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Alloy design can be framed as a constraint-satisfaction problem. Building on previous methodologies, we
propose equipping Gaussian Process Classifiers (GPCs) with physics-informed prior mean functions to
model the centers of feasible design spaces. Through three case studies, we highlight the utility of
informative priors for handling constraints on continuous and categorical properties. (1) Phase stability:
by incorporating CALPHAD predictions as priors for solid-solution phase stability, we enhance model
validation using a publicly available XRD dataset. (2) Phase stability prediction refinement: we

demonstrate an in silico active learning approach to efficiently correct phase diagrams. (3) Continuous
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1 Introduction

Due to the multitude of performance requirements in materials
development, alloy design is often more accurately framed as
a constraint satisfaction problem rather than a pure optimiza-
tion problem.'™* In this framework,” the objective shifts from
optimizing a single function to identifying one—or all—solu-
tions that satisfy all imposed constraints. This perspective is
particularly relevant to alloy design, where the violation of even
a single constraint can render a material unsuitable for
a specific application. Consequently, it is imperative to develop
methods that efficiently navigate feasible design spaces while
reducing the reliance on costly experiments.*” For example,
phase stability constraints are particularly common in alloy
design,*’ as specific phases are often desired while deleterious
phases need to be avoided. X-ray diffraction (XRD) or micros-
copy at multiple resolutions are typically employed to determine
the presence of various phases in bulk alloy samples. Likewise,
high-temperature compression/tension measurements are
common objectives in alloy design schemes'*** yet are difficult
and expensive to execute.'®

Due to the combinatorial vastness of alloy design spaces, the
time and financial costs of brute-force experimental exploration
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efficient strategy for constraint-aware alloy design.

become prohibitive.” To alleviate this burden, computational
techniques—such as the modified Hume-Rothery rules and
CALPHAD-based approaches—have been widely employed as
a first approximation for phase stability assessments and
predictions.**** Although heuristics like the modified Hume-
Rothery rules enable rapid screening of potential single-phase
solid solutions, their accuracy is limited for complex multi-
component systems; moreover, they cannot predict phase
stability as a function of temperature or identify specific inter-
metallic phases.” In contrast, CALPHAD techniques offer
higher accuracy but rely heavily on thermodynamic databases®
that are often labor-intensive to calibrate and less adaptable to
the dynamic incorporation of new data in iterative experimental
campaigns.'® Similarly, in the context of yield strength, several
inexpensive analytical models'”™*° predict various strengthening
mechanisms; however, these models exhibit limited accuracy
when compared to ground-truth experimental measurements.

Recent advances in machine learning have demonstrated
significant promise in addressing these challenges. In partic-
ular, adaptive models that utilize active learning can dynami-
cally update predictions of material properties as new
experimental data become available.>*** Nonetheless, purely
data-driven approaches often overlook valuable physical
insights, thereby limiting their reliability when data are sparse
or incomplete. When alloy design problems are highly con-
strained, we believe it is more appropriate to frame the design
process as a constraint satisfaction problem rather than a pure
optimization problem. In our previous work,"** we demon-
strated that incorporating physics-informed priors into
Gaussian Process Regressors (GPRs) significantly improved
both the physical accuracy and predictive performance of the
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models, leading to more efficient Bayesian optimization strat-
egies.” In other research,” we explored how active learning
could be used to refine the feasible design space in Bayesian
optimization; however, the Gaussian Process Classifiers (GPCs)
employed were purely data-driven and lacked informative priors
mean functions.

In this study, we address the challenge of dynamically
updating predictive models for constrained properties—as new
experimental data become available—by proposing a Bayesian
classification approach that seamlessly integrates prior knowl-
edge derived from physics-based models. Specifically, we
introduce a physics-informed classification method to handle
both continuous and categorical constraints in alloy design,
targeting properties such as phase stability and yield strength.
This approach not only refines predictions with incoming data
but also enhances model interpretability and reliability in
scenarios where data acquisition is expensive or time-
consuming. Moreover, the probabilistic framework enables
rigorous quantification of classification uncertainty, which is
crucial for informed design and decision-making.

We validate our method through three case studies:

(1) To demonstrate its utility for categorical classification, we
benchmark the proposed method using a publicly available
dataset on phase stability in high entropy alloys.>

(2) We extend the method to active learning for categorical
constraints, demonstrating its ability to construct accurate
phase stability predictions with minimal ground-truth data.

(3) Finally, we apply the method to active learning for
continuous constraints, specifically yield strength. In this case,
equipping Gaussian Process Classifiers (GPCs) with informative
priors significantly enhances both classification performance
and the active learning of feasible design spaces compared to
purely data-driven techniques.

2 Methods

2.1 Gaussian process classification for categorical data

In our previous work,"*> we demonstrated how any Gaussian
Process Regressor (GPR) can be equipped with a non-zero prior
mean function. This is achieved by training a GPR on the
differences between the training data and the prior predictions
for that data. Specifically, the model is trained to predict the
error in the prior prediction for each data point in the training
set. For new data points, the model's predicted error is added to
the prior prediction to obtain a final prediction. Mathemati-
cally, this approach is equivalent to using a GPR with a non-zero
mean function.” The expression for a physics-informed poste-
rior mean function and standard deviation is shown in eqn (1).
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In eqn (1), u(x*) denotes the posterior mean of the GP at a test
point x*¢ R?, and o¢p*(x*) represents the corresponding poste-
rior variance, quantifying predictive uncertainty. The prior
mean function m(-) may incorporate physics-based insight. The
training inputs are Xy = {xy, ..., xx} with observations yy = [y4,
...y yn]%. The covariance vector K(Xy, x*) = [k(x1, x*), ..., k(xn,
x*)]" and the matrix K(Xy, Xx) has entries k(x;, x;). Here, k(-,-) is
the kernel measuring similarity between inputs, ¢,> is the
Gaussian noise variance, and I is the N x N identity matrix.

In the case of regression, we found that on average, models
utilizing this method converge during Bayesian optimization
faster than standard GPRs trained on the same data.'* This
method can also be extended to classification by adjusting the
prior mean function of the latent Gaussian Process (GP)
required during GP classification.

Using notation from ref. 25, the goal of GP classification is to
predict the probability that any test point x* belongs to class t =
1 where ¢ = {0, 1}. To do this GPCs rely on an unobserved latent
function a(-) to map input features x to real label probabilities y
€ (0, 1). Example of this latent GP is shown in Fig. 1a. To model
this latent function we place a GP prior on it:

a(x) ~ gP(O,k<x, x’)> (2)

In order to convert output of the latent GP into valid prob-
abilities we pass it through a response function. After passing
the latent GP a(x) through a response function we obtain valid
probabilities y(x) € (0, 1) that ¢ = 1. An example of this is shown
in Fig. 1b. A common choice of response function is the logistic
sigmoid:

1

Yx) = ola3) = T e

(3)

Once ‘squashed’ through the logistic sigmoid, the latent GP
a becomes a non-Gaussian stochastic process y. At a test point
x* this y(x) defines a Bernoulli distribution for the class label ¢
i.e. if y = 0.7 there is a 70% chance that ¢ = 1. In order to predict
the probability that a test point x* belongs to class ¢t = 1 the
integral form of Bayesian theorem must be used

y(x*) = [p(t* = 1la*)p(a*|ty)dax 4)

where a* is the normal distribution from the latent GP at x* and
ty is the categorical training data at N points. This integral is
analytically intractable due to the presence of the logistic
sigmoid in the likelihood function, that is, p(tla) = o(a‘)[1 —
o(@)]'™"). Because the posterior for y(x*) is intractable,

p(x¥) = m(x*) + K(Xy, x%) " [K(Xy, Xx) + 0,21] " (v — m(Xy)),
aop> (x*) = k(x*, x*) — K(Xy, x*) T [K(Xy, Xy) + 0,21] " K(Xy,x*).
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(a) 1D demonstration of latent GPR with informative prior. Once passed through logistic transform it becomes a GPC. (b) 1D demon-

stration of a GPC with an informative prior. The informative prior has a decision boundary at x = 5 while the true decision boundary is at x = 0.

approximate inference is often used, e.g., laplace or expectation
propagation.>>¢

In order to equip GP classifiers with informative prior mean
functions, in this work, we adopt a less rigourous but practical
approximation. Specifically, we create a latent GP, a and this GP
regressor is trained with binary class labels y € {—5, 5} using
a Gaussian likelihood. Using a Gaussian likelihood, the equa-
tions for the posterior mean and standard deviations hold (eqn
(1)). This is important as an informative prior mean function
m(-) can be defined in this equation. In order to predict the
class probability y(x*) at test point x*, the posterior mean u(x*)
of the GP a(x*) is then passed through a logistic sigmoid,
transforming it to be a number between 0 and 1. This is shown
in eqn (5).

¥(x) = a(m(x) + KXy, ©)7 [K(Xy, Xy) + 0,21
(tx — m(Xy))) )

The use of GP regressors for classification has precedent; for
instance, Dai et al.*® constructed a GPC using a similar meth-
odology. However, their work did not modify the prior mean
function of the latent GP. In contrast, in this work we modify the
prior mean function of the latent GP. Specifically, instead of
a uniform prior mean function, we have a user-defined prior
mean function. To train the proposed framework ground-truth
class observations ty and the prior class prediction m(Xy) at
points Xy. To predict the class probability y(x*) at test point x*
only the prior class prediction m(x*) is required as an input.

To handle multi-class classification, we employ an ensemble
of one-vs-rest classifiers. In this approach, each class i is asso-
ciated with its own GPR g;, which is responsible for predicting
the error in the prior probability for that specific class. Once we
have the individual probabilities for each class, y;, we can apply
various normalization techniques to generate a multi-class
probabilistic prediction for a particular class, k. The probabi-
listic prediction that a data point x* belongs to class &, p(k|x*,
tn), is the output of an ensemble of one-vs-rest classifiers. This
process involves taking the raw output probabilities from each
classifier and normalizing them so that they sum to 1, thus
transforming the predictions into a valid probability

1886 | Digital Discovery, 2025, 4, 1884-1900

distribution over all classes. This normalization is essential for
interpreting the predictions as a set of probabilities. The
formula for normalizing the probabilities is shown in eqn (6)
where o(ay(x)) is the raw probability (score) from the binary
classifier for the class of interest k and the denominator is the
sum of all the raw probabilities for all n classes

plkl) = 1D ©

> o(ai(x))

i=1

This method ensures that the probabilities are bound between
0 and 1, but it does not always account for the relative confidence
of the classifiers. An alternative approach is to use softmax
normalization, which normalizes the probabilities and considers
each classifier's relative confidence. The softmax function converts
the raw class probabilities into a distribution where the sum of all
probabilities equals 1. This ensures that the resulting probabilities
represent the likelihood of each class, making them directly
comparable. Additionally, the softmax function amplifies the
differences between class scores, making it particularly useful
when there is a large disparity in classifier confidence.

The softmax function in eqn (7), where o(ay(x)) is the raw
probability (logit) from the classifier for class k. The denomi-
nator is the sum of the exponentiated probabilities for all n
classes, ensuring that the probabilities sum to 1.

i —— (7)

2.2 Gaussian process classification for continuous data

Classification can be extended to continuous properties by
assessing whether a property exceeds or falls below a specific
threshold, such as meeting or failing to meet a property
constraint. This approach is particularly relevant in alloy
design, where the objective is often to create an alloy that
satisfies multiple constraints rather than optimizing a single
property.® In these scenarios, it is crucial not only to classify

© 2025 The Author(s). Published by the Royal Society of Chemistry
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whether the constraints are met but also to quantify the confi-
dence in each prediction. This classification task can be ach-
ieved using a GPR.

Consider the example of the classification of continuous
properties in Fig. 2. In this senario we are modeling an unob-
served function f. The goal is to predicted the probability that at
a particular point x* the function f is greater than a lower
threshold ¢, ie. p(fix*) > ¢). A GPR is trained on a limited
number of observations (red dots). Based on these observations,
the GPR will interpolate and extrapolate f values across the x
domain. Predictions from GPRs are normal distributions. For
each value of x in the domain, the GPR returns the mean
prediction and standard deviation (each prediction is Gaussian
and is determined by the posterior distribution over func-
tions®®). Since each prediction is a normal distribution, the
probability that a property is above a threshold can be found
using the Cumulative Distribution Function (CDF), as shown in
as shown in eqn (8). Similarly, the probability that a property
falls below threshold can be found by subtracting the CDF from
1.

This is shown graphically in Fig. 2a we take an arbitrary test
point (green dot) and calculate the probability that it is above or
below a threshold (dashed red line). Once the probability of
exceeding or falling below a threshold is determined, the
property is classified as meeting the constraint if the probability
is greater than 0.5. Otherwise, it is classified as failing to meet
the constraint.

p(x*) —c

21> ) = o (M) ®)

2.3 Classification error metrics

To evaluate model performance, we calculated six classification
metrics for predictions on the test subsets: accuracy, precision,
recall, F;-score, log-loss, and multi-class Brier loss. Accuracy
measures the proportion of correctly classified samples, as
defined in eqn (9) where TP, TN, FP, and FN represent the
counts of true positives, true negatives, false positives, and false
negatives, respectively. Precision quantifies the fraction of pre-
dicted positive cases that are true positives, as defined in eqn
(10). Recall indicates the proportion of correctly identified
positive cases, as defined in eqn (11). The F;-score combines
precision and recall into a single harmonic mean to summarize
the test's accuracy, providing a balanced measure that accounts
for both false positives and false negatives, as defined in eqn
(12). Log-loss (eqn (13)) and Brier loss (eqn (14)) evaluate the
accuracy of predicted probabilities by penalizing incorrect
confidence levels. In these equations N is the total number of
data points, R is the number of classes, f;; is the predicted
probability of class i for data point ¢, and oy is 1 if ¢ belongs to
class i, otherwise 0.

Accuracy = TP+ TN 9)
Y = TP TN+ FP+ N
.. TP
Precision = TP+ FP° (10)

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

TP

Recall = TP-}-—FN . (11)
Precision x Recall

Fil=2X —mm —————. 12

! x Precision + Recall (12)

] MR

Log-loss = Y ; ; oilog(fu), (13)
1 N R 5

BL = N g Z (f{i - 0,,‘) . (14)

3 Case study: benchmark against
experimental data

First, to demonstrate the benefit of informative priors in static
classification examples,* we benchmark our proposed method
against a dataset of experimentally classified phase stability
data. Specifically, we utilize a dataset of experimentally labeled
phase stability data and their corresponding homogenization
temperatures, and employ CALPHAD models to predict the ex-
pected equilibrium phases under these conditions. The dataset
used in this work is provided in the code repository associated
with this work. These CALPHAD predictions are then treated as
the prior for probabilistic classification. Next, the database is
shuffled and split into training and test sets. Using the training
set, the prior probabilities (derived from the CALPHAD phase
predictions) for the test set are updated based on the training
data (experimental phase labels). The accuracy, precision,
recall, F;-score, Brier-loss, and log-loss scores are computed for
both the multi-class scenario and several one-vs-rest scenarios.
Our method outperforms both the CALPHAD prior model and
purely data-driven “vanilla” GPCs.

3.1 Experimental dataset

In this experimental case study, we evaluated the predictive
performance of GPCs with informative priors by comparing
their predictions to experimental phase stability data. The
dataset, curated by Machaka et al.,”® provides comprehensive
information on the phase stability of various High Entropy
Alloys (HEAs), including details on alloy synthesis methods,
processing conditions (e.g., cold or hot work), heat treatment
temperatures, and the resulting phases. To minimize con-
founding factors, we filtered the dataset to include only as-cast
alloys that underwent homogenization heat treatments,
excluding those subjected to further processing such as hot or
cold working. This filtering was applied to approximate equi-
librium conditions, aligning with the predictive capabilities of
CALPHAD-based prior models, which focus on equilibrium
phase stability. This approach ensures that the experimental
data is consistent with the assumptions of the computational
framework. Although this simplification in this case study
limits the method's applicability under non-equilibrium pro-
cessing conditions, it was chosen deliberately to isolate and
quantify the benefit of well-matched informative priors.

Digital Discovery, 2025, 4,1884-1900 | 1887
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Inclusion of phase stability data dominated by strong non-
equilibrium effects would devaluate the informativeness of
the prior. For more details on the effect of ‘harmful’ priors, see
the Section 6.

Although the original dataset categorized alloys into seven
phase labels, this study focused on the four most common:
single-phase FCC alloys, FCC alloys with secondary phases (FCC
+ Sec.), single-phase BCC alloys, and BCC alloys with secondary
phases (BCC + Sec.). Although this proposed method can
accommodate classification problems beyond 4 classes, insuf-
ficient data for the remaining three labels, particularly after
filtering, required this simplification. For the purposes of this
study, a 4-label classification framework provides a robust
benchmark to validate the proposed method. After filtering, the
dataset contained 86 usable data points: in order to facilitate
reproducibility and further research, the cleaned and processed
dataset is publicly available in the code repository associated
with this work.

3.2 Physics-informed prior for phase stability

The source of prior information for phase stability was the
‘Calculation of Phase Diagrams’ (CALPHAD) predictions
generated using Thermo-Calc's Python equilibrium module.””
This module utilizes the TCHEA6 thermodynamic database,*
which was specifically chosen for its suitability in modeling
compositionally complex alloys. In our previous work," we
rigorously evaluated the accuracy of Thermo-Calc's equilibrium
module for predicting phase stability and demonstrated its
reliability for alloy design applications. Based on these findings,
we considered this module a robust and credible source of prior
information for this case study.

Phase stability predictions were generated using Thermo-
Calc for each alloy in the filtered dataset at its respective
homogenization/heat treatment temperature, representing the
equilibrium phases expected under those conditions. Although
cooling rates can affect phase formation in practice, these
predictions are used solely as prior information and are refined
by experimental data. We acknowledge that factors like cooling
rates can introduce confounding effects that sometimes reduce
the accuracy of Thermo-Calc predictions; however, equilibrium
CALPHAD predictions provide a reasonable initial approxima-
tion for phase stability—an approximation that can be updated
in light of experimental data. In fact, correcting the prior model
with data is the main goal of the proposed framework.

The Thermo-Calc equilibrium module predicts the mole
fractions of various microstructures. The prior phase classifi-
cation from Thermo-Calc was assigned according to the
following rules:

o If the FCC mole fraction for a data point is ¢rcc = 0.99, it is
classified as single-phase FCC.

o If prcc = 0.5 but less than 0.99, it is classified as FCC with
a secondary phase (FCC + Sec.).

e The same thresholds are applied to BCC mole fractions for
classification as single-phase BCC or BCC + Sec.

After establishing phase predictions from Thermo-Calc, we
quantified our confidence in these prior class predictions using

1888 | Digital Discovery, 2025, 4, 1884-1900
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Table 1 Prior class probabilities based on Thermo-Calc phase
predictions

Prior probability
FCC FCC + Sec. BCC BCC + Sec.
Prior pred.  FCC 50%  40% 5% 5%
FCC + Sec. 40% 50% 5% 5%
BCC 5% 5% 50% 40%
BCC + Sec. 5% 5% 40% 50%

class probabilities. These probabilities reflect the level of
certainty associated with a particular classification, whether
derived from a vanilla GPC or an informed GPC. In the case of
an uninformed GPC, the prior class probability is 50%/50%. For
an informed GPC, the prior class probability is assigned
according to the designer's judgment. An example of this
informed prior class probability is shown in Fig. 1.

The prior probabilities are detailed in Table 1. For instance,
if the prior classification for an alloy is single-phase FCC, the
confidence is distributed as follows: a 50% probability of being
single-phase FCC, a 40% probability of being FCC with
secondary phases, and a 5% probability of either being single-
phase BCC or BCC with secondary phases. These prior proba-
bilities are intuitive because if Thermo-Calc predicts an alloy to
be single-phase FCC, the highest prior probability is assigned to
the FCC class. However, because secondary phases may form
within the FCC matrix during cooling, the FCC + Sec. class is
assigned the second-highest probability. Conversely, if an alloy
is predicted to be FCC by Thermo-Calc, it is unlikely to exhibit
a BCC matrix experimentally. In other words, while we trust
Thermo-Calc's ability to distinguish between FCC and BCC, we
are less confident in its ability to differentiate between FCC and
FCC + Sec. and to differentiate between BCC and BCC + Sec.

3.3 Training the Gaussian processes classifiers

To implement the informative GPCs described in the Methods
section, we developed a custom class based on Gaussian
Process Regressors (GPRs). For each one-vs-rest GPC, a latent
GPR is first trained on the class observations, where positive
class observations are set to y = 5 and negative ones toy = —5.
This latent GPR is then passed through a logistic sigmoid
transformation to constrain the outputs between 0 and 1,
yielding valid probabilities. The code for this implementation is
available in the associated Code Ocean repository.

The GPRs used in this active learning scheme employ an
additive kernel composed of a Radial Basis Function (RBF)
kernel and a White Noise (WN) kernel, as defined in eqn (15). In
eqn (15), k(x, x') represents the covariance function between
input points x and X'. The first term corresponds to the RBF
kernel, where o/ is the signal variance, controlling the ampli-
tude of function variations, and ¢ is the characteristic length
scale, determining how quickly correlations decay with
distance. The second term accounts for white noise, where ¢,,> is
the noise variance, and d(x, X) is the Kronecker delta function.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Selecting an appropriate kernel is inherently challenging and
often depends on expert judgment; this choice implicitly
assumes specific correlation patterns and functional shapes.
The RBF + WN additive kernel is a standard choice that works
well in practice.

Kernel hyperparameters were optimized by maximizing the
log-marginal likelihood using the L-BFGS-B algorithm as
implemented in Scikit-Learn.>® To ensure robust optimization,
we performed 10 optimizer restarts for each GPR. For the RBF
kernel, the optimization was constrained to search for length
scales between 5 atomic percent (at%) and 100 at%. This range
was chosen based the observation that barycentric spaces
cannot have length scales exceeding 100 at%. These constraints
help ensure that the kernel parameters remain physically
meaningful and aligned with the characteristics of the sampled
data.

k(x,x,> = g/%exp ( - ||x;£2x/|2) + 0n26<x7 X/) (15)

Table 2 summarizes the 10 alloy features used to train the
model. For brevity, specific details on these features can be
found at ref. 30. All features are functions of an alloy's chemical
composition and were calculated using Matminer's WenAlloys
featurizer.®* These were determined to be useful in predicting
solid solution phase stability by Wen et al?** While more
sophisticated feature selection could be performed, this work
aims to highlight the effect of physics-informed prior mean
functions during GP classification and does not necessarily
identify the most relevant features for phase classification.

3.4 Experimental benchmarking results

Three models were benchmarked to illustrate the impact of
incorporating a physics-informed prior into GPCs: two control
models and the proposed model. The first control model was
a GPC with an uninformed prior mean function, which assigned
equal probabilities (25%) to all predictions in the four-class
case. In the case of four-class classification problems, 25%
probability for all 4 classes represents the state of maximum
information entropy, reflecting the highest level of uncertainty
in predictions. The second control model consisted solely of the
CALPHAD phase predictions. The third model was a GPC with
a prior mean function defined by CALPHAD phase predictions.
The values of these priors are reported in Table 1. As mentioned
in Section 3.3 the latent GPs in both GP classifiers were equip-
ped with the same kernel and training settings as the

Table 2 Alloy features used to train GPCs

Yang delta Yang omega

Radii local mismatch
Configuration entropy
Total weight
Electronegativity delta

APE mean

Radii gamma
Atomic weight mean
Lambda entropy

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

uninformed GPC, specifically the RBF + WN additive kernel, as
described in eqn (15).

Benchmarking the models on a small dataset necessitated
the use of cross-validation. We employed stratified Monte Carlo
cross-validation, generating 500 random 20%/80% train/test
splits. This approach differs from the more typical 80%/20%
splitting and reflects the reality of data-sparse scenarios in alloy
design, where experimental data is often prohibitively expensive
to collect. Stratification was crucial to maintain the class ratio in
both training and testing subsets, ensuring consistency across
splits.

Using box-and-whisker plots to display each error metric
across the cross-validation splits, Fig. 3 summarizes the overall
predictive performance of the three models across all classes. In
the context of predicting phase stability as a 4-class classifica-
tion problem, it is evident that the informed model exhibits, on
average, improved accuracy and recall. Although the median
precision values of the uninformed and informed classifiers are
similar, the interquartile range (IQR) indicates that the
CALPHAD-informed model performs more consistently,
whereas the uninformed model displays greater variability—an
undesirable outcome. We prefer that models perform well and
perform well consistently. Furthermore, employing any GPC is
preferable to using a model with unquantified uncertainty in its
predictions (i.e., a non-probabilistic model).

As clearly demonstrated by the plots, the GPC with the
physics-informed prior outperforms both control models on
most metrics. The interquartile ranges for accuracy, recall, F;-
score, and Brier loss show significant improvements over the
control models, with more subtle enhancements in precision
and log-loss. To further evaluate each model's ability to
correctly identify specific classes, separate analyses of the
predictions over the 500 splits were performed and are reported
in the ESL¥

4 Case study: active learning of
categorical constraints

Phase stability constraints are particularly common in alloy
design, where specific phases are desired and deleterious pha-
ses need to be avoided.'**** To assess phase stability, X-ray
diffraction (XRD) experiments are typically employed to deter-
mine the presence of various phases in bulk alloy samples.
However, given the large number of candidate alloys, even
ternary alloy systems, the time and cost associated with XRD
experiments make a brute-force experimental exploration
infeasible.” To mitigate this burden, computational techniques
have emerged to complement experimental efforts in alloy
design.

Simple heuristics, such as modified Hume-Rothery rules,
have been extended to screen for alloys, particularly medium
and high entropy alloys, that form single-phase solid solu-
tions.” These methods are computationally inexpensive,
allowing for rapid preliminary screening of large compositional
spaces.”** However, these heuristics for phase stability have
shortcomings. Their accuracy is often limited.'* Moreover, these

Digital Discovery, 2025, 4,1884-1900 | 1889


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00084j

Open Access Article. Published on 18 June 2025. Downloaded on 1/12/2026 8:53:07 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

heuristics cannot predict phase stability as a function of
temperature. Furthermore, these modified Hume-Rothery rules
are only valid in determining if HCP, FCC, BCC or intermetallic
phases are likely to form, however these metrics do not provide
details about what intermetallic phase is likely to form.

Beyond simple heuristic models, CALculation of PHAse
Diagram (CALPHAD) techniques have been employed to predict
phase stability in HEA design, particularly in high-throughput
computational workflows.” The accuracy of CALPHAD predic-
tions relies heavily on the quality and relevance of the underlying
thermodynamic databases. CALPHAD databases require careful
calibration of parameters to match experimental results. This
restricts their applicability in closed-loop experimental alloy
design campaigns, where data are dynamic and must be quickly
incorporated into models to inform subsequent experiments.

Recent advances in machine learning have demonstrated the
potential for on-the-fly updating of phase stability models
during experimental campaigns. Machine learning models,
particularly those used for classification, can be continuously
trained as new data become available, allowing for adaptive,
data-driven optimization strategies.”**"** This is known as
active learning (AL) of constraints. However, these approaches
often neglect valuable physical insights and can suffer from
a dependence on large amounts of training data, limiting their
effectiveness when data are sparse or incomplete.

Physics-constrained active learning of phase diagrams have
been achived using graph-based techniques such as in the
CAMEO framework.*® Of particular interest to this work, Ament
et al.* employed a physics-informed kernel within a GP-based
active learning framework to accelerate the construction of
phase diagrams by incorporating prior physical knowledge into
the model's covariance structure. While this approach has its
merits, our work introduces a novel and complementary
strategy: incorporating physics through the modification of the
GP prior mean function. Since a GP is fully defined by both its
mean and covariance functions, embedding domain-specific
physical insights directly into the prior mean offers an alter-
native pathway for guiding predictions—especially beneficial
when fast-acting prior models for specific properties are avail-
able. In contrast to kernel modification, which is better suited
for capturing global trends and symmetries,” adjusting the
prior mean function provides a more targeted method for
integrating known local physical behaviors.

In this in silico case study, we address the challenge of
dynamically updating phase stability models as new experimental
data become available. Here, the valence electron concentration
(VEC) serves as the prior belief regarding the stability of FCC and
BCC phases in the Fe-Ni-Cr alloy system at 1000 °C. The ground
truth for phase stability is provided by Thermo-Calc equilibrium
calculations, using the TCHEA6 high entropy alloy database.®
The objective of this case study is to construct the most accurate
isopleth phase stability predictions with the fewest possible
queries of the ground truth. Our results demonstrate that active
learning schemes incorporating simple yet informative priors
outperform those relying solely on vanilla GPCs. This approach
aligns with recent efforts to develop closed-loop alloy design
frameworks, making this a well-motivated case study.

37
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4.1 Models for prior and ground-truth

The Valence Electron Concentration (VEC) of an alloy is defined
as the weighted sum of the valence electron concentrations of
its constituent elements. Numerous studies***** have shown that
VEC is an effective descriptor for predicting single-phase
stability and for delineating the boundary between FCC and
BCC phase stability. In particular, alloys with a VEC above 8
tend to exhibit FCC structures, while those with a VEC below
6.87 are typically BCC.** This suggests that alloys with VEC
values between 6.87 and 8 are likely to display dual-phase (BCC
+FCC) behavior. The formula for calculating VEC is given in eqn
(16), where c; represents the atomic fraction of element i and v;
is the valence electron concentration of element i.

VEC = Zcivi (16)
=1

We assign prior probabilities based on predictions from the
prior model (i.e., the VEC). These probabilities are detailed in
Table 3. For example, if an alloy has a VEC greater than 8, our
degree of belief that the alloy is FCC is represented by a 54%
probability. Conversely, we assign a 23% probability each to the
alloy being dual-phase or BCC.

Regarding the ground truth model for this in silico example,
we consider Thermo-Calc's equilibrium calculator—equipped
with the TCHEA6 database®®*—as the ground truth. We queried
this calculator at 1000 °C for all candidate alloys, which yielded
the decision boundaries (i.e., phase boundaries) shown as black
dashed lines in Fig. 4. The code for the ground-truth model is
available in the repository associated with this work.

4.2 Gaussian processes and active learning parameters

The Gaussian Process Regressors (GPRs) used in this active
learning scheme employed an additive kernel that combines
a Radial Basis Function (RBF) kernel with a White Noise kernel
(WN), as defined in eqn (15). Selecting an appropriate kernel is
inherently challenging and often relies on expert judgment,
since this choice implicitly assumes specific correlation
patterns and functional shapes for the underlying process. The
RBF + WN additive kernel is a standard choice in such
applications.

The kernel hyperparameters were optimized by maximizing
the log-marginal likelihood using the L-BFGS-B algorithm, as
implemented in scikit-learn. To ensure robust optimization, we
performed 50 optimizer restarts for each GPR. The first run
used the kernel's initial parameter estimates, while the

Table 3 Prior weights

Prior probability

FCC Dual BCC

Prior pred. FCC 54% 23% 23%
Dual 23% 54% 23%

BCC 23% 23% 54%

© 2025 The Author(s). Published by the Royal Society of Chemistry
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remaining runs initialized parameters by sampling log-
uniformly from the allowed parameter space, ensuring thor-
ough exploration.

For the RBF kernel, the optimization was constrained to search
for length scales between 5 atomic percent (at%) and 100 at%.
Again this range was chosen based on the fact that barycentric
spaces do not have properties that vary at lengthscale greater than
100 at%. These constraints ensured that the kernel parameters
remained physically meaningful and aligned with the character-
istics of the sampled data. The active learning framework for
categorical properties used a GPfor the surrogate model and
maximum Shannon entropy for the acquisition function.*

4.3 Categorical active learning case study results

To evaluate the impact of informative priors on Bayesian active
learning for phase stability predictions within the Fe-Ni-Co
system at 1000 °C, we compared a physics-informed active
learning scheme to a physics-uninformed scheme. Each scheme
operated under a fixed budget of 25 queries to the ground truth
per active learning campaign. Fig. 4 shows an example of
a single active learning campaign. Class probabilities in this 3-
class scenario are visualized using an RGB color scheme. For
instance, if an alloy is predicted to be FCC with 100% confi-
dence (i.e., a probability of 1.0), the corresponding RGB value is
[0, 255, 0], resulting in a bright green color in the ternary
diagram. Similarly, alloys predicted to be dual-phase with 100%
confidence are plotted as blue (RGB = [0, 0, 255]). If the model
predicts equal probabilities for all three phases (33%/33%/

1D Gaussian Process Regression with Classification Probabilities
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33%), the RGB value is [85, 85, 85], and the alloy is displayed as
gray, indicating the highest Shannon entropy and, conse-
quently, the greatest uncertainty in the prediction.*?

The top row shows the progression of the vanilla active
learning (AL) campaign, while the bottom row displays that of
the physics-informed AL campaign. At the 5th iteration, the
physics-informed approach already leverages its prior knowl-
edge (e.g, phase predictions from the VEC) to accurately
delineate the decision boundary between the FCC and dual-
phase regions, though it still struggles to separate the dual-
phase from the BCC region. At the 10th iteration, the physics-
informed model achieves better recall for the BCC class than
the vanilla model; however, predictions in the BCC region are
rendered in purple, indicating uncertainty between a pure BCC
phase and a mixed FCC + BCC state—while clearly ruling out
single-phase FCC (green). By the 15th iteration, the physics-
informed scheme further refines its predictions, markedly
improving recall for the minority BCC class. Finally, at the 20th
iteration, the vanilla AL scheme reveals its limitations in
handling class imbalance by heavily biasing predictions toward
the dominant FCC + BCC (blue) region, whereas the physics-
informed model consistently converges toward the true deci-
sion boundaries across all phase regions.

Running a single AL campaign is insufficient for bench-
marking because a favorable or unfavorable random initializa-
tion could unduly influence the results. To address this, we
report the distribution of metrics across multiple AL campaigns
as a function of iteration, providing a more robust assessment
of each method's average performance and progression.

Gaussian Prediction at Single x Value

\
1.2 4 — Bell Curve
Probability of Failure
1.14{ @ Arbitrary Test Point aty = 0.86
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~ 0.9 1
% J
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Probability Density

Fig. 2 Classification of continuous properties using Gaussian Process Regression (GPR). (a) Illustration of the GPR-based classification process,
where red dots represent the limited training observations used to fit the GPR model. The GPR predicts normal distributions for each value of x,
and probabilities of meeting or failing a specified threshold are determined using the Cumulative Distribution Function (CDF). Classification is
based on whether the probability of meeting the constraint exceeds 0.5, with results visualized across the domain. (b) Visualization of the
corresponding bell curve for a single GPR prediction, highlighting the mean prediction and the probabilities of exceeding or falling below the

threshold.
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all phases.
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Fig. 4 Comparison of vanilla and physics-informed Bayesian active learning for phase stability predictions in the Fe—Ni—Co system at 1000 °C.
The top row displays the vanilla AL scheme, while the bottom row shows the physics-informed AL scheme. Colors represent class probabilities
via an RGB scheme, with green indicating FCC, blue indicating FCC + BCC, and red indicating BCC. In early iterations, the physics-informed
model heavily relies on its prior knowledge. By iteration 15, it significantly improves recall for the BCC phase, and by iteration 20, it demonstrates

greater robustness to class imbalance compared to the vanilla approach, achieving more precise decision boundaries.
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Fig.5 Active learning performance metrics averaged over 200 campaigns. The plotted results show the average error metrics with their standard
deviations, providing a more reliable assessment of AL method performance and progression.

Specifically, we run 200 AL campaigns, each with a budget of 25
queries of the ground truth. For each campaign, the six classi-
fication metrics described in Section 2.3 were recorded at each
iteration. The average error metrics and their standard devia-
tions, as a function of AL iteration, are plotted in Fig. 5.

The proposed method (blue) shows improved accuracy on
average, indicating better overall performance compared to the
control model. Furthermore, the standard deviation of accuracy
decreases in later iterations, suggesting that the method
consistently achieves higher accuracy and is robust to random
initializations. In contrast, the control model (red) exhibits
a wide accuracy standard deviation that even increases slightly
in later iterations, indicating that its performance is less
consistent over time and more sensitive to the initial ‘seed
query’ of the AL scheme.

5 Case study: informative priors for
continuous constraint satisfaction

In alloy design, the goal is often to identify an alloy that meets
all specified thresholds with high confidence rather than to find
the absolute optimal alloy in terms of individual properties.® We
contend that, in most real-world examples, quantifying the
probability of meeting critical constraints** is more important
than maximizing any single property. Using the methods
described in Section 2.2, we develop an active learning scheme
to identify the set of W-Nb-Ta alloys with a yield strength

© 2025 The Author(s). Published by the Royal Society of Chemistry

exceeding 100 MPa at 1300 °C using as few queries as possible.
This constraint is adapted from the performance requirements
of ARPA-e's ULTIMATE program, which strongly motivates this
case study.* The confidence that an alloy meets this threshold
is represented by the probability mass of the predicted normal
distribution (from the GPR model) that falls below 100 MPa.
Fig. 2 provides a visual demonstration of this classification.
Although this is a synthetic problem, it is motivated by previous
works."** Our study demonstrates that equipping GPR models
with physics-informed prior mean functions accelerates the
identification of alloys that satisfy the yield strength threshold.

5.1 Ground-truth and prior models for high-temperature
yield strength

The Curtin-Maresca model provides a mechanistic framework
for predicting the yield strength of BCC high-entropy alloys
(HEAs)."® Rooted in dislocation theory, this model accounts for
the influence of atomic-scale heterogeneities inherent in
multicomponent alloys. Specifically, the yield strength is
attributed to the resistance encountered by dislocations as they
move through a heterogeneous lattice. Such lattice heteroge-
neities arise from variations in atomic size, elastic modulus,
and other local properties due to the random distribution of
constituent elements in the alloy.

The critical resolved shear stress is calculated based on the
statistical interactions between dislocations and local obstacles,
incorporating both temperature and strain rate dependencies.

Digital Discovery, 2025, 4,1884-1900 | 1893
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Fig. 6 Average performance metrics for continuous property classification (set of W—Nb—Ta alloys where the yield strength exceeds 100 MPa at
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for the physics-informed model, while the red line represents the average metrics for the model without a prior. The shaded regions show one

standard deviation above and below the mean.

The model employs the following equation to estimate the yield

stress:
- 1 (kT e\*™"
7,(T, &) = 1,0eXp [ ~ 058 (A—Eblnfo) ,
. &

where £ is the Boltzmann constant, T is the absolute tempera-
ture, 1y is the zero-temperature shear stress, and AE, is the
energy barrier for the motion of individual dislocation
segments. The strain rate ¢ is the applied value, typically set to ¢
=10-3 s}, and &, is the reference strain rate, estimated to be
£, = 104 s~ . This equation provides a lower-bound estimate for
tensile yield strength, as validated in recent studies.">*

In this work, the Maresca—-Curtin model queried at 1300 °C
was used as the ground truth for high-temperature yield
strength. The model queried at 25 °C was considered the prior.
While this is only a toy problem, it emulates a scenario where
room-temperature yield strength serves as a proxy for high-
temperature yield strength. This prior is updated iteratively.

17)

5.2 Gaussian processes and active learning parameters

The active learning framework for continuous properties used
a Gaussian Process for the surrogate model and maximum
Shannon entropy for the acquisition function.*> The GPRs used
in the framework employed the RBF kernel. Since this case
involved a straightforward binary classification problem using

1894 | Digital Discovery, 2025, 4, 1884-1900

an analytical model as the ground truth, the White Noise (WN)
kernel was omitted. In this study, the RBF kernel models how
the 1300 °C yield strength varies with composition in the Nb-
Ta-W alloy system. As in previous case studies, the kernel
hyperparameters were optimized by maximizing the log-
marginal likelihood using the L-BFGS-B algorithm in scikit-
learn. To ensure robust optimization, each GPR underwent 50
optimizer restarts.

For the RBF kernel, the optimization was restricted to length
scales between 5 atomic percent (at%) and 100 at%. This range
was chosen based on the Nb-Ta-W alloy space's sampling
resolution of 5 at% and the observation that barycentric spaces
typically do not exhibit length scales beyond 100 at%. These
constraints ensured that the kernel parameters remained
physically meaningful and aligned with the characteristics of
the sampled data.

5.3 Continous active learning case study results

To demonstrate the effect of a physics-informed prior during
active learning (AL) of constraint boundaries for continuous
properties, we equipped one AL scheme with a prior mean
function and benchmarked it against an AL scheme without
a prior mean function. As mentioned in Section 5.1, the ground
truth is provided by the Maresca-Curtin model queried at 1300 °©
C, representing a difficult-to-attain high-temperature tensile

© 2025 The Author(s). Published by the Royal Society of Chemistry
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measurement. In contrast, the prior in this work is obtained by
querying the Maresca-Curtin model at room temperature, rep-
resenting an easier-to-obtain value.

The model with a physics-informed prior outperforms the
model without a prior during the initial iterations of the AL
campaign. For example, in iteration 1, the yield strength
prediction from the vanilla GPR is constant across the design
space, meaning that all alloys receive the same prediction.
However, the GPR with the informative prior exhibits a more
complex prediction even when provided with only a single data
point. The initial predicted decision boundary (ie., the
threshold for alloys having high-temperature yield strength
greater than the target value) is more accurately defined. An
example of this is shown in Fig. 7. Both AL schemes were
initialized 200 times and ran for 15 iterations. The average
performance metrics for each model were plotted as a function
of iteration and are shown in Fig. 6.

For the first seven iterations, the model with prior data
exhibits higher average accuracy and recall. In addition, its
average Brier loss and average F; score are higher for the first
eight iterations. The average precision is consistently higher,
and the average log loss is consistently lower for the model with
prior data. Although the confidence intervals for recall overlap
between the two models, the model without prior knowledge
shows a notably high standard deviation in recall—exceeding
its mean recall value in the first iteration. For all other metrics,
the confidence intervals of the two models do not overlap
during the first two to four iterations, and the standard devia-
tion is initially lower for the model with a prior.
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6 Limitations and advantages

In these case studies we demonstrated the benefit of equipping
GPs with informative prior mean functions during static and
active learning tasks. However, there are some important limi-
tations to consider.

The proposed method depends greatly on the quality of the
prior mean function used. To demonstrate this, we present
a case study that examines the effect of prior model quality on
Bayesian active learning outcomes. Specifically, we compare the
performance of the framework using the Iris dataset from the
scikit-learn library. The model is equipped with (i) a well-
aligned informative prior, (ii) a deliberately misleading or
‘harmful prior, and (iii) no prior. These priors can be seen in
Fig. 8, while Fig. 9 shows a single instance of active learning. As
in previous benchmarks, we conducted 200 active learning runs
for each scheme to obtain statistically robust comparisons of
average performance. The resulting error distributions are
shown in Fig. 10. The results indicate that while informative
priors can substantially accelerate learning, poor priors can
significantly degrade performance. This underscores the critical
role of prior selection and highlights a well-known limitation of
Bayesian approaches: their sensitivity to prior assumptions,
especially in data-scarce settings.

Beyond sensitivity to priors, the computational cost of the
proposed framework warrants consideration. While this work
primarily emphasizes reducing experimental costs in alloy
discovery, the implementation of the framework also incurs
computational overhead. Specifically, the method requires
querying an informative prior model and training a GP on the

® ¢ Predicted Boundary (YS =100 MPa)
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o
°
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Fig. 7 Comparison of vanilla and physics-informed Bayesian active learning for yield strength predictions for W—Nb-Ta alloys at 1300 °C. The
top row displays the vanilla AL scheme, and the bottom row illustrates the physics-informed AL scheme. The dashed line represents the true
boundary where the yield strength is 100 MPa, while the dotted line indicates the predicted boundary based on the active learning scheme. The
physics-informed AL scheme outperforms the vanilla AL scheme for the initial iterations.
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Fig. 8 Comparison of informative and uninformative prior mean functions during GP classification of the Iris dataset. The dashed lines show
contour plots of the Gaussian prior mean functions, with line color indicating the corresponding class. (a) Classification using deliberately
misleading priors. (b) Classification using informative priors that better approximate the ground-truth data. The colored dots indicate the true

classes for each iris sample.
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Fig. 9 Comparison of the categorical classification model using misleading vs. informative priors on the Iris dataset. The top row shows an AL
scheme when using misleading priors, while the bottom row shows an AL scheme when using informative priors. The dashed lines represent
contour plots of the Gaussian prior distributions, with line colors indicating the corresponding classes. Gray dots show unqueried points, while
the colored dots indicate queried points, with the color of the dot representing the predicted class. The model with an informative prior

outperforms the model with a misleading prior for the initial iterations.

discrepancy between the prior and the observed ground truth.
As such, the throughput of class prediction depends both on the
computational cost of evaluating the prior model and on the
training set size used for the GP.

In this study, the most computationally expensive compo-
nent is the CALPHAD equilibrium calculation step, which serves

1896 | Digital Discovery, 2025, 4, 1884-1900

as the prior model. For example, performing equilibrium
calculations over the Fe-Ni-Cr compositional space used in the
study (comprising of 1372 distinct alloys) requires approxi-
mately 24 minutes when run sequentially on a single core. For
larger alloy systems, querying a CALPHAD prior can be paral-
lelized efficiently across compositions, substantially reducing

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Average classification performance on the Iris dataset. The average metrics for 200 campaigns are plotted as a function of iteration. The
green line represents the average metrics for the model with informed priors, the red line represents the average metrics for the model with
misleading priors, and the magenta line represents the average metrics for the model without priors. The shaded regions show one standard
deviation above and below the mean. Note that the model with informative priors achieves better average performance for every metric, with
non-overlapping confidence intervals during the initial iterations. In contrast, the model with misleading priors often shows lower average
performance metrics than the model without priors, as seen with Brier loss and log loss.

wall time when distributed across multiple cores. Examples of
this are provided in ref. 4, 12 and 44.

Training the GP model itself also incurs computational
cost,?® particularly due to its cubic scaling with the number of
training points, i.e., O(n?). While this scaling presents chal-
lenges for large datasets, it is well-suited to the low-data regime
commonly encountered in alloy design. In practice, the training
time for the classification problems considered in this work
remained well within practical limits, with individual GPC
models trained in a matter of minutes on standard desktop
hardware.

Thus, while the proposed framework introduces some
computational cost i.e. the cost of quering a prior model across
a design space and training a GP, these remain manageable
within the scale of current alloy discovery problems, and the
benefits of reduced experimental burden and improved sample
efficiency outweigh the computational overhead in many prac-
tical scenarios.

Despite these limitations, the proposed method offers
several advantages.

Other machine learning methods such as deep neural
networks or random forests—have been applied to phase
stability prediction, Gaussian Process Classifiers (GPCs) offer
several key advantages that justify their use here. First, GPCs are
natively amenable to Bayesian active learning and active clas-
sification, since they intrinsically quantify predictive uncer-
tainty. This uncertainty quantification is what enables Bayesian

© 2025 The Author(s). Published by the Royal Society of Chemistry

active learning. Moreover, Gaussian Process-based methods are
already the default choice in many materials-informatics
studies, especially in data-sparse regimes.***” Our approach
therefore builds directly upon a well-established framework,
augmenting it with physics-informed priors and active learning
strategies.

In addition, GPCs provide superior interpretability
compared to “black-box” models like neural networks. Using
Automatic Relevance Determination (ARD) kernels, GPC
hyperparameters such as length scales reveal the relative
importance and spatial influence of individual input features.
By inspecting these length scales, one can discern which
compositional or processing variables exert the strongest effect
on the latent classification function, thus gaining direct insight
into the underlying physics. In contrast, neural networks often
require post-hoc interpretation methods and can obscure the
mechanistic relationship between inputs and predictions.
Furthermore, the proposed method explicitly models the
discrepancy between the physical model and observed data.
This discrepancy highlights where and how the prior physical
understanding breaks down, providing insights into the
underlying alloy behavior.

7 Conclusion

In materials design, objectives and constraints play distinct yet
complementary roles. Objectives represent desirable material
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properties that we seek to optimize, while constraints define
non-negotiable requirements that a material must satisfy,
typically ensuring that it meets minimum performance stan-
dards. In previous work,"** we demonstrated that Bayesian
optimization for property optimization (i.e., maximizing or
minimizing objective properties) can be accelerated by incor-
porating informative priors. In this study, we extend this
concept to classification and the active learning of decision
boundaries. Specifically, we enhanced Gaussian Process Clas-
sifiers (GPCs) with physics-informed priors to make the explo-
ration of material design spaces both more efficient and cost-
effective. Our case studies demonstrate that physics-informed
prior mean functions can improve the predictive performance
of GPCs in alloy design.

The impact of this work lies in its potential contribution to
accelerating materials discovery and optimization through
physics-informed machine learning. Specifically, we develop
a Gaussian Process framework that integrates prior scientific
knowledge to improve probabilistic classification and regres-
sion in both categorical and continuous design spaces. For
categorical variables, we introduce informative prior mean
functions into GP classifiers— an approach that, to our
knowledge, is unprecedented in materials science. For contin-
uous variables, we combine threshold-based classification and
informative priors within a GP regressor to predict the likeli-
hood that a material satisfies critical performance constraints.
This enables more targeted exploration of design spaces,
making our method particularly powerful for constraint-driven
materials optimization.

Given the improvements in active learning-based discovery
demonstrated in our case studies, we conclude that incorpo-
rating physics-informed priors into the alloy design workflow
has the potential to significantly reduce computational and
experimental costs while enhancing model accuracy and effi-
ciency. The proposed methodology aligns with recent initiatives
focused on Integrated Computational Materials Engineering
(ICME)-enabled closed-loop design platforms and autonomous
materials discovery. Moreover, the approach is easily imple-
mented using only scikit-learn and open-access code, ensuring
broad accessibility.
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