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lti-clustering and decision-
making strategies for 4D-STEM orientation
mapping

Junhao Cao,ab Nicolas Folastre,ab Gozde Oney,c Edgar Rauch,d

Stavros Nicolopoulos,e Partha Pratim Das e and Arnaud Demortière *abf

This study presents a novel integration of unsupervised learning and decision-making strategies for the

advanced analysis of 4D-STEM datasets, with a focus on non-negative matrix factorization (NMF) as the

primary clustering method. Our approach introduces a systematic framework to determine the optimal

number of components (k) required for robust and interpretable orientation mapping. By leveraging the

K-component loss method and Image Quality Assessment (IQA) metrics, we effectively balance

reconstruction fidelity and model complexity. Additionally, we highlight the critical role of dataset

preprocessing in improving clustering stability and accuracy. Furthermore, our spatial weight matrix

analysis provides insights into overlapping regions within the dataset by employing threshold-based

visualization, facilitating a detailed understanding of cluster interactions. The results demonstrate the

potential of combining NMF with advanced IQA metrics and preprocessing techniques for reliable

orientation mapping and structural analysis in 4D-STEM datasets, paving the way for future applications

in multi-dimensional material characterization.
Introduction

Recent advancements in scientic instruments for material
analysis have led to the development of devices able to generate
vast amounts of data across multiple modalities with high
spatial resolution. These large and complex datasets oen
require advanced AI algorithms for efficient processing. For
instance, in transmission electron microscopy (TEM) eld, the
recent integration of advanced techniques such as hybrid-pixel
detection, electron beam precession and highly coherent beam
has culminated in the emergence of a new class of hyperspectral
analysis known as four-dimensional scanning transmission
electron microscopy (4D-STEM).1a The 4D-STEM technique
involves acquiring a two-dimensional dataset of diffraction
patterns over a two-dimensional scanning region, resulting in
a four-dimensional dataset.1b A single 4D-STEM dataset can
contain more than 100k electron diffraction patterns (512× 512
px2). Consequently, storing, managing, and efficiently analyzing
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such data presents signicant challenges. The complexity of 4D-
STEM data stems from the multidimensional nature of the
structural information encoded within each diffraction
pattern,24 involving advanced algorithms and signicant
computational resources for effective analysis. Moreover, pre-
processing electron diffraction patterns to maintain data
integrity and mitigate various noise sources introduces signi-
cant computational overhead and remains a time-consuming
task. Consequently, automated data processing leveraging
advanced algorithms, particularly those integrating statistical
methods and machine learning techniques, is crucial for
enhancing efficiency and accuracy in diffraction pattern
analysis.

Pattern matching strategies based on pixel-to-pixel cross-
correlation coefficients between experimental patterns and simu-
lated patterns, generated from known crystallographic structure
data in Crystallographic Information File (CIF) format,2a have been
extensively employed for the analysis of 4D-STEM datasets. This
method, which facilitates the extraction of orientation and phase
maps, has been implemented in several soware packages,
including Astar,2b py4D-STEM,2c and pyXEM.2d The automated
crystal orientation mapping (ACOM) procedure determines the
orientation of each diffraction pattern, enabling accurate crystal-
lographic analysis of materials. However, electron diffraction
patterns are inherently sparse datasets, with fewer than 10% of the
pixels containing meaningful signals. Thus, the implementation
of data reduction strategies, which convert sparse data into dense
representations, can signicantly enhance post-processing
Digital Discovery
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efficiency for feature extraction, clustering, and reconstruction, as
demonstrated in the development of ePattern (see in SI Algorithm
SI_6).42

Clustering and data reduction strategies are standard tech-
niques for handling large and high-dimensional datasets. Their
objective is to enhance data interpretability while preserving the
most relevant information from the original dataset.3,4 For
instance, Principal Component Analysis (PCA) is a widely used
unsupervised learning technique for dimensionality reduction,
transforming data into a new coordinate system to capture most
of the variance in fewer dimensions.4–6 While effective in
applications like image processing, noise reduction, and data
compression, PCA has limitations, including its inability to
capture non-linear data structures and the interpretability
challenges posed by negative component values.11,12 Further-
more, when combined with clustering algorithms, PCA's results
can be sensitive to the user-dened number of clusters, poten-
tially affecting analysis robustness.13

In contrast, Non-negative Matrix Factorization (NMF)10a offers
several advantages over PCA in the context of unsupervised
learning and data dimensionality reduction. Unlike PCA, which
allows for both positive and negative components, NMF imposes
non-negativity constraints on the factorized matrices. This non-
negativity constraint results in a parts-based data representa-
tion, making NMF highly effective for interpreting and extracting
meaningful features in applications such as image processing,
text mining, and spectral data analysis. Furthermore, NMF is
better suited for handling non-linear and non-convex data
structures compared to the PCA. While both PCA and NMF are
linear factorization methods, NMF's non-negativity constraints
and additive structure enable it to better approximate non-linear
and non-convex data patterns common in practical applications.
This makes NMFmore suitable for tasks where data is composed
of localized, interpretable parts, even if the overall manifold is
non-linear. The additive nature of NMF components can capture
the underlying data patterns more effectively when the data
consists of overlapping or additive features. NMF's powerful
ability to extract subtle orientation variations has been utilized to
enhance the accuracy and reliability of detecting different crystal
orientations in 4D-STEM datasets.27

In traditional clustering methods, the determination of
the optimal number of clusters is inherently challenging due
to several factors.27b The intrinsic complexity of the data can
make the natural separations between clusters unclear,
especially in the presence of overlapping clusters, noise, or
varying density and shape.10b The absence of ground truth in
many clustering applications requires reliance on data-driven
methods to estimate the optimal number of clusters.28 To
tackle these challenges, various methods have been
proposed. The elbow method entails plotting the within-
cluster sum of squares (WCSS) against the number of clus-
ters to identify a point where adding more clusters yields
diminishing returns.10c Silhouette analysis assesses cluster
compactness and separation, selecting the number of clus-
ters that maximizes the silhouette score.10d Incorporating
domain knowledge can also guide and validate the clustering
process, ensuring alignment with practical expectations.10e By
Digital Discovery
integrating these approaches and validating results across
multiple criteria, the determination of the optimal number of
components in clustering becomes more robust and reliable.

Brute-force or sophisticated methods for determining the
optimal number of clusters usually involves running the clustering
algorithm multiple times, each with a different number of clus-
ters, and selecting the conguration that yields the most favorable
results. These approaches are computationally intensive. To
address this issue more effectively, integrating decision-making
approaches, such as multi-criteria decision-making techniques,
can provide substantial advantages by automating the selection
process and enhancing the robustness of the clustering outcomes.
Decision-making can be considered as a problem-solving method
providing an optimal solution to a specic event.14,15 Aer
analyzing of a nite set of alternative solutions, the objective is to
categorize these alternatives to establish a priority ranking among
them. Generally, the conception of decision-making in unsuper-
vised learning17 is related to extracting signicant patterns,
features, or underlying information,16 without specic labels,
revealing the inherent characteristics or relationships hidden in
the raw data.18,19 In the 4D-STEM data clustering process, decision-
making involves several considerations specic to the qualities
and attributes of electron diffraction pattern datasets, which
encompass both crystal orientation and crystallographic phase
information.20

An additional signicant challenge in 4D-STEMmapping is the
overlap of patterns from different crystals.20a,b In 4D-STEM,
diffraction patterns are generated from probe positions scanning
crystals that may be in proximity or/and superimposed congu-
rations.2,20 Thus, assigning the correct crystallographic orientation
becomes difficult when overlapping occurs.25 The diffraction
patterns in 4D-STEM can demonstrate complicated features and
overlapping spots, the ambiguity of which leads to requiring
accurate interpreting of the orientation.24 The complexity of
diffraction patterns can cause errors or uncertainties regarding the
determining crystal orientations.26,27 Efficient algorithms for
overlap detection are thus required to specify the precise location
of each individual diffraction pattern.25a,b

In this study, we develop clustering approach using Non-
negative Matrix Factorization (NMF) to analyze four-dimensional
scanning transmission electron microscopy (4D-STEM) datasets
for orientation mapping. We introduce an efficient method
termed “K-component loss,” which, when combined with Image
Quality Assessment (IQA), enables the automatic and effective
detection of material characteristics and clustering within large
datasets. Our methodology begins with an evaluation phase (level
one) to determine initial NMF parameters. Then, we employ a k-
metric derived from IQA to ascertain the optimal number of
clusters (k) in a subsequent phase (level two). This approach is
particularly advantageous for processing overlapping diffraction
patterns, as it leverages advanced data analysis techniques to
separate overlapping signals, assess the similarity of each
component, and accurately extract pertinent features from the
dataset. By integrating NMF with IQA, our making-decision
method offers a robust framework for the analysis of complex
4D-STEM data, facilitating enhanced material characterization
and more precise orientation mapping.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Methods
Non-Negative Matrix Factorization (NMF) algorithm

Non-negative matrix factorization (NMF)1,2 is a common unsu-
pervised machine learning algorithm that decomposes an
original non-negative matrix V into two non-negative matrices,
W and H. Popularized by Lee and Seung in 1999,29 NMF was
initially applied in image processing to achieve parts-based
representations of face images by combining learned features.
Since its introduction, non-negative matrix factorization (NMF)
has become a powerful unsupervised learning algorithm,
particularly valued for its superior interpretability in uncovering
latent features. By decomposing data into non-negative
components, NMF facilitates the identication of meaningful
patterns, enhancing the understanding of underlying structures
in various datasets (Fig. 1).

In the latent space, essential features of the original matrix
are extracted by selecting components (denoted as k) whose
number is signicantly less than the rank of the original matrix
V (k �min(W, H)). The matrix VzW × H is factorized into two
relatively small matrices (W, H) compared with V (original), the
dimensionality of these two matrices is W × k and k × H,
respectively.30 The linear combination of W and H generates an
approximated matrix V0 = W × H. W matrix can be interpreted
as the feature matrix, in which the k-column represents the
most k-relevant feature from the original matrix V.31 H can be
interpreted as the coefficient matrix, in which the element is the
weight associated with the W matrix. Moreover, the aim of
Fig. 1 Schematic representation of the global workflow for clustering an
Overview of the 4D-STEM ACOM acquisition methodology. (b) Hyperma
HHH, using the Non-negative Matrix Factorization (NMF) algorithm. (c) Co
clusters (components): (c1) initial step identifying the potential range o
maximize differentiation while avoiding overfitting. (d) Reconstruction of d
Assessment (IQA) comparing raw diffraction patterns to those reconstruc
the dataset, aligned with the optimal component count. (g) Creation of a

© 2025 The Author(s). Published by the Royal Society of Chemistry
obtaining the result of approximate matrix V0 is achieved by
minimizing a loss function.29

Lee and Seung introduced an alternating optimization
method for NMF.29 Starting with random non-negative initiali-
zations of matrices W and H, the algorithm iteratively, Alter-
nating Least-Square (ALS), minimizes the loss function ‖V −
WH‖ using multiplicative update rules. In each iteration, H is
updated while keeping W xed, followed by updating W with H
xed, ensuring that both matrices remain non-negative
throughout the process. This procedure continues until the
difference between V and its approximation WH falls below
a predened threshold.30
Data preparation

Non-negative Matrix Factorization necessitates a two-dimensional
(M × N) non-negative input matrix. Given that 4D-STEM datasets
are inherently four-dimensional, with dimensions (M, N, x, y), in
which (M, N) represent probe positions and (x, y) correspond to
pixels within each diffraction pattern (512 × 512 px2), it is
imperative to preprocess these datasets appropriately. Typically,
the product M × N correlates with the dataset's size.1 Therefore,
converting the 4D-STEM dataset into a two-dimensional matrix V
is essential for subsequent matrix computations (details in SI).

To ensure dataset integrity following Non-negative Matrix
Factorization (NMF), it is essential to assess information loss
between the original and factorized matrices. Incorporating L1
regularization,32 commonly utilized in machine learning to
enhance model sparsity, can effectively select pertinent
d decision-making strategies in the analysis of the 4D-STEM dataset. (a)
trix decomposition of the original dataset into two matrices,WWW and
re decision-making framework for determining the optimal number of
f cluster numbers, and (c2) similarity assessment of pattern pairs to
iffraction patterns based on the NMF-derived results. (e) ImageQuality
ted via NMF. (f) Visualization of individual clusters (components) within
n overlapping map highlighting the regions of cluster co-occurrence.
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features, particularly in high-dimensional datasets.33 This study
calculates the difference between the original and factorized
matrices, resulting in a K-component loss matrix. We then
compute the mean of the absolute values of its elements to
quantify information loss.
Noise standard deviation (NSD) to quantify noise inuence in
diffraction patterns

Noise Standard Deviation (NSD) is a statistical metric used to
quantify the magnitude of noise in diffraction patterns,
enabling researchers to evaluate how noise impacts data
quality, resolution, and interpretability. In diffraction experi-
ments (e.g., X-ray, electron, or neutron diffraction), noise arises
from various sources such as detector imperfections, shot
noise, thermal uctuations, and environmental interference.
NSD provides a standardized way to characterize this noise,
aiding in experimental optimization, algorithm validation, and
error analysis. The denition of formula NSD shown in Algo-
rithm SI_1, NSD serves as a metric to quantify the noise level
within an image, reecting the variation or dispersion of pixel
values induced by noise.43 Specically, it measures the extent to
which pixel values deviate from their mean due to noise inter-
ference, with higher NSD values indicating more signicant
noise and lower NSD values suggesting reduced noise. Conse-
quently, by preprocessing the dataset to minimize NSD, NMF is
better equipped to focus on extracting meaningful patterns
from cleaner, ltered data.44
K-Component loss and image quality assessment (IQA)

NMF is a powerful unsupervised learning technique for decom-
posing high-dimensional data into interpretable basis and coeffi-
cient matrices. However, evaluating the quality of the
reconstructed dataset V0 (derived from NMF) against the original
dataset V requires a loss function that balances pixel-wise accuracy
and component-wise delity. To address this, we propose the K-
component loss function as an extension of the Mean Absolute
Error (MAE) tailored for NMF-based reconstruction tasks. The K-
component loss function is dened as:

LK-component ¼ 1

M �N

XM

i¼1

XN

j¼1

��Vði; jÞ � V
0ði; jÞ��

where V is the original non-negative 4D-STEM dataset. V0 is the
reconstructed dataset obtained from the NMF model, i.e., V0 =
W × H, where W and H are the basis and coefficient matrices,
respectively. The representation of M and N references to Data
preparation and SI. By decomposing the error across M × N,
this loss function explicitly quanties discrepancies in both
localized regions and feature-specic patterns, ensuring the
reconstruction preserves critical structures inherent to the
original data. The parameter K (number of components in NMF)
directly inuences the loss dynamics. Smaller K simplies the
model but risks under-tting by over-smoothing ne-grained
details, while larger K enhances reconstruction delity but
may overt noise or outliers. This trade-off aligns with the K-
component loss's ability to guide model selection by
Digital Discovery
highlighting regions or patterns where reconstruction quality
diverges signicantly from the original data.

According to the K-component loss, the declining trend reects
the loss variation between the NMF results and the original
dataset, serving as a reference for evaluating dataset quality. As
shown in Fig. 2, the curve is atter aer k= 10, indicating that the
NMF reaches its performance limit, beyond which further pro-
cessing offers minimal benet. Thus, k = 10 is identied as
a preliminary choice for the number of components. However, to
ensure this selection does not lead to overtting, a secondary
evaluation using Image Quality Assessment (IQA) is conducted.
For holistic evaluation, the K-component loss can be integrated
with perceptual metrics. This combination ensures optimization
aligns not only with pixel-wise accuracy but also with human-
interpretable quality, making it particularly effective for applica-
tions like image denoising, hyperspectral unmixing, or document
topic modeling.

IQA objectively analyzes and quanties image quality through
algorithms that estimate perceptual quality based on various
features.34 Its goal is to provide mathematical metrics aligned with
human visual perception.35,36 IQA facilitates the evaluation of
image quality, performance analysis of image processing algo-
rithms, and supports decision-making for quality enhancement.37

IQA methods are generally categorized into Full-Reference (FR)
and No-Reference (NR) approaches.38 FR-IQA, being more estab-
lished, is commonly used in machine learning for image quality
evaluation. It compares a reference (original) image with a target
(processed or distorted) image using metrics such as Structural
Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and
Mean Squared Error (MSE), which are widely applied in FR-IQA.36

To quantify the delity and difference between each two-
diffraction pattern of NMF-reconstructed component maps, we
computed four full-reference IQA indices to determine the
maximum different orientation in material, where Structural
Similarity Index (SSIM) measures perceptual similarity in lumi-
nance, contrast and structure. SSIM ˛ [−1, 1], where 1.00 denotes
perfect structural agreement. Values $0.90 are considered excel-
lent, 0.80–0.90 good, and close to −1 indicate notable dissimi-
larity. Peak Signal-to-Noise Ratio (PSNR) reects the ratio between
themaximumpossible pixel intensity and themean squared error.
Expressed in decibels (dB). PSNR$ 30 dB generally signies high-
delity reconstructions; PSNR < 25 dB suggests signicant loss,
which usually provides a global view to evaluate the contribution
of each clustering. Gradient Magnitude Similarity Deviation
(GMSD) assesses local gradient (edge) consistency. Lower scores
indicate better edge preservation: values #0.05 indicate excellent
gradient delity, 0.05–0.10 good, and above 0.10 signal degraded
sharpness or more different between each signal. Mean Deviation
Similarity Index (MDSI) combines color, luminance and gradient
information into a single deviation measure. MDSI ˛ [0, 1], where
0.00 is perfect. Values #0.05 denote excellent overall similarity,
0.05–0.10 good, and >0.10 poor similarity or total difference.
Overlapping estimation

In 4D-STEM data extraction, the issue of overlapping arises
when diffraction patterns from adjacent sample regions
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Influence of dataset filtering on NMF robustness. (a and b) Orientation maps (top) and representative diffraction patterns (bottom) for raw
data, mean function filtered data, and ePattern-processed data. NSD values quantify noise reduction performance. (c) K-Component loss curves
for each dataset, illustrating convergence stability with the growth of components (clustering number), the K-component loss is defined as an
evaluatedmethod tomeasure the similarity (V− V0) between the dataset that needs to be dealt with NMF (V) and its corresponding NMF result (V0

= W × H). (d) Heatmap of NSD values across clusters (rows) and datasets (columns), with darker hues indicating higher noise.
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interfere, leading to the superposition of signals during data
acquisition.24,39 Diffraction patterns generated at contiguous
positions inherently contain contributions from neighboring
areas of the sample.26 This overlap can complicate data inter-
pretation, particularly when analyzing subtle structural
features. The primary challenge posed by overlapping in 4D-
STEM lies in accurately extracting information related to the
sample's local crystallography and structural properties.39 The
reliability of the reconstructed patterns heavily depends on the
precision of the analytical techniques employed. Overlapping
signals can introduce artifacts or inaccuracies, potentially
compromising the delity of the nal results.

4D-STEM data are rst transformed into a 2D array and
subsequently processed using NMF to obtain the W and H
matrices. TheHmatrix (k,M× N) represents the contribution of
each basis vector from the W matrix to reconstructing the
original matrix V.40 Each row ofH corresponds to the weights for
specic data points in V, reecting the extent to which each
basis vector contributes to the reconstruction. In this context, H
encapsulates how the features represented by W are combined
to describe the original data. Here, k denotes the number of
clusters within the dataset, with each column indicating the
weight (or probability) of a data point (diffraction pattern)
belonging to a given cluster. Higher weights signify a greater
likelihood of association with a specic cluster.

NMF exhibits a strong sensitivity to pertinent features during
matrix factorization, effectively capturing overlapping struc-
tures within the dataset. In this context, overlaps are repre-
sented as secondary weights, while the original clusters
correspond to primary weights. Utilizing the H matrix, which
encapsulates all weight contributions, we extract the rst and
© 2025 The Author(s). Published by the Royal Society of Chemistry
second weights and dene a threshold to differentiate them.
This threshold facilitates the visualization of overlapping
regions within the dataset, as shown in Fig. 5.
Comparison of raw and clustered data

Clustering analysis using NMF proves highly effective for 4D-
STEM data, as it reveals latent features associated with
distinct structural characteristics.25,41 Beyond identifying
hidden patterns, NMF generates interpretable clustering results
that correlate with specic crystallographic behaviors,
enhancing the understanding of complex material structures.27

Integrating clustering outputs with the original diffraction
patterns not only provides validation but also validates the
making-decision step for k-component determination. Indeed,
aligning the original diffraction data with NMF-derived clusters
strengthens the validation process, enabling a more robust
assessment of cluster coherence relative to material properties
and structural variations. This dual representation facilitates
intuitive visualization, bridging the gap between mathematical
models and structural information. Moreover, correlating NMF
clusters with specic regions within the raw data allows for
precise localization of structural features, thereby enriching the
interpretability of clustering outcomes.
Results and discussion
Impact of dataset ltering on NMF robustness

Applying appropriate dataset ltering techniques can signi-
cantly reduce noise, thereby enhancing the robustness of NMF.7,9

By eliminating noisy data points, ltering ensures that NMF
focuses on extracting underlying patterns rather than capturing
Digital Discovery
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noise, resulting in more reliable factorization outcomes.8 The
experimental impact of dataset ltering on NMF is illustrated in
Fig. 2. Fig. 2a demonstrates the substantial inuence of ltering
methods on the clustering quality of NMF results.

Three different ltering approaches are compared: (1) raw
data: the dataset as acquired from 4D-STEM without any pro-
cessing. (2) Mean ltering: this method processes the raw data
by normalizing the sum of neighboring images using a 3 × 3
kernel sliding across the scan.42 This averaging technique
produces a scan of unchanged size, where each Diffraction
Pattern (DP) image is the average of neighboring images.42 (3)
ePattern algorithm: proposed in our team, this novel algorithm
focuses on dimensionality reduction and reconstruction of
DP.42 It employs a neural network-like structure consisting of an
encoder, which extracts the most relevant features into a latent
space, and a decoder, which reconstructs the diffraction
patterns from the latent space representation.42 These ltering
methods highlight the importance of preprocessing in
enhancing the quality and reliability of NMF results, particu-
larly in the context of 4D-STEM data analysis.

The two proposed methods aim to enhance data quality by
eliminating noisy or irrelevant data points from the dataset.
Fig. 2a illustrates the Noise Standard Deviation (NSD) values
corresponding to each representative pattern extracted using
NMF. Among the evaluated datasets, the ePattern dataset
demonstrates the lowest NSD value (2.568), indicating that low-
variance features have been effectively removed. Fig. 2c further
compares the NSD values across various K-component clusters
(Cluster1 ∼ Clusterk) for different methods. The intensity of the
heatmap corresponds to the magnitude of NSD, with ePattern
consistently showing the lowest values (depicted by red and
lightest colors). This reduction in noise enables NMF to achieve
more efficient factorization and enhances the interpretability of
the resulting components.

Fig. 2b visualizes the impact of dataset ltering on conver-
gence and computational efficiency during NMF processing. A
comparison between raw data and preprocessed datasets (mean
function and ePattern) highlights the advantages of the latter.
The ideal factorization result (V0 = W × H) is closer to the
original matrix (V), with minimal deviation. Notably, the loss
curve for the ePattern dataset exhibits a smooth and consistent
downward trend, unlike the raw data and mean function, which
show numerous outliers. At the critical point of the steepest
gradient change (k = 10), the ePattern curve demonstrates
minimal uctuation, underscoring its stability and robustness
in noise handling. This improved convergence behavior facili-
tates more reliable and accurate NMF performance.

Moreover, by removing irrelevant features, the ePattern
dataset enables NMF to produce more interpretable factors.
When applied to the ePattern dataset, the resulting components
represent distinct and meaningful patterns that are easier to
interpret and analyze (Fig. 5). In addition to superior noise
reduction, the ePattern dataset enhances the stability of NMF,
reduces the risk of overtting, and prevents the model from
capturing articial patterns originating from noise.45
Digital Discovery
Inuence of IQA on determining the optimal K component in
NMF analysis

Determining the optimal number of components k in NMF
requires balancing the trade-off between reconstruction quality
and model complexity.19,21 This involves evaluating image
quality assessment (IQA) metrics and reconstruction loss across
different values of k, with the objective of identifying the
optimal value that provides a faithful approximation of the
original data while avoiding unnecessary complexity.46 The
overarching aim is to nd a value of k that effectively captures
the underlying structure of the data while maintaining
computational efficiency.41

When applied to image clustering, the quality of the recon-
structed images and the accuracy of the decomposition are
pivotal in determining the optimal k.22,23 IQA metrics, are
utilized to evaluate the delity and differences in the recon-
structed images. The reconstructed data V0 is expressed as V0 =
W × H, where each clustering operation corresponds to
(Clustering1 = W1 × H1 . Clusteringk = Wk × Hk).

Fig. 3a demonstrates that increasing k generally reduces
reconstruction loss, as a larger number of components can
theoretically capture more details of the original data. However,
this also introduces the risk of overtting, where the model
begins to capture noise along with the signal. Higher values of k
tend to improve IQA metrics, such as SSIM, up to a threshold,
aer which additional components may not enhance quality
and might even degrade it due to overtting.

The range of interest identied in Fig. 3a suggests that k
values between approximately 6 and 14 (centered around k= 10)
achieve an optimal balance between undertting and over-
tting. Within this range, reconstruction loss decreases signif-
icantly while avoiding overtting. This range also reects
a trade-off between capturing essential features andminimizing
the incorporation of noise.

Fig. 3b–e analyze k based on four IQA algorithms. For
instance, Fig. 3e examines PSNR, a metric used to measure the
delity of reconstructed images by comparing them with the
original. Higher PSNR values indicate reduced distortion and
noise, signifying that the NMF components have effectively
captured the essential features of the original data.34 In image
compression and reconstruction contexts, PSNR values above
40 are considered excellent, whereas values below 20 are
deemed unacceptable.34 For NMF, PSNR values higher than 40
indicate that the reconstructed images retain a high degree of
similarity to the original data, which is crucial for determining
the optimal k.

The results suggest that k = 10 (or slightly below this value)
achieves an equilibrium between preserving essential features
and avoiding noise overtting. While PSNR provides a global
perspective on the delity of image reconstruction, other
metrics like MDSI, GMSD, and SSIM complement the analysis
by focusing on different aspects of image quality.

Fig. 3c presents the results of MDSI, which evaluates global
differences between images, including intensity and spatial
information.47 MDSI values range from 0 to 1, with higher
values indicating greater similarity.47 For NMF clustering, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Mean absolute error (MAE) between the original dataset (V) and NMF-reconstructed dataset (V0) as a function of component count (k). The
curve identifies the optimal k (here, k = 8), where error reduction balances reconstruction fidelity and model simplicity. (a) The figure
demonstrates the tendency of decline according to the increase of component (k), the determination of the range of interest where the ideal
component presumably existed in this. (b–d) The diffraction pattern selected by the most intense value between the k− 4 and k + 4 clustering is
used for calculating IQA loss for decision-making two. The three matrices represent the result of the evaluation of each current diffraction
pattern with the others from the decision-making one through three different IQA algorithms in SSIM, GMSD and MDSI. The objective of all
metrics is to measure the similarity between two images, which aim is to determine the number of most different orientation pattern forms,
namely the ideal component. (e) PSNR is objective to assess the degree of alteration/degradation between the diffraction pattern in the current
clustering and the one in the other clustering. The result of PSNR is higher, signifying the more pertinent contribution among the totality of
components.
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goal is to maximize the distinctiveness of clusters, ensuring that
diffraction patterns within clusters are noticeably distinct. At k
= 8, MDSI (value = 0.3062) captures global features effectively
while minimizing distortion.

In contrast, Fig. 3b and d focus on GMSD and SSIM, which
measure localized and structural differences. GMSD quanties
deviations in gradient magnitudes between reference and
reconstructed images, making it suitable for capturing changes
in image structure caused by distortions.48,49 Lower GMSD
values indicate greater similarity, while higher values highlight
increased dissimilarity.50 At k= 8, GMSD achieves an ideal value
of 0.1139, signifying effective structural delity.

Concurrently, the SSIM provides a robust evaluation of the
similarity between two images by assessing their structural
information.46 Notably, SSIM is highly sensitive to subtle
structural differences, making it an effective tool for detecting
slight variations between images. The SSIM index ranges from
−1 to 1, where a value of 1 represents perfect structural simi-
larity, and −1 indicates complete dissimilarity.46,51

In the context of clustering optimization, the analysis aims
to minimize redundancy among clustering points on a global
scale, with the objective of maximizing the sum of distinctly
© 2025 The Author(s). Published by the Royal Society of Chemistry
different clustering points.52,53 As illustrated in Fig. 3b and d,
based on the ultimate values for GMSD = 0.1139 and SSIM =

0.718, the analysis indicates that k = 8 represents an optimal
choice for k, as further validated in Fig. 4.
Advanced analysis and interpretation of orientation mapping
in 4D-STEM via NMF

In the domain of 4D-STEM, NMF serves as a powerful compu-
tational tool for decomposing diffraction pattern data into
distinct structural and orientation components.27 In Fig. 4 (and
Fig. SI_7), 4D-STEM analysis has been performed on LMNO
cathode materials of a Li-ion battery, revealing a distinct
agglomeration of crystals with noticeable overlapping between
individual crystallites. This crystal conguration is inherently
challenging to analyze due to the projection effects intrinsic to
the TEM technique. This study emphasizes the determination
of the optimal number of components (k) necessary to effec-
tively capture and map crystallographic orientations within the
dataset. By applying NMF with an optimized k = 8, the method
successfully delineates and clusters distinct crystallographic
orientations and phases.
Digital Discovery

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00071h


Fig. 4 Orientation mapping results and diffraction data analysis using Non-negative Matrix Factorization (NMF) applied to 4D-STEM datasets of
LMNO cathode materials of Li-ion battery. (a) Reconstructed orientation map over a 2 mm region, highlighting spatial variations in grain
orientations. (b) Quantitative comparison of orientation contributions across the dataset using various NMF algorithms, including PSNR, MDSI,
GMSD, SSIM values. (c) Selected diffraction patterns from filtered data (ePattern), corresponding to identified orientation clusters. (d) Processed
diffraction patterns after NMF decomposition, showing enhanced clarity for each orientation cluster.
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The integrity of the 4D-STEM dataset, characterized by well-
dened and distinct diffraction patterns, is paramount for
achieving accurate component separation. Fig. 4 demonstrates
the robustness of NMF, validated by quantitative image quality
metrics, in extracting and mapping structural features in
complex materials such as cathode materials, where lattice
parameters of different phases can be very close to each other.
The choice of k= 8 was guided by a systematic evaluation of the
trade-off between capturing essential structural details and
mitigating overtting. The PSNR values are consistently high
(mostly >40 dB), demonstrating that NMF reconstructions
retain ne diffraction features with minimal distortion. The
coherently high values are ranging from∼37 dB to∼57 dB, with
most above 40 dB. Such high PSNR values indicate that the NMF
reconstructions closely approximate the raw patterns while
preserving the high-frequency details that are crucial for iden-
tifying weak Bragg reections. Similarly, the SSIM scores are
very close to 1 (0.979–0.993), conrming excellent structural
similarity between NMF and raw patterns, which also demon-
strates that the structural information in the diffraction
patterns, particularly the form and relative intensity distribu-
tion of Bragg disks, is well preserved in the NMF outputs,
despite the denoising process. Meanwhile, the MDSI and GMSD
values remain low across all clusters, indicating negligible
perceptual differences. For the MDSI evaluation, the low values
(0.095–0.199) further support the conclusion that perceptual
Digital Discovery
differences between raw and reconstructed patterns are
minimal. MDSI is sensitive to contrast and luminance changes,
and the low deviations here suggest that NMF maintains
intensity relationships in the diffraction patterns. In parallel, in
terms of GMSD, with values consistently below 0.03, GMSD
conrms that the local gradient structures (edges and sharp
intensity transitions in diffraction spots) are highly consistent
between raw and reconstructed data. This metric is particularly
relevant for diffraction analysis, where preserving the sharpness
of Bragg disks is essential for accurate reciprocal space
mapping.

The visualization in Fig. 4 encapsulates the outcome of NMF
applied to the dataset, where diffraction patterns from various
sample regions are color-coded to represent distinct compo-
nents or orientations. Each region is associated with the most
representative diffraction pattern derived from the clustering
process, as shown in the bottom row of the gure (labeled 1
through 8). This mapping conrms that NMF differentiates
regions based on their structural similarity. The distinct colors
and their corresponding diffraction patterns further validate
that the selected k = 8 captures the essential crystallographic
orientations and phases in the sample.

Moreover, Fig. 4 underscores the critical role of dataset
quality in enabling accurate component identication. High-
quality diffraction patterns, characterized by sharp and well-
dened features, enhance the ability of NMF to discern subtle
© 2025 The Author(s). Published by the Royal Society of Chemistry
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variations in orientations with local disorientations. The
sensitivity of the model to structural and orientation features at
k = 8 ensures a precise balance between capturing intricate
details and minimizing noise. Consequently, this approach
facilitates meaningful and reliable orientation mapping,
emphasizing the synergy between advanced computational
techniques and high-quality experimental data.

Fig. 4 illustrates results from NMF applied to the ltered
dataset (via ePattern), while Fig. SI_7 shows unprocessed raw
data. Comparison with the raw dataset reveals the importance
of preprocessing: unprocessed patterns suffer from noise,
obscuring weak reections and complicating segmentation.
Filtering enhances diffraction spot visibility, reduces back-
ground, and improves both interpretability and clustering
accuracy.

NMF on the ltered data yields clearer, more consistent
reconstructions than on raw inputs. IQA metrics conrm this:
PSNR values (∼37–57 dB, mostly >40 dB) show reconstructions
approximate raw patterns while suppressing noise, SSIM scores
(0.979–0.993) indicate strong preservation of Bragg disk
features and low MDSI (0.095–0.199) and GMSD (<0.03) values
show minimal perceptual or gradient differences.

Filtered clustering maps display sharper domain boundaries
and better phase separation than noisy raw maps, directly
improving structural insight. Overall, dataset reduction, through
ltering and NMF, balances denoising with structural delity,
ensuring both visual clarity and quantitative reliability for tasks
such as strain mapping, orientation classication, and phase
identication. It is thus a prerequisite for extracting robust phys-
ical insights from 4D-STEM via unsupervised clustering.
Fig. 5 (a) Spatial mapping of overlapping regions identified by applying se
overlays highlight regions of significant overlap, with increasing threshold
(b) Magnified view of the boxed region in (a), showing the beam scanni
Corresponding thresholded cluster maps, where distinct colors indicate
second-highest cluster weight contributes to spatial complexity at cluste
scanning trajectory. The results demonstrate that overlapping regions
especially at the cluster boundary.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Identication of crystallite overlapping region

Fig. 5 demonstrates the application of NMF for the decompo-
sition of 4D-STEM data into spatial weight matrices corre-
sponding to individual clusters. This technique facilitates the
identication and visualization of regions exhibiting signicant
cluster overlaps by analyzing the ratio between the second
highest and maximum weights at each spatial position. Such an
approach provides critical insights into the spatial distribution
and interaction of clusters within the dataset.

In the context of NMF, where V = W × H encodes the weight
information for each cluster. Each element H(i, j) represents the
probability of a specic pixel belonging to a given cluster. By
reshaping H into k individual weight matrices (H1, H2, ., Hk),
each matrix corresponds to a unique cluster and captures its
spatial distribution as a 2D representation with dimensions (x,
y).

To evaluate cluster overlap, the method systematically
compares the maximum weight and the second-highest weight
at each pixel location across all clusters. A ratio is computed as
second weight/rst weight, with thresholding parameters
ranging from 75% to 95% to delineate regions where the
second-highest weight contributes signicantly. This enables
the detection of areas where clusters are not well-separated,
highlighting potential overlaps.

Fig. 5a illustrates the structure of H, represented as a matrix
with dimensions (k, x × y), where k is the number of clusters
and x × y represents the attened spatial dimensions of the
dataset. For each spatial position (x, y), a corresponding weight
vector inH indicates the likelihood of that position belonging to
each cluster. For instance, if H(1, 1) = 0.5, it signies that the
cond-weight thresholds of 75%, 80%, 85%, 90%, and 95%. Color-coded
s represented by red (75%), orange (80%), yellow (85%), and blue (95%).
ng trajectory from point 1 to point 4 across an overlapping region. (c)
contributions from different clusters. These maps illustrate how the

r boundaries. (d) Diffraction patterns at points 1–4, extracted along the
can be decomposed into two or more distinct diffraction patterns,
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rst diffraction pattern has a 50% likelihood of belonging to the
rst cluster, while H(k, 1) reects the probability of the same
diffraction pattern belonging to the k-th cluster.

Following the reshaping of H into individual cluster weight
matrices, Fig. 5b displays these matrices (Cluster1, Cluster2, .,
Clusterk), each showing weights specic to a single cluster.
Threshold values of 75%, 80%, 85%, 90%, and 95% are applied
to identify regions of signicant overlap. The corresponding
spatial regions are then visualized using color-coded overlays to
represent varying degrees of overlap.

In Fig. 5c, the resulting map highlights regions of cluster
overlap based on the second-weight thresholding. Different
colors denote the degree of overlap, with red (75%), orange
(80%), yellow (85%), and blue (95%) representing increasing
thresholds. This visualization clearly delineates areas where the
second-highest cluster weight plays a signicant role, providing
critical insights into the spatial complexity and potential
interactions between clusters within the dataset. This section
highlights the application of NMF to decompose 4D-STEM data,
resolve cluster overlaps using second-to-maximum weight
ratios, and visualize spatial interactions through color-coded
maps.

As shown in Fig. SI_8, the results in Fig. 5 highlight that pre-
processing, through denoising pre-treatment, is an indispens-
able step in the workow. It suppresses noise, preserves mean-
ingful secondary contributions, and enables the decomposition of
overlapping diffraction patterns into distinct components. This
treatment transforms ambiguous boundary regions into valuable
sources of information, thereby allowing a more robust and
physically meaningful analysis of structural complexity.
Comparing NMF results with the raw dataset

To assign each input dataset element to its corresponding
diffraction cluster based on its index via NMF algorithm, the
computed matrix H provides critical information about cluster
membership. Specically, for each column in H, H(k,j) > Hij for
all i s k, this indicates that the input data point Vj belongs to
the k-th cluster.40 Furthermore, the computed matrix W repre-
sents the cluster centroids, where the k-th column corresponds
to the centroid of the k-th cluster.40 Consequently, each
diffraction pattern in the original dataset can be uniquely
associated with a specic cluster index.

For instance, if H(1,1) > H(i,1) (i = 2, 3, 4, ., k), this indicates
that the rst diffraction pattern, located at position (1, 1) in the
original dataset, belongs to the rst cluster. Using this
approach, all diffraction patterns associated with a given cluster
can be identied and subsequently organized into a 3D array,
where each layer corresponds to an individual diffraction
image. For example, if there are N diffraction patterns of
dimensions 512 × 512 in the rst cluster, the resulting array
will have dimensions 512 × 512 × N.

To analyze these diffraction patterns further, the mean pixel
intensity can be computed at each position (i, j) across all
images in the cluster. This involves averaging the pixel values at
position (i, j) across all NN diffraction patterns. Mathematically,
the mean intensity at position (i, j) is given by:
Digital Discovery
Averageði;jÞ ¼
1

N

XN

r¼1

Irði; jÞ

where Ir(i, j) is the pixel value at position (i, j) in the r-th image.
Similarly, in the results of NMF, the element with the

maximum weight in each column H(k, j) is identied. This
maximum weight is then used to scale its corresponding
column W(i, k). The resulting products are employed to recon-
struct the diffraction pattern for the current clustering k. This
process is repeated for all diffraction patterns within the current
clustering, yielding a new diffraction pattern that encapsulates
the characteristic information of that clustering.

Returning to the original dataset enables a comparative
analysis between the initial orientations and the NMF results
(see in SI). This comparison not only validates the proposed
method but also reinforces its effectiveness (Fig. 4). Further-
more, it contributes to a deeper understanding of material
characterization within the framework of clustering analysis.

Conclusion

In this paper, we have demonstrated a robust and systematic
approach to determining the optimal number of components
(k) in non-negative matrix factorization (NMF) for the analysis of
4D-STEM datasets, emphasizing the critical interplay between
data quality, clustering outcomes, and computational effi-
ciency. Through the application of various image quality
assessment (IQA) metrics, including PSNR, MDSI, GMSD, and
SSIM, our analysis highlights how the trade-off between
reconstruction delity and model complexity can be effectively
managed to achieve an optimal k value, with k = 8 striking the
right balance between capturing essential data features and
avoiding overtting.

The integration of unsupervised multi-clustering strategies
is pivotal in this context, as it facilitates a nuanced under-
standing of overlapping cluster structures inherent in 4D-STEM
datasets. By analyzing spatial weight matrices and applying
threshold-based visualization techniques, this study identied
regions with signicant overlap, thus enabling the identica-
tion of interaction zones and structural patterns within the
data. These insights provide a more granular perspective of
cluster distributions and inter-cluster relationships, which are
crucial for rening decision-making processes in NMF-based
analysis pipelines.

Moreover, this study underscores the importance of data
preprocessing in enhancing the robustness and interpretability
of unsupervised clustering results. Three preprocessing
methods, raw data, mean function, and ePattern, were evalu-
ated, with the ePatternmethod yielding themost consistent and
reliable outcomes by signicantly reducing noise (lower NSD
values) and removing low-variance features. This demonstrates
that high-quality datasets not only improve the stability of NMF
results but also enable more effective multi-clustering strategies
by focusing on meaningful data patterns.

Decision-making strategies in this study were further
strengthened by employing IQA metrics as quantitative tools to
guide the determination of k. The metrics reveal that while
© 2025 The Author(s). Published by the Royal Society of Chemistry
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higher k values initially improve reconstruction accuracy, there
is a threshold beyond which additional components contribute
negligible quality improvements and risk overtting. This
informed decision-making approach ensures that NMF-derived
results remain both computationally efficient and scientically
interpretable.

In conclusion, our study highlights a comprehensive
framework that combines dataset preprocessing, unsupervised
multi-clustering, and decision-making strategies to optimize
NMF-based analysis of 4D-STEM datasets. By addressing over-
lapping cluster structures and leveraging data quality
enhancements, this methodology not only improves the
robustness and reliability of factorization results but also
provides actionable insights into complex structural properties
of cathode crystals in the 4D-STEM data. These ndings estab-
lish a foundational approach for future research leveraging
NMF in complex, multi-dimensional datasets and reinforce the
signicance of systematic preprocessing and decision-making
frameworks in achieving reliable and interpretable outcomes.
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