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11 Abstract:
12 Digital encoding of material structures using graph-based features combined with deep 

13 neural networks often lacks local specificity. Additionally, incorporating a self-attention 

14 mechanism increases architectural complexity and demands extensive data. To overcome these 

15 challenges, we developed a Center-Environment (CE) feature representation—a less data-

16 intensive, physics-informed predefined attention mechanism. The pre-attention mechanism 

17 underlying the CE model shifts attention from complex black-box machine learning (ML) 

18 algorithms to explicit feature models with physical meaning, reducing data requirements while 

19 enhancing the transparency and interpretability of ML models. This CE-based ML approach 

20 was employed to investigate the alloying effects on the structural stability of Nb5Si3, with the 

21 objective of guiding data-driven compositional design for ultra-high-temperature NbSi 

22 superalloys. The CE features leveraged the Atomic Environment Type (AET) method to 

23 characterize the local low-symmetry physical environments of atoms. The optimized CEAET 

24 models reasonably predicted double-site substitution energies in α-Nb5Si3, achieving a mean 

25 absolute error (MAE) of 329.43 meV/cell. The robust transferability of the CEAET models was 

26 demonstrated by their successful prediction of untrained β-Nb5Si3 structures. Site occupancy 

27 preferences were identified for B, Si, and Al at Si sites, and for Ti, Hf, and Zr at Nb sites within 

28 β-Nb5Si3. This CE-based ML approach represents a broadly applicable and intelligent 

29 computational design method, capable of handling complex crystal structures with strong 

30 transferability, even when working with small datasets.

31 Keywords: Machine learning, Center-Environment feature engineering, Atomic Environment 

32 Type, NbSi-based superalloys, Structural Stability.
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1 1. Introduction
2 Nb-Si based superalloys with high melting point and low density are expected to 

3 overcome the working temperature barrier of Ni-based superalloys, and have been 

4 extensively studied as a new generation of high-temperature structural materials1. It 

5 contains a large number of high temperature intermetallic compounds Nb5Si3, which 

6 have high melting point (2520 °C), moderate density (7.16 g/cm3), high temperature 

7 strength and good creep resistance2,3. However, single Nb5Si3 is brittle at room 

8 temperature, which seriously hinders its practical application3,4. Nb5Si3 has both metal 

9 and ceramic properties, and its intrinsic brittleness at room temperature can be 

10 improved by alloying elements. Numerous experimental works have shown that adding 

11 alloying elements is an effective way to improve the comprehensive performance of 

12 Nb-Si alloys5–10. The alloying elements that have been reported to be incorporated in 

13 NbSi-based alloys encompass a range of metals such as Ti11, Cr12, Al13, Hf14, Sn, Mo, 

14 W15, V, Ta, Fe, Zr, Ho16, Sr17, B18. It is time-consuming and labor-intensive only by 

15 trail-and-error experiments, while the calculation method based on first-principles can 

16 effectively predict the types of alloying elements and provide guidance for alloy 

17 composition design.

18 Chen et al.19 studied the atomic occupation positions of transition group metals in 

19 different sublattices of Nb5Si3. Their findings indicate that atoms with larger radii than 

20 Nb tend to occupy NbII sites, whereas atoms with smaller radii than Nb tend to occupy 

21 NbI sites in α-Nb5Si3. Xu et al.20 studied the effects of vacancy concentration and Al 

22 substitution on the structural, electronic and elastic properties of Nb5Si3 by first-

23 principles calculation. Guo et al.21 systematically studied the effect of Ag addition on 

24 the structure, mechanical and thermodynamic properties of α-Nb5Si3. Tsakiropoulos et 

25 al.22 investigated the stability and physical properties of Ti doped α-Nb5Si3, β-Nb5Si3 

26 and γ-Nb5Si3 alloys at different temperatures and concentrations. Xu et al.23 determined 

27 the temperature-dependent structural properties and anisotropic thermal expansion 

28 coefficients of α-/β-Nb5Si3 phases by minimizing the nonequilibrium Gibbs free energy 

29 as a function of crystal deformation. Shi et al.24 focused on the effect of alloying 

30 elements on the mechanical properties and electronic structure of α-Nb5Si3. Kang et 

31 al.25 investigated the energy, lattice parameters, electronic structure and elastic 

32 constants of Ti, Cr, Al and Hf doping in β-Nb5Si3. So far, the first-principles 

33 calculations focus on only a few elements and single-site substitution of NbSi-alloys 
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1 limited by cost. It is still far from adequate for screening alloying elements considering 

2 the complex phase structure and wide range of alloying elements in multi-component 

3 NbSi-based superalloys.

4 Machine learning as an emerging data-driven research paradigm in materials 

5 science has proven to be effective and efficient in characterizing the complex structure-

6 property relationships of materials26–30. It is well known that the properties of a material 

7 were determined by both its chemical composition and structure, and thus ML features 

8 should comprehensively characterize both, rather than focusing only on the 

9 composition itself. To this end, Liu’s group31–36 develops a Center-Environment (CE) 

10 feature model that integrates both compositional and structural information into ML 

11 features by mapping basic physicochemical properties onto a “core-shell” structural 

12 framework. The CE feature model takes into account the properties of the ambient 

13 atoms surrounding the central atom and quantifies the effect of the environment on the 

14 central atom. The CE feature models have been successfully applied to predict a variety 

15 of physicochemical properties of spinel oxide31,36, perovskite oxide32,35, metals33 and 

16 surface structures34, including formation energies, lattice parameters, band gaps, 

17 surface adsorption energies, and overpotentials for surface oxygen reactions.

18 In this study, the Nb5Si3 crystal structure exhibits low symmetry, possessing four 

19 non-equivalent sites and a slightly distorted local environment. The traditional method 

20 of defining nearest neighbor (NN) environment atoms encounters difficulties for local 

21 low-symmetry distorted configuration, as these environment atoms were not easily 

22 predetermined under different truncation conditions. Simply increasing the number of 

23 NN environment atoms does not necessarily improve the accuracy of the prediction, 

24 but may instead introduce redundant information with redundant negative effects. This 

25 is because CE is essentially a localized feature representation, and too large a truncation 

26 range may interfere with the accuracy of other localized CE atom sets. Therefore, a 

27 proper general definition of the environment atoms becomes particularly important 

28 when constructing CE features, especially for complex crystal structures. This is the 

29 main driver of the methodological development in this work. The broader impact of 

30 this work is that it provides an alternative to current graph-based neural network 

31 methods, which have been limited in their application in materials science due to their 

32 complex architecture and the need for large amounts of training data37–40. 

33 The conventional attention mechanism refers to the different weight parameters in 

34 the deep neural networks of large language models. The optimization of weights 
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1 requires a large amount of data during the pre-trained stage that is normally not feasibly 

2 available in materials science. The CE feature model adopts a novel pre-attention 

3 mechanism that defines attention via the explicit feature models with physical meaning 

4 rather than the optimization of weights in complex black-box machine learning 

5 algorithms. This strategy can decrease data requirements and increase the transparent 

6 interpretability of ML models.

7 Aiming to accelerate the extended studies of new alloying elements and structures, 

8 the ML methods were developed in this work based on the previous first-principles 

9 computational data41 to investigate the structural stability properties of the alloyed α-

10 Nb5Si3 phases. First, we developed the improved CE feature model, specifically 

11 adapted for low-symmetry crystals, by examining the different definitions of 

12 environment atoms and weights in the compound feature construction. Then, different 

13 ML algorithms were examined to obtain the optimal models of α-Nb5Si3 phases. The 

14 optimized ML models of α-Nb5Si3 were then used without modification to predict the 

15 substitution energies in new structures of high-temperature phase β-Nb5Si3 that were 

16 not included in the original training dataset, partially confirmed further by the first-

17 principles calculations. 

18

19 2. Models and Methods

20 2.1 Training dataset 

21 The training dataset are built based on the first-principles calculations on the 

22 alloyed α-Nb5Si3
41. Fig. 1 depicts the experimental structures of α-Nb5Si3 (body-

23 centered tetragonal, BCT) crystals with the lattice parameters taken from the Materials 

24 Platform for Data Science (MPDS)42. The conventional cell of α-Nb5Si3 has two 

25 inequivalent Nb sites (dubbed NbI and NbII) and two inequivalent Si sites (dubbed SiI 

26 and SiII) for substitutions with alloying elements. In total, the 32-atom conventional cell 

27 consists of 20 Nb atoms and 12 Si atoms with four NbI, 16 NbII, 4 SiI, and 8 SiII atoms, 

28 respectively.
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1 Considering the double-site substitutions at the non-equivalent site pairs with 14 

2 alloying elements, we collected 3528 double-site substitution energies (EDS) data in α-

3 Nb5Si3 phase from the literature41. We also calculated the incremental single-site 

4 substitution energy (ESS) in the cases of double-site substitution and the local bond 

5 length change <d> as defined in Text S1 of Supplementary Materials (SM). The term 

6 "substitution energy" denotes the energy change associated with the replacement of 

7 alloying constituents. It is characterized as an incremental formation energy, measuring 

8 the stabilities of the site and phase occupancy of alloying elements. The configurations 

9 of the studied substitution pair sites were depicted in Fig. S1 for α-Nb5Si3. The statistics 

10 of the numbers of corresponding substitution systems were listed in Table S1. Fig. S2 

11 (a-c) shows the statistical distributions of the target property data in α-Nb5Si3 that all 

12 satisfy the gaussian distributions. Fig. S3 indicates the 14 substitution alloying elements 

13 in the periodic table.

14 2.2 Center-Environment feature model 
15 The CE features, which encode local structural and compositional information, 

16 have been proven effective in the study of alloys, oxides, and surface catalysis 

17 reactions31–34. Considering the complex substitutional structure and lower symmetry of 

18 Nb5Si3 alloys, this study employs a CE feature model based on composition-structure 

19 characteristics. The CE feature model can be described as an (n+1)-dimensional 

Fig. 1 Conventional cells of α-Nb5Si3 (BCT) crystal structures. The lattice parameters and 
inequivalent atom types are labeled. The stacking order of the atomic layers of α-Nb5Si3 is 
MLLL-MLLL along the longest axis where M and L indicate more closely packed and less 
closely packed layers, respectively.
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1 composite feature vector, as follows:

2 D = [D1, …, Di, …, Dn, f ], (e.g., n = 20 in this work) (1)

3 D consists of a set of n elementary features of element (𝐷𝑖) and the target property 

4 f. 𝐷𝑖 is a two-dimensional vector of the ith elementary property including the center 

5 and environment components defined as follows：

6 Di = [dC, i, dE, i], i = 1, 2,… , n (2)

7 dC, i = pC, i (3)

8 dE, i = ∑N
j=1 ωE, jpE, j,i (4)

9 ωE, j = 
rm
j

∑N
j=1 rm

j
 (m=  -1, -

1
2) (5)

10 where C and E represent the center atoms and environment atoms, respectively; i is the 

11 elementary property index and j is the index of environment atoms. 𝑝𝐶,𝑖 is the i-th 

12 elementary property of the center atom; 𝑝𝐸,𝑗,𝑖 is the i-th property of the j-th 

13 environment atom around the center atom; ωE, j denotes the normalized weight of 

14 elementary properties as functions of distance 𝑟𝑗 between the center atom and the j-th 

15 environment atom. The weight is inversely proportional to the distance as rm
j  (m

16 = -1, -1⁄2) where different powers m was studied and compared in this work.

17 It is well known that feature engineering determines the accuracy of ML modeling 

18 31,43–46. The CE features were compound features consisting of an assembly of 

19 elementary property features encoded with local structural information specified by the 

20 center and environment atoms: (1) Elementary property features are various elementary 

21 physicochemical properties readily available from the fundamental database47, e.g., 

22 atomic mass, radius, electronegativity, and the number of valence electrons of elements 

23 as well as density, melting temperature, and bulk modulus of pure substance among 

24 others. In total 40 elementary properties were adopted in the feature construction as 

25 listed in Table S2. (2) Compound property features are constructed by a linear 

26 combination of the elementary properties of the center atom or the environment atoms 

27 with weights inversely proportional to the distance between the center atom and the 

28 environment atom (rm
j , m = -1, -1⁄2). The exponent m in the decay function measures 

29 how quickly environmental effects diminish with distance. By this way, CE features 

30 can encode the elementary properties with the local composition and structure 

31 information, providing a general digital representation of materials structure. 

32 The design concepts of CE model include:
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1 (1) Localized focus: CE features explicitly define the interaction weights between 

2 the central atom and its neighboring environment through the Atomic Environment 

3 Type (AET) method. The pre-defined attention via “core-shell” configuration allows 

4 the accurate local representation without the needs of a large amount of data for global 

5 representation. 

6 (2) Distance-weighted interactions: By employing decay functions based on 

7 interatomic distances, the CE method pre-define the weight allocation process 

8 reflecting center-environment interactions. The reciprocal distance dependent decay 

9 function can be attributed to the electrostatic interaction of Coulomb’s law.

10 In contrast to the CE feature models, the Chemical Composition (CC) feature 

11 models focus solely on chemical composition without considering structural 

12 information. The construction of CC feature is similar to that of CE except that the 

13 weight rm
j  (m = 0) is independent of distance (see more details in Text S2).

14 2.3 Machine learning algorithms and evaluation

15 For this study, machine learning uses the Support Vector Regression (SVR) 

16 algorithm with an isotropic radial basis function (RBF)48 kernel, and the Random Forest 

17 algorithm (RF)49, both efficiently implemented via Python’s Scikit-learn library. To 

18 enhance model performance, we meticulously fine-tuned the hyperparameters of both 

19 SVR and RF using a grid search approach. The optimized hyperparameters are listed in 

20 Table S3, with corresponding discussions and analyses elaborated in Text S3. 

21 First, we executed a randomized split of the entire original dataset into a training 

22 set and a test set with an 8:2 ratio. The training set then underwent 20 iterations of 5-

23 fold cross-validation, with each fold adhering to the 8:2 partition ratio. The test set, 

24 comprising 20% of the original data, was independently retained to evaluate the 

25 performance of the trained ML models, ensuring it was not utilized during the training 

26 stage. To evaluate the performance of the regression models, the statistical metrics used 

27 were correlation coefficient (R2), mean absolute error (MAE) and root mean square 

28 error (RMSE). These evaluation metrics were defined below:

29 R2 = 1 ―  
∑n-1

j=0 (𝑦𝑗 𝑦𝑗)2

∑n-1
j=0 (𝑦𝑗 𝑦𝑗)2 (6)

30 EMAE = 1n∑n
j=1|yj ― yj| (7)

31 ERMSE = 1
n

∑n
j=1 (𝑦𝑗 ― 𝑦𝑗)2 (8)

32 where n is the number of samples; 𝑦𝑗 is the true value; 𝑦𝑗 is the predicted value; 𝑦𝑗 
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1 is the mean of predicted values.

2

3 3. Results and discussion

4 3.1 Machine learning models

5 3.1.1 CENN and CEAET feature models
6 The CE feature model essentially provides a center and environment framework 

7 of encoding local composition and structure information of materials. The center atoms 

8 are normally the focused atoms, e.g., the substitution alloying elements at the non-

9 equivalent sites NbI, NbII, SiI, and SiII of α-Nb5Si3 in this work. It is physically 

10 necessary to consider the effects of environment atoms on the center atoms. The 

11 definition of environment atoms is critical to the appropriate representation of local 

12 chemical and structural information. To explore the impact of the environment atoms 

13 on the performance of ML-CE models, we developed two construction methods of 

14 environment atoms described as follows.

15 (I) Nearest neighbor (dubbed CENN) feature model. For crystalline materials with 

16 high symmetry, such as FCC or BCC structures, the selection of environment atoms 

17 based on the distances from the center atom to its surroundings is inherently straight 

18 forward. In this model, environmental atoms are defined as the nth-nearest neighbors 

19 to the central atom. The environmental atoms in the alloyed α-Nb5Si3 systems were 

20 identified up to the fifth nearest neighbors, with a distinction at the NbII center atom of 

21 α-Nb5Si3, where the inclusion extended to the 10th nearest neighbors.

22 (II) Atomic Environment Type (dubbed CEAET) feature model. For crystal 

23 structures with low symmetry, e.g., α-Nb5Si3, the distance based cutoff definition is no 

24 longer appropriate to describe the environment. Therefore, this work employs a 

25 physics-based definition of the atomic environment to construct the CE features, 

26 utilizing the concept of AET proposed by Villars50 for classification of inorganic 

27 compounds. The AET represents a complete enclosed physical shell surrounding the 

28 central atom based on the geometric topology rather than just distance cutoffs. To 

29 qualify as AET environmental atoms, two rules must be satisfied: the maximum 

30 distance gap (MDG) and the convex volume (CV). The MDG rule requires that AET 

31 atoms have the maximum gap in the nearest-neighbor histogram (NNH), which is a plot 

32 of the number (n) of certain interatomic distances (d) as a function of the normalized 

33 distances(d/dmin) between the central atom and surrounding atoms. The second CV rule 
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9

1 mandates that AET atoms must enclose a convex polyhedral shape. Fig. 2 depict the 

2 AET cluster models and their NNHs with the centers of non-equivalent sites in α-Nb5Si3. 

3 Fig. 2 shows the AET cluster models around the four non-equivalent sites of α-Nb5Si3: 

4 NbI (CN= 14, code:80.360.4), NbII (CN= 16, code: 125.046.0), SiI (CN= 9, code: 34.065.0), 

5 and SiII (CN= 10, code: 85.024.0) where CN represents coordination number. The AET 

6 code encodes the structure’s topology by listing the counts of polygons (triangles, 

7 squares, pentagons, hexagons) at each vertex. For example, in Fig. 2(a), a CN of 14 is 

8 the sum of 8 and 6, indicating 8 vertices connected to 3 squares and 6 to 4 squares, with 

9 no triangles. This scheme effectively quantifies local polygonal arrangements and 

10 coordination environments, offering a detailed topological characterization. The local 

11 atomic structures of α-Nb5Si3 exhibit low symmetry as indicated by the distorted 

12 polyhedron. For example, the AET cluster around NbII site has up to the 9th nearest 

13 neighbor atoms with a maximum distance gap from the 10th nearest neighbor atoms by 

14 counting the distributions in nearest-neighbor histogram (NNH) in Fig. 2(b). The 

15 numbers of AET atoms vary depending on the local symmetry so it is hard to predefine 

16 the nth nearest neighbors without careful check in advance. The inappropriate choice 

Fig. 2 Nearest-neighbor histogram (NNH) of α-Nb5Si3 around the four non-equivalent sites: 
a NbI (CN= 14, code: 80.360.4), b NbII (CN= 16, code: 125.046.0), c SiI (CN= 9, code: 34.065.0), 
d SiII (CN= 10, code: 85.024.0). The insets are the Atomic Environment Type (AET) cluster 
models (Nb atoms in green and Si atoms in blue).
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10

1 of the nth nearest neighbors as the environment atoms will lead to an incomplete or 

2 redundant shell atoms and physically less meaningful features in the CE feature 

3 construction. The performance of ML models using CENN and CEAET features will be 

4 evaluated and compared later.

5 3.1.2 Performance evaluation of various ML models
6 To compare the prediction accuracy of different ML models, we show the 

7 performance metrics of the CENN, CEAET, and CC feature models with different weights 

8 and parameter settings of various algorithms for α-Nb5Si3 in Table S4-S10 and Fig. S4-

9 S7. 

10 The SVR algorithm (Fig. 3) exhibited generally more accurate prediction by ~100-

11 200 meV/cell than the RF algorithm with all studied features so that the SVR results 

12 were mainly used for discussion. The CE feature models (Table S4, S5) performed 

13 much better than the composition CC models (Table S6), indicating that the inclusion 

14 of structural information into the feature construction via CE framework is critical to 

15 describing the complex crystal structures by ML methods. Furthermore, the CEAET 

16 models using the AET environment atoms had better prediction accuracy than the CENN 

17 models using the nearest-neighbor atoms even though more atoms may be included in 

18 the latter cases (Fig. 3). This suggests that the physically closed shell is more 

19 appropriate to define ML features than the distance-based cutoff selection possibly with 

20 either insufficient or redundant environment atoms. Comparison among the CEAET 

21 feature models, the weight r-1
j  performs mostly better than r-1/2

j (Fig. 3), indicating that 

22 the linear combination of elementary property features with the weight of reciprocal 

23 distance is a reasonable choice probably due to the scaling law of long-range 

24 electrostatic interactions in Coulomb’s law. Based on the comparisons above, the 

Fig. 3 MAE of prediction of α-Nb5Si3 by the SVR and RF methods using CENN and 
CEAET feature models with different weights rmj  (m = -1, - 1 2).
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1 CEAET-SVR models with weight wj= 1/r were mainly used to predict the target 

2 properties (ESS, EDS, and <Δd>) of new datasets in α-Nb5Si3 hereafter. Although the 

3 other algorithms like GBR, LGBM, and XGB achieve high accuracy with limited 

4 samples (Table S11), their predictions are still less precise than SVR. In cross-

5 validation, SVR shows better generalization, likely due to its kernel function's 

6 suitability for high-dimensional small data.

7 Table 1 shows the prediction results of different ML models for the substitution 

8 energies at the four nonequivalent sites (NbI, NbII, SiI, and SiII) of α-Nb5Si3 in the 

9 independent test datasets. Comparing the ML results of four non-equivalent sites 

10 substitutions, it is found that the graph-based deep learning model 3D-ELAN and the 

11 non-deep learning model CEAET-SVR achieved <R2> values both higher than 0.9. 

12 Specifically, the <MAE> values predicted by the 3D-ELAN model for the substitution 

13 energies of the four non-equivalent sites of α-Nb5Si3 are 248.80 meV, 307.60 meV, 

14 419.20 meV, and 301.20 meV per supercell, respectively. The prediction had very large 

15 errors using the other popular graph-based feature models including GCN, GAT, and 

16 ALIGNN. In contrast, the optimal non-deep machine learning model, CEAET-SVR, have 

Table 1 Prediction performances of substitution energies of α-Nb5Si3 alloys using CE 

features model and other deep machine learning models in the literatures.

Models Performance 

metric

Non-equivalent sites All 

sitesNbI NbII SiI SiII

GCN32
<R2> 0.64 0.49 0.67 0.52 ―

<RMSE>(meV) 943.60 999.01 956.80 973.30 ―
<MAE>(meV) 644.80 513.00 625.10 681.00 ―

GAT33
<R2> 0.27 0.45 0.04 0.04 ―

<RMSE>(meV) 1321.40 1031.70 1620.20 1377.20 ―
<MAE>(meV) 1059.70 727.01 1330.31 1108.82 ―

ALIGNN34
<R2> -0.03 0.10 0.12 0.11 ―

<RMSE>(meV) 1573.30 1317.90 1553.01 1334.10 ―
<MAE>(meV) 1275.50 1075.60 1264.32 1040.50 ―

3D-ELAN
<R2> 0.96 0.93 0.94 0.90 ―

<RMSE>(meV) 336.50 394.70 584.10 428.30 ―
<MAE>(meV) 248.80 307.60 419.20 301.20 ―

CEAET-RF
<R2> 0.85 0.82 0.95 0.92 0.81

<RMSE>(meV) 591.56 574.10 449.18 459.25 780.35
<MAE>(meV) 391.11 454.11 347.70 359.95 578.16

CEAET-

SVR

<R2> 0.96 0.97 0.98 0.99 0.93
<RMSE>(meV) 263.89 271.01 268.80 115.34 465.83
<MAE>(meV) 137.95 177.35 174.86 71.39 329.43
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1 the best performance with <MAE> values of 137.95, 177.35, 174.86, and 71.39 

2 meV/cell for the same substitution energies.

3 Based on the prediction of the four non-equivalent sites, we further modeled and 

4 predicted the substitution energies for all sites in α-Nb5Si3. The results indicated that 

5 the non-deep machine learning model CEAET-SVR outperformed CEAET-RF, with 

6 predicted <MAE> values of 329.43 and 578.16 meV/cell, respectively. Notably, the 

7 errors for the four inequivalent sites are larger than any single substitution site because 

8 of the different center-environment configurations. The hundreds of meV is of MAE is 

9 larger than conventional formation energies of bulk crystal because the prediction of 

10 diverse local substitutions in this work is much more challenging than traditional 

11 studies of global substitution in bulk crystals.

12

13 3.2 Construction of machine learning models in α-Nb5Si3

14 In the crystal structure of α-Nb5Si3, the four non-equivalent sites, NbI, NbII, SiI, 

15 and SiII, have different AET environment atoms, so we constructed the machine 

16 learning models for the substitution systems at the four non-equivalent sites, 

17 respectively.
18 Fig. 4 shows the ESS, EDS, and <Δd> of the α-Nb5Si3 substitution systems at the 

19 four non-equivalent sites NbI, NbII, SiI, SiII, and all sites predicted by the optimal 

20 CEAET-SVR models compared with the DFT results. 

21 The predictive performance across different sites in α-Nb5Si3 shows high accuracy, 

22 with R² values generally above 0.9 and low <MAE> and <RMSE>, indicating reliable 

23 energy predictions (Fig. 5). The models trained on a common feature set, incorporating 

24 different AET environments, demonstrate the broad applicability of the CE approach, 

25 though accuracy diminishes with increased system complexity. Overall, the substitution 

26 elements have minimal impact on local bond distances, with <Δd> remaining below 

27 10⁻² Å, suggesting that local structural variations are subtle across different substitution 

28 scenarios.
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13

1

2 Fig. 4 ESS, EDS, and <Δd> of the α-Nb5Si3 substitution systems at the four non-equivalent sites 
3 (a-c) NbI, (d-f) NbII, (g-i) SiI, (j-l) SiII, and (m-o) all sites predicted by the CEAET-SVR models 
4 compared with the DFT results.
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1

2

3 Fig. 5 Comparison of ML errors at different sites in α-Nb5Si3: (a) <R²>, (b) <RMSE>, and (c) 
4 <MAE>.

5 To understand the site dependence of substitution energies, we plot the heat maps 

6 of the double-site substitution energy EDS projection on the substitution pair sites. The 

7 distribution patterns of substitution energy predicted by the ML are very similar to those 

8 of DFT, confirming the reliability of the ML predictions. Such site-energy heat maps 

9 help to find the stabilized element pairs quickly. Figures S8-S11 show the heat maps of 

10 the EDS projection on different site pairs containing the non-equivalent sites NbI, NbII, 

11 SiI, and SiII in α-Nb5Si3, respectively. The ML predicted distribution patterns are 

12 consistent with DFT. The B, Al, and Si elements preferred to occupy the Si sites, while 

13 Ti, Nb, Hf, and Zr tend to occupy Nb sites in α-Nb5Si3. In summary, the machine 

14 learning method was validated against DFT and can be used to find new favorable 

15 stabilized alloying elements in NbSi-based superalloys next.
16 To enhance the interpretability and physical significance of the machine learning 

17 (ML) model, we employed SHAP (SHapley Additive exPlanations) methodology to 

18 analyze the contribution levels and influence trends of critical features in the optimal 
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1 ML model predicting dual-site substitution energy (EDS) for Nb5Si3 superalloys. Fig. 

2 S12 presents the SHAP analysis of EDS in α-Nb5Si3. The feature importance ranking by 

3 SHAP values [Fig. S12(a)] reveals the top five most influential features: PN_C, BM_C, 

4 TN_C, EC_E, and DV_E. As detailed in Table S2, these features correspond to 

5 cohesive energy (EC), bulk modulus (BM), period number (PN), distance-valence 

6 moment (DV), and thermal neutron capture cross-section (TN), demonstrating their 

7 critical roles in the α-Nb5Si3 model. Notably, all significant features originate from 

8 contributions of both central and environmental atoms. For fundamental properties of 

9 the same type, environmental atomic features depend simultaneously on elemental 

10 identity and spatial distance, while central atomic features in the CE framework solely 

11 depend on element type. This highlights the necessity of differentiating central and 

12 environmental atomic characteristics in feature construction for complex crystal 

13 structures. Furthermore, the α-Nb5Si3 system requires structure-dependent 

14 environmental atomic features beyond basic chemical composition.

15 The SHAP value distributions [Fig. S12(b)] qualitatively illustrate the qualitative 

16 trends of feature impacts on substitution energy. In the α-Nb5Si3 model, PN_C, BM_C, 

17 and TN_C exhibit positive correlations with substitution energy, whereas EC_E and 

18 DV_E show negative correlations. The inverse relationship between cohesive energy 

19 (EC) and substitution energy implies that higher cohesive energies correspond to more 

20 negative substitution energies. This correlation aligns with fundamental 

21 thermodynamic principles, as both increased cohesive energy and negative substitution 

22 energy values indicate enhanced system stability. The SHAP analysis in Fig. S12, 

23 reveals that the primary features influencing the substitution energy of α-Nb5Si3 with 

24 dual-site substitution (e.g., PN_C, BM_C) originate from the synergistic contributions 

25 of the central and surrounding atoms. Notably, environmental atom features depend on 

26 both element type and spatial distance, whereas central atom features are exclusively 

27 determined by element type. These findings underscore the critical importance of 

28 differentiating atomic roles when constructing features for complex crystal structures.

29 3.3 Applications of machine learning models

30 After the construction, comparison, and validation of the ML models discussed 

31 above, the optimal CEAET-SVR models with weight wj = 1/r were selected to study the 

32 unknown systems including new alloying elements and matrix alloys that were not in 

33 the training datasets. The ML applicability would significantly extend the prediction 
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1 capability and efficiency beyond expensive first-principles computations.

2 3.3.1 Leave-p-out prediction of new alloying elements

3 To examine the capability of the ML models to predict the energy and structure of 

4 the new alloying elements, we predicted the ESS, EDS, and <Δd> for each of the 14 

5 substituted alloying elements in the α-Nb5Si3 phases using the leave-p-out cross 

6 validation method. The “leave-p-out” tests mean that the p configurations containing 

7 the specified type of element are used for independent tests while the others are used 

8 for training. The value of p is 486, corresponding to 18 sites with 27 configurations at 

9 each site in this work. Specifically, the full datasets containing the 14 elements were 

10 split into the test datasets of a target element and the training datasets of the remaining 

11 13 elements. In other words, the ML model trained with the 13-element dataset was 

12 used to predict the properties of the 14th element. Such leave-one-out validation 

13 procedures were performed for each of the 14 substitution elements. The R2 and MAE 

14 metrics of the leave-one-out ML prediction for the 14 alloying elements in α-Nb5Si3 

15 phases are shown in Fig. S13 and Fig. 6.

16 Fig. S13 shows the performance metrics of EDS in α-Nb5Si3 phase predicted by the 

17 CEAET-SVR models. The <R2> of Al, Co, Fe, Mo, Nb, Ti, V, and Y reached 0.86, 0.90, 

18 0.92, 0.87, 0.91, 0.93, 0.86, and 0.86, respectively. The corresponding <MAE> were 

19 555.94, 351.43, 301.23, 483.88, 460.88, 425.88, 518.86, and 648.72 meV/cell, 

20 respectively. The other elements had larger <MAE> with <R2> less than 0.85.

21 Fig. 6 summarizes the <MAE> of the substitution energies of α-Nb5Si3 in the 

22 leave-p-out prediction of each of the 14 alloying elements using CEAET-SVR models. 

23 In the case of α-Nb5Si3 phase, the <MAE> of Fe elements were less than 300 meV/cell, 

24 and the <MAE> most elements were in 300~600 meV/cell, e.g. Y, Ti, Zr, V, Nb, Mo, 

25 Al, and Co. While the <MAE> of B, Si, Hf, Cr, and Ni elements were greater than 600 

26 meV/cell. It is crucial to bear in mind the prediction errors associated with new elements 

27 when applying ML models. Specifically, larger prediction errors primarily involve 

28 main group non-metals (B, Si) and elements with larger metallic radii, such as Hf, 

29 highlighting their distinct characteristics compared to transition metals. The magnitude 

30 of the <MAE> inversely correlates with the compatibility between substitution 
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1 elements and host sites — smaller MAE values indicate reduced discrepancies in 

2 physicochemical properties between substituents and their host lattice positions. The 

3 divisions of three error bands are used to cover the whole error ranges, which can serve 

4 as the quantitative metric of similarities among the various alloying effects.

5 3.3.2 Prediction of new β-Nb5Si3 structure beyond training dataset
6 In the previous Section 3.3.1, we examined the ML predictions on the new 

7 substitution alloying elements of the same structures. Now we will examine the 

8 predictive capability of ML models on the new structures substituted with the same 

9 alloying elements without expensive DFT calculations. 

10 The Nb-Si binary phase diagram shows that α-Nb5Si3 is the stable phase at ambient 

11 conditions while β-Nb5Si3 is more stable at the high-temperature51. Prompting α-β 

12 phase transition at high-temperature operating conditions may improve the mechanical 

13 properties of Nb-Si alloys. Therefore, it is also interesting to find the alloying elements 

14 that can stabilize β-Nb5Si3 phase. The conventional cell of β-Nb5Si3 crystal structure 

15 has the lattice constants of a= b= 10.06 Å, c= 5.07 Å (Fig. S14). The β-Nb5Si3 exhibits 

16 the body-centered tetragonal structure with four non-equivalent sites: NbI (CN= 14, 

17 code: 125.026.0), NbII (CN= 15, code: 125.036.0), SiI (CN= 10, code: 24.085.0), and SiII 

18 (CN= 10, code: 34.065.016.0). Fig. 7 shows the NNH and AET cluster models of β-Nb5Si3 

19 around the four non-equivalent sites. The local structures of β-Nb5Si3 are also complex, 

20 e.g., up to the 9th nearest-neighbor atoms are necessary to enclose the first physical 

21 shell around NbII site. The AET type definition of the environment atoms is generally 

Fig. 6 <MAE> of the substitution energies in the leave-p-out prediction of each of the 14 
alloying elements in α-Nb5Si3 phase using CEAET-SVR models, respectively. The alloying 
elements are sorted by the number of valence electrons.

Page 17 of 27 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/1
8/

20
25

 5
:0

0:
19

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00079C

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00079c


18

1 applicable to both α-Nb5Si3 and β-Nb5Si3 despite that their crystal structures are 

2 different. 

3

4 The optimal CEAET-SVR models were trained using all EDS of α-Nb5Si3 substituted 

5 with the 14 alloying elements: B, Al, Si, Ti, V, Cr, Fe, Co, Ni, Y, Zr, Nb, Mo, and Hf. 

6 Then we applied these ML models directly to predict the EDS of 784 double-site 

7 substitution systems of β-Nb5Si3 doped with the same set of alloying elements. Fig. 8 

8 shows the heat map of EDS projection on the four non-equivalent site pairs of β-Nb5Si3: 

9 XNbIYNbII, XNbIYSiI, XNbIIYSiI, and XNbIIYSiII where X, Y= B, Ni, Co, Fe, Si, V, Mo, Al, 

10 Ti, Nb, Hf, Zr and Y, sorted in the increasing order of metal radii.

11 The EDS of the XNbIYNbII@β-Nb5Si3 systems were all positive [Fig. 8 (a)], 

12 indicating that the substitutions at the NbINbII site of β-Nb5Si3 were energetically not 

13 favorable. The relative preference of occupation in β-Nb5Si3 were similar to those of α- 
14 Nb5Si3: Ti, Hf, and Zr were more readily to occupy NbINbII sites than B, Si, Al, and Y. 

15 The alloying elements exhibit similar occupancy tendencies at the other three 

16 substitution sites of β-Nb5Si3, including all Nb-Si pairs: XNbIYSiII, XNbIIYSiI, and 

Fig. 7 Nearest-neighbor histogram (NNH) of β-Nb5Si3 around the four non-equivalent sites; 
(a) NbI (CN= 14, code: 125.026.0), (b) NbII (CN= 15, code: 125.036.0), (c) SiI (CN= 10, code: 
24.085.0), and (d) SiII (CN= 10, code: 34.065.016.0). The insets are the Atomic Environment 
Type (AET) cluster models (Nb atoms in green and Si atoms in blue).
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1 XNbIIYSiII [Fig. 8 (b)-(d)]. Specifically, B, Si, and Al prefer to occupy SiI or SiII sites, 

2 while Ti, Hf, and Zr tend to occupy NbI or NbII sites. The occupancy tendency at the 

3 NbSi sites of β-Nb5Si3 is consistent with that of α-Nb5Si3. The substitution pairs that 

4 stabilized β-Nb5Si3 with negative substitution energies were HfNbIBSiII (-0.61 eV), 

5 TiNbIBSiII (-0.34 eV), and ZrNbIBSiII (-1.09 eV) at XNbIYSiII sites; ZrNbIIBSiI (-0.05 eV) and 

6 HfNbIIBSiI (-0.17 eV) at XNbIIYSiI sites; HfNbIIBSiII (-0.72 eV), HfNbIISiSiII (-0.67 eV), 

7 TiNbIIBSiII (-0.95 eV), TiNbIISiSiII (-0.78 eV), and ZrNbIIBSiII (-0.28 eV) at XNbIIYSiII sites. 

8 These results suggest that Ti, Zr, and Hf are stabilizing elements at the Nb sites of β-

9 Nb5Si3 and may be better co-doped with B at the Si sites.

10 To validate the EDS of β-Nb5Si3 predicted by the ML models that were originally 

11 trained for α-Nb5Si3, we performed DFT calculations on the stabilized β-Nb5Si3 

12 systems suggested by the ML models. The EDS of β-Nb5Si3 calculated by DFT were 

13 HfNbIBSiII (-0.19 eV), TiNbIBSiII (-0.49 eV), and ZrNbIBSiII (-0.55 eV) at XNbIYSiII sites; 

14 ZrNbIIBSiI (-0.03 eV) and HfNbIIBSiI (-0.09 eV) at XNbIIYSiI sites; TiNbIIBSiII (-0.44 eV), 

15 TiNbIISiSiII (-0.31 eV), HfNbIIBSiII (-0.28 eV), and HfNbIISiSiII (-0.48 eV), and ZrNbIIBSiII 

Fig. 8 Double-site substitution energies (EDS) of β-Nb5Si3 predicted by the CEAET-SVR 
models that were originally trained for α-Nb5Si3. The heat map of EDS projection on the four 
non-equivalent site pairs of β-Nb5Si3: (a) XNbIYNbII, (b) XNbIYSiII, (c) XNbIIYSiI, and (d) XNbIIYSiII 
where X, Y= B, Ni, Co, Fe, Si, V, Mo, Al, Ti, Nb, Hf, Zr and Y, sorted in the increasing order 
of metal radii.
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1 (-0.27 eV) at XNbIIYSiII sites. Fig. 9 shows the EDS of stable XNbYSi@β-Nb5Si3 predicted 

2 by DFT and ML. The comparison shows that the trends predicted by the ML models 

3 were qualitatively consistent with those of DFT. The MAE and RMSE of EDS of β-

4 Nb5Si3 are 283.03 meV and 347.58 meV, respectively, comparable with those of α-

5 Nb5Si3. Notably, the prediction results for the HfNbIBSiII, TiNbIIBSiII, TiNbIIBSiII, and 

6 ZrNbIBSiII systems exhibit significant discrepancies. The larger atomic radii of Hf and 

7 Zr atoms tend to favor occupying the NbII sites, whereas the smaller atomic radius of 

8 Ti favors occupancy of the NbI sites. Additionally, the smaller B atoms tend to occupy 

9 the densely packed SiI sites. These atomic site preferences in the Nb5Si3 phases are 

10 consistent with the reported first-principles calculations41. The reliability of prediction 

11 is acceptable given that the trained ML models were directly applied across the different 

12 crystal structures without any modification of parameters. 

13

14 4 Conclusions 
15 To develop a general feature model for complex crystal structures in machine 

16 learning studies, we introduced a Center-Environment feature model with Atomic 

17 Environment Type (CEAET) to define the environment of atoms. The ML-CEAET models 

18 proved to be effective, efficient, and transferable in predicting the alloying effects on 

19 the structural stability of α/β-Nb₅Si₃ in NbSi-based superalloys. Comparisons between 

20 various CE construction methods revealed that: (1) The AET definition of environment 

21 atoms (CEAET) outperforms the nearest neighbor-based approach (CENN). (2) The 

Fig. 9 Double-site substitution energies (EDS) of the stable double-site substitution systems 
XNbYSi@β-Nb5Si3 predicted by the ML models (CEAET-SVR) and DFT. The colored scale bar 
indicates the absolute errors from low (in blue) to high (in red).
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1 reciprocal distance weighting function improved the performance of linear 

2 combinations of elementary features. (3) The SVR algorithm slightly outperformed RF 

3 in predicting substitution energies.

4 The optimized CEAET-SVR models predicted the EDS of α-Nb₅Si₃ with a MAE of 

5 329 meV. Direct predictions on untrained β-Nb₅Si₃ indicated that Ti, Zr, and Hf prefer 

6 to occupy Nb sites, while B and Al tend to occupy Si sites. These machine learning 

7 predictions were further validated by first-principles calculations, demonstrating the 

8 reliable transferability of ML predictions using CE feature models. 

9 This study demonstrated that non-deep machine learning models using CE feature 

10 representations, based on a small computational dataset, possess the predictive 

11 capability to study complex crystal structures with low symmetry and exhibit good 

12 transferability to new elements and structures. The achievement of CE feature models 

13 can be attributed to the pre-defined attention mechanism in feature engineering, leading 

14 to a better accuracy with less data requirement. Different from traditional feature 

15 engineering, the CE feature realizes a form of attention-driven information filtering 

16 through physical structure constraints, rather than simple empirical feature 

17 concatenation. Compared with deep learning attention, in scenarios with limited data, 

18 physical priors serve as substitutes for data-driven weight learning, enhancing model 

19 reliability and interpretability. This CE-based ML approach provides an efficient 

20 computational tool for the compositional design of multi-component engineering alloys.
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Data for this paper is available from the published paper at https://doi.org/10.1007/s11661-022-

06868-y. The processing scripts are available at GitHub (https://github.com/Don-

sugar/ML_script/tree/main).

Page 27 of 27 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 6

/1
8/

20
25

 5
:0

0:
19

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00079C

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00079c

