instead of GO-MACE-23
(SI). Of those simulations, only that for CH2O@C60 failed aer
the rst timestep. We nd that GO-MACE-23 more accurately
reproduces the energies and forces for H2O@C60, whereas MACE-
OFF23 performs better for CH4@C60. These results partially
support the hypothesis that each MLIP explores regions of
congurational space that are less well covered by the other
MLIPs.

In the SI, we show two additional cases of encapsulated
molecules, viz. CO2 and acetaldehyde, the heavier homologue of
CH2O. Acetaldehyde is a challenging test case for GO-MACE-23,
and has most likely not been seen during training (cf. Fig. 1). It
is a thought experiment, of course, for the time being.
Experiments

Beyond the zero-shot performance evaluation so far, we carry
out additional numerical experiments. These explore aspects of
MLIP tting methodology and provide an initial test for
descriptions of gas-phase fragmentation reactions.
Model choice (I): effect of equivariant messages

The MACE architecture underlying GO-MACE-23 incorporates
both invariant hidden features and equivariant hidden features
of rank L = 1. In MACE, max L denotes the maximum degree of
spherical harmonics used in the equivariant message-passing
layers. It controls the complexity of the geometric information
that the model can learn. For example, max L = 0 refers to an
invariant model that can only capture isotropic features, and
values of max L = 0 refer to an equivariant model encoding
vectorial (and tensorial) information. To test the role of the
equivariant features, we trained two modied versions of the
model by varying MACE's internal symmetry rank. Specically,
we trained an invariant model by setting the highest rank of the
internal features to max L = 0, and a higher-order equivariant
model by setting max L = 2. This allows us to explore the
possible correlation between the physical symmetries of an
MLIP and its out-of-domain performance. Despite the fact that
equivariant components can be included in MACE, the forces
are computed by automatic differentiation of the total energy.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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All MACE models are trained with the same protocol as GO-

MACE-23, as detailed in the SI.
In Table 1, we compare the performance ofMACEmodels with

different maximum rank, viz. max L˛{0, 1, 2}. We train each
model on 4 splits of the GO dataset, and compute prediction
errors and uncertainty estimates, as standard deviation over the 4
splits, for all relevant rMD17 and QM7-X molecules. We notice
that the original GO-MACE-23 model (max L = 1) does not
systematically outperform its invariant counterpart (max L = 0).
For example, the invariant model yields better energy predictions
for toluene, aspirin, malonaldehyde, C5H10O2, and C6H8O, as well
as better force predictions for C5H6O2, compared to GO-MACE-23.
A similar trend is observed when comparing energies predicted
by GO-MACE-23 and the max L = 2 MACE model. The force
prediction errors are comparable within their uncertainties.
Regardless of the benchmark reference calculation, we observe
no clear correlation between max L and model performance,
suggesting that equivariance and symmetry preservation play
a limited role in generalisation for these domains. Particularly
notable cases are toluene, C6H10O, and C6H8O, where GO-MACE-

23 is the worst-performing model of the three, in terms of total-
energy prediction.
Model choice (II): other GNN architectures

To further investigate the effect of design choices made for
several popular GNNs on their generalisability, we trained
multiple models on the GO-MACE-23 training dataset, using the
universal interface graph-pes.62 Particularly, we used the
PaiNN,63 TensorNet,64 and NequIP9 architectures. Details about
hyperparameters, training protocol, and validation errors on
the GO-MACE-23 dataset are provided in the SI.

Table 2 shows that GO-MACE-23 as well as re-tted TensorNet
and NequIP models generally yield low RMSE on most mole-
cules considered. For instance, among the architectures in
Table 2, NequIP achieves low energy errors on aspirin and
malonaldehyde, whereas TensorNet performs best for toluene.
Meanwhile, GO-MACE-23 has the lowest errors in force predic-
tions for ethanol and naphthalene. These variations show that
Table 1 Energy and force prediction RMSE as a function of the maximum
trajectories from the rMD17 dataset and randomly selected structures fro
“Malo.” stands for malonaldehyde and “Naphth.” for naphthalene. The lo

max L

Energy RMSE (meV at.−1)

0 1 2

Aspirin 4.6 � 0.4 4.7 � 1.0 3.2 � 0
Ethanol 9.3 � 0.9 8.7 � 1.3 8.8 � 0
Malo. 9.6 � 2.1 10.2 � 3.0 8.4 � 0
Naphth. 2.4 � 1.0 1.3 � 0.5 1.3 � 0
Salicylic 2.5 � 0.6 2.1 � 0.4 2.8 � 0
Toluene 5.9 � 3.3 8.3 � 3.8 4.3 � 1
C6H10O 25.5 � 4.8 29.0 � 3.4 24.3 � 2
C5H8O2 34.3 � 7.6 34.5 � 2.9 34.0 � 5
C6H8O 44.8 � 7.5 56.5 � 14.9 46.3 � 6
C6H12O 29.8 � 12.0 33.7 � 18.1 15.7 � 3
C5H10O2 22.0 � 2.5 24.2 � 3.9 32.4 � 6
C5H6O2 51.6 � 6.2 35.5 � 10.0 40.1 � 7

© 2025 The Author(s). Published by the Royal Society of Chemistry
even closely related equivariant models can extract distinct
mappings from the same data, inuenced by subtle differences
in model design and hyperparameters. We also compute the
vibrational spectra of rMD17 and QM7-X molecules (cf. SI). We
nd that all of these GNNs reproduce the low-frequency spec-
trum with good accuracy, but the accuracy decreases substan-
tially in the high-frequency regime.

These results highlight the importance of the MLIP archi-
tecture in capturing relevant atomistic information and trans-
ferring it beyond the training set. The extrapolation is not trivial
and depends not only on the quality of the training data or the
t but also on the architecture itself. Notably, as shown in the
SI, GO-MACE-23 has the lowest energy validation errors on the
GO dataset, yet NequIP outperforms it for several rMD17
molecules in energy predictions. These results underscore the
need for out-of-domain validation to fully assess model gener-
alisation. Additionally, one could systematically investigate how
the implementation choices of these GNNs, particularly in their
atomic representations, inuence their extrapolation capabil-
ities, thereby enabling an a priori assessment of the perfor-
mance of these MLIPs.39,42,65
Transferability to chemical reactions

The long-term goal of molecular interatomic potentials is to
describe entire reaction mechanisms, rather than just the
reactants and products. MLIPs are increasingly being used to
describe transition states of reactions in vacuum66,67 and in
explicit solvent.7 While GO-MACE-23 will have “seen” various
rearrangements, decarbonylation reactions, etc., during itera-
tive training,20 it has not been explicitly trained on molecular
reaction mechanisms.

We use GO-MACE-23 to run a series of MD trajectories of an
aspirin molecule in a periodic simulation cell of 30 Å length,
using the NVT ensemble at T = 1,500 K. We re-label snapshots
from the trajectories using the DFT reference method of GO-
MACE-23, as well as using both MACE-OFF24 variants and their
DFT reference method. In Fig. 8, we report two reaction path-
ways for the thermally driven decomposition of aspirin in
rank of the equivariant hidden messages in the MACE architecture for
m the QM7-X dataset (100 for each of the 6 given chemical formulae).
west RMSE values for each molecules are highlighted in bold

Force RMSE (eV Å−1)

0 1 2

.6 0.27 � 0.01 0.21 � 0.02 0.19 � 0.01

.5 0.33 � 0.03 0.32 � 0.03 0.27 � 0.02

.7 0.21 � 0.03 0.20 � 0.01 0.17 � 0.01

.3 0.09 � 0.01 0.06 � 0.01 0.07 � 0.01

.9 0.10 � 0.01 0.10 � 0.01 0.09 � 0.00

.7 0.22 � 0.05 0.17 � 0.01 0.15 � 0.02

.4 0.63 � 0.05 0.62 � 0.05 0.50 � 0.06

.2 0.46 � 0.02 0.45 � 0.04 0.38 � 0.04

.7 0.56 � 0.05 0.45 � 0.05 0.43 � 0.06

.8 0.49 � 0.04 0.43 � 0.06 0.33 � 0.04

.2 0.43 � 0.02 0.41 � 0.03 0.36 � 0.02

.0 0.43 � 0.01 0.45 � 0.02 0.41 � 0.05
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Table 2 Energy and force prediction RMSE different GNN architec-
tures trained on the GO dataset, evaluated for structures from the
revised MD17 dataset and QM7-X, as in Table 1. Errors are computed
with respect to the DFT level of theory of the GO dataset. Malo.” stands
for malonaldehyde and ”Naphth.” for naphthalene. The lowest RMSE
values for each molecules are highlighted in bold

Energy RMSE (meV at.−1)

GO-MACE-23 TensorNet NequIP PaiNN

Aspirin 4.7 � 0.6 9.2 � 1.2 4.1 � 0.3 8.2 � 1.0
Ethanol 8.7 � 0.7 23.9 � 4.1 12.3 � 0.5 16.9 � 1.9
Malo. 10.2 � 1.7 21.0 � 5.3 8.7 � 0.8 19.9 � 2.6
Naphth. 1.3 � 0.3 4.9 � 1.1 3.4 � 0.9 10.1 � 1.8
Salicylic 2.1 � 0.2 10.4 � 2.4 3.1 � 0.6 19.4 � 2.5
Toluene 8.3 � 2.2 15.1 � 1.5 8.1 � 1.8 30.5 � 6.4
C6H10O 29.0 � 3.4 179.5 � 162.2 51.4 � 12.8 61.6 � 10.8
C5H8O2 34.5 � 2.9 96.9 � 24.1 34.9 � 4.0 73.8 � 14.1
C6H8O 56.5 � 14.9 146.4 � 20.5 38.9 � 9.0 87.5 � 16.1
C6H12O 33.7 � 18.1 74.5 � 38.7 34.5 � 14.0 76.5 � 13.3
C5H10O2 24.2 � 3.9 97.8 � 46.2 44.1 � 7.7 86.6 � 7.3
C5H6O2 35.5 � 10.0 143.5 � 38.8 40.9 � 3.0 98.5 � 16.6

Force RMSE (eV Å−1)

GO-MACE-23 TensorNet NequIP PaiNN

Aspirin 0.21 � 0.03 0.43 � 0.09 0.24 � 0.04 0.50 � 0.12
Ethanol 0.32 � 0.05 0.69 � 0.24 0.39 � 0.02 0.66 � 0.13
Malo. 0.20 � 0.02 0.52 � 0.11 0.24 � 0.03 0.46 � 0.04
Naphth. 0.06 � 0.01 0.21 � 0.07 0.10 � 0.02 0.30 � 0.05
Salicylic 0.10 � 0.01 0.26 � 0.08 0.12 � 0.01 0.36 � 0.08
Toluene 0.17 � 0.03 0.39 � 0.12 0.20 � 0.03 0.46 � 0.13
C6H10O 0.62 � 0.05 1.14 � 0.12 0.70 � 0.08 1.28 � 0.09
C5H8O2 0.45 � 0.04 0.91 � 0.16 0.52 � 0.04 0.94 � 0.05
C6H8O 0.45 � 0.05 0.93 � 0.18 0.56 � 0.06 0.96 � 0.10
C6H12O 0.43 � 0.06 0.93 � 0.19 0.53 � 0.10 1.08 � 0.07
C5H10O2 0.41 � 0.03 0.87 � 0.19 0.45 � 0.02 0.91 � 0.05
C5H6O2 0.45 � 0.02 0.93 � 0.18 0.47 � 0.04 1.00 � 0.08 Fig. 8 Energy profiles of two exemplary high-temperature molecular-

dynamics simulations computed with GO-MACE-23, MACE-OFF23, MACE-
OFF24, and their respective QM references. The MD trajectories are
driven by GO-MACE-23 and maintained at 1500 K. The first panel
describes a reaction pathway to produce salicylic acid and ketene
(H2CCO) from aspirin. The third panel describes the decomposition of
aspirin through a series of decarbonylations and decarboxylations to
produce o-cresol. The second and fourth panels describe the differ-
ence between energies computed with ML and QM, for the first and
second reactions, respectively, and expressed per atom.
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vacuum into radical species which then recombine forming
different molecules.

The upper panels of Fig. 8 depict the formation of reactive
ketene and salicylic acid, a process involving the breaking of an
ester bond. The reverse reaction was rst described in ref. 68.
Both GO-MACE-23 and the MACE-OFF24 variants accurately capture
the energetics of the reactants and products. However, they
signicantly underestimate the energy of the intermediates.
Despite this underestimation, the predicted average energy of the
intermediates remains higher than that of the more stable
reactants or products. In addition, these MLIPs were not able to
reproduce the energy of the isolated radicals. We note that proper
treatment of radicals requires open-shell methods, e.g. coupled-
cluster theory,69,70 or multireference approaches such as
CASSCF,71–74 particularly for modelling processes like cis-to trans-
isomerisations. Stocker et al.75 have previously discussed the
limitations of MLIPs in accurately describing chemical reactions
when radicals are not incorporated in the training data.

The lower panels of Fig. 8 illustrate the formation of an o-cresol
molecule through a series of decarboxylation and decarbonylation
steps. This reaction pathway shares the rst set of radicals with
3396 | Digital Discovery, 2025, 4, 3389–3399
the upper panel, with similar geometries, before developing into
a different pathway. As with the previous pathway, all tested
MLIPs underestimate the energy of the intermediate steps. The
twomodels from the MACE-OFF24 family in particular overestimate
the energy of the product system.

Furthermore, we test an earlier model version from the
iterative training of GO-MACE-23: this version, denoted “iter-8”

in ref. 20, was not trained on edge structures. We nd that
GO-MACE-23 outperforms its simpler counterpart, especially in
describing radicals and the products (SI). This indicates that
some of the edge structures—with different chemical func-
tionalisation—included in later iterations have likely contrib-
uted some information relevant to gas-phase molecular
reactions to the GO-MACE-23 training data.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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We emphasise that the present case study is not aimed at
fully assessing performance in reaction modelling—but rather
as a challenging test that deliberately takes the MLIP models
away from their training domains. These (very-) high-
temperature MD trajectories are not guaranteed to nd the
overall most favourable pathway, and yet they end in chemically
sensible molecules. Following these trajectories as explored by
the MLIPs themselves, we probe the potential-energy landscape
for a range of congurations different from those in the rMD17
and QM7-X sets. This test completes our series of progressively
more challenging “zero-shot” evaluations of GO-MACE-23

outside of its domain of training.

Conclusions

Located at the interface of materials and molecular modelling,
graphene oxide offers an opportunity to connect these different
domains of atomistic machine learning. In the present work, we
have systematically assessed the zero-shot transferability of GO-
MACE-23, an MLIP trained on data for GO, across relevant
chemical benchmarks. We found good—perhaps surprisingly
good—zero-shot performance compared to MACE-OFF24 a pre-
trained model for molecular chemistry. The accuracy of both
models decreases when describing reaction pathways, espe-
cially when radical species are involved.

Our study has tested the behaviour of recently proposed GNN
MLIP models and their transferability, and we think that it can
have implications for the future development of “foundational”
models for atomistic simulations. Our results emphasise that
including chemical reactivity in the training data is important
in nding reaction pathways: in the process of building the GO-
MACE-23 model,20 we have sampled this reactivity in high-
temperature MD simulations, and a similar approaches have
been taken, e.g., for the bulk carbon–hydrogen76 and carbon–
oxygen systems,77 as well as organic reactions in the condensed
phase.78 We think that local-environment diversity will be as
important as the chemical space coverage (e.g., the number of
chemical species) in dening future foundational models—this
might include the addition of radical species (cf. Fig. 8) to the
training data, either through very-high-temperature MD explo-
ration or perhaps by explicitly involving “broken” bonds in the
training protocol. Steps in this direction have been reported
very recently.79

Despite its limitation to the three elements C, H, and O, the
GO-MACE-23 model seems to provide a suitable starting point to
study a wider range of chemistry-related questions than it was
initially intended for, and we view this as a highly encouraging
nding. We believe that together with improved data-
generation strategies22 as well as suitable workows and auto-
mation approaches,80–83 truly universal MLIPs for molecular
systems, and for extended material structures built up from
them, are coming within reach.
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