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Taskblaster: A generic framework for automated computational workflows

Ask Hjorth Larsen, Mikael J. Kuisma, Tara M. Boland, Fredrik A. Nilsson, and Kristian S. Thygesen
CAMD, Computational Atomic-Scale Materials Design, Department of Physics,

Technical University of Denmark, 2800, Kgs. Lyngby, Denmark

We introduce Taskblaster, a generic and lightweight Python framework for composing, execut-
ing, and managing computational workflows with automated error handling. Taskblaster supports
dynamic workflows including flow control using branches and iteration, making the system Turing
complete. Taskblaster aims to promote modular designs, where workflows are composed of reusable
sub-workflows, and to simplify data maintenance as projects evolve and change. We discuss the main
design elements including workflow syntax, a storage model based on intuitively named tasks in a
nested directory tree, and command-line tools to automate and control the execution of the tasks.
Tasks are executed by worker processes that may run directly in a terminal or be submitted using
a queueing system, allowing for task-specific resource control. We provide a library (ASR-lib) of
workflows for common materials simulations employing the Atomic Simulation Environment and the
GPAW electronic structure code, but Taskblaster can equally well be used with other computational
codes.

I. INTRODUCTION

In the forthcoming era of exascale computing, software
tools to control and automate workflows will become in-
dispensable for exploiting the computational resources ef-
fectively and harnessing the potential of big data science.
Within the fields of computational chemistry and materi-
als science, high-throughput computations are used more
and more to identify optimal molecules or materials for
different applications.1–16 The results of such studies are
often stored in open databases17–28 to facilitate sharing
and reuse of the data, not least for data analytics and
machine learning purposes.29–38 For such an approach to
be viable and successful, it is not only important to be
able to efficiently execute many interdependent compu-
tational tasks with varying resource demands. One must
also keep track of a sufficient amount of metadata to be
able to track data provenance and allow the project’s
results to be reproduced and maintained over time.

On modern hardware, it is possible to create immense
amounts of computational data in a short time. As
a computational project progresses, both code and pa-
rameters will change: New computations must be done,
code needs adaptation to support additional parameters,
or underlying computational tools change. Many such
changes cause computed results to be outdated with re-
spect to the project code, and thus either the code must
be updated or results must be patched or recomputed.
Rather than computation time, the bottleneck quickly
becomes the ability of researchers to maintain the gener-
ated data.

Here, we introduce Taskblaster – a Python framework
executing computational workflows. Taskblaster (TB)
workflows are defined using Python code. The workflow
code defines a number of tasks, where each task encodes
a future call to a Python function with particular inputs.
Executing the workflow generates tasks and associated
metadata as nodes of a directed acyclic graph (DAG)
whose edges are the dependencies. Tasks can then be
inspected or manipulated before configuring and launch-

ing parallel worker processes to run them. TB workflows
support the use of branching, iteration, and dynamical
generation of tasks, i.e., generation of tasks depending
dynamically on the outcome of other tasks.

Projects can customise certain behaviours using a
plug-in mechanism. Most importantly, this includes how
TB integrates with a parallel Python environment and
how custom datatypes are encoded when saving inputs
and outputs.

TB adds to a growing set of workflow management
tools39 of which some originate from the materials science
community.20,40–49 These tools differ in many aspects in-
cluding data storage and representation (e.g. database
servers versus local files), protocols used for determining
data equivalence/conflicts (e.g. should a piece of calcu-
lated data be recalculated or is it consistent with the
current inputs?), the type of logic operations supported,
the handling of dynamic tasks, the way in which the re-
sources are allocated on the compute system, and the
way computational tasks are submitted.

Given the pivotal role that (big) data will be playing in
the future, the importance of workflow control software
cannot be understated and their continued development
should be a priority alongside conventional simulation
codes. In this regard, a heterogeneous set of workflow
codes can lead to cross-fertilization and help identifying
the most promising concepts and approaches.

Over the next sections we will discuss different aspects
of Taskblaster and finally highlight features that we nev-
ertheless believe to be special. The article is structured
as follows: Section II explains the overall design goals of
TB. Section III describes features of TB in detail: Tasks,
static and dynamic workflows, data storage, configurable
worker processes, input validation, and error handling.
Section IV describes ASR-lib, a library of TB workflows
for atomistic high-throughput projects. Section V high-
lights specific notable features. Section VI is a brief con-
clusion.
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II. WHY TASKBLASTER?

A computational project often starts with a single cal-
culation in a single directory. The researcher adapts
parameters and copies the input to a new directory to
perform a related calculation. Additional copies appear
as the project progresses. PhD students and postdocs
develop collections of scripts to deal with the universal
problem of how to adapt and make new calculations in
this particular computational project, often with the abil-
ity to copy large numbers of files into intricate directory
structures.

After the project, there will be an immense collection
of scripts and utilities along with associated output data
tailored to that specific project. Some data may be subtly
outdated due to the gradual evolution of the code. In
spite of high-quality publications, it may not be clear
how to reproduce the results, even if both data and code
still exist. Finally, the process for reproducing the data,
should someone attempt to do so, is likely dependent
on many manual steps since the original project evolved
manually as well.

For a small project, that may not be an issue. How-
ever, projects with large valuable datasets are likely in-
tended to be maintained and extended with new compu-
tations in the long term. Such projects will see genera-
tions of PhD students and postdocs making extensions
and adaptations, and this requires a much higher stan-
dard for structure, transparency and documentation.

The goal of TB is to solve the problems described
above. To that end, TB is designed to:

� Organize the project intuitively as a directory tree
of meaningfully named tasks and workflows

� Abstract the passage of data and files between tasks
to avoid excessive coupling to filesystem paths or
machine specific information

� Work with large selections of tasks and achieve a
high level of automation

� Keep track of the task dependency tree in a way
that makes it easy to see if any tasks are outdated
with respect to the workflows that generated them.

Another goal of TB is to be easy to use. New projects
should be easy enough to set up that researchers will not
feel the temptation to develop large collections of custom
project scripts, as discussed earlier. Furthermore, TB is
a lightweight utility which requires no database services,
network connections, or monitoring daemon processes,
and works much the same whether on a laptop or a su-
percomputer.

However, there are also trade-offs: The desire to for-
mally keep track of dependencies somewhat restricts the
freedom to perform arbitrary processing inside work-
flows, since TB must be able to see any information
passed between tasks in order to build the dependency

tree and guarantee consistency. Hence, special con-
structs are needed for advanced workflow-level control
flow, which otherwise might have been “ordinary” for-
loops and if-statements.

III. CONCEPTS AND FEATURES

The typical way to use TB for a computational project
is to connect via ssh to a supercomputer’s login node and
use the command-line interface while occasionally editing
workflows or adding tasks. When starting a project, the
first step is to initialise a repository. A repository is a
directory on the disk with data related to the project.
All data is kept as files inside this repository.

The next step is to define a main workflow. In prin-
ciple, the main workflow defines every computation that
will happen; in practice, it is gradually written as the
project progresses. The main workflow can specify tasks,
which are individual computations, and it can call other
workflows, or subworkflows, which may likewise specify
tasks and further subworkflows. A workflow also con-
nects outputs from tasks to inputs of other tasks, defining
the DAG.

Tasks and workflows are always assigned names. When
subworkflows are nested, names are likewise nested.
If a workflow named A defines a subworkflow, B,
which defines a task, C, then the final name of that
task will be A/B/C, and its files will be stored in
<root>/tree/A/B/C/, where <root> is the root direc-
tory of the repository. The name of a task is therefore a
global identifier for that task.

Operations on a repository are generally carried out
using the TB command-line utilities. Examples are tb
workflow to run a workflow, tb ls to list tasks, and tb
run to run tasks. Most commands take a list of task
names as input. This can include shell wildcards (glob
patterns) which make it easy to run operations on large
selections of tasks. Once tasks are generated by a work-
flow, they can be run on the command-line or submitted
via myqueue43 to an HPC job manager such as Slurm50

or Torque.51 TB runs tasks from worker processes that
can be configured to pick up specific sets of tasks depend-
ing on the resources required. Once tasks run, they may
succeed or fail, and workers keep picking up new tasks as
long as there is time and there are available tasks that
they are compatible with.

TB provides commands to remove tasks or “unrun”
them. Removing a task deletes all its associated data
and removes it from the DAG, whereas unrunning it only
removes its output so that it can run again. Such com-
mands work recursively on the dependency tree affecting
all dependent tasks in topological order. Daily work of-
ten involves testing and revision of task implementations
using many run/unrun cycles.

Furthermore, TB provides commands to list or view
tasks in different levels of detail, to submit or manipulate
workers, and to invoke actions that visualise or export
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User
command

Automatic
update

by worker
New

(Task does not exist)

  remove

Queue

submit

Run

 run

workflow  

Partial

Done Fail

 unrun   unrun

FIG. 1: Most important commands (arrows) and how
they affect the state of a task (ellipses). The workflow
command generates a new task which the user can later
submit, run, unrun, etc. Dashed arrows indicate that an

update happens automatically as opposed to being
controlled directly by the user.

data.

A. Tasks

In TB, a task represents the fundamental unit of com-
putation within a workflow. Each task corresponds to a
Python function and associated input specification, ide-
ally in order to perform a single computational operation.
The key constraint imposed on a TB task is that both
the input and output must be serializable, i.e., possible to
store. This requirement ensures that tasks can be stored
on the disk and later retrieved when a worker acquires
the task.

The inputs of a task can be either specific objects such
as numbers or arrays, or abstract references to the out-
puts of other tasks, or any nested structure (lists and
dictionaries for example) involving both. Representing
the input as a reference to a future output allows TB to
construct large parts of the dependency tree without ex-
ecuting the tasks. The tree can thus be freely visualized
and inspected, and the user can later choose to run tasks
one at a time or in arbitrary groups. TB will automati-
cally ensure that they run in topological order following
the DAG. For example, if the user tries to run task B
that depends on task A that has not yet been run, TB
will first run task A before running task B.

Once tasks are generated by a workflow, they can be
manipulated using the command-line interface. A newly
generated task starts in the New state, which means it
is eligible to run once all its inputs are available. Is-
suing a tb run command will change its state to Run,
after which it may change to Done or Fail depending on

success. Figure 1 shows the most important task states
and how tasks transition between them via commands.
Tasks can also go into a Partial state in connection with
error handling, or a Queue state to signify that it may
be picked up by a worker.

Some tasks may require runtime information about
the machine or parallelization that is neither a global
constant nor a proper input parameter. TB provides a
Python decorator to inject such information into tasks
without affecting (and hence invalidating upon change)
the stored input. This includes MPI communicators and
hardware flags such as whether to use a GPU. In addi-
tion, TB provides syntax and command-line tools to tag
tasks according to which computational resources they
need.

Tasks can be equipped with error handlers that can
run in multiple stages. The special Partial state is used
when a task did not succeed, but may yet succeed if it
has error handlers that did not run yet, and might recover
from the failure.

B. Static workflow constructs

Workflows are prescriptions for generating tasks and
subworkflows, and they are defined using a number of
different syntactic constructs. The simplest construct is
the statically defined task: Running the workflow pro-
duces that task, but each such task must be hardcoded
on that workflow. Similarly, a subworkflow is a static
declaration to run another workflow as part of this one.

Figure 2a shows an example of how a static workflow
is defined using Python syntax. The workflow is a class;
each task is a decorated method to return a node for
the DAG on Figure 2b. The @task decorator can be
used to specify rules for computational resources and er-
ror handling. Note how the workflow specifies the rout-
ing between tasks, i.e., which outputs from which tasks
to connect to which inputs of others. The inputs must
match the call signature of the target function: The re-
laxation job implies that there is a function named relax
which takes an input named atoms. These inputs need
not exist yet when the workflow runs; instead, entities
like self.atoms or self.symmetry are future references
which specify that the parameter is to be loaded and
passed to the target function when a task runs. Addition-
ally, the syntax supports indexing, attribute access, and
method calls into the outputs of other tasks. For exam-
ple, the expression self.symmetry.bandpath(n=240)
under the bandstructure specification does not actually
perform a function call, but rather saves an encoded rep-
resentation of that call so that it can be evaluated when
the corresponding task runs.

Running the workflow builds the tree of tasks. Fig-
ure 2c shows a screenshot produced by the tb ls com-
mand listing the state of tasks, their dependencies
(done/total), requested resources, and location in the di-
rectory tree.
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(a) (b)

name:   relaxation
target: relax(…)
state:  done

name:   symmetry
target: analyse_symmetry(…)
state:  run

name:   properties/groundstate
target: gs(…)
state:  done

name:   properties/bandstructure
target: bs(…)
state:  new

name:   properties/gw
target: gw(…)
state:  fail

(c)

FIG. 2: (a) Workflow with two tasks and a subworkflow with a further three tasks. This example is based on real
computational workflows, but with complexity and number of parameters greatly reduced. tb.var() defines input

variables for the workflows. Each tb.node() call is a specification of a node to the DAG whereas the tb.task
decorator equips it with metadata such as tags. Full examples including how to initialize the repository and

workflow can be found in the documentation.52 (b) DAG generated by the workflow and visualised using the tb
graph command. At the workflow level, passing a task such as self.relaxation to tb.node() creates a

dependency. Hence the symmetry task will depend on the relaxation task. Running the workflow adds (or updates)
its tasks to the tree (c) from which they can be further processed. The tree is visualised with the tb ls command,

where some of the tasks already ran. The “info” column shows number of done/total dependencies of each task: The
bandstructure job is waiting for the symmetry job to finish. Note how the names of the methods in the workflow

class determine the directory nesting, and how the “properties” subworkflow creates an additional nested directory
for its tasks.

The workflow syntax bears similarities to the Workflow
Definition Language OpenWDL53,54 in terms of subwork-
flows as well as routing of inputs and outputs. The TB
syntax, being written in Python, provides convenience
for projects that are written in Python and can simplify
object serialisation.

C. Dynamical workflow constructs

Support for dynamical workflows, that is, workflows
in which the number or type of tasks are decided dy-
namically depending on calculated data, rather than
being coded statically, is provided through additional
constructs that can be categorized as “one-to-many”
(parametrisation), “many-to-one” (collection), and con-
ditional branching. Figure 3 shows an example of how
these can be used in a full workflow.
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(a)

Generator

Parametrize

P1

Subworkflow

P2 PN

Start

…

C1

Collect

…

C2

… …

CN

…

(b)

Subworkflow

If While

…

Pi

…

A

B W1

Ci

T

true   

F

   false

D

⋮

WN

FIG. 3: Example of a full workflow illustrating multiple features. Ellipses represent tasks. (a) Top-level workflow
which uses a Generator to dynamically parametrize over an input dataset, applies a subworkflow on each element

P1. . . PN , and collects results C1. . . CN . (b) An example of a subworkflow which includes statically defined tasks as
well as an If-statement and a While-loop producing tasks W1. . . WN . Dashed lines within the If-statement indicate

that only one of the two tasks T or F is created. A, B and D are arbitrary static tasks.

1. Parametrization and collection

To apply a workflow to many elements in a dataset of
variable size, one can use a Generator. A Generator is
a construct which, as it runs, has access to the physical
output of its input tasks and may generate any number of
workflows or tasks using that. Figure 3a shows a typical
workflow in materials physics which starts with an input
database of crystal structures and uses a Generator to ap-
ply a materials workflow to each. Since Generators are
dynamic, a workflow cannot directly add new tasks that
depend on tasks from Generators: It is not known stati-
cally how many tasks there will be or what their names
will be. Instead, the Generator can be equipped with
fixed points, which are special tasks that can access all or
some of the generated tasks according to a rule, for exam-
ple, all resulting materials with Fe in them. The calling
workflow then uses the fixed points to access groups of
tasks within the generator and pass them on to other
tasks or subworkflows outside it. On Figure 3a, the Col-
lect task involves a fixed point assembling information
from each subworkflow.

2. Control flow

Figure 3b highlights one of the subworkflows presented
on Figure 3a. It shows two distinct conditional con-
structs, namely branching with an if-statement and a
while loop. A key concept in understanding TB work-
flows is the distinction between the control flow and the
DAG. The control flow is a sequence of processing steps
which allows loops and branches. The control flow can
be understood as a possibly cyclic directed graph, and
different DAGs can be generated by different executions
of the control flow depending on concrete input data. To
illustrate this point further, we show these two represen-
tations on Figure 4. Figure 4a represents the workflow
which will generate the DAG shown on Figure 4b. Each
arrow on Figure 4a corresponds to one or many arrows
on Figure 4b. In contrast to static routings, where each
task has hardcoded dependencies, with branching, the
routings need to be dynamic. For example, in Figure 4a
the input to the iterate task comes either from the initial
task, labelled “�”, or from the iterate task itself, depend-
ing on whether control flow is at the first iteration or
not. On the other hand, once the DAG (Figure 4b) is
constructed, it remains constant, indicating the final de-
pendencies of each task.
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(a)

•

iterate

done?

•

no

 yes

(b)

•

iteration 1

done? no

iteration 2

done? no

iteration 3

done? yes

•

FIG. 4: (a) Control flow for a “do-while” loop workflow.
The iterate task directly connects to itself since one
iteration’s input is the previous iteration’s output,

whereas the decision of whether to terminate the loop is
done by a separate task. The initial and final tasks,

labelled “�”, can be static. Other tasks and workflows
can be defined that depend on those even though the

loop did not run yet. (b) Example of DAG generated by
running the loop.

D. Data storage

Running a workflow results in the creation of tasks
that have yet to run. The tasks are stored in a SQLite
database called the registry. The information stored
is the import path of the function to be called along
with an input specification which can contain any JSON-
encodable object including a reference to another task.
TB builds the dependency tree by inspecting these in-
puts and saves all the metadata in the registry for effi-
cient retrieval.

Once a task runs, it is assigned a directory on the disk
where its outputs are stored along with its input spec-
ification as JSON. This provides a level of redundancy
which allows the registry to be reconstructed in case of
corruption due to power outages, bugs, or user errors.
Tasks may also leave arbitrary files in their directory,
which is useful for storing larger outputs from computa-
tions that it would be inefficient to encode using JSON,

or which are not useful to represent directly as Python
objects. Tasks can return path objects pointing to files
they generated in order for other tasks to access those
paths via their input. TB takes care of storing these
paths in a way that is robust with respect to moving
a repository. TB automatically ensures that the path
points to the correct location when used in subsequent
tasks, although they run in a different directory.

To save and load Python objects, TB must be able
to serialize those objects. TB itself supports only basic
objects. A custom JSON encoder can be specified via
a plug-in: The TB repository is configured to point to a
special plug-in module which can specify a custom JSON
encoder. For example ASR-lib uses this to integrate with
the ASE encoder and hence supports commonly used ob-
jects including numpy arrays and ASE Atoms objects.
Custom classes written by a user can also be supported
by adding an encoding hook.

E. Workers and resources

The simplest way to run a task is to issue a tb run
command specifying one or more tasks or directories
with tasks. This launches a worker to run the selected
tasks. The worker automatically resolves each task’s de-
pendency tree and executes, to the extent possible, all
required tasks in topological order.

The user can configure multiple kinds of workers in
a special configuration file. This facilitates specification
of computational resources and encompasses number of
cores, Slurm partition, walltime, and more. Multiple con-
figured workers can then be submitted simultaneously
and with a single command. Submitting a worker is, in
principle, no different from submitting a tb run com-
mand with specific settings. TB submits workers via
myqueue.43

Tasks and workers can be equipped with configurable
resource tags, like the relaxation task on Figure 2a which
has the long tag. Workers only pick up tasks with match-
ing tags. For example, there can be one kind of worker
intended for lightweight processing, another worker for
heavy computations, and a third worker for computa-
tions that require particular hardware such as a GPU.
Multiple “subworkers” can be configured to run inside a
single HPC job. Doing so can allow better sharing of re-
sources when tasks require fewer resources than a whole
node.

F. Changing and validating inputs

A user rarely knows the best computation parameters
at the beginning of a project. A large amount of trial
and error is often necessary to establish good parameters
before scaling a project to large datasets. In TB, such
trial and error would normally be done by successively
unrunning and rerunning tasks. However, later on, once
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large amounts of production data exists, it could be ex-
pensive to rerun tasks any time anything changes. Also,
some changes–such as minor tweaking of computational
settings or refactoring of input parameter to tasks–do not
always warrant unrunning and rerunning the task since
the changes do not affect the end result.

To handle situations such as these, TB alerts the user
to “conflicts” when the input data changes in the work-
flow. When changing a parameter, a user would adapt
the workflow and then rerun it. This generates all the
same tasks that already exist, but TB detects that an in-
put has changed. The affected tasks will then be marked
as conflicted, which “freezes” them along with every task
that depends on them, preventing those tasks from run-
ning. The user must either unrun them or mark the con-
flicts as “resolved” in order to unfreeze the frozen tasks,
indicating that the conflict does not affect data integrity.
A resolved conflict is simply a way to tell the workflow
that the task’s results are to be kept as they are even
though the inputs are different. Both original and new
(conflicting) inputs are saved. TB can also show a diff
highlighting the specific changes in input parameters.

G. Error handling

Numerical simulations often fail in ways that cannot
be predicted before the computations run. Structure op-
timizations may not converge due to inaccurate forces or
bad conditioning, DFT calculations may not converge,
any simulation may run out of memory. Across very large
datasets, any error, no matter how improbable, may arise
due simply to the number of systems and diversity of in-
puts.

TB provides a system, the warden, for solving this
problem. If a task fails, the user can implement an er-
ror handler and modify the workflow to equip the task
with the handler. The handler can execute any code
to recover from the error. Often this means rerunning
the target function of the task with modified inputs or
using a checkpoint. Other tasks of the same type will
automatically have the error handler as well. Multiple
such handlers can execute in succession or in response
to different errors, interacting with the warden using a
particular programming interface.

Overall, the execution of error handlers is considered
part of a task (as opposed to being represented as a
succession of different tasks) and corresponds closely to
typical “try/except” exception handling as supported in
modern programming languages. Error handlers do not
change the task inputs as stored, as that would cause
a conflict. Instead, they have access to call the target
function with a modified set of inputs after the original
function fails.

IV. ASR-LIB

The Atomic Simulation Recipes Library (ASR-lib) is
a library of TB workflows for materials and molecular
simulations. Atomistic computational backends, such
as density functional theory (DFT) codes or (machine
learning) interatomic potentials, can be called via the
Calculator interface of the Atomic Simulation Environ-
ment (ASE).55 ASR-lib and TB serve as a more scalable
and reusable replacement for the previous ASR project56

which encompasses a simulation code library as well as
workflow management features for legacy projects.

The workflows in ASR-lib are written in a general style
and can be used for any type of material, independent
of dimensionality and composition. Consequently, the
workflows in ASR-lib can be used as initial templates
when producing more project specific workflows. Cur-
rently, ASR-lib contains workflows for many different
operations/calculations, and is continuously being devel-
oped. Most of these employ the GPAW57,58 electronic
structure code as a calculator, but it is straightforward
to generalise to other types of calculators as long as they
have a Python interface, e.g. via ASE. Below, we men-
tion a few examples of workflows in ASR-lib, highlighting
features that are enabled by TB.

For example, the GW and Phonon workflows utilize
generators to generate q-point and displacement paral-
lelisations at the task level. The structure relaxation
workflow contains several branches and a while loop re-
lated to searching for the lowest energy magnetic config-
uration. The crystal defect workflows can dynamically
generate various types of point defects using a generator
and subsequently proceed with nested generators to clas-
sify their properties (formation energy, charge transition
levels, etc.) by means of DFT calculations. ASR-lib also
contains examples of large-scale data processing of exist-
ing trees, like evaluation of the energy above the convex
hull. These so-called “from tree” methods can be used to
collect data from TB repositories, perform analysis, and
spawn projects with a new focus.

ASR-lib is currently used in a number of ongoing high-
throughput projects related to 2D materials and point
defects. In addition to ASR-lib, TB has also been in-
dependently used for workflows based on the FHI-Aims
code.59

V. CHARACTERISTIC FEATURES

TB is written in Python and released under the GNU
General Public License, version 3 or later. Its only soft-
ware requirement aside from the Python standard library
is the lightweight click package for command-line inter-
face support. In practice, TB will normally be used to-
gether with myqueue and an HPC queueing system like
Slurm50 or Torque.51 Code and documentation are avail-
able online.60,61

Other distinguishing features of TB are:
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� Low infrastructure requirements: TB runs in any
Python environment and does not require persis-
tent network connections or database processes.

� Intuitive data storage: Workflows and tasks are or-
ganised in a directory tree where nested subdirec-
tories serve as namespaces.

� Automatic I/O: TB automates the loading and sav-
ing of Python objects as inputs and outputs and
works to reduce filesystem path clutter throughout
the code.

� General purpose: TB is a generic workflow tool
and is not linked to any domain-specific simulation
software.

� Plug-ins: Users can facilitate work with domain-
specific simulation software by writing a plug-in as
in the case of ASR-lib.

� Configurable computational resources: Tasks are
executed by configurable worker processes, where
each worker process can run any set of tasks. The
logical division of a workflow into tasks is indepen-
dent of the number or type of actual HPC jobs
that run the tasks. Additionally, machine-specific
configuration can be kept separate from the main
project code.

In general, the top-level workflow encodes every com-
putation that is going to happen. The command-line
interface cannot itself add computations or change any
result. It only provides a way for the user to choose what,
when, and how to run. When running a workflow, TB
eagerly adds as many tasks as possible to the DAG with-
out executing any of them. This allows the user to “see
into the future” and better assess the required resources,
or to experiment with a subset of tasks using the char-
acteristic “run/unrun” pattern. TB can generate parts
of the DAG that depend on a dynamical workflow, even
though the workflow did not run yet. This is possible
because TB can use fixed-point tasks on the dynamic

workflow to infer the existence of subsequent tasks. The
fragments are then connected to a final DAG once the
dynamical workflow runs.

VI. CONCLUSION

We have described the most important concepts in
Taskblaster, how tasks are generated and organised, and
how to run calculations.

TB aims to bridge the gap from small to large projects:
It can act as a simple tool to automate processing steps
locally on a laptop, or used in large projects that needs to
scale and adapt over time. Major design features of TB
are: Intuitive organisation of data using a directory tree,
a usage model which minimises infrastructure require-
ments by emphasising local data storage and interactive
work in a terminal, avoiding the need for heavy-weight
database connections, while keeping a strict representa-
tion of task dependencies as a persistent DAG.

We have found that this combination facilitates an effi-
cient “unrun/rerun”-based approach to practical exper-
imentation, which is often required in the development
phase of new computational projects.

Most core design elements of TB are unlikely to change
in their main structure, so future TB development will
increasingly focus on smaller improvements to user expe-
rience, helper functionality for data migration and other
tools that prove useful as the projects using TB mature
further.
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C. Schäfer, E. Ö. Jónsson et al., The Journal of Chem-
ical Physics, 2024, 160, 092503.

58 J. E. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen,
M. Du lak, L. Ferrighi, J. Gavnholt, C. Glinsvad,
V. Haikola, H. Hansen et al., Journal of Physics: Con-
densed Matter, 2010, 22, 253202.
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The paper presents the Taskblaster project.

1. Taskblaster code and version history are publically available.

   The contents of the manuscript correspond to taskblaster-0.2.

   

   The release source code can be found on zenodo:

     https://doi.org/10.5281/zenodo.16363818

   The release is available on pypi:

     https://pypi.org/project/taskblaster/0.2/   

   The source code can be found on the Gitlab repository:

     https://gitlab.com/taskblaster/taskblaster/

   The taskblaster-0.2 release corresponds to the git commit:

     eadbf847f60d5474d7bc4957be941c40846f7ac0 (tag: 0.2)

2. The manuscript refers to ASR-lib without directly presenting any specific data from 
the project.  However the code is publically available on Gitlab as well:

   https://gitlab.com/asr-dev/asr-lib

There is no further code or data associated with the published work.
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