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Constructing datasets representative of the target domain is essential for training effectivemachine learning

models. Active learning (AL) is a promising method that iteratively extends training data to enhance model

performance while minimizing data acquisition costs. However, current AL workflows often require human

intervention and lack parallelism, leading to inefficiencies and underutilization of modern computational

resources. In this work, we introduce PAL, an automated, modular, and parallel active learning library that

integrates AL tasks and manages their execution and communication on shared- and distributed-

memory systems using the Message Passing Interface (MPI). PAL provides users with the flexibility to

design and customize all components of their active learning scenarios, including machine learning

models with uncertainty estimation, oracles for ground truth labeling, and strategies for exploring the

target space. We demonstrate that PAL significantly reduces computational overhead and improves

scalability, achieving substantial speed-ups through asynchronous parallelization on CPU and GPU

hardware. Applications of PAL to several real-world scenarios – including ground-state reactions in

biomolecular systems, excited-state dynamics of molecules, simulations of inorganic clusters, and

thermo-fluid dynamics – illustrate its effectiveness in accelerating the development of machine learning

models. Our results show that PAL enables efficient utilization of high-performance computing

resources in active learning workflows, fostering advancements in scientific research and engineering

applications.
1 Introduction

In many ML applications, the primary goal of data generation is
to create a diverse dataset that comprehensively represents the
relevant data distribution, ensuring stability and reliability
during deployment.1 In contrast, scientic applications oen
require ML models to operate in exploratory settings, where
discovering novel and unseen inputs is expected or even
desired.2–4 ML models trained on limited initial datasets oen
struggle to generalize effectively to newly encountered instances
outside the training distribution. Continuously updating the
model by labeling portions of the explored input space and
retraining is inefficient, as it frequently adds redundant data
points to the training set without signicantly improving
generalization accuracy. To address this challenge, active
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learning (AL) has been introduced as an efficient approach to
building accurate and reliable models while minimizing
queries to an oracle – a computational method or experimental
process capable of providing ground truth labels.5 By iteratively
selecting the most informative instances for labeling, AL
reduces the overall cost of training set generation and enhances
model performance.6–8

One particularly important application of active learning is
developing new machine-learned potentials, which are oen
trained on quantum mechanical calculations to map three-
dimensional atomic coordinates to corresponding total ener-
gies and forces.9–13 These potentials are ML models typically
based on neural networks14–22 or Gaussian process
models.3,13,23–25 The advantage of ML potentials lies in their
ability to perform molecular dynamics (MD) simulations with
the accuracy of ab initio calculations but at only a fraction of the
computational cost. As MD simulations oen aim to explore the
behavior and function of molecules and materials at the
atomistic scale, constructing an initial dataset that fully repre-
sents all relevant geometries encountered during simulations is
nearly impossible. Active learning approaches are therefore
essential to update datasets and machine-learned potentials
iteratively, ensuring both reliability and accuracy throughout
Digital Discovery, 2025, 4, 1901–1911 | 1901
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Fig. 1 Comparison of (a) a conventional (serial) active learning and (b) our parallel active learning workflow PAL. (a) Classical active learning
workflow, in which different tasks, i.e. exploration of the input space using generation and prediction kernels, labeling of the samples using the
oracle kernel, and training of the ML model, are performed iteratively and sequentially. (b) PAL modularizes, decouples, and parallelizes data
generation, oracle labeling, and ML training processes.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
2:

15
:3

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
the simulations.24,26–38 Typically, AL for machine-learned
potentials is performed in a batch-wise manner, iterating
through cycles of data labeling via quantum chemistry calcu-
lations, training MLmodels, andML-accelerated simulations or
other sampling strategies. Uncertainty quantication25,39,40 is
oen used to select the most informative samples for subse-
quent iterations (see Fig. 1a).

Despite the widespread use of AL for machine-learned
potential development, the current infrastructures and algo-
rithms oen fail to fully utilize modern computational
resources, relying heavily on human intervention for tasks such
as labeled data handling and model training initialization.
Furthermore, the lack of parallelism introduces inefficiencies,
as AL is typically performed sequentially; for example, labeled
data generation, model training, and exploration in molecular
dynamics (MD) simulations are executed one aer another. Due
to the vastness of the target space commonly studied in scien-
tic applications, this stepwise task execution of classic AL
hinders both rapid iterative update of ML models and fast
exploration of the interested space. Various studies have sought
to address these limitations, for instance, by training models in
parallel, accelerating data labeling using high-throughput
computation within the oracle,2,22,41–43 or automating data ow
through modularized task design.44 Nonetheless, these
approaches typically demand complex implementations and
continue to suffer from limited parallelism and inefficient data
communication across different AL components.

To address these challenges, we developed PAL, an auto-
mated, modular, and parallel active learning workow (see
Fig. 1b) with several key advantages: (1) the fully automatic
workow minimizes human intervention during execution; (2)
1902 | Digital Discovery, 2025, 4, 1901–1911
themodular and highly adaptive design reduces the effort of (re-
)implementing parts of the active learning workow while
allowing it to be extended to various tasks with diverse combi-
nations of resources, data, and ML model types; (3) the decou-
pling of all AL modules and use of surrogate models for
exploration enables data and task parallelism, facilitating
simultaneous exploration/generation, labeling, and training
tasks; and (4) PAL is implemented using the Message Passing
Interface (MPI) in Python,45–47 ensuring scalability and exibility
for deployment on both shared-memory systems (e.g., laptops,
local workstations) and distributed-memory systems (e.g., high-
performance computing clusters) with high data communica-
tion efficiency.

We demonstrate the applicability and versatility of PAL
across various applications of machine-learned potentials and
other machine learning tasks for science and engineering
beyond atomistic simulations. Our results highlight the scal-
ability of PAL and the signicant speed-ups achieved through
asynchronous parallelization on CPU and GPU hardware.

2 Description of the PAL workflow

PAL is designed as a modular and scalable framework that
orchestrates the components of an active learning workow in
a parallel computing environment. The architecture of PAL
centers around ve core modules, referred to as kernels: the
prediction kernel, generator kernel, training kernel, oracle
kernel, and controller kernel (see Fig. 2). These kernels operate
concurrently and communicate efficiently through the Message
Passing Interface (MPI), enabling seamless integration and
coordination on both shared- and distributed-memory systems.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The computational architecture of the PAL workflow. Multiple boxes indicate parallelization of multiple instances of each kernel. The
arrows illustrate information flow between the kernels orchestrated by the two controller sub-kernels. One dedicated controller sub-kernel
ensures high-frequency communication between generation and prediction kernels.
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At a high level, the prediction kernel provides machine
learning models that make predictions on input data generated
by the generators. The generator kernel explores the target
space by producing new data instances based on the predictions
received. The training kernel retrains the machine learning
models using newly labeled data to improve their performance
iteratively. The oracle kernel acts as the source of ground truth
labels, providing accurate labels for selected data instances that
require further clarication. Overseeing these components, the
controller kernel manages the workow by coordinating
communication, scheduling tasks, and handling data
exchanges between kernels.

This modular design allows users to customize and extend
each kernel according to the specic requirements of their
active learning scenarios. By decoupling the kernels and
enabling them to operate in parallel, PAL maximizes compu-
tational resource utilization and minimizes overhead associ-
ated with sequential processing. The architecture supports
asynchronous execution, where data generation, model
prediction, labeling, and training can proceed simultaneously,
leading to signicant improvements in efficiency and scal-
ability. A user-designated number of instances of the process in
every kernel are generated during execution, each with distinct
identiers, data, and behaviors, tailored to the specic
requirements of the kernel. The functionality of each kernel will
be discussed in more detail in the subsequent sections.
2.1 Prediction kernel

In the prediction kernel, ML processes infer target values for
inputs generated by the generators. Multiple ML models can
operate concurrently when bootstrapping or query-by-
committee techniques are employed. The controller
© 2025 The Author(s). Published by the Royal Society of Chemistry
aggregates their predictions and performs predened or user-
dened manipulations, such as calculating the mean and
standard deviation, before distributing the results to generators
and oracles. The separation of prediction and training tasks in
PAL aims to minimize disruptions in data generation and
inference caused by the time-consuming labeling and training
processes. ML models in the prediction kernel are updated
periodically by replicating weights from the corresponding
models in the training kernel aer a specied number of
training epochs.

Example: in the case of machine-learned potentials, the
prediction kernel is the machine learning model that predicts
energies and forces given the system coordinates during an MD
simulation or during other sampling methods used to explore
the relevant geometry space (e.g. enhanced sampling methods
or transition state search algorithms). Potential prediction
kernels can be SchNet,48 Nequip,14 Allegro,49 MACE,50 and other
machine-learned potentials.
2.2 Generator kernel

The generator kernel hosts an arbitrary number of generator
processes running in parallel to accelerate data generation.
Predictions from the ML models in the prediction kernel are
disseminated to each generator by the controller, facilitating
further data production. Each generator independently
manages its data and maintains its generation–prediction-
iteration status. Every generator can signal the controller
kernel to shut down the PAL workow upon meeting user-
dened criteria.

Example: in the case of machine-learned potentials, this
kernel is the exploration algorithm, e.g. a single MD step or the
generation of a new geometry in the geometry-exploration
Digital Discovery, 2025, 4, 1901–1911 | 1903
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method. The generator kernel communicates with the predic-
tion kernel through the controller kernel to receive energy and
force labels for given geometries, e.g. to propagate the system
and propose new geometries. Neither the generator kernel nor
the prediction kernel makes any decisions about the ML
predictions' reliability, as the controller handles this process
centrally. However, the generator kernel receives reliability
information from the controller in order to decide whether to
trust the energies and forces predicted by the ML models or
whether to restart trajectories. That means that the uncertainty
quantication and thus the decision of whether or not to label
new geometries by the oracle is handled centrally by the
controller kernel whereas the decision-making logic of how to
react to uncertain predictions is implemented by the generator
kernel. This offers exibility and allows users to implement
a wide range of workows, e.g. allowing trajectories to propagate
into regions of high uncertainty for a given number of steps
(‘patience’).

2.3 Oracle kernel

The oracle kernel allows for deploying multiple oracle
processes, each operating independently. Every oracle process
keeps point-to-point communication with the controller,
receiving input data for labeling. Once labeling is complete, the
generated labels sets are returned to the controller before being
distributed to the training kernel.

Example: in the case of machine-learned potentials, this
kernel is the quantum chemical calculation that is used to
generate the labels for the training data, e.g. density functional
theory calculations to compute energies and forces of given
input geometries. As described above, the decision about when
to invoke additional DFT calculations to label data is performed
centrally by the controller kernel. Once the active learning
workow is ‘converged’, i.e. the entire relevant input space is
covered by the dataset and the uncertainty of the trained ML
model on the nal dataset does not reach a certain threshold
value anymore, no new oracle calls will be requested anymore
and PAL will run simulations by only iterating between gener-
ator and prediction kernels.

2.4 Training kernel

The training sets kept in the training kernel are expanded with
new data labeled by oracles. An equal number of ML models as
in the prediction kernel are trained in parallel within the
training kernel, synchronizing with the labeling and predic-
tion–generation processes. Training can be halted if a user-
dened early stopping criterion is met to prevent overtting,
or restarted when new data points are introduced. For effi-
ciency, trained model weights are periodically copied directly to
the prediction kernel. The training kernel manages all model-
related data, including scalars, hyperparameters, weights, and
training histories, as models in the prediction kernel are
considered replicas of those in the training kernel. Every
process in the training kernel can signal the controller kernel to
shut down the PAL workow upon meeting user-dened
criteria.
1904 | Digital Discovery, 2025, 4, 1901–1911
Example: in the case of machine-learned potentials, as dis-
cussed in the paragraph on prediction kernels above, the
training kernel includes one epoch of training of any machine-
learned potential, e.g. SchNet, Nequip, Allegro, or MACE, on
a given data set. The user can dene whether training should
continue from the previous checkpoint or restart from a new
random initialization aer a certain number of epochs and
active learning iterations.51 PAL offers full exibility for the user.
Generally, we recommend not to re-initialize weights during
active learning which is also the default setting.
2.5 Controller kernel

The controller kernel orchestrates data communication, evalu-
ates model predictions, selects inputs for labeling, and
manages metadata storage (oracle input buffer and training
data buffer). Data selected for labeling is buffered in the oracle
input buffer and sent to the rst available oracle. Labeled data is
stored in the training data buffer and distributed to the ML
models in the training kernel once the buffer size reaches
a user-dened threshold. The data ow between the prediction
and generator kernels is decoupled from the oracle and training
kernels, ensuring efficient and uninterrupted communication
between the prediction and generator kernels. The oracle and
training kernels can be disabled to convert PAL into a predic-
tion–generation workow without signicant performance
impact, useful in scenarios where model training is unneces-
sary, such as ML-accelerated molecular dynamic simulations.

The user does not have to add any code to the controller
kernel, except to provide functions that select instances for
labeling and adjust the training data buffer dynamically (see
Utilities in the ESI† for more detail). Other than that, the user
only needs to specify and adjust the previous four kernels for
prediction, generation, oracle, and training.
3 Illustrating applications

The PAL library developed and presented in this work has been
applied in several scenarios in different application areas, also
beyond atomistic simulations. The examples discussed in the
following include photodynamics simulations using surface
hopping algorithms based on neural network potentials and
TD-DFT,52 hydrogen transfer reaction simulations in biological
systems using graph neural network potentials trained on
semiempirical methods as well as DFT,53 simulations of inor-
ganic clusters using neural networks trained on DFT data, as
well as surrogate machine learning models of uid- and heat
transport in textured channels trained on uid dynamics
simulation data.54,55 By altering the kernels (see Table 1), the
library is adaptive to the different resource requirements, data
structures, ground-truth oracles, and machine learning model
types and architectures required by various scenarios.

Due to the modularity of the PAL soware architecture,
generic code for each of the kernels can be customized by the
user to accommodate the needs of the respective application
areas. All generic technical aspects of communication are
identical in all applications and thus transferrable. Clear
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of applications and corresponding kernel choices in PAL

Application Prediction & training kernel Generator kernel Oracle kernel

Photodynamics
simulations

Fully connected neural network
committee

Parallel surface-hopping MD
simulations

TDDFT (B3LYP/6-31G*) with
Turbomole

HAT simulations Graph neural network
(SchNet, Allegro, MACE) committee

Randomized sampling of relevant
geometries; transition state search

Semiempirical calculations with
xTB and DFT (BMK/def2-TZVPD)
with Turbomole

Inorganic clusters Graph neural network
(SchNet, MACE) committee

MD simulations with varying cluster
sizes and charges

DFT (TPSS/dhf-TZVP) with
Turbomole

Thermo-uid ow
optimization

Convolutional neural network
committee

Particle swarm optimization CFD simulations: in-house
OpenFOAM solver

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
2:

15
:3

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
interface denitions make it easy for users to implement
custom kernels by integrating their own code in the user-
dened kernel functions or by calling external soware from
the kernels. Users can contribute kernels or kernel blueprints to
the PAL code, which will make it easier for future users to use
those kernels and further customize them. Examples include
different quantum chemistry codes as oracle kernels, different
ML potentials for training and prediction kernels, and different
molecular dynamics or enhanced sampling propagators as
generators.
3.1 Photodynamics simulations

Organic semiconductors are essential materials in both
emerging and commercially signicant applications, such as
organic solar cells and organic light-emitting diodes (OLEDs).56
Fig. 3 Examples of PAL applications. (a) Photodynamics simulations. (b) H
inorganic clusters. (d) Thermo-fluid flow properties optimization.

© 2025 The Author(s). Published by the Royal Society of Chemistry
While computational methods for predicting molecular prop-
erties using physics-based models57 as well as machine learning
models58–62 are well developed, simulating complex phenomena
like degradation remains challenging. This difficulty arises due
to insufficient data to train machine learning (ML) models for
these processes and the high computational cost of long
excited-state dynamics simulations required by physical
models.

To address this challenge, we employ PAL to enable the
simulation of multiple excited-state potential energy surfaces of
a small molecule organic semiconductor, 3-methyl-40-phenyl-
diphenylsulfone. In this application of PAL, fully connected
neural networks (NNs) are utilized in both the prediction and
training kernels (see Fig. 3a). The prediction kernel leverages
these NNs to approximate excited-state energies and forces
efficiently.
ydrogen atom transfer reaction simulations. (c) Atomistic simulation of

Digital Discovery, 2025, 4, 1901–1911 | 1905

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00073d


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
2:

15
:3

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
For uncertainty quantication, we implement the query-by-
committee method,63 where four NN models in the prediction
kernel perform energy and force predictions for the same set of
molecular geometry inputs generated by the generator kernel.
The generator kernel runs 89 molecular dynamics simulations
in parallel, each exploring different regions of the chemical
space to discover unseen molecular geometries. The mean
predictions from the committee are used to propagate the
molecular dynamics trajectories.

When the standard deviation among the committee's
predictions for a given geometry exceeds a predened
threshold, indicating high uncertainty, the corresponding
geometries are forwarded to the oracle kernel. In the oracle
kernel, accurate energy and force labels are computed using
time-dependent density functional theory (TDDFT) at the
B3LYP/6-31G* level of theory. These new data points are then
added to the training set in the training kernel, where the NNs
are retrained to improve their predictive accuracy.

We deployed this workow on two hybrid CPU–GPU nodes of
the HoreKa cluster. The forward pass of 89 geometries in
parallel takes an average of 51.5 ms for each NN in the predic-
tion kernel, while MPI communication and trajectory propa-
gation require only 4.27 ms. Notably, removing the oracle and
training kernels does not affect this result, indicating that the
additional communication and data processing do not degrade
the performance of the rate-limiting step.

By leveraging PAL, we achieve substantial computational
savings compared to traditional sequential workows. In this
application, the TDDFT calculations are the computational
bottleneck, which is reduced by PAL through parallelizing
TDDFT across many CPU cores as well as running model
training and MD simulations in parallel. Furthermore, avoiding
similar and thus redundant TDDFT calculations, we benet
from the ability to run multiple molecular dynamics simula-
tions in parallel, exploring different parts of the input space
simultaneously and thus suggesting more diverse samples to be
labeled by TDDFT. This accelerates the input space exploration
and thus the development of reliable ML models for photody-
namics simulations, facilitating the study of complex
phenomena such as degradation in organic semiconductors.
3.2 Hydrogen atom transfer reaction simulations

Mechanical stress in collagen can lead to bond ruptures within
the protein backbone, resulting in the formation of two radi-
cals. These radicals, characterized by unpaired valence elec-
trons, are highly reactive and can potentially cause damage to
the surrounding biological environment. Hydrogen atom
transfer (HAT) is a fundamental process in radical chemistry,
wherein a hydrogen atom is abstracted from a donor molecule
to an acceptor, generating a new radical species. Recent
research on collagen has identied HAT processes as a critical
mechanism for radical migration, playing a key role in miti-
gating damage caused by radicals produced through mechan-
ical stress on collagen brils.64 Due to their short lifetimes,
these radicals are challenging to observe experimentally,
necessitating computational approaches for their study.
1906 | Digital Discovery, 2025, 4, 1901–1911
Traditional classical molecular dynamics (MD) simulations
and even reactive force elds struggle to accurately describe
radicals and HAT processes in proteins, primarily because they
cannot adequately capture the quantum mechanical nature of
bond breaking and formation. To overcome this limitation, we
rely on machine-learned potentials to compute molecular
energies and predict reaction barriers with high accuracy. This
approach enables large-scale hybrid MD and kinetic Monte
Carlo simulations, providing deeper insights into the mecha-
nisms of radical migration and HAT reactions in biological
systems.65

Constructing an effective training dataset for the machine-
learned potentials presents several challenges. The potential
energy surface (PES) of HAT reactions is complex, requiring
sampling not only near-equilibrium congurations but also
a diverse set of reaction pathways and transition states. More-
over, the trained model needs to generalize to unseen systems,
such as different radical positions in unseen collagen environ-
ments, which necessitates training on various peptide combi-
nations and reaction sites. Additionally, quantum chemical
calculations to obtain ground truth energies and forces are
computationally expensive, making efficient data generation
and selection of informative training data essential.

In this application of PAL, the prediction kernel consists of
a graph neural network (GNN). We utilize models such as
SchNet,48 Allegro,49 and MACE,50 which have demonstrated high
accuracy in predicting energies and forces for molecular
systems. The GNN in the prediction kernel provides rapid
inference of energies and forces for new congurations gener-
ated during simulations (see Fig. 3b).

The generator kernel employs a workow that continuously
generates new reaction data points. This is achieved through
methods such as molecular dynamics simulations biased
towards reaction coordinates or employing transition state
search algorithms to explore possible reaction pathways. By
generating a stream of diverse congurations, the generator
kernel effectively samples the relevant conguration space for
HAT reactions.

For labeling the most informative and uncertain congura-
tions, the oracle kernel uses the quantum chemistry soware
Turbomole66 to perform calculations at the DFT/BMK/def2-
TZVPD level of theory. These calculations provide accurate
ground truth energies and forces, which are essential for
rening the machine-learned potentials.

In the training kernel, we leverage pre-trained models as
a starting point, incorporating information from previously
generated initial datasets. The training kernel updates these
models using the new labeled data through query-by-committee
uncertainty quantication, to generalize better to unseen
systems and reaction sites.

In this application example, we can generate an innite
stream of diverse unlabeled samples, moving the bottleneck to
the labeling process by the oracle and the training process.
Depending on the specic application, rather inexpensive
oracles, e.g. xTB67 might be sufficient, shiing the bottleneck to
the training. In such cases, by parallelizing all components
within the PAL framework, we efficiently cover the relevant
© 2025 The Author(s). Published by the Royal Society of Chemistry
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conguration space and benet from a continuously updated
ML model which is essentially trained on an innite stream of
newly generated data,68 preventing overtting and ensuring
optimal generalization. Here, this achieves accurate predictions
of HAT reaction barriers with chemical accuracy. This approach
accelerates the development of reliable machine-learned
potentials for simulating complex biochemical reactions, ulti-
mately enhancing our understanding of radical-mediated
processes in biological systems.
3.3 Atomistic simulation of inorganic clusters

Clusters – groups of atoms or molecules held together in
atomically precise geometries by chemical interactions – offer
signicant potential for creating new materials with tailored
properties across diverse applications.69 Their unique charac-
teristics distinguish them from both isolated molecules and
bulk materials, presenting unique opportunities and challenges
in computational modeling. Simulating inorganic clusters,
particularly larger ones, is computationally demanding due to
the necessity of accurate quantum mechanical calculations.
This challenge is exacerbated for clusters containing heavy
atoms like bismuth, where relativistic effects become signi-
cant and must be accounted for, further increasing computa-
tional complexity.

While ML-potentials have demonstrated the ability to predict
energies and forces with high accuracy, most developments
have focused on organic molecules and periodic materials.
Organic molecules benet from extensive datasets such as
MD17,70 which facilitate the training of ML models. In contrast,
datasets for inorganic clusters are virtually non-existent,
making it difficult to train ML models or transfer knowledge
from existing models.

To address this gap, we employ the PAL workow to inves-
tigate the reactivity and transformations of small bismuth
clusters (see Fig. 3c). Our goal is to demonstrate how ML-
accelerated simulations can enhance our understanding of
inorganic cluster formation and reactivity. In this application,
we utilize graph neural networks as the prediction kernel,
employing models like SchNet48 and MACE,50 which were orig-
inally designed for organic molecules.

We begin by pre-training these MLmodels on a foundational
dataset of bismuth clusters to establish a baseline under-
standing of their behavior. Through the active learning work-
ow facilitated by PAL, we iteratively retrain the ML potentials
on new congurations encountered during molecular dynamics
(MD) simulations. The generator kernel produces MD trajecto-
ries for bismuth clusters of varying shapes, sizes, and charge
states, effectively exploring the congurational space.

One signicant challenge in modeling inorganic clusters is
accounting for different charge states, as clusters can possess
varying total charges leading to multiple potential energy
surfaces. Reduction and oxidation processes involve interac-
tions with environmental molecules, which are not explicitly
modeled in this study. To address this, PAL's oracle kernel
selectively labels highly uncertain and informative congura-
tions using quantum mechanical calculations performed by
© 2025 The Author(s). Published by the Royal Society of Chemistry
Turbomole.66 These calculations provide accurate energies and
forces for congurations that are poorly represented in the
current training set.

The training kernel then incorporates these new data points
to retrain the ML models, improving their accuracy and gener-
alization to different charge states and cluster congurations.
By dynamically updating the models, PAL enables them to
capture complex information specic to bismuth cluster
formation and their potential energy surfaces, extending
beyond their original design focused on organic systems.

Similar to the rst application, the bottleneck here is the
labeling process in the oracle kernel, specically for larger
clusters. Additionally, as the ML model is not system-specic
anymore, more complex ML potentials are used here,
requiring exibility and modularity to compare different ML
potentials and potentially even move to periodic systems with
explicit solvent molecules and counterions to evenmodel redox-
reaction events. Through the exibility of PAL in combining
different oracle and ML models, we effectively expand the scope
of ML potentials to address the complexities inherent in inor-
ganic clusters. This approach opens new avenues for simulating
and understanding inorganic clusters, facilitating the develop-
ment of materials with tailored properties.
3.4 Thermo-uid ow properties optimization

As a nal example of applying PAL, we move beyond the domain
of atomistic modeling to demonstrate that the active learning
workows implemented in PAL are not limited to machine-
learned potentials. Heat transfer in uids is a complex
process inuenced by various factors such as geometry, mate-
rial properties, and environmental conditions. While simple
heat transfer problems can be solved analytically, most real-
world scenarios require numerical simulations for accurate
predictions. Computational uid dynamics (CFD) is the primary
method for numerically solving the governing equations of uid
mechanics and studying complex uid ows without the need
for physical experiments. However, high-delity CFD simula-
tions are computationally expensive and time-consuming,
despite providing high spatial and temporal resolution. This
computational cost limits the ability to perform extensive
parametric studies or real-time simulations.

To mitigate the high computational cost, machine learning
models can be employed as surrogate models for CFD simula-
tions, signicantly reducing the overall computational cost
while maintaining acceptable accuracy.71–74 In our application,
the primary objective is to predict thermo-uid ow properties –
specically, the drag coefficient (Cf) and the Stanton number
(St) – for two-dimensional laminar channel ows. Developing
machine learning models capable of accurately predicting these
uid properties necessitates training datasets that encompass
a wide variety of geometries and ow patterns. However,
assembling such comprehensive datasets is challenging due to
the computational expense of generating high-delity simula-
tions for each conguration.

To address this challenge, we utilize PAL to strategically
generate training data, thereby reducing the computational
Digital Discovery, 2025, 4, 1901–1911 | 1907
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burden associated with simulating channel ows and leading to
more efficient machine learning model development (see
Fig. 3d). In this application of PAL: the prediction kernel consists
of highly robust convolutional neural networks (CNNs) that are
entirely invariant to image ipping and substantial shiing.75

These CNNs serve as surrogate models that predict Cf and St
from input geometries, enabling rapid evaluations without the
need for full CFD simulations. The generator kernel employs
particle swarm optimization (PSO)76 to optimize the distribution
of eddy-promoters within the ow domain.54 Eddy-promoters are
geometric features introduced to enhance mixing and heat
transfer. By optimizing their placement, we can explore a diverse
set of ow congurations that are most informative for training
the surrogate models. The oracle kernel utilizes an in-house
developed OpenFOAM solver77 to perform high-delity CFD
simulations. These simulations compute the ow and tempera-
ture elds, as well as the corresponding uid ow properties Cf

and St, providing accurate labels for the training data. The
training kernel retrains the CNN models with the newly gener-
ated and labeled data, improving their predictive accuracy and
generalization to new congurations. This iterative retraining
ensures that the surrogate models remain accurate as they are
exposed to new geometries and ow patterns.

Similar to the examples before, but in a very different appli-
cation domain, there is not a unique bottleneck in any of the
kernels but all kernels have similar computational costs. By
integrating and parallelizing these components with PAL, we
efficiently generate and select the most informative data for
optimization while labeling them and training the ML surrogate
model. Having the optimization process included in the gener-
ator allows us to focus computational resources on simulations
that provide the greatest benet not only for model performance
but specically for channel optimization, thereby reducing the
total number of CFD simulations required to nd good local or
even the global optimum. As a result, we achieve surrogate
models that can predict thermo-uid ow properties of relevant
close-to-optimal channel geometries with high accuracy while
drastically reducing computational time compared to perform-
ing CFD simulations for every new conguration. This demon-
strates PAL's versatility and effectiveness beyond atomistic
simulations, highlighting its potential for applications in engi-
neering domains where computational cost is a limiting factor.
By leveraging PAL, we can perform rapid optimization and
design studies in thermo-uid systems, contributing to
advancements in elds such as heat exchanger design, micro-
uidics, and aerodynamic surface optimization.
4 Discussion: library use, current
limitation, and future developments
4.1 Using PAL to customize and automate active learning
workows

With increasing popularity of ML potentials, not only in proof-
of-principle studies but also in exploratory research of novel
systems, also the role of active learning increases, and thus the
need for efficient, customizable, and easy-to-use
1908 | Digital Discovery, 2025, 4, 1901–1911
implementations. While different application scenarios have
different requirements on the specic methods used in active
learning, i.e. the MLmodels and the data generation algorithms
and methods, the general workow and the required commu-
nication backbone is the same in almost all cases. Thus, this
backbone does not need to be implemented by every researcher
or research group. Furthermore, in the spirit of open soware,
specic parts and modules in active learning workows should
be shared by users to make it easier in the future to build new
active learning workows. Our parallel active learning library
PAL is expected to be used by researchers to integrate,
customize, and develop different parts of active learning work-
ows without having to reimplement the entire communication
and workow scheduling backbone again and again. PAL helps
to automate active learning workow while minimizing the
effort of modications in the implementation. Thus, we believe
it can help signicantly enhance the efficiency of constructing
training sets, training ML potentials, and applying them to
interesting systems.

The parallel active learning workow presents a substantial
improvement over traditional serial approaches by effectively
utilizing high-performance computing resources. Please refer to
the ESI† for detailed speedup estimation with several common
application specications, e.g. molecular dynamics with a DFT
oracle, reaction network exploration with semiempirical oracle,
and computational uid dynamics with particle swarm opti-
mization as the explosive generator.

The current source code of PAL includes the general and
generic backbone for communication and workow automation
as well as blueprints/placeholders of the different application-
specic kernels – ML potential training and prediction, oracle,
and generator. We furthermore provide example implementa-
tions of those modules for the four application examples dis-
cussed in Section 3. Those can easily be used, mixed, and
adapted by users. We plan to develop more prototypical kernels
in the future which will make it easier for users to combine
them to active learning workows with minimal coding effort.
We also encourage users to contribute additional kernels to the
library, to make them accessible to other researchers.

4.2 Hardware

The current PAL workow is implemented and tested on the
Slurm workload manager, using a single type of computational
node (CPU node, GPU node, or CPU–GPU hybrid node).
Executing PAL on other scheduling systems will require addi-
tional user input to specify computational resources. We plan to
extend this work to support additional batch systems and
enhance exibility in node scheduling, job assignment, and
resource management. Another future goal is to incorporate
real-time tracking and monitoring of timing and resource
usage, such as GPU and memory utilization, to facilitate work-
ow optimization in various scenarios.

4.3 Communication bottleneck

When the inference time of ML models in the prediction kernel
is 10 ms or less, communication between the generator and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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predictor can become a bottleneck limiting the speed of
exploration in the generator. Solving this requires further work
to couple generator and prediction kernel more tightly, though
this is not currently an issue for typical ML potentials, especially
complex models such as equivariant graph neural networks.
Additionally, if the shape of the ML input or output is not xed,
there is an overhead as MPI messages require a predetermined
size to be efficient.
4.4 Available kernels

As discussed in Section 3 and above, the PAL library currently
includes a few examples of generators, ML models, and oracles,
primarily in the elds of materials science, chemistry, and
engineering. We plan to expand these examples to encompass
more relevant applications of active learning in the future.
5 Conclusion

In this work, we introduced PAL, an automated, modular, and
parallel active learning library designed to overcome the limi-
tations of traditional active learning workows that oen
require extensive human intervention and underutilize modern
computational resources. By decomposing the active learning
process into ve modular core kernels, the prediction kernel,
generator kernel, training kernel, oracle kernel, and controller
kernel, PAL enables asynchronous and parallel execution of
data generation, labeling, model training, and prediction tasks.
This modular architecture allows users to easily customize and
extend each component to suit a wide range of applications
across different scientic and engineering domains.

Our examples illustrate how PAL signicantly reduces
computational overhead and improves scalability, achieving
substantial speed-ups through asynchronous parallelization on
both CPU and GPU hardware. By decoupling the prediction and
training processes, PAL minimizes disruptions caused by time-
consuming labeling and model updates, ensuring efficient
utilization of high-performance computing resources. The
library's exibility and effectiveness are showcased through its
successful application to diverse real-world scenarios, including
photodynamics simulations of organic semiconductors,
hydrogen atom transfer reactions in biological systems, atom-
istic simulations of inorganic clusters, and thermo-uid ow
optimization in engineered systems.

PAL advances the eld of scientic active learning by
providing a scalable and adaptable framework that streamlines
the integration of machine learning models, uncertainty esti-
mation methods, oracles, and data exploration strategies. It
facilitates the development of highly accurate models with
minimal data acquisition costs, thereby accelerating research
and discovery in various domains. The ability to handle
complex workows and large-scale computations makes PAL
a valuable tool for scientists and engineers seeking to leverage
active learning in their work.

Looking ahead, future developments of PAL will focus on
enhancing its capabilities and user experience. Plans include
supporting additional batch systems HPC environments,
© 2025 The Author(s). Published by the Royal Society of Chemistry
incorporating real-time monitoring and resource management
features, and integrating with other machine learning frame-
works and tools. We also aim to expand the library's docu-
mentation and provide comprehensive tutorials to lower the
adoption barrier for new users. By addressing current limita-
tions and fostering community contributions, we hope that PAL
becomes a useful and widely applied tool in active learning
workows of ML potentials and beyond, empowering
researchers to efficiently harness computational resources and
drive innovation in their respective elds.

Data availability

The code for PAL is available through the open-source reposi-
tory on GitHub for continuous development, also by the
community: https://github.com/aimat-lab/PAL (https://doi.org/
10.5281/zenodo.15658962). The version of the code employed
for this study is version 2.1.1. The hydrogen atom transfer
reaction simulations case study described in Section 3.2 was
carried out using publicly available data from heiData at
https://doi.org/10.11588/DATA/TGDD4Y (https://doi.org/
10.26434/chemrxiv-2023-7hntk). The case study of thermo-
uid ow properties optimization described in Section 3.4
was carried out using publicly available data from GitHub at
https://github.com/aimat-lab/ChemEngML (https://doi.org/
10.1063/5.0187783). The data and models supporting the
application use cases discussed in this work can be found in
the individual publications.75,78,79
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