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oratories in China: an embodied
intelligence-driven platform to accelerate chemical
discovery

Jinpeng Li,†a Chuxuan Ding,†a Daobin Liu, †*a Linjiang Chena and Jun Jiang *ab

The emergence of autonomous laboratories—automated robotic platforms integrated with rapidly

advancing artificial intelligence (AI)—is poised to transform research by shifting traditional trial-and-error

approaches toward accelerated chemical discovery. These platforms combine AI models, hardware, and

software to execute experiments, interact with robotic systems, and manage data, thereby closing the

predict-make-measure discovery loop. However, key challenges remain, including how to efficiently

achieve autonomous high-throughput experimentation and integrate diverse technologies into cohesive

systems. In this perspective, we identify the fundamental elements required for closed-loop autonomous

experimentation: chemical science databases, large-scale intelligent models, automated experimental

platforms, and integrated management/decision-making systems. Furthermore, with the advancement of

AI models, we emphasize the progress from simple iterative-algorithm-driven systems to comprehensive

intelligent autonomous systems powered by large-scale models in China, which enable self-driving

chemical discovery within individual laboratories. Looking ahead, the development of intelligent

autonomous laboratories into a distributed network holds great promise for further accelerating

chemical discoveries and fostering innovation on a broader scale.
1 Introduction

The scale of chemical research spans from the microscopic
realm of atoms and molecules to the macroscopic domain of
material systems, making accurate prediction and comprehen-
sive description inherently challenging. Traditional research
paradigms, which primarily rely on exhaustive trial-and-error
approaches, struggle to navigate the vast chemical space and
oen fail to uncover the mechanisms underlying materials.
Furthermore, the search for optimal formulations and
processes oen converges on local optima, thereby limiting
global exploration. The complexity and high-dimensionality of
chemical systems further impede the elucidation of structure–
property relationships, exacerbating the gap between funda-
mental research and practical application. Consequently, the
innovation of traditional research paradigms is urgently
required.

Since the term ‘articial intelligence (AI)’ was rst coined by
McCarthy in 1956, it has become a key driver of transformative
developments in science.1,2 The 2024 Nobel Prizes in physics3,4
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and chemistry5,6 both highlighted advancements in AI, recog-
nizing its transformative role in modeling complex physical
systems and predicting biochemical structures. A landmark in
the application of AI is its ability to efficiently handle hetero-
geneous data, enabling the interpretation and understanding of
complex datasets in genomics, proteomics, metabolomics2,7

and spectroscopy.8,9 By deciphering high-dimensional correla-
tions within these datasets, AI can accelerate high-precision
simulations to elucidate structure–property relationships,10,11

further achieving more efficient predictions of highly antici-
pated targets.5,6,12,13 AlphaFold 2 (ref. 5 and 13) represents
a groundbreaking advancement in protein structure prediction,
utilizing deep neural networks and self-attention mechanisms
to achieve high-precision results. The updated AlphaFold 3 (ref.
6) enables joint structure prediction of complexes, signicantly
enhancing the accuracy of biomolecular interaction modeling
and offering transformative potential for drug design and
disease diagnosis. In parallel, DeepMind developed the GNoME
intelligent model14,15 for crystal structure prediction, which has
expanded the number of known stable materials nearly tenfold
to 421 000. Beyond predicting material properties, the recom-
mendation of synthesis strategies for targeted materials is also
in high demand. For example, several AI-assisted tools for
molecular synthesis have been developed to optimize experi-
mental workows, including AiZynthFinder,16 AIDDISON17 and
Chematica (now known as SYNTHIA™).18 Cernak et al.19 con-
ducted retrosynthetic studies on 12 COVID-19 antiviral drugs
© 2025 The Author(s). Published by the Royal Society of Chemistry
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using SYNTHIA™, which identied simpler and more efficient
synthesis routes for 11 of them, thus signicantly alleviating
pressure on existing supply chains. To date, the number of
research elds integrated with AI are rapidly evolving and hold
immense untapped potential.

An effective AI-driven approach relies on large amounts of
high-quality, structured data as its foundation to develop robust
prediction models. However, the majority of available data,
particularly experimental data, suffers from signicant issues
such as non-standardization, fragmentation, and poor repro-
ducibility.20,21 In this context, automated robotic platforms are
being rapidly developed to generate high-quality experimental
data in a standardized and high-throughput manner while
minimizing manual effort.22–25 More importantly, these plat-
forms can fully leverage their advantages when integrated with
AI algorithms. Such integration not only automates routine
tasks but also enables complex decision-making processes,
optimization of synthesis methods, and even planning of
experimental workows.15,25–31 A pioneering study was con-
ducted by Cooper et al.,27 who developed a mobile chemist
capable of autonomously conducting high-throughput photo-
catalyst selection, outperforming humans through the appli-
cation of Bayesian optimization. They further designed a fully
autonomous solid-state workow involving three multipurpose
robots for powder X-ray diffraction (PXRD) experiments.28 The
“Chemputer” system, developed by Cronin et al., integrates
literature analysis, protocol customization, organic synthesis,
and characterization, demonstrating extraordinary capability in
automatic synthesis.29 The closed-loop self-driving laboratory,
developed by the Aspuru-Guzik group, implements a design-
make-test-analyze cycle to accelerate the discovery of new
organic semiconductor laser materials.30 The A-Lab, developed
by DeepMind,15,31 utilizes computational tools, literature data,
machine learning, and active learning to plan and interpret the
outcomes of experiments performed by robotics, addressing the
Fig. 1 The four fundamental elements of autonomous laboratories.

© 2025 The Author(s). Published by the Royal Society of Chemistry
challenges associated with handling and characterizing solid
inorganic powders. Therefore, autonomous laboratories that
integrate automated robotic platforms with AI are capable of
conducting experiments that were once deemed unfeasible and
thus may expand the frontiers of scientic exploration.

In this perspective, we rst summarize the fundamental
elements required for autonomous laboratories to satisfy the
complex demands of autonomous experimentation. The
discussion primarily focuses on the current state of autono-
mous laboratories in China, where development has progressed
from simple iterative-algorithm-driven systems to comprehen-
sive intelligent autonomous systems powered by large-scale
models. It is worth noting that most autonomous laboratories
are established to tackle specic challenges and operate in
isolation, with limited inter-lab communication and data
sharing. To this end, we explore the future prospects of these
distributed autonomous laboratories, emphasizing the adop-
tion of coordinated strategies, such as cloud-based systems, to
achieve seamless data and resource integration across
laboratories.
2 Fundamental elements of
autonomous laboratories

Autonomous laboratories are advanced robotic platforms
equipped with embodied intelligence, enabling them to execute
experiments, interact with robotic systems, and manage data.26

These capabilities allow them to effectively close the predict-
make-measure discovery loop.32 To achieve fully autonomous,
self-driving laboratories, it is essential to integrate several
fundamental elements: chemical science databases, large-scale
intelligent models, automated experimental platforms, and
management and decision systems. These elements work
synergistically to create a seamless, closed-loop research envi-
ronment (Fig. 1).
Digital Discovery, 2025, 4, 1672–1684 | 1673
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2.1 Chemical science database

The chemical science database is a cornerstone of autonomous
laboratories, serving as the backbone for managing and orga-
nizing diverse chemical data. By integrating, processing, and
structuring multimodal data into an AI-powered framework, the
database provides essential support for experimental design,
prediction, and optimization.

Multimodal data form the backbone of chemical science
databases, encompassing information ranging from synthesis
planning to property prediction. These data resources include
structured entries from proprietary databases (e.g., Reaxys and
SciFinder) and open-access platforms (e.g., ChEMBL33 and
PubChem34), as well as unstructured data extracted from
scientic literature, patents, and experimental reports. The
extraction of unstructured data is extensively achieved using
Natural Language Processing (NLP) techniques.35 Conse-
quently, toolkits such as ChemDataExtractor,36 Chem-
icalTagger,37 and OSCAR4,38 which leverage named entity
recognition (NER), have been developed for the extraction of
chemical reactions, compounds, and properties from textual
documents. Image recognition further enhances the robotic
understanding of chemical diagrams and molecular struc-
tures.39 Together, these methods represent complementary
approaches to converting unstructured data into formats
directly usable by robotic systems.

Following data mining, databases are constructed by intel-
ligent methods to efficiently store, manage, and facilitate the
retrieval of processed data for subsequent analysis and
decision-making. The processed data can be further organized
and represented in the form of knowledge graphs (KGs), which
provide a structured representation of data and have been
widely applied in various domains. Canonical methods for KG
construction primarily focus on extracting logical rules based
on semantic patterns.40 With the advancement of AI, methods
for KG construction based on large language models (LLMs)
have recently gained widespread adoption, demonstrating
superior performance and enhanced interpretability for human
understanding.41,42 Furthermore, to address issues such as
contextual noise and knowledge hallucination,43 in a recent
study, a general KG construction framework, named SAC-KG, is
proposed that leverages LLMs as skilled automatic constructors
for domain KGs.44
2.2 Large-scale intelligent model

Interpretable predictive models and advanced algorithms are
crucial components of the autonomous laboratory workow.
They enable efficient data processing, accurate outcome
prediction, and informed decision-making at each experi-
mental stage. By leveraging data from previous experiments,
predictive models can forecast the results of proposed experi-
ments more effectively. For instance, in a study by Moosavi
et al.,45 involving genetic algorithm (GA)-guided robotic plat-
form optimized crystallinity and phase purity in metal–organic
frameworks, they explored a nine-parameter space through 90
experiments across three generations. A random forest model,
trained iteratively on prior data, predicted outcomes and
1674 | Digital Discovery, 2025, 4, 1672–1684
excluded experiments likely to yield suboptimal results. GAs46

are particularly effective for handling large numbers of variables
and are widely applied in the discovery of novel catalysts and
their synthesis optimization.47,48

Beyond GAs, the SNOBFIT algorithm49 improves search effi-
ciency by combining local and global search strategies. It has
been successfully applied to optimize chemical reactions in
continuous ow reactors.50 Another widely used method in
autonomous laboratories is Bayesian optimization, which
minimizes the number of trials needed to achieve
convergence.27,31,51–53 The performance of Bayesian optimization
is highly dependent on the choice of the surrogate model, with
Gaussian processes (GPs) and random forests (RFs) being the
most common for regression tasks.20,54 The Phoenics algorithm,
based on the Bayesian neural network (BNN), achieves faster
convergence than GPs and RFs.55 It has been integrated into
ChemOS (a versatile soware package) for several automated
platforms, including the Ada self-driving laboratory for thin-
lm materials,53 and a mobile robotic chemist by Burger
et al.27 for optimizing aqueous photocatalysts.

Alongside advanced algorithms, another critical aspect of
optimizing workows for intelligent models is the iterative
experiment-theory feedback loop. Automated theoretical
calculations, such as density functional theory (DFT),56,57

provide valuable prior knowledge and bridge the gap between
theory and experiment. This data fusion enhances adaptive
learning capabilities, allowing models to continuously update
and rene their predictions. As a result, these intelligent models
drive the development of closed-loop iterative automation
processes.51,52
2.3 Automated experimental platform

Automated robotic platforms are essential for executing self-
driving, high-throughput experiments and generating high-
quality, standardized experimental data. In addition, these
platforms can take over time-consuming and repetitive tasks
traditionally performed by humans,26 allowing researchers to
focus on proposing new theories or mechanisms, thereby
contributing to the optimization of the workforce structure in
society. The experimental protocol is a key foundational
resource to plan experiments in autonomous laboratories. This
protocol encompasses procedural templates from past experi-
ments and congurations of automated experimental stations
within the lab.30 Serving as a systematic framework, it outlines
the necessary steps and procedures for carrying out experiments
effectively. To formalize these protocols and convert them into
machine-executable actions, several approaches have been
developed. For example, synthesis action sequences encode
detailed instructions required for robotic systems to conduct
reactions. These sequences can be transformed into machine-
executable actions using methods such as pattern matching
combined with expert-dened heuristics29 or deep learning-
based sequence-to-sequence models.58

Once experimental protocols are received via an API, robotic
systems execute the required actions with high precision.
Autonomous experimental robots are equipped with advanced
© 2025 The Author(s). Published by the Royal Society of Chemistry
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capabilities to perform complex tasks independently. They
typically feature dexterous robotic arms (single27,52 or dual24,59)
with a high degree of freedom for precise manipulation, mobile
platforms for enhanced versatility, and sensing systems such as
IR projectors (for depth sensing),51 laser scanners (for point
cloud generation),27 and RGB sensors (for object recogni-
tion)51,52 to achieve accurate perception. To navigate and operate
efficiently in dynamic environments, these robots employ high-
precision localization and mapping methods, including
SLAM,27,51 six-point localization (for pose determination),27

ArUco labels (for visual marker tracking)52 and so on.
Robotic systems are seamlessly integrated with automation

soware and real-time feedback mechanisms, enabling the
optimization of experimental workows and signicantly
enhancing reproducibility.60,61 When combined with automated
workstations, these systems can execute complex, dexterous
experiments and manage entire workows—spanning
synthesis, characterization, and testing—with minimal human
intervention. For instance, Lunt et al.28 designed a solid-state
workow incorporating a PXRD instrument, two grinding
stations, and a Chemspeed liquid dispensing platform to
conduct PXRD experiments efficiently. Similarly, Cooper et al.27

developed a robotic system with eight workstations to identify
photocatalyst mixtures for hydrogen production, ultimately
achieving formulations six times more active than the initial
ones. Further advancing the eld, Zhu et al.52 implemented
a system with fourteen workstations, featuring dedicated
regions for auto-synthesis, auto-characterization, and auto-
performance testing. This comprehensive system enables fully
automated experimental processes, accelerating catalyst
discovery and optimization.
2.4 Management and decision system

The management and decision system is a sophisticated, multi-
layered framework designed to integrate and coordinate critical
components for task distribution and workow orchestration in
autonomous laboratories.62 This system unies chemical
science databases, large-scale intelligent models, and auto-
mated experimental equipment into a single platform, enabling
a closed-loop iteration between experimental execution and
intelligent prediction.26,63 Standardized communication proto-
cols are essential for exibly connecting thementioned soware
and hardware modules while facilitating seamless interaction
with human researchers. For example, the experimental proto-
cols must be translated into machine-executable commands at
a more basic level, such as JSON, XML, or other specic exper-
imental scripting languages,30,51,64 to serve as instruction sets for
experimental execution. A classic example is the Chempiler
system within the Chemputer architecture,29,65 which uses the
GraphML format to map paths between source and target asks
and employs the ChASM scripting language to code synthetic
procedures, ensuring precise control over all implemented
machine operations.

Once the instruction sets are transmitted, large-scale models
and advanced algorithms can efficiently steer the decision-
making system, enabling the optimization and seamless
© 2025 The Author(s). Published by the Royal Society of Chemistry
coordination of experimental workows for greater efficiency
and adaptability. Aer automated experimental platforms
generate vast amounts of data, effective data management
becomes crucial to ensure both the integrity and usability of the
data. Cloud computing infrastructures and big data techniques
have emerged as viable solutions for storing and processing
large datasets, offering the exibility and scalability necessary to
handle extensive volumes of information.66 Additionally, tech-
niques such as dimensionality reduction and anomaly detec-
tion can be applied to reduce the size of datasets while
emphasizing valuable data points, thereby facilitating more
efficient data analysis.54

The graphical user interface (GUI) serves as a user-friendly,
interactive way to control experimental workows and
communicate with the decision system for researchers, as seen
in ChemIDEs.29 This interface simplies the complexity of the
underlying processes, providing an intuitive way to visualize
data, monitor ongoing experiments, and access real-time
analytics.52,64,67 Additionally, the GUI enhances collaboration
and reproducibility through features such as experiment
logging, protocol sharing, and version control. This enables
researchers to quickly assess the status of experiments and
make informed decisions without needing to dive into technical
details.

3 The current autonomous
laboratories in China and future
prospects

In the past few years, China has seen signicant progress in the
development of autonomous laboratories, showcasing the
growing integration of AI and robotics in scientic research.
Initially, autonomous labs focused on enhancing experimental
efficiency and accuracy with single robotic arms and automated
equipment. However, as AI models advanced, these labs evolved
into autonomous platforms driven by iterative algorithms,
which led to the emergence of autonomous experiments driven
by a computational ‘brain’ and eventually to fully integrated
end-to-end intelligent systems powered by large-scale models.
This section highlights key advancements in AI-driven auto-
mation in laboratories and, based on current trends, looks
ahead to the future of intelligent autonomous systems.

3.1 Autonomous platform driven by iterative algorithms

The creation of advanced automation machinery and improve-
ments in robotic systems marked the beginning of China's
automation laboratories. Laboratory investigations are now
faster, more accurate, and reproducible, thanks to the auto-
mation of chemical synthesis and material handling.68 In 2018,
Zhu et al. initially reported AIR-Chem, an intelligent robot
system for chemistry, in China.69 The system consists of
multiple mobile robots for sampling, injection, and synthesis,
along with a computer vision (CV) module for real-time moni-
toring of the synthesis process (Fig. 2a). It operates remotely via
cloud computing, autonomously performs the entire experi-
mental process, and adjusts experimental conditions using
Digital Discovery, 2025, 4, 1672–1684 | 1675

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00072f


Digital Discovery Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
16

/2
02

5 
8:

09
:2

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
a gradient descent algorithm. To validate the system's feasi-
bility, the automated synthesis and real-time characterization of
CsPbBr3 quantum dots (QDs) have been carried out. Through
optimization via iterative algorithms, an improved nucleation
theory for perovskite QDs has been proposed.

Recent advancements in automation technology and the
rapid development of AI have signicantly accelerated the
generation of experimental data. Furthermore, these advance-
ments have enabled the screening and optimization of reaction
conditions, facilitating the creation of machine learningmodels
that can predict reaction yields. Mo et al. constructed an auto-
mated system for high-throughput thin-layer chromatography
(TLC) analysis (Fig. 2b). By utilizing a large amount of data
collected under standardized conditions, they built a machine
learning (ML) model that associates the structure of organic
compounds with their polarity (reected by the retention factor
(Rf)). This model can accurately predict the polarity of organic
compounds in various solvent combinations, providing effec-
tive guidance for selecting purication conditions and quickly
generating and analyzing high-quality TLC data.70 Xu et al. used
a self-built high-throughput automated platform to screen
a series of metal catalysts and solvents, discovering that
[Ir(COD)Cl]2 can achieve the rst selective cross-dimerization of
sulfonamides, with high yield and good stereoselectivity.71

Additionally, through a comprehensive exploration of the
reaction space (600 reactions), they developed a ML model
Fig. 2 Some autonomous platforms driven by iterative algorithms. (a) A
mated synthesis and in situ characterization platform of colloidal nanoc

1676 | Digital Discovery, 2025, 4, 1672–1684
(XGB-MAF) that can predict reaction yields, demonstrating the
utility and generalizability of this iridium-catalyzed cross-
dimerization method. Fang et al. developed a fully automated
system that integrates high-throughput catalyst synthesis,
online spectral detection, and photocatalytic reaction condition
screening. The system utilizes liquid-core waveguide (LCW)
technology to design and build a novel microuidic photo-
catalytic microreactor, which can complete ultrafast photo-
catalytic reactions in seconds and achieve ultra-large-scale
screening of up to 10 000 reactions per day, providing solid data
support for AI applications.72

Additionally, the ongoing integration of machine learning
models with automated experimental platforms has enabled
the controllable synthesis and reverse design of materials. Zhao
et al.73,74 developed a robotic platform capable of controllably
synthesizing colloidal nanocrystals with unique physicochem-
ical properties (Fig. 2c). This platform automates the synthesis,
in situ characterization, and external validation using initial
synthesis parameters determined through data mining of
existing literature. This makes it possible to precisely synthesize
nanocrystals with the morphologies that are required.
Furthermore, they achieved reverse design of colloidal nano-
crystal morphology by discovering connections between
morphology and structure-directing agents through the training
of ML models on an ever-expanding experimental database.
Jiang et al.75 reported an AI-guided robotic chemist capable of
IR-Chem. (b) High-throughput thin-layer chromatography. (c) Auto-
rystals. (d) AI-Chemist.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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independently completing the entire process of constructing,
characterizing, and testing chiral lms. Through experimental
absorption spectra and structural/process parameters, a ML
model capable of accurately predicting chiral optical activity
was constructed, along with an inverse design ML model that
can generate chiral lms with target chiral optical properties
covering the entire visible spectrum (Fig. 2d). This expands the
potential of using AI-Chemist to discover and optimize new
materials. However, for ML model-driven automated platforms
to achieve accurate predictions and reverse design of materials,
they oen require a large amount of reliable data as training
sets, which to some extent limits the application and promotion
of this method.
3.2 Iterative autonomous experiments driven by
a computational ‘brain’

The automated platform driven by iterative algorithms is
essentially a black-box optimization technique that uses
experimental data for training to obtain the relationship
between design variables and the observed values of the
objective function, thereby enabling learning and decision-
making. This optimization process lacks systematic prior
knowledge and has low efficiency in exploring chemical space,
and the interpretability of the optimization results is poor.48 As
an essential tool for comprehending molecular behavior and
forecasting chemical properties, computational chemistry is
ideally suited for prior knowledge in optimization procedures.
Computational chemistry can greatly increase the speed and
scalability of chemical space exploration by incorporating
machine learning.76

First-principles computational simulations can obtain
microscopic information that is difficult to acquire in the real
world, such as adsorption energy and electronic structures. The
macroscopic properties of materials oen depend on their
microscopic characteristics. Therefore, combining machine
learning models with rst-principles calculations can provide
pre-trained models and theoretical support for experiments,
thereby guiding the experimental process and accelerating the
iteration of materials. Yin et al.77 established an approach that
utilizes ML-accelerated theoretical calculations, enabling
collaboration between experiments and theory for screening
small-sized ordered alloy catalysts. By calculating the solubility
and chemical ordering of a third metal element in a PtCo
ordered alloy system, as well as the adsorption of related
intermediates, they found that the introduction of Cu or Ni into
the PtCo alloy is benecial for the thermodynamic driving force
to transition from disorder to order. In contrast, the introduc-
tion of Mn and Fe inhibits the disorder-to-order transition of
the alloy. Moreover, the synthesized PtCoNi and PtCoCu alloys
exhibited excellent oxygen reduction reaction (ORR) perfor-
mance. This makes it possible to quickly discover potential
ordered alloys with high thermodynamic driving force and good
performance from the vast design space. Zhang et al.78 used
high-throughput DFT calculations to obtain the formation
energy Ef and surface stress 3surf of high-entropy intermetallic
compounds (HEICs) with different compositions. Based on the
© 2025 The Author(s). Published by the Royal Society of Chemistry
obtained 538 DFT datasets, they used crystal graph convolu-
tional neural networks to construct a ML model capable of
predicting 3surf and Ef with high accuracy. By further calculating
several chemical properties of HEICs, it was found that the
difference in the atomic radius and mixing enthalpy were
considered key chemical characteristics that respectively inu-
ence 3surf and Ef and are expected to become new descriptors for
developing HEICs with excellent ORR performance. Wang
et al.,79 based on the adhesion energies of 178 metal-oxide
interfaces obtained from experiments and 14 highly indepen-
dent and important physical features obtained through
symbolic regression and cross-validation, employed an inter-
pretable ML model to conduct a comprehensive search of over
30 billion mathematical expressions. This led to the develop-
ment of a physical model that can describe the metal-support
interaction (MSI) and accurately predict the adhesion energy
and contact angle of metal-oxide interfaces (Fig. 3a). Further-
more, through extensive experiments involving 10 metals and
16 oxides, they formulated and validated principles for the
strong metal–metal interactions that occur during encapsula-
tion. These theories have greatly advanced the design and
development of supported metal catalysts. Li et al.,80 based on
the linear scaling relationship of energy during the sintering
process of metal nanoparticles (NPs), obtained a representative
set of 323 metal-support pairs. By simulating the sintering
kinetics of these metal support pairs, they discovered that the
sintering kinetics exhibit a Sabatier principle with respect to
MSI. Both excessively strong and weak MSI can lead to the
sintering of metal NPs. They also found that the sintering
initiation temperature of metal NPs with appropriate MSI is
about half of the bulk metal melting temperature of typical NPs
(∼3 nm), which is consistent with the long-reported empirical
Tammann temperature. In addition, based on the revealed
Sabatier principle and scaling relationships, high-throughput
screening of carrier combinations with different energies was
conducted, resulting in carriers that increase the sintering
temperature. This has greatly advanced the design of ultra-
stable supported metal NP catalysts.

In addition to rst-principles calculations, the material
structures and properties obtained through spectroscopic
characterization can also serve as prior knowledge in optimi-
zation procedures. Wang et al.81 proposed a method to establish
a connection between surface–adsorbate interaction character-
istics and spectral signals through an ML approach (Fig. 3b). By
using the infrared and Raman signals of carbon monoxide and
nitrogen monoxide adsorbed on metal surfaces as descriptors,
important characteristics including adsorption energy and
charge transfer degree were quantitatively determined, with
good accuracy and transferability. This signicantly broadens
the application range of traditional in situ spectroscopic tech-
niques in high-throughput screening. Li et al.82 proposed an ML
model that uses infrared spectroscopy to monitor the evolution
of adsorbate–surface interaction behavior. Taking the C–C
coupling process in catalytic reactions as an example, the con-
volutional neural network was used to identify and extract
spectral features, depicting the atomic structure and chemical
interactions in the catalytic system. This resulted in obtaining
Digital Discovery, 2025, 4, 1672–1684 | 1677
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key energy barriers and corresponding structural information,
and the predicted promotion trend of CO–CO dimerization
closely matched previous literature, demonstrating the ability
to accurately track dynamic transformations of metal surfaces.
It highlights the practicality and versatility of this machine
learning model in tracking the evolution of complex structures.
Zhang et al.83 proposed a machine learning descriptor of
Chemical Information Molecular Graph (CIMG) to represent
chemical reactions. The CIMG constructs a structured graph by
encoding nuclear magnetic resonance (NMR) chemical shis as
vertex features, bond dissociation energies as edge features, and
solvent/catalyst information as global features. The method
based on the CIMG can effectively predict and recommend full
synthesis routes for catalysts/solvents, representing a novel
data-driven approach to automated retrosynthesis planning
that does not rely entirely on historical synthesis data. Cui
et al.84 quantitatively predicted how various electric elds would
affect catalytic performance using the vibrational spectral
signals of carbon dioxide adsorbed on metal single-atom cata-
lyst molecules as descriptors. The adsorption patterns and
energies of carbon dioxide molecules on 27 distinct metal
single-atom catalysts in varied orientations and at varied
intensities were theoretically investigated using metal-doped
graphitic C3N4 (g-C3N4) catalysts as an example. In order to
measure the facilitative effect of the electric eld on CO2 cata-
lytic conversion, a spectral characteristic model was developed
using ML techniques to associate infrared/Raman spectral
descriptors with adsorption energy/charge transfer. In the
1678 | Digital Discovery, 2025, 4, 1672–1684
meantime, inverse prediction of electric eld strength from
spectra was achieved by mining catalytic insights into the link
between spectra and adsorption patterns based on the attention
mechanism. This study introduces a novel quantitative method
for controlling electrocatalytic reactions andmonitoring spectra
using machine learning.

Completely automated systems powered by intelligent brains
have emerged as a result of the ongoing integration of AI and
theoretical computations. A pioneering effort in this eld was
undertaken by Zhu et al.,52 who built an all-round AI-chemistry
laboratory. The architecture of the AI-Chemist consists of three
modules, including a machine-reading module to extract
chemical knowledge from literature, a mobile robot module to
perform experiments, and a computational brain module to
generate physics/theory-based predictive models. Therefore,
this system can achieve a closed-loop iterative process of
reading relevant literature, conducting theoretical calculations
to form preliminary experimental plans, designing experi-
mental plans, executing automated experiments, analyzing the
obtained experimental data, training machine learning models,
and making decisions to generate new plans (Fig. 3c). This
greatly reduces the time human chemists spend on experi-
ments, changing the way new materials are discovered and
manufactured. The same team85 expanded on this work by
demonstrating a robotic AI chemist for intelligent optimization
and automated synthesis of oxygen evolution reaction (OER)
catalysts made from Martian meteorites. Martian ore pretreat-
ment, synthesis and characterization testing of catalytic
© 2025 The Author(s). Published by the Royal Society of Chemistry
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materials, and iterative catalytic formula tuning were all carried
out without the need for human interaction. The system
determined the ideal catalyst formula from more than three
million potential compositions using an ML model trained on
rst-principles calculations (nearly 30 000 theoretical datasets)
and experimental observations (243 experimental datasets)
(Fig. 3d). With a low overpotential of 445.1 mV and stability for
more than 550 000 s at a current density of 10 mA cm−2, the
improved catalyst demonstrated exceptional performance. Even
in extraterrestrial settings, this work demonstrates the promise
of AI-driven systems for automated chemical synthesis and
materials discovery.
3.3 End-to-end intelligent autonomous systems powered by
large-scale models

The overall input-to-output nature of machine learning
methods can form a powerful single-purpose tool, capable of
quickly generating experimental plans and obtaining optimal
experimental solutions. However, the goal of fully autonomous
end-to-end synthesis reaction design and development is still to
be achieved. First, an end-to-end intelligent automation plat-
form requires a large-scale model with strong generalization
ability and wide applicability. It is difficult to achieve ML
methods trained solely on data obtained from theoretical
Fig. 4 Some intelligent management systems and end-to-end intellig
ChemAgents.

© 2025 The Author(s). Published by the Royal Society of Chemistry
calculations and experiments. The emergence of LLMs based on
ChatGPT tools in 2022 has made such large-scale models
possible. Agent-based LLMs can accommodate vast amounts of
knowledge and information and possess strong human–
computer interaction capabilities, enabling them to make ex-
ible decisions based on complex and non-standardized inputs.
Researchers have also developed large-scale models tailored for
chemistry to enhance reasoning capabilities in autonomous
laboratories. For example, SynAsk, an LLM-powered organic
chemistry platform created by AIChemEco Inc., was presented
by Zhang et al.86 Through domain-specic data renement and
integration with a chain-of-thought methodology, SynAsk
provides easy access to advanced chemical tools and a compre-
hensive knowledge base in a question-and-answer style (Fig. 4a).
A basic chemistry knowledge base, molecular information
retrieval, reaction performance prediction, retrosynthesis
prediction, and chemical literature acquisition are some of the
features offered by this platform. This creative approach creates
a paradigm unique to organic chemistry that makes research
and discoveries in the eld easier by integrating external
resources with ne-tuning procedures.

Moreover, a complete chemical experiment workow typi-
cally includes three stages: synthesis, characterization, and
performance testing. To create an end-to-end intelligent auto-
mation platform capable of handling experimental protocols
ent autonomous platforms. (a) SynAsk. (b) MAOS. (c) LLM-RDF. (d)

Digital Discovery, 2025, 4, 1672–1684 | 1679
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generated by large-scale models, an intelligent management
decision system for scheduling instruments, analyzing feed-
back data, and optimizing synthesis plans is essential. The
design, architecture, and hardware/soware systems of
a robotic AI-chemist platform that combines chemical
synthesis, characterization, and performance testing were
published by Xiao et al.87 Its ability to substitute a human
chemist in actual experimental operations is demonstrated by
the fact that the robotic AI chemist was trained to perform
photocatalysis experiments. Similarly, a materials acceleration
operating system (MAOS) with a distinct language and compiler
architecture was created by Li et al.88 For autonomous materials
synthesis, properties research, and self-optimized quality
assurance, the MAOS combines virtual reality (VR), cooperative
robots, and a reinforcement learning (RL) scheme. Following
VR training, the MAOS can function on its own, saving money
on labor and time (Fig. 4b).

Ultimately, with the continuous development of intelligent
large-scale models and decision-making systems, end-to-end
intelligent platforms driven by large-scale models are gradu-
ally being realized. To illustrate the adaptability and effective-
ness of LLM-based agents throughout the whole chemical
synthesis process, Ruan et al.89 established a unied LLM-based
reaction development framework (LLM-RDF) (Fig. 4c). They
demonstrated how LLM agents can support end-to-end
synthesis development by using aerobic alcohol oxidation to
aldehyde—an emerging sustainable aldehyde synthesis
protocol—as a model transformation. Using state-of-the-art
LLM technology, this work presents a feasible route toward
autonomous end-to-end chemical synthesis. Furthermore,
a hierarchical multi-agent system dubbed ChemAgents, which
is based on an on-board Llama-3-70B LLM, powers a robotic AI
chemist, according to Song et al.90 With little assistance from
humans, this system can carry out intricate, multi-step studies.
It functions by means of a task manager agent that communi-
cates with human researchers and manages four specialized
agents: the robot operator, which controls a cutting-edge
Fig. 5 Operational workflow of an intelligent scientist system.

1680 | Digital Discovery, 2025, 4, 1672–1684
automated lab; the experiment designer, which makes use of
a vast protocol library; the computation performer, which
makes use of a exible model library; and the literature reader,
which accesses a comprehensive literature database (Fig. 4d). A
major step toward completely automated chemical discovery is
made possible by the combination of various agents and
resources, which allow the system to plan, carry out, and opti-
mize experiments on its own.
3.4 The evolving intelligent autonomous systems

To summarize, while most autonomous laboratory platforms can
address specic issues, they currently lack inter-lab communi-
cation and data sharing, highlighting the need for further
development. Looking ahead, cloud platforms can be adopted for
seamless resource allocation and sharing, overcoming
geographical and temporal constraints and further establishing
advanced nationwide or global networks of an intelligent scien-
tist system (Fig. 5). These networks would integrate intelligent
systems to conduct end-to-end autonomous research, achieving
high levels of cognitive and operational integration through the
fusion of AI models and robotic processes.

Once scientists submit requests for material innovation,
advanced scientic large models intelligently recommend
research strategies and preparation solutions, including
candidate materials and synthesis schemes. Human-machine
collaborative systems should be developed to optimize the
analysis of scientic problems through cognitive intelligence,
enabling scientists to further rene and optimize experimental
plans. Guided by these plans, robotic experimental cloud
facilities conduct high-throughput experiments, while high-
throughput computing platforms perform theoretical simula-
tions. Notably, to standardize robotic experimental systems, it is
essential to establish and promote standardized protocols for
instruction sets, interface functions,91 experimental templates,
and intelligent equipment.92 This process drives robotic exper-
imental systems and computer simulations, generating high-
quality, multi-domain, multi-modal, and standard data that
© 2025 The Author(s). Published by the Royal Society of Chemistry
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are fed back into AI models for optimization and renement.
Driven by multimodal large models, the system iteratively
optimizes processes, integrating aligned theoretical and exper-
imental data into comprehensive scientic big data. Based on
these data, knowledge and logic enhanced models are trained,
combining scientic expertise with machine learning tech-
niques to predict global optima and optimize material creation
and problem-solving.

Additionally, communication and data sharing between
laboratories require not only technical compatibility across
various soware and hardware platforms but also adherence to
data privacy, security, and regulatory policies. Open-source
frameworks such as LabTwin, DigCat (Digital Catalysis Plat-
form) and the EU's “AI-on-Demand” initiative serve as pio-
neering examples of secure data sharing on cloud platforms.
Therefore, the development of an intelligent scientist system
must incorporate secure data-sharing technologies—such as
blockchain or federated learning—to enable lawful and pro-
tected resource exchange, thereby reducing barriers to inter-
disciplinary and cross-domain collaboration. At the same time,
specialized domain-models, targeting specic scientic chal-
lenges, are developed from model training results and can be
securely and commercially shared via cloud platforms, fostering
the growth of an intelligent scientist system.

The concept of an intelligent scientist system envisions the
establishment of centralized platforms that consolidate and
analyze extensive datasets, develop advanced intelligent
models, and rene scientic methodologies and technologies.
These platforms, serving as the intellectual nucleus of the
system, will orchestrate a network of distributed innovation
facilities, supporting scientists in achieving specic, targeted
scientic breakthroughs. This integrated framework will
fundamentally transform the form of scientic research by
combining the centralized, resource-intensive development of
scientic intelligence with decentralized, localized experi-
mental operations that drive innovation. Such a structure will
lower the barriers to interdisciplinary and cross-domain
collaboration, enabling researchers and scientists across both
academia and industry to engage in highly specialized experi-
mentation and personalized scientic inquiry.

4 Conclusion

In this perspective, we identied the essential elements
required for closed-loop autonomous experiments: chemical
science databases, large-scale AI models, automated experi-
mental platforms, and integrated management/decision
systems, and reviewed China's signicant progress from
simple iterative algorithm-driven systems to comprehensive
intelligent autonomous systems supported by large-scale
models, making autonomous chemical discovery within
a single laboratory possible. However, communication and data
sharing between laboratories remain limited, highlighting the
necessity for further development. Looking ahead, cloud plat-
forms can be used to achieve seamless resource allocation and
sharing, overcoming geographical and temporal limitations
and further establishing advanced intelligent scientist system
© 2025 The Author(s). Published by the Royal Society of Chemistry
networks at the national and even global levels. These networks
will integrate intelligent systems for end-to-end autonomous
research, achieving high-level cognitive and operational inte-
gration through the fusion of AI models and robotic processes.
Such a structure will lower the barriers to interdisciplinary and
cross-domain collaboration, enabling researchers and scientists
from academia and industry to engage in highly specialized
experiments and personalized scientic exploration.
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