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training improves the accuracy
and efficiency of machine learning interatomic
potentials

Sakib Matin, *a Alice E. A. Allen, abc Emily Shinkle, d Aleksandra Pachalieva, e

Galen T. Craven,a Benjamin Nebgen, a Justin S. Smith,f Richard Messerly,a

Ying Wai Li, d Sergei Tretiak, abg Kipton Barros ab and Nicholas Lubbers d

Machine learning interatomic potentials (MLIPs) are revolutionizing the field of molecular dynamics (MD)

simulations. Recent MLIPs have tended towards more complex architectures trained on larger datasets.

The resulting increase in computational and memory costs may prohibit the application of these MLIPs

to perform large-scale MD simulations. Herein, we present a teacher-student training framework in

which the latent knowledge from the teacher (atomic energies) is used to augment the students'

training. We show that the light-weight student MLIPs have faster MD speeds at a fraction of the

memory footprint compared to the teacher models. Remarkably, the student models can even surpass

the accuracy of the teachers, even though both are trained on the same quantum chemistry dataset.

Our work highlights a practical method for MLIPs to reduce the resources required for large-scale MD

simulations.
1 Introduction

Molecular Dynamics (MD)1 is ubiquitous in chemistry,2 mate-
rials science,3 and drug discovery4 as well as other elds.
Accurate chemical and thermodynamic properties derived from
MD rely on accurate interatomic potentials, which parameterize
the many-body interactions present between atoms.1,5 Simula-
tion scales may vary greatly depending on the questions of
interest and available resources, and there is a persistent need
for greater model efficiency. Traditional classical potentials are
very fast, making it possible to perform large-scale simulations
of billions of atom,6 or to perform hundreds of millions of
integration time-steps for small systems. Recently, there has
been a great demand for interatomic potentials that are more
accurate via machine learning models that are trained to
reference quantum mechanical force calculations. Here, the
goals of efficiency and accuracy can be in conict. Our paper is
l Division, Los Alamos, New Mexico, USA.
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02–2511
concerned with techniques for improving the efficiency of the
interatomic potential without sacricing the accuracy.

The gold-standard for computational chemistry is ab initio
molecular dynamics, which uses quantum chemistry (QC)
methods for accurately calculating interatomic forces from rst
principles.7,8 However, the oen prohibitive computational cost
of QC methods and its rapid growth with system size limit the
size of the systems that can be simulated. Machine learning
interatomic potentials (MLIPs)9–13 can be trained on QC datasets
to map from an atomic conguration to energy and forces.
MLIPs can achieve the chemical accuracy (error <1 kcal mol−1)
of QC simulations14 at drastically reduced computational costs.
Most MLIPs achieve linear scaling with system size by utilizing
the approximation that the total predicted energy can be
decomposed into a sum of spatially local atom-wise or pair-wise
contributions.11,12,15,16 MLIPs have seen explosive growth and
have been successfully applied to predicting potential energy
surfaces,17–25 with extensions to a variety of quantities, such as
charges26–30 and more.31–35 However, MLIPs only mitigate the
cost of QC—they do not eliminate it. Generating training data
for MLIPs is costly due to the steep scaling of QC methods in
system size N, e.g., O ðN7Þ at the CCSD(T) level of theory.7

Therefore, any approach which uses data more efficiently can
potentially reduce the overall computational costs of MLIPs.

Furthermore, a recent trend in the eld is the signicant
effort to construct foundation model MLIPs36–38 with broad
chemical coverage,39 inspired by the success of large pre-trained
models in natural language processing.40 Foundation MLIPs,41

which may be parameterized by up to 109 tting parameters,42
© 2025 The Author(s). Published by the Royal Society of Chemistry
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have high computational and memory requirements.43,44 These
increasing computational and memory costs compared to
classical force elds1 can limit the usability of MLIPs for large-
scale MD simulations.13,43–45

In this manuscript, we introduce a teacher-student training
method for MLIP with a central purpose of building the MLIPs
with faster inference and lower memory requirements. The
teacher-student training is a class of methods46–48 to reduce the
inference costs of different ML models and more effectively
utilize existing datasets. An initial teacher model is trained and
then used to augment the training of a student model that may
have faster inference,43,44,48 smaller memory requirements,49 or
better generalization capacity.47 Crucially, this knowledge
distillation procedure does not require additional rst-
principles training data. Instead, auxiliary predictions of the
teacher model are used to augment the data used for training of
the student model. The innovation in this work is to use the
teacher's local atomic energy predictions as the auxiliary
training data. Although these local atomic energies have tradi-
tionally been considered a latent feature of the MLIPmore,11 the
present work highlights that they carry important information.
Note that the latent atomic energies provided to the student are
far greater in number than the single global QC energy. Thus,
the student is trained using a signicantly larger number of
constraints than the teacher. Because the student model will
typically have fewer trainable weights than the teacher model,
Fig. 1 Teacher-student training for the Hierarchically Interacting Partic
HIPNNmodel consists of an input node, a message passing interaction la
HIPNN is trained on the quantum mechanical energy and force data a
augments the student model training to improve the accuracy. The s
inference and lower memory requirements. The control HIPNNs have th
only on ground truth data. We show that the student models are more

© 2025 The Author(s). Published by the Royal Society of Chemistry
this approach can yield signicant gains for inference speed
and memory requirements. We also nd that the student model
can achieve a higher accuracy than the teacher. An overview of
our workow is presented in Fig. 1.

2 Methods & background

We apply the teacher-student training to an MLIP architecture,
namely the Hierarchically Interacting Particle Neural Network
(HIPNN).14,22 HIPNN is a message passing graph neural network
used to model atomistic systems,22,28 and recent variants
incorporate equivariant tensor sensitivity for higher accuracy.14

The architecture of HIPNN is briey reviewed in Section 2.1. In
Section 2.2, we introduce the teacher-student paradigm. Section
2.3 summarizes the training procedure. Section 2.4 details the
datasets studied. Section 3 contains a systematic exploration of
the teacher-student training for the HIPNN model.

2.1 Architecture

HIPNN22 is a message-passing graph neural network50 that can
map atomic congurations to various chemical properties such
as energy,22 forces,14 dipoles,28 etc. Similar to many MLIP
architectures, the interaction layers of HIPNN allow for mixing
of atomic environments between neighbors via message
passing to construct the learnable features.22 The local atomic
environment of each atom is initially featurized using atomic
le Neural Network (HIPNN) machine learning interatomic potential. A
yer and feed-forward regression layers called atom layers. The teacher
nd generates latent knowledge in the form of atomic energies. This
tudent HIPNN that has fewer trainable weights contributes to faster
e same number of trainable parameters as the student but are trained
accurate than the control models.

Digital Discovery, 2025, 4, 2502–2511 | 2503
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number (in HIPNN, as a one-hot encoding, although also
common is a random embedding) and passed through several
layers along with pair-wise displacement vectors between the
neighbors with local cut-off to predict the atomic energy 3i for
each atom i. Automatic differentiation is used to calculate the
forces on each atom from the total molecular energy.

MLIP architectures almost universally infer a local decom-
position in their predictions of extensive quantities. In message
passing neural network parlance, the readout function is
a linear summation over node states. Specically, in HIPNN,
the energy E[r1, r2, ., rN] of a conguration, where N is the
number of atoms, is decomposed into a sum of local
contributions:

Ez Ê ¼
XN
i

3i: (1)

The energy contributions are formed by a linear combination
of features (also called embeddings) learned by the neural
network. The teacher-student procedure we investigate here
depends on the existence of some local energy decomposition
but is exible about its details. For example, our procedure
could also work on models such as Allegro that decompose
energy into contributions of local bonds.16

In the original publication,22 the HIPNN only used scalar
pair-wise distances between neighbors, which captures a subset
of higher-order many-body information contained in the local
chemical environment.14,41 Subsequently, the HIPNN with
tensor sensitivity14 utilizes higher order tensor products of the
displacement vectors between atoms to construct more infor-
mative descriptors. The hyper-parameter lmax corresponds to
the highest order tensor used in the HIPNN. A weight tying
scheme between different order sensitivity functions only leads
to a modest increase in the number of trainable parameters,
thereby reducing the training and evaluation costs and
improving the data efficiency.14 The lmax = 0 HIPNN model
utilizes only scalar pair-wise distances and coincides with the
model developed in the original publication.22 In this work, we
select lmax = 1 to allow for vector sensitivity. Other hyper-
parameters for the HIPNN models used in this paper are
given in Section 5.
2.2 Teacher-student training

In the teacher-student training method, a pre-trained teacher
model (or models) is used to train a student model to improve
the speed,43,44,48 memory requirements,49 and generalization.47

Knowledge Distillation (KD)46 is a well-known form of teacher-
student training. In the original KD publication,46 auxiliary
targets are the teacher model's predicted relative class proba-
bilities (before the application of the somax operation in the
output layer). The auxiliary targets generated by the teacher
model contain richer information about the structure of the
classes in the dataset. The student models are trained on both
the ground truth data and the auxiliary targets and perform
better than the control models, which have the same architec-
ture as the student model but are trained only on the ground
2504 | Digital Discovery, 2025, 4, 2502–2511
truth data. Later studies have incorporated deeper architecture
dependent knowledge.48,49,52 KD has been successfully applied
to many different architectures such as CNN,53 graph neural
networks,48 transformers49 and more.54 Another variant of the
teacher-student training is the “Born Again” (BA) method,47

where the student and teacher models have the same archi-
tecture, and the student model can surpass the teacher's accu-
racy. Multiple teachers can be used to train a single student
model to improve the performance.47,55–57 Previous studies focus
on classication tasks on images46 and text49 and limit appli-
cations to regression tasks on graph structured data.58

Recently, teacher-student methods have been explored in
chemistry for accelerating molecular dynamics,43,44 physics-
constrained data augmentation,59 and material property
prediction.60 In a related work in ref. 61, the teacher MLIP
(trained on the QC ground truth) is used to generate synthetic
data by running MD under different conditions. The student
model is initially pre-trained on the synthetic data and then
ne-tuned on the QC ground truth.

In the rst step of our teacher-student method, we train
a complex “teacher” MLIP on a QC dataset, which consists of
conguration energy and forces on each atom. This teacher
MLIP can generate auxiliary targets, namely per atom energies.
The atomic energy may provide more ne-grained information
than the aggregate conguration energy.43,61,62 Then, we train
the student MLIP on the original QC data and auxiliary targets
generated by the teacher MLIP. This economical approach does
not require any expensive QC calculations beyond the original
dataset needed to train the teacher model, nor exhaustive hyper-
parameter tuning.
2.3 Training procedure and loss function

We train the teacher model T on the QC dataset D, which
contains a set of atomic positions and species for each cong-
uration and the corresponding energy and forces per atom,
D : fRi;Zig/fE; Fig:.

The NN model is trained in a standard manner using
stochastic gradient descent on the loss function

L teacher ¼ wEL err

�
Ê;E

�
þ wFL err

�
F̂ ;F

�
þ wL2

L L2
þ wRL R: (2)

The L L2 loss term is a regularization of the model weights,
which is commonly added to loss functions to reduce over-
tting. The L R term, specic to HIPNN, also enhances model
stability. The error loss L err could be any combination of
common metrics but in our case is an equal weighting between
root-mean-squared error (RMSE) and mean-absolute error
(MAE) losses:

L err

�
V̂ ;V

�
¼ RMSE

�
V̂ ;V

�
þMAE

�
V̂ ;V

�
; (3)

where V̂ is the model prediction and V is the ground truth
target. Our loss function uses a sum of RMSE and MAE errors,
similar to the original HIPNN model publications.14,22 The
weights of each term in the loss are listed in Appendix A.1.

The teacher model T maps the local atomic environments to
atomic energies 3i, which are summed over to obtain the energy
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Ê. Although 3i is not directly a physical observable, it nonethe-
less captures important information about how the local
geometry affects the nal prediction of the model.43,61,62 Here,
we use the teacher MLIP's atomic energies as the knowledge to
be transferred to the student MLIPs.

The atomic energy 3i predictions from T are used to
construct the augmented dataset:

~D : fRi;Zig/
�
E; 3Ti ;F i

�
: (4)

Note that the original dataset D has the same set of congu-
rations (inputs) as the augmented data ~D.

We train the student models S on the augmented dataset ~D
with the loss function:

L student ¼ wEL err

�
Ê;E

�
þ wFL err

�
F̂ ;F

�
þ wAL errð3S ; 3T Þ

þ wL2
L L2

þ wRL R (5)

This captures the notion that the student should learn from the
teacher using the loss term L errð3S ; 3T Þ, which encourages the
partitioning of energy among atomic sites in the student, 3S , to
match that of the teacher, 3T . We explore student models by
varying several architectural parameters of the NN, namely, the
layer width nfeature, the number of sensitivity function nd used
for distance embedding, and the number of atom layers used
aer interaction layers natom_layer. To assess the effectiveness of
the method, we also train control models C that have the same
architecture as the students S but are trained only on the
dataset D using L T ; everything else is held constant in these
models except for the student-teacher loss. The accuracy of the
control models serves as a benchmark to compare the efficacy of
the teacher-student training framework.
Fig. 2 The student MLIPs are Pareto dominant compared to the contr
aluminum dataset.23 The accuracy metric, force RMSE, is plotted as a func
memory per atom in (B). The origin of the plots corresponds to the Pareto
a Nvidia A6000 (48 GB) GPU. The error bar corresponds to the standard
initializations.

© 2025 The Author(s). Published by the Royal Society of Chemistry
2.4 Data

We apply our teacher-student workow on the ANI-Al dataset,23

which consists of condensed-phase aluminum geometries, with
energies and forces calculated using Density Functional Theory
(DFT). The authors of ref. 23 created the dataset using an
automated active learning framework to generate adequate
coverage of the congurational space. In this workow, an
ensemble of ANI models20 were trained to the initial DFT
dataset, which consisted of random structures. The main loop
of the active learning workow involves running MD simula-
tions with the ensemble under varying thermodynamic condi-
tions (time-dependent temperatures and density schedules) on
boxes of z50 to z250 atoms. New DFT calculations were per-
formed on congurations where the ensemble disagreement
exceeded a predened threshold. Then, the MLIPs were
retrained to the expanded dataset. This loop terminates when
long MD simulations (250 ps) could be performed without
identifying any new congurations with high ensemble
disagreement. Over 50 generations of models, the nal dataset
comprised about 6000 DFT calculations with the Perdew–
Burke–Ernzerhof functional. The dataset is available online.63

More details are available in the original publication describing
the construction of the dataset.23
3 Results and discussion
3.1 Pareto dominant student MLIPs

Atomistic simulations require accurate and efficient evaluation
of energy and forces. Performing MD at large length and time
scales is challenging due to the trade-off between accuracy and
ol models. The student and control MLIPs are trained on the ANI-Al
tion of efficiencymetrics, namely, time per MD step per atom in (A) and
optimum solution. TheMD simulations are run using the ASE51 code on
deviation of an ensemble of 4 models, which differ by random weight

Digital Discovery, 2025, 4, 2502–2511 | 2505
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efficiency of the interatomic potential used in the simulation.
MLIPs provide a path to perform MD with QC accuracy at
dramatically reduced costs relative to methods that use explicit
QC solutions to calculate the forces and energies that are used
to evolve the simulation forward in time. Here, we show that the
teacher-student method allows us to improve the accuracy of
the smaller MLIPs without increasing the computational costs
at inference time.

Characterizing the accuracy of interatomic potentials in
absolute terms is challenging.64 Such comparisons should be
made against exact numerical solutions or experimental data,
which may not be available. The accuracy of MLIPs can be
judged against held-out test data from the QC calculations used
to develop the potential. In this section, we use the force root
mean squared error (RMSE) as an accuracy measure. We analyze
out-of-sample MD-based accuracy metrics in Section 3.2.

It is also difficult to dene an unambiguous metric of effi-
ciency for MLIPs. An informative measure is the time-per-MD
step per atom, which is affected by hardware (CPU/GPU
memory and processing speeds) and soware (MD library,
algorithm used for neighbor list construction, etc.). Therefore,
in this article, we use a consistent hardware conguration (a
single A6000 GPU with 48 GB of storage), and we use the Atomic
Simulation Environment51 soware. We simulate 48 000 atoms
at xed volume and energy (NVE ensemble) with a time step of 1
fs and a simulation time of 1 ps. Additionally, we can charac-
terize the efficiency of MLIPs based on memory requirements.
We record the maximum number of atoms that can be simu-
lated on a single A6000 GPU using the ASE soware and use it to
calculate the average memory-per-atom.

Fig. 2 shows the Pareto plot of accuracy (force RMSE) against
the time per MD step per atom andmaximum atoms per GPU in
panels (A) and (B) respectively. The student models are Pareto
dominant with respect to the control MLIPs, i.e., for a given cost
(MD speed or memory requirement), the student models have
higher accuracy than the control models. Each data point is
averaged over four MLIPs initialized with different random
seeds. Relative to the teacher, the student MLIPs can simulta-
neously achieve more than a factor of 2 speed up in MD simu-
lations at less than half the memory requirements while
sacricing less than 20% in force accuracy.
weights captures the model capacity. The force RMSE errors and
energy per-atom RMSE errors for the training dataset are plotted in
panels (A) and (B) respectively. The total absolute error of the radial
distribution function (RDF) of the student and control MLIPs compared
to the teacher MLIP is shown in panel (C). The error metrics with
respect to the training datasets in (A) and (B) show similar trends as the
MD-based accuracy metrics in (C).
3.2 Accuracy and MLIP capacity

In Fig. 3, we analyze several metrics of accuracy such as force
RMSE, energy-per-atom RMSE, and radial distribution function
(RDF)1 error as a function of number of weights of each HIPNN
model, which serve as an effective measure of the model
capacity. This metric is compelling because it is agnostic to the
hardware constraints, such as GPU memory and the choice of
MD soware. While it is meaningful to compare weights for
different variants of an MLIP architecture (HIPNN), care should
be taken when making comparisons across different architec-
tures. In Section 3.4, we study how the number of weights
correlates with the maximum number of atoms per GPU and
MD speeds.
2506 | Digital Discovery, 2025, 4, 2502–2511
The force RMSEs in panel (A) of Fig. 3 indicate a meaningful
improvement of the student models compared with the control
models, while the energy errors in panel (B) are only minimally
improved in the student models. We compute the RDFs of
liquid aluminum at 1200 K using the LAVA65 soware, which is
a wrapper for LAMMPS.5 The reported RDF errors shown in
panel (C) for the student and control models are the total
© 2025 The Author(s). Published by the Royal Society of Chemistry
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absolute errors with respect to the teacher RDFs. Note that the
energy and forces errors in Fig. 3(A) and (B), respectively, are
computed with respect to the ground truth training data,
whereas the RDF errors in Fig. 3(C) are the differences against
the teacher models' MD simulations. Fig. 3 reveals that the
energy RMSE is quite similar between the student and control
models, except for very small model sizes. We attribute the
improvements in the force accuracy to the fact that the atomic
energies are local properties predicted for each atom, similar to
atomic forces. Furthermore, the force errors strongly correlate
with the RDF errors. Note that the RDF simulations constitute
a difficult extensibility test because the simulations utilize large
periodic boxes that are two orders of magnitude larger than the
congurations found in the training data, with each simulation
containing 18 634 atoms.
3.3 Learning dynamics

Learning dynamics (also known as optimization dynamics)
characterize how the training or out-of-sample validation error
evolves as a function of training epochs. We analyze the
learning dynamics of student and control MLIPs to understand
how the auxiliary targets affect the training. We see in Fig. 4 that
the student models' learning dynamics outperform those of the
control models. Loss curves of four different student and
control models all share the same architecture. Here, we use
four different seed values for the random initialization of the
sets of four control and four students, respectively. By employ-
ing the same seed for a pair of student and control MLIPs, we
ensure that each student MLIP has the same initial weight as its
corresponding control MLIP. Note that the learning dynamic
curves begin aer one epoch of training has been done. The
apparent improved initialization of the student models is
actually due to the improved learning by the student HIPNN
Fig. 4 The student HIPNNMLIP exhibits faster learning dynamics than th
splits are shown as a function of epochs for student and control MLIPs i

© 2025 The Author(s). Published by the Royal Society of Chemistry
models due to the atomic energy targets from the teacher. We
also note that the auxiliary targets have a regularization effect,
stabilizing the optimization, because the learning curves of the
student models exhibit less variance in the later stages of
training.
3.4 Speed and scalability

Performing large-scale MD is necessary to address many
important scientic questions. While the atomic time-steps are
generally on the order of order 1–10 fs, the physical phenomena
of interest may span milliseconds or longer and can require
billions of atoms. Large-scale MD on modern super-computing
clusters relies on the idea of weak scaling,5 where the simula-
tion is distributed acrossmany nodes. Due to the high latency of
inter-node communications, it is benecial to t as many atoms
on one node or GPU as possible.

Our work shows that the teacher-student procedure lowers
the resource required for large-scale MD at a target accuracy.
The teacher-student method improves the accuracy of smaller
models. The light-weight student models require fewer oating
point operations for force evaluations. As a direct consequence,
we can now run large-scale MD at a desired accuracy while using
fewer computational resources. Fig. 5 examines how the
number of weights in the network affect the computational cost
for large-scale MD in terms of both speed andmemory in panels
(A) and (B), respectively. The MD is performed using ASE in the
NVE ensemble for 1 ps with a time step of 1 fs. Furthermore, we
see that the smaller student models can t more atoms on
a single GPU (A6000 48 GB in Fig. 5). The ability to t more
atoms on a single GPU can improve the efficiency of large MD
simulations because inter-node latency can oen dominate the
computations.5
e control models. Plot of force RMSE for the training and validation data
n (A) and (B), respectively.
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Fig. 5 Inference efficiency as measured by (A) time-per-MD step per
atom and (B) memory per atom versus the number of trainable weights
in HIPNN models. Data are collected by running MD simulations using
ASE in the NVE ensemble on a single A6000 GPU (48 GB) for 103 steps.

Table 1 Loss scheduler for student MLIPs for the Born-Again method
of teacher-student training in Section 3.5

Epoch wA wF wE

1 200 75 0.0
200 160 63 0.2
250 120 51 0.4
300 80 39 0.6
350 40 27 0.8
400 0 15 1
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3.5 Student MLIP surpasses the teacher

We apply the “Born Again”47 teacher-student training to the
HIPNN. The ‘Born Again’method was introduced in ref. 47, and
it is a variant of the teacher-student training where both models
have exactly same architecture and number of trainable
weights. The central aim of the ‘Born Again’ method is to train
a student model that surpasses the teacher's accuracy. This is in
contrast to knowledge distillation, where the aim is to improve
the accuracy of smaller student models that have fewer train-
able weights than the teacher models. We show that student
models trained to the ground truth data and the teacher
2508 | Digital Discovery, 2025, 4, 2502–2511
model's auxiliary outputs and can surpass the teacher by using
an loss scheduler.

Initially, we use the static loss function in eqn (2) to nd that
student MLIPs achieve comparable errors to the teachers.
However, then, we utilize a loss scheduler to dynamically
update the weights wA, wF, and wE during the training, as
summarized in Table 1 in Appendix A.1. The weights in the loss
function are chosen to favor the teacher's knowledge in the early
stages of training and emphasizing the QM data in the later
stages, so that the student can surpass the accuracy on the QM.
The values of weight schedule are determined through manual
hyper parameter tuning. The nal weights of the students' loss
function match those of the static weights of the teacher MLIP.
The student models' energy RMSE of 0.37 ± 0.02 eV and force
RMSE of 0.083 ± 0.003 eV Å−1 are lower than the teacher
models’ errors, energy RMSE of 0.38 eV, and force RMSE of
0.092 eV Å−1. These show that the BA teacher-student approach
improves the force accuracy by about 10%, which shares the
same model architecture and underlying training data.
4 Conclusions and future work

We introduce a teacher-student framework that can be readily
applied to many MLIPs that decompose the congurational
energy into a sum of local contributions. The teacher-student
training framework improves the Pareto set of error-cost
trade-offs for MLIPs, yielding models that are computationally
cheaper for the same accuracy, or more accurate for the same
computational cost, and requires no additional ground-truth
data.

In a practical setting, we showed that the student MLIPs are
Pareto dominant with respect to the control MLIPs. The student
MLIPs, trained to the ground truth and teacher's atomic ener-
gies, achieve higher accuracy at the same efficiency (speed and
memory requirements) when compared to the control models
that were only trained to the ground truth. We use both training
errors (energy and force RMSEs) as well as the MD-based metric
(RDF errors) to quantify the accuracy of the MLIPs. We nd that
the force RMSE errors generally correlate with the MD-based
metrics, which are costlier to evaluate. MD-based metrics also
demonstrate the extensibility of the MLIP to congurations
much larger than what is typically included in the training
dataset. However, MD-based metrics require a ground truth,
such as ab initio results or experimental data, which may not
always be available. The efficiency of MLIPs is also multi-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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faceted. We use MD speeds and memory-per-atom as effective
measures. While MD speed is easy to interpret, it strongly
depends on the underlying hardware, MD codes, and the system
under study. The memory-per-atom measure is useful to opti-
mize for large MD simulations, where inter-node communica-
tionsmay dominate. While the research to improve the accuracy
of MLIPs has focused on the development of more expressive
architectures50 and the generation of larger datasets,66 we show
that the ‘Born-Again’ inspired teacher-student training can be
used to train more accurate models with existing datasets and
architectures. Thus, innovations to the training protocol can
allow us to extract better models from existing datasets.

We used the atomic energies as the knowledge for the
teacher-student training. In the language of message passing
graph neural networks, the atomic energy is a node level
scalar.50 In future studies, one can explore node level vectors,
such as forces,56,57 and edge level properties as knowledge for
the teacher-student framework to train across different archi-
tectures.43,44 Additionally, network weights for the interactions
layers may be utilized as knowledge for the student. One may
also explore using an ensemble of teachers for future work,
where the students may be able to leverage the uncertainty
associated with the teacher MLIPs' knowledge.

Graph neural networks can be used to predict molecular
properties beyond just energy and forces such as charges,29,67

dipoles,28 and other properties.11 There is potential to explore
cross-modal teacher-student training frameworks to combine
teacher models with different specialized tasks to train gener-
alist student MLIPs. This will be an important step towards
foundation models for chemistry with broad applicability.
5 Training details
5.1 Hyper-parameters

We use HIPNN models with 1 interaction layer. The teacher
models use 4 atom layers (feed-forward layers) with a width of
128. The student (and control) models have between 1 and 4
atom layers with a width between 12 and 128. All models have
a maximum tensor sensitivity order set at lmax = 1. For the
sensitivity functions which parameterize the interaction layer,
radial basis functions are used with the so-min cutoff of 1.5 Å,
so maximum cutoff of 7.0 Å, and hard maximum cutoff of 7.5
Å. The teacher model uses 40 basis functions. For the student
(and control) MLIPs, we use between 8 and 40 sensitivity func-
tions. The so-min cut-off corresponds to the inner cut-off at
very short distances. The hard maximum cut-off corresponds to
the long distance cut-off. The so maximum cutoff is set to
a value smaller than the hard-dist cutoff to ensure a smooth
truncation of the sensitivity functions. Note that we are using
the naming conventions for the hyper-parameters in the HIPNN
GitHub Repository,68 which differ slightly from the original
HIPNN publication.22

We summarize the weights corresponding to the loss func-
tion in eqn (2). WL2

=10−6 and WR = 0.01 are common to the
teacher, student and control models. WE = 1 and WF = 10 are
used for the teacher and control MLIPs. Lastly, we use WE = 1,
© 2025 The Author(s). Published by the Royal Society of Chemistry
WF = 30 and WA = 100 for the student models. For BA training,
we use a loss schedule with weights given in Table 1.

We used the Adam Optimizer, with an initial learning rate of
0.001, which is halved with a patience of 30 epochs. The
termination patience is 50 epochs.
Data availability

The HIPNN14,22 MLIP is implemented in an open-source
PyTorch-based soware package called hippynn, which is
available for download68 (persistent repository DOI: https://
doi.org/10.6084/m9.gshare.29551166.v1). The scripts for
workow can be found in the examples folder. We use an
aluminum dataset published in ref. 23, and the dataset is
available for download63 (persistent repository DOI: https://
doi.org/10.6084/m9.gshare.29372552.v1).
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