Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: Digital Discovery, 2025, 4,
2512

Received 10th March 2025
Accepted 25th July 2025

DOI: 10.1039/d5dd00097a

Taskblaster: a generic framework for automated
computational workflows

Ask Hjorth Larsen, ©* Mikael J. Kuisma, & * Tara M. Boland, © Fredrik A. Nilsson ®
and Kristian S. Thygesen@

We introduce Taskblaster, a generic and lightweight Python framework for composing, executing, and
managing computational workflows with automated error handling. Taskblaster supports dynamic
workflows including flow control using branches and iteration, making the system Turing complete.
Taskblaster aims to promote modular designs, where workflows are composed of reusable sub-
workflows, and to simplify data maintenance as projects evolve and change. We discuss the main design
elements including workflow syntax, a storage model based on intuitively named tasks in a nested
directory tree, and command-line tools to automate and control the execution of the tasks. Tasks are
executed by worker processes that may run directly in a terminal or be submitted using a queueing
system, allowing for task-specific resource control. We provide a library (ASR-lib) of workflows for
common materials simulations employing the Atomic Simulation Environment and the GPAW electronic

rsc.li/digitaldiscovery

1. Introduction

In the forthcoming era of exascale computing, software tools to
control and automate workflows will become indispensable for
exploiting the computational resources effectively and har-
nessing the potential of big data science. Within the fields of
computational chemistry and materials science, high-
throughput computations are used more and more to identify
optimal molecules or materials for different applications.*™*®
The results of such studies are often stored in open
databases'* to facilitate sharing and reuse of the data, not
least for data analytics and machine learning purposes.**=* For
such an approach to be viable and successful, it is not only
important to be able to efficiently execute many interdependent
computational tasks with varying resource demands. One must
also keep track of a sufficient amount of metadata to be able to
track data provenance and allow the project's results to be
reproduced and maintained over time.

On modern hardware, it is possible to create immense
amounts of computational data in a short time. As a computa-
tional project progresses, both code and parameters will
change: new computations must be done, code needs adapta-
tion to support additional parameters, or underlying compu-
tational tools change. Many such changes cause computed
results to be outdated with respect to the project code, and thus
either the code must be updated or results must be patched or

CAMD, Computational Atomic-Scale Materials Design, Department of Physics,
Technical University of Denmark, Kgs. Lyngby, 2800, Denmark. E-mail: asklarsen@
gmail.com

2512 | Digital Discovery, 2025, 4, 2512-2520

structure code, but Taskblaster can equally well be used with other computational codes.

recomputed. Rather than computation time, the bottleneck
quickly becomes the ability of researchers to maintain the
generated data.

Here, we introduce Taskblaster — a Python framework
executing computational workflows. Taskblaster (TB) workflows
are defined using Python code. The workflow code defines
a number of tasks, where each task encodes a future call to
a Python function with particular inputs. Executing the work-
flow generates tasks and associated metadata as nodes of
a directed acyclic graph (DAG) whose edges are the dependen-
cies. Tasks can then be inspected or manipulated before
configuring and launching parallel worker processes to run
them. TB workflows support the use of branching, iteration, and
dynamical generation of tasks, i.e., generation of tasks
depending dynamically on the outcome of other tasks.

Projects can customise certain behaviours using a plug-in
mechanism. Most importantly, this includes how TB inte-
grates with a parallel Python environment and how custom
datatypes are encoded when saving inputs and outputs.

TB adds to a growing set of workflow management tools* of
which some originate from the materials science
community.”****° These tools differ in many aspects including
data storage and representation (e.g. database servers versus
local files), protocols used for determining data equivalence/
conflicts (e.g. should a piece of calculated data be recalculated
or is it consistent with the current inputs?), the type of logic
operations supported, the handling of dynamic tasks, the way in
which the resources are allocated on the compute system, and
the way computational tasks are submitted.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00097a&domain=pdf&date_stamp=2025-09-05
http://orcid.org/0000-0001-5267-6852
http://orcid.org/0000-0001-8323-3405
http://orcid.org/0000-0002-2587-5677
http://orcid.org/0000-0002-0163-3024
http://orcid.org/0000-0001-5197-214X
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004009

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Given the pivotal role that (big) data will be playing in the
future, the importance of workflow control software cannot be
understated and their continued development should be
a priority alongside conventional simulation codes. In this
regard, a heterogeneous set of workflow codes can lead to cross-
fertilization and help identifying the most promising concepts
and approaches.

Over the next sections we will discuss different aspects of
Taskblaster and finally highlight features that we believe to be
special. The article is structured as follows: Section 2 explains
the overall design goals of TB. Section 3 describes features of TB
in detail: tasks, static and dynamic workflows, data storage,
configurable worker processes, input validation, and error
handling. Section 4 describes ASR-lib, a library of TB workflows
for atomistic high-throughput projects. Section 5 highlights
specific notable features. Section 6 is a brief conclusion.

2. Why Taskblaster?

A computational project often starts with a single calculation in
a single directory. The researcher adapts parameters and copies
the input to a new directory to perform a related calculation.
Additional copies appear as the project progresses. PhD
students and postdocs develop collections of scripts to deal with
the universal problem of how to adapt and make new calcula-
tions in this particular computational project, often with the
ability to copy large numbers of files into intricate directory
structures.

After the project, there will be an immense collection of
scripts and utilities along with associated output data tailored
to that specific project. Some data may be subtly outdated due
to the gradual evolution of the code. In spite of high-quality
publications, it may not be clear how to reproduce the results,
even if both data and code still exist. Finally, the process for
reproducing the data, should someone attempt to do so, is likely
dependent on many manual steps since the original project
evolved manually as well.

For a small project, that may not be an issue. However,
projects with large valuable datasets are likely intended to be
maintained and extended with new computations in the long
term. Such projects will see generations of PhD students and
postdocs making extensions and adaptations, and this requires
a much higher standard for structure, transparency and
documentation.

The goal of TB is to solve the problems described above. To
that end, TB is designed to:

e Organize the project intuitively as a directory tree of
meaningfully named tasks and workflows.

e Abstract the passage of data and files between tasks to
avoid excessive coupling to filesystem paths or machine specific
information.

o Work with large selections of tasks and achieve a high level
of automation.

e Keep track of the task dependency tree in a way that makes
it easy to see if any tasks are outdated with respect to the
workflows that generated them.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Another goal of TB is to be easy to use. New projects should
be easy enough to set up that researchers will not feel the
temptation to develop large collections of custom project
scripts, as discussed earlier. Furthermore, TB is a lightweight
utility which requires no database services, network connec-
tions, or monitoring daemon processes, and works much the
same whether on a laptop or a supercomputer.

However, there are also trade-offs: the desire to formally keep
track of dependencies somewhat restricts the freedom to
perform arbitrary processing inside workflows, since TB must
be able to see any information passed between tasks in order to
build the dependency tree and guarantee consistency. Hence,
special constructs are needed for advanced workflow-level
control flow, which otherwise might have been “ordinary” for-
loops and if-statements.

3. Concepts and features

The typical way to use TB for a computational project is to
connect via ssh to a supercomputer’'s login node and use the
command-line interface while occasionally editing workflows or
adding tasks. When starting a project, the first step is to initi-
alise a repository. A repository is a directory on the disk with
data related to the project. All data is kept as files inside this
repository.

The next step is to define a main workflow. In principle, the
main workflow defines every computation that will happen; in
practice, it is gradually written as the project progresses. The
main workflow can specify tasks, which are individual compu-
tations, and it can call other workflows, or subworkflows, which
may likewise specify tasks and further subworkflows. A work-
flow also connects outputs from tasks to inputs of other tasks,
defining the DAG.

Tasks and workflows are always assigned names. When
subworkflows are nested, names are likewise nested. If a work-
flow named A defines a subworkflow, B, which defines a task, C,
then the final name of that task will be a/s/c, and its files will be
stored in <root>/tree/a/B/c/, Where <root> is the root directory of
the repository. The name of a task is therefore a global identifier
for that task.

Operations on a repository are generally carried out using the
TB command-line utilities. Examples are tbworkflow to run
a workflow, tb 1s to list tasks, and tbrun to run tasks. Most
commands take a list of task names as input. This can include
shell wildcards (glob patterns) which make it easy to run oper-
ations on large selections of tasks. Once tasks are generated by
a workflow, they can be run on the command-line or submitted
via myqueue® to an HPC job manager such as Slurm®® or Tor-
que.”* TB runs tasks from worker processes that can be
configured to pick up specific sets of tasks depending on the
resources required. Once tasks run, they may succeed or fail,
and workers keep picking up new tasks as long as there is time
and there are available tasks that they are compatible with.

TB provides commands to remove tasks or “unrun” them.
Removing a task deletes all its associated data and removes it
from the DAG, whereas unrunning it only removes its output so
that it can run again. Such commands work recursively on the

Digital Discovery, 2025, 4, 2512-2520 | 2513

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

dependency tree affecting all dependent tasks in topological
order. Daily work often involves testing and revision of task
implementations using many run/unrun cycles.

Furthermore, TB provides commands to list or view tasks in
different levels of detail, to submit or manipulate workers, and
to invoke actions that visualise or export data.

3.1. Tasks

In TB, a task represents the fundamental unit of computation
within a workflow. Each task corresponds to a Python function
and associated input specification, ideally in order to perform
a single computational operation. The key constraint imposed
on a TB task is that both the input and output must be serial-
izable, i.e., possible to store. This requirement ensures that
tasks can be stored on the disk and later retrieved when
a worker acquires the task.

The inputs of a task can be either specific objects such as
numbers or arrays, or abstract references to the outputs of other
tasks, or any nested structure (lists and dictionaries for
example) involving both. Representing the input as a reference
to a future output allows TB to construct large parts of the
dependency tree without executing the tasks. The tree can thus
be freely visualized and inspected, and the user can later choose
to run tasks one at a time or in arbitrary groups. TB will auto-
matically ensure that they run in topological order following the
DAG. For example, if the user tries to run task B that depends on
task A that has not yet been run, TB will first run task A before
running task B.

Once tasks are generated by a workflow, they can be
manipulated using the command-line interface. A newly
generated task starts in the “new” state, which means it is
eligible to run once all its inputs are available. Issuing a tb run
command will change its state to “run”, after which it may

User (Task does not exist)
command
- » remove
workflow
Automatic V. N
update ¢ New
by worker _ 4
_____ > submit

run
N
N\

N unrun

‘4
il N
Run

=T \

Done

Fig. 1 Most important commands (arrows) and how they affect the
state of a task (ellipses). The workflow command generates a new task
which the user can later submit, run, unrun, etc. Dashed arrows indi-
cate that an update happens automatically as opposed to being
controlled directly by the user.

2514 | Digital Discovery, 2025, 4, 2512-2520

View Article Online

Paper

change to “done” or “fail” depending on success. Fig. 1 shows
the most important task states and how tasks transition
between them via commands. Tasks can also go into a “partial”
state in connection with error handling, or a “queue” state to
signify that it may be picked up by a worker.

Some tasks may require runtime information about the
machine or parallelization that is neither a global constant nor
a proper input parameter. TB provides a Python decorator to
inject such information into tasks without affecting (and hence
invalidating upon change) the stored input. This includes MPI
communicators and hardware flags such as whether to use
a GPU. In addition, TB provides syntax and command-line tools
to tag tasks according to which computational resources they
need.

Tasks can be equipped with error handlers that can run in
multiple stages. The special “partial” state is used when a task
did not succeed, but may yet succeed if it has error handlers that
did not run yet, and might recover from the failure.

3.2. Static workflow constructs

Workflows are prescriptions for generating tasks and sub-
workflows, and they are defined using a number of different
syntactic constructs. The simplest construct is the statically
defined task: running the workflow produces that task, but each
such task must be hardcoded on that workflow. Similarly,
a subworkflow is a static declaration to run another workflow as
part of this one.

Fig. 2a shows an example of how a static workflow is defined
using Python syntax. The workflow is a class; each task is
a decorated method to return a node for the DAG on Fig. 2b. The
etask decorator can be used to specify rules for computational
resources and error handling. Note how the workflow specifies
the routing between tasks, i.e., which outputs from which tasks
to connect to which inputs of others. The inputs must match the
call signature of the target function: the relaxation job implies
that there is a function named relax which takes an input named
atoms. These inputs need not exist yet when the workflow runs;
instead, entities like self.atoms Or self.symmetry are future
references which specify that the parameter is to be loaded and
passed to the target function when a task runs. Additionally, the
syntax supports indexing, attribute access, and method calls into
the outputs of other tasks. For example, the expression
self .symmetry.bandpath(n=240) under the bandstructure Specifica-
tion does not actually perform a function call, but rather saves an
encoded representation of that call so that it can be evaluated
when the corresponding task runs.

Running the workflow builds the tree of tasks. Fig. 2c shows
a screenshot produced by the t» 1s command listing the state of
tasks, their dependencies (done/total), requested resources, and
location in the directory tree.

The workflow syntax bears similarities to the Workflow
Definition Language OpenWDL>*** in terms of subworkflows as
well as routing of inputs and outputs. The TB syntax, being
written in Python, provides convenience for projects that are
written in Python and can simplify object serialisation.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
(a) (b)
@tb.workflow
class MaterialWorkflow:
atoms = tb.var()
name: relaxation
@tb.task(tags={'long"'}) E:;ggt Egk:x()
def relaxation(self)
return tb.node('relax', atoms=self.atoms)
@tb.task
def symmetry(self): -
i . name: symmetry name: properties/groundstate
return tb.node('analyse_symmetry', target: analyse_symmetry(..) target: gs(..)
atoms=self.relaxation) state: run state: done
@tb. subworkflow
def properties(self)
return ElectronicProperties(
atoms=self.relaxation, name: properties/gw
symmetry=self.symmetry) targét: aw(...)
state: fail
@tb.workflow
class ElectronicProperties
atoms = tb.var()
symmetry = tb.var()
@tb.task
def groundstate(self)
return tb.node('gs', atoms=self.atoms)
@tb.task tb 1s --columns sirf --parents
def bandstructure(self): state info tags folder
return tb.node(
'bs', gs=self.groundstate, long tree/relaxation
bandpath=self.symmetry.bandpath(n=240)) tree/symmetry
undstate
@th.task(tags={'long', 'himem'}) . tructure
def gw(self): Llong,himen
return tb.node('gw', gs=self.groundstate)
Fig.2 (a) Workflow with two tasks and a subworkflow with a further three tasks. This example is based on real computational workflows, but with

complexity and number of parameters greatly reduced. tb.var () defines input variables for the workflows. Each tb.node) call is a specification of
a node to the DAG whereas the tb.task decorator equips it with metadata such as tags. Full examples including how to initialize the repository
and workflow can be found in the documentation.®® (b) DAG generated by the workflow and visualised using the tb graph command. At the
workflow level, passing a task such as self.relaxation tO tb.node() inside the symmetry task creates a dependency. Hence the symmetry task will
depend on the relaxation task. Running the workflow adds (or updates) its tasks to the tree (c) from which they can be further processed. The tree
is visualised with the tb 1s command, where some of the tasks already ran. The “info” column shows number of done/total dependencies of each
task: the bandstructure task is waiting for the symmetry task to finish. Note how the names of the methods in the workflow class determine the
directory nesting, and how the “properties” subworkflow creates an additional nested directory for its tasks.

3.3. Dynamical workflow constructs

Support for dynamical workflows, that is, workflows in which
the number or type of tasks are decided dynamically depending
on calculated data, rather than being coded statically, is
provided through additional constructs that can be categorized
as “one-to-many” (parametrisation), “many-to-one” (collection),
and conditional branching. Fig. 3 shows an example of how
these can be used in a full workflow.

3.3.1. Parametrization and collection. To apply a workflow
to many elements in a dataset of variable size, one can use
a generator. A generator is a construct which, as it runs, has
access to the physical output of its input tasks and may generate
any number of workflows or tasks using that. Fig. 3a shows
a typical workflow in materials physics which starts with an
input database of crystal structures and uses a generator to
apply a materials workflow to each. Since generators are
dynamic, a workflow cannot directly add new tasks that depend
on tasks from generators: it is not known statically how many
tasks there will be or what their names will be. Instead, the
Generator can be equipped with fixed points, which are special

© 2025 The Author(s). Published by the Royal Society of Chemistry

tasks that can access all or some of the generated tasks
according to a rule, for example, all resulting materials with Fe
in them. The calling workflow then uses the fixed points to
access groups of tasks within the generator and pass them on to
other tasks or subworkflows outside it. On Fig. 3a, the collect
task involves a fixed point assembling information from each
subworkflow.

3.3.2. Control flow. Fig. 3b highlights one of the subwork-
flows presented on Fig. 3a. It shows two distinct conditional
constructs, namely branching with an if-statement and a while
loop. A key concept in understanding TB workflows is the
distinction between the control flow and the DAG. The control
flow is a sequence of processing steps which allows loops and
branches. The control flow can be understood as a possibly
cyclic directed graph, and different DAGs can be generated by
different executions of the control flow depending on concrete
input data. To illustrate this point further, we show these two
representations on Fig. 4. Fig. 4a represents the workflow which
will generate the DAG shown on Fig. 4b. Each arrow on Fig. 4a
corresponds to one or many arrows on Fig. 4b. In contrast to

Digital Discovery, 2025, 4, 2512-2520 | 2515

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

(a) Start
|
Generator ¢
Parametrize
Subworkflow /
Vs 4 RN
Py 125 Pn

I '

View Article Online

Paper
(b)
|
Subworkflow ¢
P
| e
If ¢ \Whﬂe
B W,
true ,/ ° false l
[R
T F
\ &
\ /
¥ !
A D Wy

~_

0

-

Fig. 3 Example of a full workflow illustrating multiple features. Ellipses represent tasks. (a) Top-level workflow which uses a generator to
dynamically parametrize over an input dataset, applies a subworkflow on each element P;---Py, and collects results Cy---Cp. (b) An example of
a subworkflow which includes statically defined tasks as well as an If-statement and a While-loop producing tasks W;---Wy. Dashed lines within
the If-statement indicate that only one of the two tasks T or F is created. A, B and D are arbitrary static tasks.

static routings, where each task has hardcoded dependencies,
with branching, the routings need to be dynamic. For example,
in Fig. 4a the input to the iterate task comes either from the
initial task, labelled “e”, or from the iterate task itself,
depending on whether control flow is at the first iteration or
not. On the other hand, once the DAG (Fig. 4b) is constructed, it
remains constant, indicating the final dependencies of each
task.

3.4. Data storage

Running a workflow results in the creation of tasks that have yet
to run. The tasks are stored in a SQLite database called the
registry. The information stored is the import path of the
function to be called along with an input specification which
can contain any JSON-encodable object including a reference to
another task. TB builds the dependency tree by inspecting these
inputs and saves all the metadata in the registry for efficient
retrieval.

Once a task runs, it is assigned a directory on the disk where
its outputs are stored along with its input specification as JSON.
This provides a level of redundancy which allows the registry to
be reconstructed in case of corruption due to power outages,
bugs, or user errors. Tasks may also leave arbitrary files in their
directory, which is useful for storing larger outputs from
computations that it would be inefficient to encode using JSON,
or which are not useful to represent directly as Python objects.
Tasks can return path objects pointing to files they generated in
order for other tasks to access those paths via their input. TB
takes care of storing these paths in a way that is robust with
respect to moving a repository. TB automatically ensures that

2516 | Digital Discovery, 2025, 4, 2512-2520

the path points to the correct location when used in subsequent
tasks, although they run in a different directory.

To save and load Python objects, TB must be able to serialize
those objects. TB itself supports only basic objects. A custom
JSON encoder can be specified via a plug-in: the TB repository is
configured to point to a special plug-in module which can
specify a custom JSON encoder. For example ASR-lib uses this to
integrate with the ASE encoder and hence supports commonly
used objects including numpy arrays and ASE Atoms objects.
Custom classes written by a user can also be supported by
adding an encoding hook.

3.5. Workers and resources

The simplest way to run a task is to issue a tb run command
specifying one or more tasks or directories with tasks. This
launches a worker to run the selected tasks. The worker auto-
matically resolves each task's dependency tree and executes, to
the extent possible, all required tasks in topological order.

The user can configure multiple kinds of workers in a special
configuration file. This facilitates specification of computa-
tional resources and encompasses number of cores, Slurm
partition, walltime, and more. Multiple configured workers can
then be submitted simultaneously and with a single command.
Submitting a worker is, in principle, no different from
submitting a tb run command with specific settings. TB submits
workers via myqueue.*

Tasks and workers can be equipped with configurable
resource tags, like the relaxation task on Fig. 2a which has the
“long” tag. Workers only pick up tasks with matching tags. For
example, there can be one kind of worker intended for

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper
(b)
iteration 1
(a)
done? no
I \
|
iterate D
iteration 2
. b 4
»“no
K
/
I done? done? no
: N s \
\ \
'yes |
1 iteration 3
done? yes
AN
1
Fig. 4 (a) Control flow for a "do-while" loop workflow. The iterate task

directly connects to itself since one iteration's input is the previous
iteration's output, whereas the decision of whether to terminate the
loop is done by a separate task. Solid lines denote ordinary depen-
dencies whereas dashed lines denote decisions made at the workflow
level. The initial and final tasks, labelled "e", can be static. Other tasks
and workflows can be defined that depend on those even though the
loop did not run yet. (b) Example of DAG generated by running the
loop.

lightweight processing, another worker for heavy computations,
and a third worker for computations that require particular
hardware such as a GPU. Multiple “subworkers” can be
configured to run inside a single HPC job. Doing so can allow
better sharing of resources when tasks require fewer resources
than a whole node.

3.6. Changing and validating inputs

A user rarely knows the best computation parameters at the
beginning of a project. A large amount of trial and error is often
necessary to establish good parameters before scaling a project
to large datasets. In TB, such trial and error would normally be
done by successively unrunning and rerunning tasks. However,
later on, once large amounts of production data exists, it could
be expensive to rerun tasks any time anything changes. Also,
some changes—such as minor tweaking of computational
settings or refactoring of input parameter to tasks—do not
always warrant unrunning and rerunning the task since the
changes do not affect the end result.

To handle situations such as these, TB alerts the user to
“conflicts” when the input data changes in the workflow. When

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

changing a parameter, a user would adapt the workflow and
then rerun it. This generates all the same tasks that already
exist, but TB detects that an input has changed. The affected
tasks will then be marked as conflicted, which “freezes” them
along with every task that depends on them, preventing those
tasks from running. The user must either unrun them or mark
the conflicts as “resolved” in order to unfreeze the frozen tasks,
indicating that the conflict does not affect data integrity. A
resolved conflict is simply a way to tell the workflow that the
task’s results are to be kept as they are even though the inputs
are different. Both original and new (conflicting) inputs are
saved. TB can also show a diff highlighting the specific changes
in input parameters.

3.7. Error handling

Numerical simulations often fail in ways that cannot be pre-
dicted before the computations run. Structure optimizations
may not converge due to inaccurate forces or bad conditioning,
DFT calculations may not converge, any simulation may run out
of memory. Across very large datasets, any error, no matter how
improbable, may arise due simply to the number of systems and
diversity of inputs.

TB provides a system, the warden, for solving this problem. If
a task fails, the user can implement an error handler and
modify the workflow to equip the task with the handler. The
handler can execute any code to recover from the error. Often
this means rerunning the target function of the task with
modified inputs or using a checkpoint. Other tasks of the same
type will automatically have the error handler as well. Multiple
such handlers can execute in succession or in response to
different errors, interacting with the warden using a particular
programming interface.

Overall, the execution of error handlers is considered part of
a task (as opposed to being represented as a succession of
different tasks) and corresponds closely to typical “try/except”
exception handling as supported in modern programming
languages. Error handlers do not change the task inputs as
stored, as that would cause a conflict. Instead, they have access
to call the target function with a modified set of inputs after the
original function fails.

4. ASR-lib

The Atomic Simulation Recipes Library (ASR-lib) is a library of
TB workflows for materials and molecular simulations. Atom-
istic computational backends, such as density functional theory
(DFT) codes or (machine learning) interatomic potentials, can
be called via the calculator interface of the Atomic Simulation
Environment (ASE).>* ASR-lib and TB serve as a more scalable
and reusable replacement for the previous ASR project® which
encompasses a simulation code library as well as workflow
management features for legacy projects.

The workflows in ASR-lib are written in a general style and
can be used for any type of material, independent of dimen-
sionality and composition. Consequently, the workflows in ASR-
lib can be used as initial templates when producing more

Digital Discovery, 2025, 4, 2512-2520 | 2517

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

project specific workflows. Currently, ASR-lib contains work-
flows for many different operations/calculations, and is
continuously being developed. Most of these employ the
GPAW?>"*% electronic structure code as a calculator, but it is
straightforward to generalise to other types of calculators as
long as they have a Python interface, e.g. via ASE. Below, we
mention a few examples of workflows in ASR-lib, highlighting
features that are enabled by TB.

For example, the GW and Phonon workflows utilize genera-
tors to generate g-point and displacement parallelisations at the
task level. The structure relaxation workflow contains several
branches and a while loop related to searching for the lowest
energy magnetic configuration. The crystal defect workflows can
dynamically generate various types of point defects using
a generator and subsequently proceed with nested generators to
classify their properties (formation energy, charge transition
levels, etc.) by means of DFT calculations. ASR-lib also contains
examples of large-scale data processing of existing trees, like
evaluation of the energy above the convex hull. These so-called
“from tree” methods can be used to collect data from TB
repositories, perform analysis, and spawn projects with a new
focus.

ASR-lib is currently used in a number of ongoing high-
throughput projects related to 2D materials and point defects.
In addition to ASR-lib, TB has also been independently used for
workflows based on the FHI-Aims code.”

5. Characteristic features

TB is written in Python and released under the GNU General
Public License, version 3 or later. Its only software requirement
aside from the Python standard library is the lightweight click
package for command-line interface support. In practice, TB
will normally be used together with myqueue and an HPC
queueing system like Slurm® or Torque.** Code and docu-
mentation are available online.®**

Other distinguishing features of TB are:

e Low infrastructure requirements: TB runs in any Python
environment and does not require persistent network connec-
tions or database processes.

o Intuitive data storage: workflows and tasks are organised in
a directory tree where nested subdirectories serve as
namespaces.

e Automatic I/O: TB automates the loading and saving of
Python objects as inputs and outputs and works to reduce fil-
esystem path clutter throughout the code.

e General purpose: TB is a generic workflow tool and is not
linked to any domain-specific simulation software.

e Plug-ins: users can facilitate work with domain-specific
simulation software by writing a plug-in as in the case of ASR-
lib.

e Configurable computational resources: tasks are executed
by configurable worker processes, where each worker process
can run any set of tasks. The logical division of a workflow into
tasks is independent of the number or type of actual HPC jobs
that run the tasks. Additionally, machine-specific configuration
can be kept separate from the main project code.

2518 | Digital Discovery, 2025, 4, 2512-2520

View Article Online

Paper

In general, the top-level workflow encodes every computa-
tion that is going to happen. The command-line interface
cannot itself add computations or change any result. It only
provides a way for the user to choose what, when, and how to
run. When running a workflow, TB eagerly adds as many tasks
as possible to the DAG without executing any of them. This
allows the user to “see into the future” and better assess the
required resources, or to experiment with a subset of tasks
using the characteristic “run/unrun” pattern. TB can generate
parts of the DAG that depend on a dynamical workflow, even
though the workflow did not run yet. This is possible because
TB can use fixed-point tasks on the dynamic workflow to infer
the existence of subsequent tasks. The fragments are then
connected to a final DAG once the dynamical workflow runs.

6. Conclusion

We have described the most important concepts in Taskblaster,
how tasks are generated and organised, and how to run
calculations.

TB aims to bridge the gap from small to large projects: it can
act as a simple tool to automate processing steps locally on
a laptop, or used in large projects that needs to scale and adapt
over time. Major design features of TB are: intuitive organisa-
tion of data using a directory tree, a usage model which mini-
mises infrastructure requirements by emphasising local data
storage and interactive work in a terminal, avoiding the need for
heavy-weight database connections, while keeping a strict
representation of task dependencies as a persistent DAG.

We have found that this combination facilitates an efficient
“unrun/rerun”-based approach to practical experimentation,
which is often required in the development phase of new
computational projects.

Most core design elements of TB are unlikely to change in
their main structure, so future TB development will increasingly
focus on smaller improvements to user experience, helper
functionality for data migration and other tools that prove
useful as the projects using TB mature further.

Conflicts of interest

There are no conflicts to declare.

Data availability

The paper presents the Taskblaster project. Taskblaster code
and version history are publically available. The contents of the
manuscript correspond to taskblaster-0.2. The release source
code can be found on zenodo: https://doi.org/10.5281/
zenodo.16363818. The release is available on pypi: https://
pypi.org/project/taskblaster/0.2/. The source code can be
found on the Gitlab repository: https://gitlab.com/taskblaster/
taskblaster/. The taskblaster-0.2 release corresponds to the git
commit: eadbf847f60d5474d7bc4957be941c40846f7ac0 (tag:
0.2). The manuscript refers to ASR-lib without directly
presenting any specific data from the project. However the
code is publically available on Gitlab as well: https://

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.5281/zenodo.16363818
https://doi.org/10.5281/zenodo.16363818
https://pypi.org/project/taskblaster/0.2/
https://pypi.org/project/taskblaster/0.2/
https://gitlab.com/taskblaster/taskblaster/
https://gitlab.com/taskblaster/taskblaster/
https://gitlab.com/asr-dev/asr-lib
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

gitlab.com/asr-dev/asr-lib. There is no further code or data
associated with the published work.

Acknowledgements

The authors acknowledge funding from the European Research
Council (ERC) under the European Union's Horizon 2020
research and innovation program Grant No. 951786 (NOMAD
CoE). K. S. T. is a Villum Investigator supported by VILLUM
FONDEN (grant no. 37789). F. N. has received funding from the
European Union's Horizon 2020 research and innovation
program under the Marie Sklodowska-Curie grant agreement
no. 899987. (EuroTechPostdoc2).

References

1 J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff and
J. K. Norskov, Nat. Mater., 2006, 5, 909-913.

2 G. K. Madsen, J. Am. Chem. Soc., 2006, 128, 12140-12146.

3 S. Curtarolo, et al., Nat. Mater., 2013, 12, 191-201.

4 S. Kirklin, B. Meredig and C. Wolverton, Adv. Energy Mater.,
2013, 3, 252-262.

5 K. B. @rnsg, J. M. Garcia-Lastra and K. S. Thygesen, Phys.
Chem. Chem. Phys., 2013, 15, 19478-19486.

6 Z. Zhang, et al., ACS Omega, 2019, 4, 7822-7828.

7 W. Chen, et al., J. Mater. Chem. C, 2016, 4, 4414-4426.

8 J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk,
C. Amador-Bedolla, R. S. Sanchez-Carrera, A. Gold-Parker,
L. Vogt, A. M. Brockway and A. Aspuru-Guzik, J. Phys.
Chem. Lett., 2011, 2, 2241-2251.

9 S. Bhattacharya and G. K. Madsen, Phys. Rev. B: Condens.
Matter Mater. Phys., 2015, 92, 085205.

10 L. E. Castelli, et al., Energy Environ. Sci., 2012, 5, 5814-5819.

11 G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese and
X. Gonze, Nat. Commun., 2013, 4, 1-7.

12 L. Yu and A. Zunger, Phys. Rev. Lett., 2012, 108, 068701.

13 K. Kuhar, M. Pandey, K. S. Thygesen and K. W. Jacobsen, ACS
Energy Lett., 2018, 3, 436-446.

14 M. Aykol, S. Kim, V. I. Hegde, D. Snydacker, Z. Lu, S. Hao,
S. Kirklin, D. Morgan and C. Wolverton, Nat. Commun.,
2016, 7, 1-12.

15 N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys,
A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi
and N. Marzari, Nat. Nanotechnol., 2018, 13, 246-252.

16 L.-Q. Chen, L.-D. Chen, S. V. Kalinin, G. Klimeck,
S. K. Kumar, J. Neugebauer and I. Terasaki, npj Comput.
Mater., 2015, 1, 1-2.

17 K. S. Thygesen and K. W. Jacobsen, Science, 2016, 354, 180-
181.

18 J. E. Saal, S. Kirklin, M. Aykol, B. Meredig and C. Wolverton,
JOM, 2013, 65, 1501-1509.

19 A. Jain, et al., APL Mater., 2013, 1, 011002.

20 S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek,
R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang,
O. Levy, et al., Comput. Mater. Sci., 2012, 58, 218-226.

21 C. Draxl and M. Scheffler, J. Phys Mater., 2019, 2, 036001.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

22 S. Haastrup, M. Strange, M. Pandey, T. Deilmann,
P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli,
P. M. Larsen, A. C. Riis-Jensen, et al., 2D Mater., 2018, 5,
042002.

23 S. S. Borysov, R. M. Geilhufe and A. V. Balatsky, PLoS One,
2017, 12, e0171501.

24 K. T. Winther, M. J. Hoffmann, J. R. Boes, O. Mamun,
M. Bajdich and T. Bligaard, Sci. Data, 2019, 6, 1-10.

25 L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich,
V. Granata, F. Gargiulo, M. Borelli, M. Uhrin, S. P. Huber,
S. Zoupanos, et al., Sci. Data, 2020, 7, 1-12.

26 R. Armiento, Machine Learning Meets Quantum Physics, 2020,
pp. 377-395.

27 L. Himanen, A. Geurts, A. S. Foster and P. Rinke, Adv. Sci.,
2019, 6, 1900808.

28 M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Alj,
F. Bertoldo, T. Deilmann, N. R. Kngsgaard, M. Kruse,
A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda,
T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen and
K. S. Thygesen, 2D Materials, 2021, 8, 044002.

29 M. Rupp, A. Tkatchenko, K.-R. Miiller and O. A. Von
Lilienfeld, Phys. Rev. Lett., 2012, 108, 058301.

30 J. Lee, A. Seko, K. Shitara, K. Nakayama and I. Tanaka, Phys.
Rev. B, 2016, 93, 115104.

31 T.Xie and J. C. Grossman, Phys. Rev. Lett., 2018, 120, 145301.

32 L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl and
M. Scheffler, Phys. Rev. Lett., 2015, 114, 105503.

33 P. B. Jorgensen, E. G. del Rio, M. N. Schmidt and
K. W. Jacobsen, Phys. Rev. B, 2019, 100, 104114.

34 K. Ghosh, A. Stuke, M. Todorovi¢, P. B. Jorgensen,
M. N. Schmidt, A. Vehtari and P. Rinke, Adv. Sci., 2019, 6,
1801367.

35 V. L. Deringer and G. Csanyi, Phys. Rev. B, 2017, 95, 094203.

36 S. Lorenz, A. Gross and M. Scheffler, Chem. Phys. Lett., 2004,
395, 210-215.

37 J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401.

38 N. Artrith and A. Urban, Comput. Mater. Sci., 2016, 114, 135-
150.

39 Existing Workflow Systems, https://s.apache.org/existing-
workflow-systems, Accessed 2025-06-06, Updated 2025-03-
17.

40 A. Jain, et al., Concurrency Comput., 2015, 27, 5037-5059.

41 G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari and
B. Kozinsky, Comput. Mater. Sci., 2016, 111, 218-230.

42 K. Mathew, J. H. Montoya, A. Faghaninia, S. Dwarakanath,
M. Aykol, H. Tang, I-h. Chu, T. Smidt, B. Bocklund,
M. Horton, et al., Comput. Mater. Sci., 2017, 139, 140-152.

43 J.]. Mortensen, M. Gjerding and K. Thygesen, J. Open Source
Softw., 2020, 5, 1844.

44 A. S. Rosen, M. Gallant, J. George,]. Riebesell,
H. Sahasrabuddhe, J.-X. Shen, M. Wen, M. L. Evans,
G. Petretto, D. Waroquiers, et al., J. Open Source Softw.,
2024, 9, 5995.

45 J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova,
T. Hickel, R. Drautz and]. Neugebauer, Comput. Mater.
Sci., 2019, 163, 24-36.

Digital Discovery, 2025, 4, 2512-2520 | 2519

https://gitlab.com/asr-dev/asr-lib
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

Open Access Article. Published on 01 August 2025. Downloaded on 10/30/2025 4:51:24 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

46 R. Armiento, in Database-Driven High-Throughput
Calculations and Machine Learning Models for Materials
Design, ed. K. T. Schiitt, S. Chmiela, O. A. von Lilienfeld, A.
Tkatchenko, K. Tsuda and X.-R. Miiller, Springer
International Publishing, Cham, 2020, pp. 377-395.

47 B. H. Sjolin, W. S. Hansen, A. A. Morin-Martinez,
M. H. Petersen, L. H. Rieger, T. Vegge, J. M. Garcia-Lastra
and 1. E. Castelli, Digital Discovery, 2024, 3, 1832-1841.

48 R. Atwi, M. Bliss, M. Makeev and N. N. Rajput, Sci. Rep., 2022,
12, 15760.

49 https://github.com/wolverton-research-group/qmpy.

50 M. A. Jette and T. Wickberg, Job Scheduling Strategies for
Parallel Processing, Cham, 2023, pp. 3-23.

51 G. Staples, Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, New York, NY, USA, 2006, p. 8es.

52 Taskblaster tutorials, https://taskblaster.readthedocs.io/en/
latest/tutorial/module.html.

53 https://openwdl.org/.

54 K. Voss, G. Van Der Auwera and J. Gentry, Full-stack
genomics pipelining with GATK4 + WDL + Cromwell

2520 | Digital Discovery, 2025, 4, 2512-2520

View Article Online

Paper

[version 1; not peer reviewed], F1000Research, 2017, vol. 6,
p. 1381, DOI: 10.7490/f1000research.1114634.1.

55 A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli,
R. Christensen, M. Dulak,]J. Friis, M. N. Groves,
B. Hammer, C. Hargus, et al., J. Phys.: Condens. Matter,
2017, 29, 273002.

56 M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo,
A. H. Larsen, J. J. Mortensen and K. S. Thygesen, Comput.
Mater. Sci., 2021, 199, 110731.

57 J. J. Mortensen, A. H. Larsen, M. Kuisma, A. V. Ivanov,
A. Taghizadeh, A. Peterson, A. Haldar, A. O. Dohn,
C. Schifer, E. O. Jonsson, et al., J. Chem. Phys., 2024, 160,
092503.

58 J. E. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen,
M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola,
H. Hansen, et al., J. Phys.: Condens. Matter, 2010, 22, 253202.

59 J. Behler, G. Csanyi, L. Foppa, K. Kang, M. F. Langer,
J. T. Margraf et al., Workflows for Artificial Intelligence,
https://hdl.handle.net/21.11116/0000-0010-4C5A-5, 2024.

60 https://gitlab.com/taskblaster/taskblaster.

61 https://taskblaster.readthedocs.io/.

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/wolverton-research-group/qmpy
https://taskblaster.readthedocs.io/en/latest/tutorial/module.html
https://taskblaster.readthedocs.io/en/latest/tutorial/module.html
https://openwdl.org/
https://doi.org/10.7490/f1000research.1114634.1
https://hdl.handle.net/21.11116/0000-0010-4C5A-5
https://gitlab.com/taskblaster/taskblaster
https://taskblaster.readthedocs.io/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00097a

	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows

	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows
	Taskblaster: a generic framework for automated computational workflows

