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rene and heteroarene nitration
supported by high-throughput experimentation
and machine learning†

Taline Kerackian,*ab Clément Wespiser, b Matthieu Daniel,b Eric Pasquinet b

and Eugénie Romero *a
Access to the nitro functional group is a widespread and longstanding

transformation of interest in many fields of chemistry. However, the

robustness and specificity of this transformation can remain chal-

lenging, particularly in the case of heteroarene nitration. Based on this

observation, a comprehensive investigation was initiated to screen

nitration conditions on various arenes and heteroarenes. A systematic

and diverse study of both nitrating agents and activating reagents was

conducted using high-throughput experimentation to afford high-

quantity and high-quality data generation. General trends were iden-

tified and correlated with the electronic properties of the hetero-

arenes; notably, the difficult nitration of electron-poor heteroarenes

was highlighted. Original combinations of reagents were found to

perform well in nitration reactions. The obtained data were also used

to design a predictive tool relying on machine learning in order to

provide the best nitration reaction conditions depending on the tar-

geted substrate. The limited predictive efficiency obtained pointed out

the importance of diversification and chemically relevant encoding of

the data set.
Introduction

Nitro heteroarenes are highly versatile compounds with diverse
applications due to their multifaceted properties.1–7 Their broad
utility highlights the need for efficient nitration methods. Two
main synthetic routes exist to obtain the nitro functionality: (i)
oxidation of amines8 or azides;9 (ii) direct nitration using
a nitrating agent.1,3 The rst method is limited when applied to
heteroarenes. For the latter, the most common nitration
methodology is the electrophilic substitution of electron-rich or
electron-neutral arenes10–12 using amixture of nitric and sulfuric
pour la Santé (DMTS), SCBM, Université

vette, France. E-mail: eugenie.romero@

nce

tion (ESI) available. See DOI:

2–1671
acid. This approach turns out to be ineffective when applied to
some electron-poor, nitrogen-containing heteroarenes and
suffers from limited selectivity control. Direct nitration can be
carried out from various substrates, namely via direct C–H
functionalization13–16 or ipso-functionalization17 from the cor-
responding carboxylic acid or halogenated heteroarene, offering
broader chemical exploration opportunities and enhanced
selectivity control (Fig. 1a). Nevertheless, C–H and ipso-
functionalization methodologies to access nitro compounds
remain scarce when applied to heteroarenes,18,19 with only
a limited number of examples and generally poor yields.
Nitration methodologies have extended to the use of metallic
salts as nitrating agents, allowing access to safer reaction
conditions by replacing nitric acid.20–22 They also provide alter-
natives to electrophilic substitution reactions. Numerous reac-
tions involve radical transformations, in which nitro radicals
ðNO�

2Þ can be intermediates.23,24 This strategy may offer
improved compatibility with electron-poor arenes. Transition
metal-catalyzed nitration reactions have also been developed,25

with a predominance of palladium and copper catalysis. Recent
reports of N-nitro compounds used as nitrating agents26,27 have
further expanded the scope of applicable molecules. Altogether,
these methodologies show a wide range of nitrating agents and
activating reagents. As reaction intermediates can be difficult to
characterize, proposed mechanisms oen display
inconsistencies.28–30 Thus, we considered it relevant to system-
atically study the outcome of nitration reactions by reacting
diverse nitrating agents with activating reagents. To do so, we
relied on high-throughput experimentation (HTE).31–33 HTE has
proven to be an efficient and resource-economical approach for
screening reaction parameters. It allows systematic variation of
conditions and enables a high number of experiments to be
performed in parallel. The standardization of reactions, from
preparation to analysis, makes the results highly comparable
and enables efficient identication of general reactivity trends.

Together, these advantages support the generation of qual-
itative experimental data, which serves as excellent input for
machine learning processes, in contrast to classical bench-scale
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Chemical structures of arenes and heteroarenes evaluated in the study; (b) general nitration reaction equation; (c) general 96-well HTE
nitration plate design showing nitrating agents (in blue), activating reagents (in purple). a2 equivalents, b3 equivalents, c1 equivalents, d2 mol%,
e25 mol%, f0.5 mol%, g1.2 mol%, h15 mol%, i30 mol%.
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data typically described in the literature.34–36 This observation
was recently emphasized, as predictive tools developed using
standard experimental data from the literature have shown
limited efficiency, largely due to a lack of data standardization
and the absence of negative results, issues that HTE can
address. Machine learning and articial intelligence have been
applied in chemistry, notably to generate predictive tools.37

Most reported HTE campaigns study well-known reactions and
generally high-yielding transformations.38–45 During our explo-
ration of heteroarene nitration, we initially observed the limited
amount of available literature and also faced signicant chal-
lenges reproducing reported reaction conditions. Hence, we
chose to study the challenging nitration reaction, which is
especially low-yielding on electron-poor, nitrogen-containing
heteroarenes. Our goal was to test combinations of various
substrates and reagents in order to identify optimal reaction
conditions and to uncover reactivity trends depending on
selected scaffolds.

Based on the existing literature,3,23 we designed a 96-well
HTE plate to test 12 different nitrating agents and 8 different
activating reagents. This plate was systematically evaluated on:
(i) arenes, (ii) electron-rich heteroarenes, and (iii) electron-poor
heteroarenes. Each class of substrate was evaluated under three
reactivity modes: (i) direct C–H functionalization of the non-
functionalized substrate, (ii) ipso-functionalization from the
corresponding carboxylic acid, and (iii) ipso-functionalization
from the corresponding halogenated substrate. The overall
HTE campaign led to the performance of 864 different reac-
tions. The data collected will be used to develop a predictive
model based on machine learning. Different types of molecular
encoding will be tested, and the ability of the model to
© 2025 The Author(s). Published by the Royal Society of Chemistry
accurately predict nitration outcomes on new substrates will be
evaluated.

Experimental results and discussions

This investigation aims to test various substrates' ability to
undergo nitration reactions. The rst parameter to select was
the set of scaffolds to be examined. Naphthalene was selected as
an electron-neutral aryl moiety; benzofuran was chosen as an
electron-rich heteroarene, as a lone pair is involved in the
overall aromaticity of the molecule; and pyridine was picked as
a nitrogen-containing heteroarene displaying electron-poor
character, as the lone pair on nitrogen is not delocalized
(Fig. 1a). All these substrates were directly exposed to the
designed nitration plate to perform direct C–H
functionalization.

Then, ipso-functionalization was evaluated using 1-naph-
thoic acid, picolinic acid, benzofuran-2-carboxylic acid, 1-bro-
monaphthalene, 2-bromopyridine, and 2-bromobenzofuran.
Each of these nine different scaffolds was submitted to a 96-well
plate designed to study nitration reaction parameters. Most
nitration reactions can be regarded as involving a combination
of a nitrating agent and an activating reagent. Our goal was to
test various combinations of these two species (Fig. 1b). Such
variation, based on literature precedent, would allow us to
reproduce reported conditions but also permit original combi-
nations of reagents giving the opportunity for a fortunate
discovery.

Since the variety of reported nitrating agents is tremendous,
we chose to select it as the parameter with the highest number
of screened candidates (Fig. 1c). Twelve nitrating agents were
Digital Discovery, 2025, 4, 1662–1671 | 1663
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Fig. 2 (a) Detailed heat map plate results for the ipso-nitration of 1-naphthoic acid; (b) heat maps of the 96-well HTE nitration plate applied to
naphthalene, pyridine, benzofuran, 1-naphthoic acid, picolinic acid, benzofuran-2-carboxylic acid, 1-bromonaphthalene, 2-bromopyridine and
2-bromobenzofuran. Values of the ratio between nitration product and internal standard (biphenyl) are displayed. Darker colors are associated
with higher ratios. Best hits are the conditions reproduced in batch reaction (0.5 mmol) and gave the reported isolated yield for each substrate. (a)
7% of 2-Nitronaphthalene, 10% of dinitronaphthalene isomers (b) mixture of nitrobenzofuran regioisomers (c) novel reaction conditions.
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selected. Nitric acid and tert-butyl nitrite, two of the main
nitration reagents, were picked. Since nitronium tetra-
uoroborate provides a solid and stable source of the reactive
nitronium ion, many modern methodologies employ it as
a nitrating agent.46,47 We naturally picked it as a nitrating agent
of interest to screen. Then, both nitrate and nitrite alkali metal
salts were selected with sodium as the cationic species. To
screen a different cationic counterpart, potassium nitrite was
also picked. A soluble nitrate salt, tetrabutylammonium nitrate,
was selected. Bismuth(III), silver(I), and iron(III) were chosen, as
they are the most commonly used metallic nitrate salts. It has to
be noted that both bismuth and iron nitrate salts come as
hydrated metal complexes: bismuth(III) nitrate pentahydrate
and iron(III) nitrate nonahydrate. Finally, the two most reported
1664 | Digital Discovery, 2025, 4, 1662–1671
N-nitro compounds were selected, namely N-nitrosuccinimide
(Succ-NO2) and N-nitrosaccharin (Sacc-NO2).19,48–50 The number
of equivalents of nitrating agent was set at two equivalents
across the plate.

On the other hand, seven different activating reagents were
selected (Fig. 1c). In addition, one line was set to be free from
any activating reagent, allowing evaluation of nitrating agents
on their own. Persulfates, generally activated thermally, are the
most common activating reagents used in nitration reactions.
They are readily available radical precursors; here, potassium
persulfate was selected. Another common radical precursor is
2,20-azobis(2-methylpropionitrile) (AIBN). Notably, it was used
in catalytic amounts with nitric acid as a nitrating agent to
perform nitration under mild conditions.51 Silver species have
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Bar graphs representing nitrating and activating agents' performances, by average ratios of AUCProduct/ISfor each studied compound. *
0.5 mol% of Pd2(dba)3 in presence of 1.2 mol% of tBuBrettPhos.

Communication Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
8/

20
25

 5
:2

6:
10

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
been used in nitration reactions involving a carboxylic acid
species to assist decarboxylation.47,52 Following the same acti-
vation pathway, a Lewis acid magnesium salt (magnesium
perchlorate hydrate) was also picked. Indeed, Lewis acid species
were reported to suit nitration reactions.53 Consequently, two
different copper sources were selected: copper(II) tri-
uoromethanesulfonate54 and copper(I) iodide. N,N0-
© 2025 The Author(s). Published by the Royal Society of Chemistry
Dimethylethylenediamine (DMEDA) was also added as a ligand
with copper(I) iodide.55 Tris(dibenzylideneacetone)dipalla-
dium(0) together with tBuBrettPhos was screened as a potent
catalyst for nitration reactions.56,57 The number of equivalents of
activating reagents followed the closest paper of reference.

Acetonitrile was chosen as the most commonly used solvent
in nitration reactions. An average concentration of 0.1 M was
Digital Discovery, 2025, 4, 1662–1671 | 1665
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Fig. 4 (a) Graph of the results expressed as the calculated accuracies generated from the entire data set depending on the predicting model and
the chemical descriptors data set; (b) graph of the results expressed as the average of the calculated accuracies over all descriptors types
generated from the entire data set depending on the predicting model; (c) graph of the results expressed as the average of the calculated
accuracies over all models types generated from the entire data set depending on the chemical descriptors data set.
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selected at a reaction scale of 10 mmol, and the reaction was run
at 100 °C for 24 hours under an air atmosphere. Each plate was
prepared and worked up aer reaction by addition of an
internal standard, and the crude reactions were analyzed by
UHPLC-UV-MS (see details in the ESI†). The general HTE
workow applied in this study, including home-made soware
for design and visualization, was assessed in a previously re-
ported publication and is detailed in the ESI.†58

Results are presented in Fig. 2 and detailed for the nitration
of 1-naphthoic acid in Fig. 2a Quantication of product
formation was done by calculating the ratio between the nitra-
tion product Area Under Peak (AUP) and the internal standard
(biphenyl) Area Under Peak (AUP). The results can only be
1666 | Digital Discovery, 2025, 4, 1662–1671
compared within a single plate using heat maps (Fig. 2b) due to
substrate-dependent UV response, but trends can be observed
between plates. A total of nine HTE plates and 864 reactions
were performed. A large number of unsuccessful results were
obtained: 487 reactions gave no quantiable product formation,
representing 56% of the overall 864 reactions conducted. These
unfruitful results are still of major importance. As previously
mentioned, predictive algorithms developed with experimental
data from the literature have recently shown limited efficiency,
partly due to the lack of negative results reported in the litera-
ture to train machine learning models.59–61

In the context of this project, the negative data will address
this drawback and hopefully help produce more accurate
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Graph of the results expressed as the calculated accuracies depending on the left-out substrate and the predicting model; (b) graph of
the results expressed as the calculated accuracies using Gradient Boosting model depending on the left-out substrate, or the entire data set,
examined.
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predictions of the chances of success for nitration reactions.
The large percentage of negative results obtained during this
HTE campaign also conrms the challenging nature of nitra-
tion reactions. Thanks to this study, clear trends in the activity
of nitrating agents or activating reagents can be observed across
the plate, depending on the substrate (Fig. 2b and 3). Notably,
only potassium persulfate is a versatile activating reagent,
usually giving rise to better results than in the absence of an
activating reagent, except for benzofuran, where no reactivity
enhancement is observed. Nonetheless, less common activities
© 2025 The Author(s). Published by the Royal Society of Chemistry
were observed from other agents. For example, AIBN displayed
signicant activation performance on several scaffolds (pico-
linic acid, 2-bromopyridine, and 2-bromobenzofuran). All other
activating reagents failed to show clear activity. Notably, silver
carbonate and magnesium perchlorate hydrate did not allow
better performance with carboxylic acid derivatives, thus
showing no specic decarboxylation enhancement. Addition-
ally, copper and palladium catalysts did not perform better with
bromide derivatives, displaying no specic catalytic activity.
Digital Discovery, 2025, 4, 1662–1671 | 1667
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Fig. 6 Graph of the results expressed as the calculated accuracies
depending the model and the data set examined.

Fig. 7 Accuracy of best model obtained for different splits of the train
and test sets.
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On the part of nitrating agents, as expected, nitric acid is
a recurring adequate nitro source. Tert-butyl nitrite (tBuONO)
also demonstrated good activity across the plates, although
diminished compared to nitric acid. Interestingly, both iron
and bismuth nitrate metallic salts showed signicant activities
on several substrates. Finally, N-nitrosaccharin (Sacc-NO2)
exhibited high activity with most of the substrates, conrming
the strong interest in newly developed N-nitro reagents.

As expected, N-nitrosuccinimide (Succ-NO2) showed no
signicant activity under thermal activation, since this reagent
generally requires light activation.62 Other nitrate and nitrite
sources (silver nitrate, sodium nitrite, sodium nitrate, potas-
sium nitrite, and tetrabutylammonium nitrate), as well as
nitronium tetrauoroborate, showed no signicant reactivity in
the global results. Interestingly, in the absence of an activating
reagent, a signicant number of nitrating sources do not show
diminished activity, thus indicating no requirement for activa-
tion. The overall proles conrmed the high difference in
reactivity between arenes and heteroarenes (Fig. 2b and 3b).
Pyridine and benzofuran moieties display a disparity in reac-
tivity toward the nitration reaction. This conrms the difficulty
of designing versatile nitration conditions across different are-
nes and heteroarenes.
1668 | Digital Discovery, 2025, 4, 1662–1671
To conrm the obtained results, batch reactions were per-
formed by selecting high-yielding entries for each compound
(yields are displayed below each corresponding heat map in
Fig. 2b). The obtained yields corroborate the challenge that
comes with nitration reactions. The generally lower yields
observed with pyridine derivatives conrm the reactivity trend
in the nitration of aromatic rings: arenes > electron-rich heter-
oarenes [ electron-poor heteroarenes. Signicantly lower
yields are obtained from the ipso-functionalization of carboxylic
acids with naphthyl and benzofuran moieties. For benzofuran,
the ipso-functionalization of the bromo derivative also gave the
best result on the overall plate. Ipso-functionalization of
carboxylic acid, when applied to the pyridine moiety, gave the
highest ratios. For arenes, electrophilic substitution seems to be
the preferred transformation. However, it should be noted that
for both naphthalene and benzofuran,63 regioisomers were
observed. In the case of naphthalene, several dinitronaph-
thalene compounds were also formed,64 pointing out the lack of
selectivity of this methodology.65 The selected high-yielding
entries present a large variety of nitrating agents, highlighting
the value of a broad HTE campaign studying nitration condi-
tions depending on the reacting scaffolds. However, activating
reagents are less diverse, with potassium persulfate being
overrepresented. Notably, the high-yielding entries selected for
compound isolation were mostly original reaction conditions
(marked with a “c” in Fig. 2). Remarkably, the best-yielding
entry for the benzofuran moiety—obtained from the reaction
of 2-bromobenzofuran with bismuth nitrate pentahydrate in the
presence of AIBN—was, to the best of our knowledge, never
reported. Additionally, the reactions selected for isolation were
all different, emphasizing the relevance of the conducted study.
This large HTE campaign thus allowed for the identication of
an unusual mixture of nitrating and activating reagents for the
nitration of arenes and heteroarenes.

Evaluation of predictive algorithms

From the results of those 864 reactions, producing high-quality
and high-quantity data, we then sought to valorize them
through machine learning. As demonstrated by other groups in
recent years, a predictive algorithm could be developed to
generate the best conditions depending on the targeted
substrate.34,38,40,66 In our case, we envisioned the possibility of
predicting suitable nitrating and activating reagents for
a specic molecule. The pool of data generated presents an
uncommon repartition of results, with 56% of the reactions not
leading to any product formation (see ESI†). From this obser-
vation, a binary classier was envisioned to predict whether
a nitration reaction is likely to succeed given a substrate,
nitrating agent, and activating agent. Among these three inde-
pendent variables, the two latter were numerically encoded as
categorical variables through one-hot encoding, whereas two
types of chemically relevant encoding67,68 were investigated for
the substrate. First, the substrates' molecular structures were
encoded as Morgan ngerprints69 with a radius of 2 and
ngerprint sizes of 512, 1024, and 2048, respectively referred to
as MorganFP-2-512, MorganFP-2-1024, andMorganFP-2-2048 in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the remainder. The open-source RDKit package was used for
this purpose. Its built-in descriptors module was used as well to
feature the substrate as numerical vectors mainly containing
electrotopological descriptors, with (rdkitDescr-210) and
without (rdkitDescr-125) descriptors related to the occurrence
of predened molecular fragments.70,71 Vectors resulting from
the concatenation of the chemically-relevant encoding of the
substrates and categorical one-hot encoding of the nitrating
and activation agents were then randomly split into train set
(80%) and test set (20%) and used as inputs to several classi-
cation algorithms implemented in the open source scikit-learn
library (AdaBoost, Decision Trees, Extra Trees, Gradient Boost-
ing, Hist Gradient Boosting, K-Nearest Neighbor, Logistic
Regression, Naive Bayes, Random Forest, Support Vector
Machines). Dummy classiers (Majority Class, Random,
Random uniform) were systematically tested as well as base-
lines, allowing for the evaluation of the ability of the other
models to perform better than basic prediction models. For
each combination of descriptors and algorithms, the whole
process of train/test splitting, model training and model eval-
uation was repeated y times to mitigate the potential bias
due to the unrepresentative splitting of the dataset and average
the results of stochastic algorithms. The average accuracies on
the test set are computed across these y repeats and reported
in Fig. 4 (see ESI for details on the classication metrics†). The
average accuracies of all machine learning models are signi-
cantly higher than the ones of the dummy models, indicating
that the formers indeed learned some input–output relation-
ships (Fig. 4a and b). Overall, Gradient Boosting and Hist
Gradient Boosting, both relying on ensemble learning, gave the
best results and look especially well appropriate for this data set
(Fig. 4b). The overall study has been evaluated in terms of
balanced accuracy and no major variations have been reported.
All related graphs are reported in the ESI.†

Next, selecting MorganFP-2-1024 as the substrates' featuri-
zation method, the evaluation of the ability of the classication
models to accurately guess the reaction success on an unseen
substrate was conducted, to mimic a real-world scenario where
the reaction outcome on a new substrate would be sought to be
determined before experiment. The leave-one-out strategy was
used for this purpose: every experiment related to one specic
substrate was taken out of the dataset, and classication
models were trained on the remaining experiments. The le-out
experiments were then used as the test set and classication
accuracies were calculated for each model. This operation was
repeated for each substrate.

Unfortunately, the accuracy of the predicting model varies
signicantly depending on the unseen substrate evaluated
(Fig. 5a). As an example, when Gradient Boosting is used, the
variations of the model are enormous depending on the le-out
substrate (Fig. 5b). In addition, accuracies tend to diminish
compared to the result obtained with the entire data set. Only
bromonaphthalene, when not present in the training set and
evaluated by the trained model, gives better accuracy than the
one obtained with the entire data set. Benzofuran moieties give
especially reduced accuracies. This result could outline the
difficult prediction of heteroarene reactivity. From this
© 2025 The Author(s). Published by the Royal Society of Chemistry
hypothesis, we decided to only select one class of substrates to
train the model, to hopefully obtain more accurate predictions.
Electron-poor pyridine moieties displayed a signicantly
different reactivity than the other two studied scaffolds. They
were thus selected and used to train an “electron-poor” model
(Fig. 6). However, when compared to the results obtained with
the entire data set, no signicant improvement is observed.

Overall, the capacity of the model to accurately predict
product formation on an unseen molecule is limited. We
hypothesize that this limitation comes from the limited set of
evaluated molecules62,72 and incomplete feature-engineering of
the reactive system. Indeed, nitration and activation agents
were only categorically encoded in this study, providing no
chemically-relevant information about these reagents, whereas
some of their physico-chemical properties are likely to be
important for reactivity prediction. The same goes for the
substrates, although to a lesser extent, for which no descriptors
stemming from electronic structure calculations were used.
These machine-learning considerations and insufficient
chemical diversity of substrates could both contribute to
restraining the model from accurately classifying the reactivity
of substrates in nitration reaction, thus explaining the dimin-
ished accuracy of the models on unseen molecules.

To further explore how negative results contribute to the
performances of machine learning models, the experimental
dataset produced in this study was split into different trainsets
with varying proportions of successful/unsuccessful reactions.
These proportions varied between 10% and 95% of successful
experiments, and the accuracy of the best model is reported
accordingly in Fig. 7. The same results in terms of balanced
accuracy are reported in the ESI.†

For highly unbalanced trainsets, it is clear that the best
models are obtained when the test set is split in the same way.
Otherwise, the classication accuracy dramatically decreases.
On the other hand, balanced trainsets, containing around 40 to
60% of successful reactions, always give reasonable accuracy
which is much less dependent on the testset split. Because the
testset repartition is typically unknown in real-world scenarios,
this provides further evidence that reactions typically consid-
ered unworthy of publication actually are precious to devel-
oping robust data-driven models. A complementary study was
performed using only two out of the three types of descriptors to
train the algorithm (see Fig. 27 in the ESI†). The balanced
accuracies obtained for each split revealed that the nitration
agent is the most important descriptor to take into account to
correctly predict the outcome of a reaction. On the other hand,
ignoring the activation agent or the substrate itself does not
signicantly affect the model's performance. This might origi-
nate from strong similarities between the le-out substrate's
reactivity and the training set's reactivity towards the same pairs
of activation/nitration agents. Further exploration of these
questions will be the object of a following study.

Conclusions

From the identied heteroarene nitration challenge, we carried
out a large HTE campaign for the evaluation of nitration
Digital Discovery, 2025, 4, 1662–1671 | 1669
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conditions depending on various scaffolds. The designedmodel
HTE plate allowed for the screening of 12 nitrating reagents and
7 activating agents. This plate was applied to three different
classes of scaffolds: (i) an arene (naphthalene core), (ii) an
electron-rich heteroarene (benzofuran core), and (iii) an
electron-poor heteroarene (pyridine core). Three different
substrates were selected for each moiety, giving rise to 9
different compounds screened and 864 different reactions. The
results conrmed the lower reactivity of electron-poor, nitrogen-
containing heteroarenes.

The high diversity of nitrating agents occurring in the best-
yielding results proved the interest in performing such
a large-spectrum HTE campaign. It also highlighted original
reaction conditions. Over the 9 HTE plates, 5 high-yielding
reaction conditions were previously unreported mixtures of
nitrating and activating reagents. Finally, the high-quality and
high-quantity data were used to develop a predictive tool relying
on machine learning to evaluate the best nitration conditions
depending on the targeted substrate. Although the model gave
satisfying metrics when trained on the overall dataset, it
revealed limited generalization capability on unseen substrates.
A higher chemical diversity of targeted substrates and a more
thorough featurization of the whole reactive system could allow
for improved accuracy. Together, HTE and machine learning
allowed for an extensive exploration of the nitration reaction,
paving the way for a new methodology to address this chal-
lenging transformation.
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