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Predefined attention-focused mechanism using
center-environment features: a machine learning
study of alloying effects on the stability of NbsSis
alloyst

Yuchao Tang,?® Bin Xiao,? Shuizhou Chen,® Quan Qian® and Yi Liu @ *2

Digital encoding of material structures using graph-based features combined with deep neural networks
specificity. Additionally, incorporating a self-attention mechanism increases
architectural complexity and demands extensive data. To overcome these challenges, we developed
a Center-Environment (CE) feature representation—a less data-intensive, physics-informed predefined

often lacks local

attention mechanism. The pre-attention mechanism underlying the CE model shifts attention from
complex black-box machine learning (ML) algorithms to explicit feature models with physical meaning,
reducing data requirements while enhancing the transparency and interpretability of ML models. This
CE-based ML approach was employed to investigate the alloying effects on the structural stability of
NbsSiz, guiding data-driven compositional design for ultra-high-temperature NbSi superalloys. The CE
features leveraged the Atomic Environment Type (AET) method to characterize the local low-symmetry
physical environments of atoms. The optimized CEagr models reasonably predicted double-site
substitution energies in a-NbsSis, achieving a mean absolute error (MAE) of 329.43 meV per cell. The
robust transferability of the CExer models was demonstrated by their successful prediction of untrained
B-NbsSis structures. Site occupancy preferences were identified for B, Si, and Al at Si sites and for Ti, Hf,
and Zr at Nb sites within B-NbsSis. This CE-based ML approach represents a broadly applicable and
intelligent computational design method capable of handling complex crystal structures with strong

rsc.li/digitaldiscovery

1 Introduction

Nb-Si-based superalloys with high melting points and low
density are expected to overcome the working temperature
barrier of Ni-based superalloys and have been extensively
studied as a new generation of high-temperature structural
materials." It contains a large number of high-temperature
intermetallic compounds, such as NbsSi;, which have a high
melting point (2520 °C), moderate density (7.16 g cm™?), high-
temperature strength, and good creep resistance.>® However,
single NbsSi; is brittle at room temperature, which seriously
hinders its practical application.** NbsSi; has both metal and
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transferability, even when working with small datasets.

ceramic properties, and its alloying elements can improve its
intrinsic brittleness at room temperature. Numerous experi-
mental works have shown that adding alloying elements is an
effective way to improve the comprehensive performance of Nb-
Si alloys.>** The alloying elements that have been reported to be
incorporated in NbSi-based alloys encompass a range of metals
such as Ti," Cr,** AL,"® Hf,** Sn, Mo, W,* V, Ta, Fe, Zr, Ho,' Sr,"”
B.* It is time-consuming and labor-intensive, requiring trial-
and-error experiments. Simultaneously, the calculation
method based on first principles can effectively predict the
types of alloying elements and guide alloy composition design.

Chen et al.” studied the atomic occupation positions of
transition group metals in different sublattices of NbsSi;. Their
findings indicate that atoms with larger radii than Nb tend to
occupy Nby; sites, whereas atoms with smaller radii than Nb
tend to occupy Nby sites in o-NbsSiz. Xu et al.*® studied the
effects of vacancy concentration and Al substitution on the
structural, electronic, and elastic properties of NbsSi; by first-
principles calculation. Guo et al.** systematically studied the
effect of Ag addition on the structure, mechanical, and ther-
modynamic properties of o-NbsSi;. Tsakiropoulos et al*
investigated the stability and physical properties of Ti-doped a-
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NbsSis, B-NbsSis, and y-NbsSi; alloys at different temperatures
and concentrations. Xu et al.*® determined the temperature-
dependent structural properties and anisotropic thermal
expansion coefficients of a-/f-NbsSi; phases by minimizing the
nonequilibrium Gibbs free energy as a function of crystal
deformation. Shi et al** focused on the effect of alloying
elements on the mechanical properties and electronic structure
of a-NbsSi;. Kang et al* investigated the energy, lattice
parameters, electronic structure, and elastic constants of Ti-, Cr-
, Al-, and Hf-doped in B-NbsSiz;. Until now, the first-principles
calculations focus on only a few elements and single-site
substitution of NbSi-alloys limited by cost. It is still far from
adequate for screening alloying elements, considering the
complex phase structure and wide range of alloying elements in
multi-component NbSi-based superalloys.

Machine learning as an emerging data-driven research
paradigm in materials science has proven to be effective and
efficient in characterizing the complex structure-property rela-
tionships of materials.**>° It is well known that both the
chemical composition and structure of a material determine its
properties. Thus, ML features should comprehensively charac-
terize both rather than focusing only on the composition itself.
To this end, Liu's group*=® develops a Center-Environment
(CE) feature model that integrates both compositional and
structural information into machine learning (ML) features by
mapping basic physicochemical properties onto a “core-shell”
structural framework. The CE feature model considers the
properties of the surrounding ambient atoms and quantifies the
effect of the environment on the central atom. The CE feature
models have been successfully applied to predict a variety of
physicochemical properties of spinel oxides,***® perovskite
oxides,*** metals,* and surface structures,* including forma-
tion energies, lattice parameters, band gaps, surface adsorption
energies, and overpotentials for surface oxygen reactions.

In this study, the NbsSi; crystal structure exhibits low
symmetry, possessing four non-equivalent sites and a slightly
distorted local environment. The traditional method of defining
nearest neighbor (NN) environment atoms encounters difficul-
ties for local, low-symmetry, distorted configurations, as these
environment atoms are not easily predetermined under
different truncation conditions. Simply increasing the number
of NN environment atoms does not necessarily improve the
accuracy of the prediction; instead, it may introduce redundant
information with adverse effects. This is because CE is essen-
tially a localized feature representation, and an extensive trun-
cation range may interfere with the accuracy of other localized
CE atom sets. Therefore, a proper general definition of the
environment atoms becomes particularly important when
constructing CE features, especially for complex crystal struc-
tures. This is the primary driver of the methodological devel-
opment in this work. The broader impact of this work is that it
provides an alternative to current graph-based neural network
methods, which have been limited in their application in
materials science due to their complex architecture and the
need for large amounts of training data.>”*°

The conventional attention mechanism refers to the
different weight parameters in the deep neural networks of
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large language models. The optimization of weights requires
a large amount of data during the pre-trained stage that is
usually not feasibly available in materials science. The CE
feature model utilizes a novel pre-attention mechanism that
defines attention through explicit feature models with physical
meaning, rather than relying on the optimization of weights in
complex black-box machine learning algorithms. This strategy
can decrease data requirements and increase the transparent
interpretability of ML models.

Aiming to accelerate the extended studies of new alloying
elements and structures, the ML methods were developed in
this work based on the previous first-principles computational
data* to investigate the structural stability properties of the
alloyed a-NbsSi; phases. First, we developed an improved CE
feature model, adapted specifically for low-symmetry crystals,
by examining the different definitions of environment atoms
and weights in the compound feature construction. Then,
different ML algorithms were examined to obtain the optimal
models of a-NbsSi; phases. The optimized ML models of o-
NbsSi; were then used without modification to predict the
substitution energies in new structures of the high-temperature
phase B-NbsSiz, which were not included in the original training
dataset, and first-principles calculations partially confirmed
this prediction.

2 Models and methods

2.1 Training dataset

The training dataset is built based on first-principles calcula-
tions on the alloyed «-NbsSi;.** Fig. 1 depicts the experimental
structures of a-NbsSi; (body-centered tetragonal, BCT) crystals
with the lattice parameters taken from the Materials Platform
for Data Science (MPDS).** The conventional cell of a-NbsSi; has
two inequivalent Nb sites (dubbed Nb; and Nby) and two
inequivalent Si sites (dubbed Si; and Siy) for substitutions with
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Fig. 1 Conventional cells of a-NbsSiz (BCT) crystal structures. The
lattice parameters and inequivalent atom types are labeled. The
stacking order of the atomic layers of a.-NbsSiz is MLLL-MLLL along the

longest axis, where M and L indicate more closely packed and less
closely packed layers, respectively.
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alloying elements. In total, the 32-atom conventional cell
consists of 20 Nb atoms and 12 Si atoms with four Nby, 16 Nbyy, 4
Si;, and 8 Siy atoms, respectively.

Considering the double-site substitutions at the non-
equivalent site pairs with 14 alloying elements, we collected
3528 double-site substitution energies (Epg) data in the o-NbsSis
phase from the literature.** We also calculated the incremental
single-site substitution energy (Ess) in the cases of double-site
substitution and the local bond length change (Ad) as defined
in Text S1 of ESL{ The term “substitution energy” denotes the
energy change associated with the replacement of alloying
constituents. It is characterized by an incremental formation
energy, which measures the stabilities of the site and phase
occupancy of alloying elements. The configurations of the
studied substitution pair sites were depicted in Fig. S1t for a-
NbsSi;. The statistics of the numbers of corresponding substi-
tution systems are listed in Table S1.} Fig. S2(a-c)} shows the
statistical distributions of the target property data in a-NbsSi;
that all satisfy the Gaussian distributions. Fig. S31 indicates the
14 substitution alloying elements in the periodic table.

2.2 Center-environment feature model

The CE features, which encode local structural and composi-
tional information, have been proven effective in the study of
alloys, oxides, and surface catalysis reactions.**** Considering
the complex substitutional structure and lower symmetry of
NbsSi; alloys, this study employs a CE feature model based on
composition-structure characteristics. The CE feature model
can be described as an (n + 1)-dimensional composite feature
vector, as follows:

D=|[Dy, ..., D, ..., D, fl], (e.g., n = 20 in this work) (1)
D consists of a set of n elementary features of element (D;) and
the target property f. D; is a two-dimensional vector of the ith
elementary property, including the center and environment
components defined as follows:

Di=ldci dg, i=1,2,....,n (2)
dci=pc, i 3)

N
dp; = Z WEPEi (4)

=

r 1
wep = (m =1, *5)7 (5)
rT;H

~.
Il

where C and E represent the center atoms and environment
atoms, respectively; 7 is the elementary property index, and j is
the index of environment atoms. pc; is the i-th elementary
property of the center atom; pg; is the i-th property of the j-th
environment atom around the center atom; and wg; denotes the
normalized weight of elementary properties as functions of
distance r; between the center atom and the j-th environment
atom. The weight is inversely proportional to the distance as
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r"(m = —1, —1/2) where different powers m were studied and
compared in this work.

It is well known that feature engineering determines the
accuracy of ML modeling.*****® The CE features were
compound features consisting of an assembly of elementary
property features encoded with local structural information
specified by the center and environment atoms: (1) elementary
property features are various elementary physicochemical
properties readily available from the fundamental database,”
e.g., atomic mass, radius, electronegativity, and the number of
valence electrons of elements as well as density, melting
temperature, and bulk modulus of pure substance among
others. In total, 40 elementary properties were adopted in the
feature construction, as listed in Table S2.1 (2) Compound
property features are constructed by a linear combination of the
elementary properties of the center atom or the environment
atoms with weights inversely proportional to the distance
between the center atom and the environment atom (1", m =
—1, —12). The exponent m in the decay function measures how
quickly environmental effects diminish with distance. In this
way, CE features can encode the elementary properties with
local composition and structure information, providing
a general digital representation of the material structure.

The design concepts of the CE model include the following:

(1) Localized focus: CE features explicitly define the inter-
action weights between the central atom and its neighboring
environment through the Atomic Environment Type (AET)
method. The predefined attention, achieved through a “core-
shell” configuration, enables accurate local representation
without requiring a large amount of data for global
representation.

(2) Distance-weighted interactions: by employing decay
functions based on interatomic distances, the CE method
predefines the weight allocation process reflecting center-
environment interactions. The reciprocal distance-dependent
decay function can be attributed to the electrostatic interac-
tion of Coulomb's law.

In contrast to the CE feature models, the Chemical Compo-
sition (CC) feature models focus solely on chemical composi-
tion without considering structural information. The
construction of the CC feature is similar to that of CE except
that the weight r/"(m = 0) is independent of distance (see more
details in Text S27).

2.3 Machine learning algorithms and evaluation

For this study, machine learning uses the Support Vector
Regression (SVR) algorithm with an isotropic Radial Basis
Function (RBF)** kernel and the Random Forest algorithm
(RF),* both efficiently implemented via Python's Scikit-learn
library. To enhance model performance, we meticulously fine-
tuned the hyperparameters of both SVR and RF using a grid
search approach. The optimized hyperparameters are listed in
Table S3, with corresponding discussions and analyses elab-
orated in Text S3.T

First, we executed a randomized split of the entire original
dataset into a training set and a test set with an 8:2 ratio. The

© 2025 The Author(s). Published by the Royal Society of Chemistry
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training set then underwent 20 iterations of 5-fold cross-
validation, with each fold adhering to the 8:2 partition ratio.
The test set, comprising 20% of the original data, was inde-
pendently retained to evaluate the performance of the trained
ML models, ensuring it was not utilized during the training
stage. To evaluate the performance of the regression models,
the statistical metrics used were the correlation coefficient (R),
mean absolute error (MAE), and root mean square error (RMSE).
These evaluation metrics are defined below:

n—1

2 (f’.f *yj>2
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where 7 is the number of samples; y; is the actual value; yy; is the
predicted value; y; is the mean of predicted values.

3 Results and discussion

3.1 Machine learning models

3.1.1 CEny and CEugy feature models. The CE feature
model provides a central and environmental framework for
encoding the local composition and structure information of
materials. The center atoms are typically the focused atoms,
e.g., the substitution alloying elements at the non-equivalent
sites Nby, Nbyy, Sij, and Siy; of a-NbsSis in this work. It is phys-
ically necessary to consider the effects of environment atoms on
the center atoms. The definition of atomic environments is
critical to the accurate representation of local chemical and
structural information. To explore the impact of environmental
atoms on the performance of ML-CE models, we developed two
construction methods for environmental atoms, described as
follows.

(I) Nearest neighbor (dubbed CEyy) feature model. For
crystalline materials with high symmetry, such as FCC or BCC

bes
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Fig.2 Nearest-neighbor histogram (NNH) of a-NbsSiz around the four non-equivalent sites: (a) Nb, (CN = 14, code: 8°36°4), (b) Nby, (CN = 16,
code: 12504%9) (c) Si) (CN =9, code: 3*°6%9), (d) Si; (CN = 10, code: 8°°249). The insets are the Atomic Environment Type (AET) cluster models

(Nb atoms in green and Si atoms in blue).
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structures, the selection of environment atoms based on the
distances from the center atom to its surroundings is inherently
straightforward. In this model, environmental atoms are
defined as the nth-nearest neighbors to the central atom. The
environmental atoms in the alloyed o-NbsSi; systems were
identified up to the fifth nearest neighbors, with a distinction at
the Nby; center atom of a-NbsSi;, where the inclusion extended
to the 10th nearest neighbors.

(I1) Atomic Environment Type (dubbed CEgr) feature model.
For crystal structures with low symmetry, e.g., a-NbsSi;, the
distance-based cutoff definition is no longer appropriate to
describe the environment. Therefore, this work employs
a physics-based definition of the atomic environment to
construct the CE features, utilizing the concept of AET proposed
by Villars® for the classification of inorganic compounds. The
AET represents a completely enclosed physical shell
surrounding the central atom based on the geometric topology
rather than just distance cutoffs. To qualify as AET environ-
mental atoms, two rules must be satisfied: the maximum
distance gap (MDG) and the convex volume (CV). The MDG rule
requires that AET atoms have the maximum gap in the nearest-
neighbor histogram (NNH), which is a plot of the number (1) of
certain interatomic distances (d) as a function of the normalized
distances(d/dmin) between the central atom and surrounding
atoms. The second CV rule mandates that AET atoms must
enclose a convex polyhedral shape. Fig. 2 depicts the AET cluster
models and their NNHs with the centers of non-equivalent sites
in a-NbsSi;. Fig. 2 shows the AET cluster models around the
four non-equivalent sites of o-NbsSiz: Nb; (CN = 14,
code:8°°6%%), Nby (CN = 16, code: 12°°4%°), Si; (CN = 9, code:
3*96>9), and Siy (CN = 10, code: 8>°2*°) where CN represents
coordination number. The AET code encodes the structure's
topology by listing the counts of polygons (triangles, squares,
pentagons, hexagons) at each vertex. For example, in Fig. 2(a),
a CN of 14 is the sum of 8 and 6, indicating 8 vertices connected
to 3 squares and 6 to 4 squares, with no triangles. This scheme
effectively quantifies local polygonal arrangements and coor-
dination environments, offering a detailed topological charac-
terization. The local atomic structures of a-NbsSi; exhibit low
symmetry, as indicated by the distorted polyhedron. For
example, the AET cluster around the Nby; site has up to the 9th
nearest neighbor atoms with a maximum distance gap from the
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10th nearest neighbor atoms by counting the distributions in the
nearest-neighbor histogram (NNH) in Fig. 2(b). The number of
AET atoms varies depending on the local symmetry, so it is hard
to predefine the nth nearest neighbors without a careful check in
advance. The inappropriate choice of the nth nearest neighbors
as the environment atoms will lead to incomplete or redundant
shell atoms and physically less meaningful features in the CE
feature construction. The performance of ML models using CExy
and CEgr features will be evaluated and compared later.

3.1.2 Performance evaluation of various ML models. To
compare the prediction accuracy of different ML models, we
present the performance metrics of the CEny, CEsgr, and CC
feature models with various weights and parameter settings of
different algorithms for a-NbsSi; in Tables S4-S10 and Fig. S4-
S7.+

The SVR algorithm (Fig. 3) generally exhibited more accurate
predictions by ~100-200 meV per cell than the RF algorithm,
using all studied features; therefore, the SVR results were
primarily used for discussion. The CE feature models (Tables S4
and S51) performed much better than the composition CC
models (Table S67), indicating that the inclusion of structural
information into the feature construction via CE framework is
critical to describing the complex crystal structures by ML
methods. Furthermore, the CE,gr models using the AET envi-
ronment atoms had better prediction accuracy than the CExy
models using the nearest-neighbor atoms, even though more
atoms may be included in the latter cases (Fig. 3). This suggests
that the physically closed shell is more appropriate to define ML
features than the distance-based cutoff selection possibly with
either insufficient or redundant environment atoms. Compar-
ison among the CE,gr feature models, the weight r]l performs
mostly better than r; ** (Fig. 3), indicating that the linear
combination of elementary property features with the weight of
reciprocal distance is a reasonable choice probably due to the
scaling law of long-range electrostatic interactions in
Coulomb's law. Based on the comparisons above, the CE-SVR
models with weight w; = 1/r were mainly used to predict the
target properties (Ess, Eps, and (Ad)) of new datasets in o-NbsSis
hereafter. Although other algorithms, such as GBR, LGBM, and
XGB, achieve high accuracy with limited samples (Table S117),
their predictions are still less precise than those of SVR. In
cross-validation, SVR exhibits better generalization, likely due
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MAE of prediction of a-NbsSis by the (a) SVR and (b) RF methods using CEny and CEet feature models with different weights r/™(m = —1,
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Table 1 Prediction performances of substitution energies of a-NbsSiz alloys using CE features model and other deep machine learning models

in the literature

Non-equivalent sites

Models Performance metric Nb, Nby; Si; Siy All sites
GCN*? (R?) 0.64 0.49 0.67 0.52 —
(RMSE) (meV) 943.60 999.01 956.80 973.30 —
(MAE) (meV) 644.80 513.00 625.10 681.00 —
GAT*? (R?) 0.27 0.45 0.04 0.04 —
(RMSE) (meV) 1321.40 1031.70 1620.20 1377.20 —
(MAE) (meV) 1059.70 727.01 1330.31 1108.82 —
ALIGNN** (R?) —0.03 0.10 0.12 0.11 —
(RMSE) (meV) 1573.30 1317.90 1553.01 1334.10 —
(MAE) (meV) 1275.50 1075.60 1264.32 1040.50 —
3D-ELAN (R?) 0.96 0.93 0.94 0.90 —
(RMSE) (meV) 336.50 394.70 584.10 428.30 —
(MAE) (meV) 248.80 307.60 419.20 301.20 —
CEapr-RF (R%) 0.85 0.82 0.95 0.92 0.81
(RMSE) (meV) 591.56 574.10 449.18 459.25 780.35
(MAE) (meV) 391.11 454.11 347.70 359.95 578.16
CEApr-SVR (R?) 0.96 0.97 0.98 0.99 0.93
(RMSE) (meV) 263.89 271.01 268.80 115.34 465.83
(MAE) (meV) 137.95 177.35 174.86 71.39 329.43

to the suitability of its kernel function for high-dimensional
datasets with small sizes.

Table 1 shows the prediction results of different ML models
for the substitution energies at the four non-equivalent sites
(Nby, Nby;, Sij, and Siy) of a-NbsSiz in the independent test
datasets. Comparing the ML results of four non-equivalent site
substitutions, it is found that the graph-based deep learning
model, 3D-ELAN, and the non-deep learning model, CExgr-SVR,
achieved (R?) values both higher than 0.9. Specifically, the
(MAE) values predicted by the 3D-ELAN model for the substi-
tution energies of the four non-equivalent sites of a-NbsSi; are
248.80 meV, 307.60 meV, 419.20 meV, and 301.20 meV per
supercell, respectively. The prediction had substantial errors
using the other popular graph-based feature models, including
GCN, GAT, and ALIGNN. In contrast, the optimal non-deep
machine learning model, CEAgr-SVR, has the best perfor-
mance with (MAE) values of 137.95, 177.35, 174.86, and 71.39
meV per cell for the same substitution energies.

Based on the prediction of the four non-equivalent sites, we
further modeled and predicted the substitution energies for all
sites in o-NbsSiz. The results indicated that the non-deep
machine learning model CEAgr-SVR outperformed CEagr-RF,
with predicted (MAE) values of 329.43 and 578.16 meV per cell,
respectively. Notably, the errors for the four inequivalent sites
are larger than any single substitution site because of the
different center-environment configurations. The hundreds of
meV of MAE are larger than conventional formation energies of
bulk crystals because the prediction of diverse local substitu-
tions in this work is much more challenging than traditional
studies of global substitution in bulk crystals.

3.2 Construction of machine learning models for a-NbsSi;

In the crystal structure of a-NbsSis;, the four non-equivalent
sites, Nby, Nby;, Si;, and Siy, have different AET environment

© 2025 The Author(s). Published by the Royal Society of Chemistry

atoms, so we constructed the machine learning models for the
substitution systems at the four non-equivalent sites,
respectively.

Fig. 4 shows the Egg, Eps, and (Ad) of the o-Nb;Si; substi-
tution systems at the four non-equivalent sites Nby, Nbyy, Siy, Siy,
and all sites predicted by the optimal CEjg-SVR models
compared with the DFT results.

The predictive performance across different sites in o-NbsSi;
shows high accuracy, with R* values generally above 0.9 and low
(MAE) and (RMSE), indicating reliable energy predictions
(Fig. 5). The models trained on a standard feature set, incor-
porating different AET environments, demonstrate the broad
applicability of the CE approach. However, accuracy diminishes
with increased system complexity. Overall, the substitution
elements have minimal impact on local bond distances, with
(Ad) remaining below 10> A, suggesting that local structural
variations are subtle across different substitution scenarios.

To understand the site dependence of substitution energies,
we plot the heat maps of the double-site substitution energy Epg
projection on the substitution pair sites. The distribution
patterns of substitution energy predicted by the ML are very
similar to those of DFT, confirming the reliability of the ML
predictions. Such site-energy heat maps help identify stabilized
element pairs quickly and efficiently. Fig. S8-S111 show the heat
maps of the Epg projection on different site pairs containing the
non-equivalent sites Nby, Nby, Si;, and Siy; in a-NbsSis, respec-
tively. The ML-predicted distribution patterns are consistent with
those obtained from DFT. The B, Al, and Si elements preferred to
occupy the Si sites, while Ti, Nb, Hf, and Zr tend to occupy Nb
sites in a-NbsSi;. Overall, the machine learning method was
validated against DFT and can be used to identify new, favorable,
and stabilized alloying elements in NbSi-based superalloys.

To enhance the interpretability and physical significance of
the machine learning (ML) model, we employed SHAP (SHapley

Digital Discovery, 2025, 4,1870-1883 | 1875
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Fig.4 Ess, Eps, and (Ad) of the a-NbsSiz substitution systems at the four non-equivalent sites (a—c) Nb, (d—f) Nby, (g—i) Si;, (j-1) Si;, and (m-o0) all
sites predicted by the CEAgt-SVR models compared with the DFT results.
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Additive exPlanations) methodology to analyze the contribution
levels and influence trends of critical features in the optimal ML  NbsSis.
model predicting dual-site substitution energy (Eps) for NbsSis

superalloys. Fig. S121 presents the SHAP analysis of Epg in o-
The feature importance ranking by SHAP values
[Fig. S12(a)t] reveals the top five most influential features:
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Fig. 5 Comparison of ML errors at different sites in a-NbsSis: (a) (R%), (

PN_C, BM_C, TN_C, EC_E, and DV_E. As detailed in Table S2,}
these features correspond to cohesive energy (EC), bulk
modulus (BM), period number (PN), distance-valence moment
(DV), and thermal neutron capture cross-section (TN), demon-
strating their critical roles in the o-NbsSi; model. Notably, all
significant features originate from the contributions of both
central and environmental atoms. For fundamental properties
of the same type, environmental atomic features depend
simultaneously on elemental identity and spatial distance.

In contrast, central atomic features in the CE framework
solely depend on the element type. This highlights the necessity
of differentiating central and environmental atomic character-
istics in feature construction for complex crystal structures.
Furthermore, the a-Nb;Si; system requires structure-dependent
environmental atomic features beyond elemental chemical
composition.

The SHAP value distributions [Fig. S12(b)}] qualitatively
illustrate the qualitative trends of feature impacts on substitu-
tion energy. In the o-NbsSi; model, PN_C, BM_C, and TN_C
exhibit positive correlations with substitution energy, whereas
EC_E and DV_E show negative correlations. The inverse rela-
tionship between cohesive energy (EC) and substitution energy
implies that higher cohesive energies correspond to more
negative substitution energies. This correlation aligns with
fundamental thermodynamic principles, as both increased
cohesive energy and negative substitution energy values

© 2025 The Author(s). Published by the Royal Society of Chemistry

b) (RMSE), and (c) (MAE).

indicate enhanced system stability. The SHAP analysis in
Fig. S127 reveals that the primary features influencing the
substitution energy of o-NbsSi; with dual-site substitution (e.g.,
PN_C, BM_C) originate from the synergistic contributions of the
central and surrounding atoms. Notably, environmental atom
features depend on both element type and spatial distance,
whereas central atom features are exclusively determined by
element type. These findings underscore the critical importance
of differentiating atomic roles when constructing features for
complex crystal structures.

3.3 Applications of machine learning models

After the construction, comparison, and validation of the ML
models discussed above, the optimal CE,gr-SVR models with w;
= 1/r were selected to study unknown systems, including new
alloying elements and matrix alloys not included in the training
datasets. The ML applicability would significantly extend the
prediction capability and efficiency beyond expensive first-
principles computations.

3.3.1 Leave-p-out prediction of new alloying elements. To
examine the capability of the ML models to predict the energy
and structure of the new alloying elements, we predicted the
Ess, Eps, and (Ad) for each of the 14 substituted alloying
elements in the a-NbsSi; phases using the Leave-p-out cross-
validation method. The “Leave-p-out” tests mean that the p

Digital Discovery, 2025, 4,1870-1883 | 1877
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configurations containing the specified type of element are used
for independent tests while the others are used for training. The
value of p is 486, corresponding to 18 sites with 27 configura-
tions at each site in this work. Specifically, the completed
datasets containing the 14 elements were split into test datasets
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for a target element and training datasets for the remaining 13
elements. In other words, the ML model trained with the 13-
element dataset was used to predict the properties of the 14th
element. Such leave-one-out validation procedures were per-
formed for each of the 14 substitution elements. The R* and
MAE metrics of the leave-one-out ML prediction for the 14
alloying elements in «-NbsSi; phases are shown in Fig. S131 and
6.

Fig. S131 shows the performance metrics of Epg in the a-
Nb;Si; phase predicted by the CE,g-SVR models. The (R?) of Al,
Co, Fe, Mo, Nb, Ti, V, and Y reached 0.86, 0.90, 0.92, 0.87, 0.91,
0.93, 0.86, and 0.86, respectively. The corresponding (MAE)
were 555.94, 351.43, 301.23, 483.88, 460.88, 425.88, 518.86, and
648.72 meV per cell, respectively. The other elements had larger
(MAE) with (R?) less than 0.85.

Fig. 6 summarizes the (MAE) of the substitution energies of
a-NbsSi; in the Leave-p-out prediction of each of the 14 alloying
elements using CEgr-SVR models. In the case of a-NbsSi;
phase, the (MAE) of Fe elements were less than 300 meV per
cell, and the (MAE) most elements were in 300~600 meV per
cell, e.g., Y, Ti, Zr, V, Nb, Mo, Al, and Co. While the (MAE) of B,
Si, Hf, Cr, and Ni elements were greater than 600 meV per cell. It
is crucial to consider the prediction errors associated with new
elements when applying ML models. Specifically, larger
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Fig.7 Nearest-neighbor histogram (NNH) of B-NbsSiz around the four non-equivalent sites; (a) Nb, (CN = 14, code: 125°259), (b) Nb,, (CN = 15,
code: 12%9359) (c) Si| (CN = 10, code: 24°8%9), and (d) Si; (CN = 10, code: 3*°6°0159). The insets are the Atomic Environment Type (AET) cluster

models (Nb atoms in green and Si atoms in blue).
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prediction errors primarily involve the leading group of non-
metals (B, Si) and elements with larger metallic radii, such as
Hf, highlighting their distinct characteristics compared to
transition metals. The magnitude of the (MAE) inversely
correlates with the compatibility between substitution elements
and host sites—smaller MAE values indicate reduced discrep-
ancies in physicochemical properties between substituents and
their host lattice positions. The divisions of three error bands
are used to cover the entire range, which can serve as a quanti-
tative metric of similarities among the various alloying effects.

3.3.2 Prediction of new B-Nb;Si; structure beyond training
dataset. In the previous Section 3.3.1, we examined the ML
predictions on the new substitution alloying elements of the
same structures. Now, we will examine the predictive capability
of ML models on new structures substituted with the same
alloying elements without DFT
calculations.

The Nb-Si binary phase diagram shows that «-NbsSi; is the
stable phase at ambient conditions while B-NbsSi; is more
stable at the high-temperature.>® Prompting o-f3 phase transi-
tion at high-temperature operating conditions may improve the
mechanical properties of Nb-Si alloys. Therefore, it is also
interesting to find the alloying elements that can stabilize the -

requiring  expensive
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NbsSi; phase. The conventional cell of B-NbsSi; crystal structure
has the lattice constants of a = b= 10.06 A, ¢ = 5.07 A (Fig. S141).
The B-NbsSi; exhibits the body-centered tetragonal structure
with four non-equivalent sites: Nb; (CN = 14, code: 12°%2%),
Nby; (CN = 15, code: 12°°3%9), Si; (CN = 10, code: 2*°8>?), and
Siy (CN = 10, code: 3*°6>°1%°). Fig. 7 shows the NNH and AET
cluster models of B-NbsSi; around the four non-equivalent sites.
The local structures of B-NbsSi; are also complex, e.g., up to the
9th nearest-neighbor atoms are necessary to enclose the first
physical shell around the Nby site. The AET type definition of
the environment atoms is generally applicable to both a-NbsSi;
and B-NbsSi; even though their crystal structures are different.

The optimal CEAg-SVR models were trained using all Epg of
a-NbsSi; substituted with the 14 alloying elements: B, Al, Si,
Ti, V, Cr, Fe, Co, Ni, Y, Zr, Nb, Mo, and Hf. Then, we applied
these ML models directly to predict the Epg of 784 double-site
substitution systems of B-NbsSi; doped with the same set of
alloying elements. Fig. 8 shows the heat map of Epg projection
on the four non-equivalent site pairs of B-NbsSiz: Xnpr¥nbm
XnbiYsit, XnbiYsin, and XapnYsin where X, Y=B, Ni, Co, Fe, Si, V,
Mo, Al, Ti, Nb, Hf, Zr and Y, sorted in the increasing order of
metal radii.

b Eps(Xnpi Ysi@PB-NbsSis)

.

unit: eV
7.5
6.5
55
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35
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0.5
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Fig. 8 Double-site substitution energies (Eps) of B-NbsSiz predicted by the CExer-SVR models that were initially trained for a-NbsSis. The heat
map of Epg projection on the four non-equivalent site pairs of B-NbsSis: (a) Xnp1 Yo (0) XnorYsin (€) XnonYsin and (d) XnpnYsin where X, Y=B, Ni, Co,
Fe, Si, V, Mo, Al, Ti, Nb, Hf, Zr and Y, sorted in the increasing order of metal radii.
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Fig. 9 Double-site substitution energies (Eps) of the stable double-
site substitution systems Xy Ysi@B-NbsSiz predicted by the ML models
(CEAeT-SVR) and DFT. The colored scale bar indicates the absolute
errors from low (in blue) to high (in red).

The Epg of the XnprYnon@B-NbsSi; systems were all positive
[Fig. 8(a)], indicating that the substitutions at the Nb;Nby; site of
B-NbsSi; were energetically not favorable. The relative prefer-
ence of occupation in B-NbsSi; was similar to those of a-NbsSi;:
Ti, Hf, and Zr were more readily to occupy Nb;Nby; sites than B,
Si, Al, and Y. The alloying elements exhibit similar occupancy
tendencies at the other three substitution sites of B-NbsSis,
including all Nb-Si pairs: XnpiYsi, XnounYsin and XnpuYsin
[Fig. 8(b)-(d)]. Specifically, B, Si, and Al prefer to occupy Si; or
Siy; sites, while Ti, Hf, and Zr tend to occupy Nb; or Nby; sites.
The occupancy tendency at the NDbSi sites of B-NbsSi; is
consistent with that of a-NbsSi;. The substitution pairs that
stabilized B-NbsSi; with negative substitution energies were
HfypBsin (—0.61 eV), TinpBsin (—0.34 eV), and ZryyBsiy (—1.09
eV) at XnpiYsinr Sites; ZrypnBsir (—0.05 eV) and HfypBsir (—0.17
eV) at XnprYsit sites; HbeIIBSiII (—0.72 eV), HbeIISiSiII (—0.67
eV), TiNbIIBSiII (—0.95 eV), TiNbIISiSiII (—0.78 eV), and ZrnbiBsin
(—0.28 eV) at XnpiYsin sites. These results suggest that Ti, Zr,
and Hf are stabilizing elements at the Nb sites of B-Nb;Si; and
may be better co-doped with B at the Si sites.

To validate the Epg of B-NbsSi; predicted by the ML models
that were initially trained for a-NbsSi;, we performed DFT
calculations on the stabilized B-NbsSi; systems suggested by the
ML models. The Epg of B-NbsSi; calculated by DFT were Hfyp-
Bsin (—0.19 eV), TinpiBsin (—0.49 eV), and ZrypBsirr (—0.55 eV) at
XnbiYsin Sites; ZrnpnBsir (—0.03 eV) and HfypBsir (—0.09 eV) at
XnbiYsit sites; TiNbIIBSiII (—0.44 BV), TiNbIISiSiII (—0.31 eV),
HbeIIBSiII (—0.28 eV), and HbeIISiSiII (—0.48 CV), and ZrnbiBsin
(—0.27 eV) at XnpiYsin Sites. Fig. 9 shows the Epg of stable
XnbYsi@PB-NbsSi; predicted by DFT and ML. The comparison
shows that the trends predicted by the ML models were quali-
tatively consistent with those of DFT. The MAE and RMSE of Epg
of B-NbsSi; are 283.03 meV and 347.58 meV, respectively,
comparable with those of a-NbsSi;. Notably, the prediction
results for the HfxpiBsin, TinouBsim, TinbiBsin, and ZrnpiBsin
systems exhibit significant discrepancies. The larger atomic
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radii of Hf and Zr atoms tend to favor occupying the Nby; sites,
whereas the smaller atomic radius of Ti favors occupancy of the
Nb; sites. Additionally, the smaller B atoms tend to occupy the
densely packed Si; sites. These atomic site preferences in the
NbsSi; phases are consistent with the reported first-principles
calculations.*" The reliability of prediction is acceptable given
that the trained ML models were directly applied across the
different crystal structures without any modification of
parameters.

4 Conclusions

To develop a general feature model for complex crystal struc-
tures in machine learning studies, we introduced a Center-
Environment feature model with Atomic Environment Type
(CEsgr) to define the environment of atoms. The ML-CEagr
models proved to be effective, efficient, and transferable in
predicting the alloying effects on the structural stability of a/B-
NbsSi; in NbSi-based superalloys. Comparisons between
various CE construction methods revealed that: (1) the AET
definition of environment atoms (CEsgr) outperforms the
nearest neighbor-based approach (CEyy). (2) The reciprocal
distance weighting function improved the performance of
linear combinations of elementary features. (3) The SVR algo-
rithm slightly outperformed RF in predicting substitution
energies.

The optimized CErr-SVR models predicted the Epg of a-
NbsSi; with an MAE of 329 meV. Direct predictions on
untrained B-NbsSi; indicated that Ti, Zr, and Hf prefer to occupy
Nb sites, while B and Al tend to occupy Si sites. These machine-
learning predictions were further validated by first-principles
calculations, demonstrating the reliable transferability of ML
predictions using CE feature models.

This study demonstrated that non-deep machine learning
models using CE feature representations based on a small
computational dataset possess predictive capability for
studying complex crystal structures with low symmetry and
exhibit good transferability to new elements and structures. The
achievement of CE feature models can be attributed to the
predefined attention mechanism in feature engineering,
leading to improved accuracy with reduced data requirements.
Unlike traditional feature engineering, the CE feature employs
a form of attention-driven information filtering through phys-
ical structure constraints rather than simple empirical feature
concatenation. Compared with deep learning attention, in
scenarios with limited data, physical priors serve as substitutes
for data-driven weight learning, enhancing model reliability
and interpretability. This CE-based ML approach provides an
efficient computational tool for the compositional design of
multi-component engineering alloys.
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