Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital
Discovery

W) Check for updates ‘

Cite this: DOI: 10.1039/d5dd00070j

I ROYAL SOCIETY
PPN OF CHEMISTRY

A property graph schema for automated metadata
capture, reproducibility and knowledge discovery

in high-throughput bioprocess developmentt

Federico M. Mione,

Ernesto C. Martinez®® and M. Nicolas Cruz Bournazou

@ Martin F. Luna,? Lucas Kaspersetz,

® Peter Neubauer, (2°

*xb

Recent advances in autonomous experimentation and self-driving laboratories have drastically increased
the complexity of orchestrating robotic experiments and of recording the different computational
processes involved including all related metadata. Addressing this challenge requires a flexible and

scalable information storage system that prioritizes the relationships between data and metadata,

surpassing the limitations of traditional relational databases. To foster knowledge discovery in high-
throughput bioprocess development, the computational control of the experimentation must be fully
automated, with the capability to efficiently collect and manage experimental data and their integration
into a knowledge base. This work proposes the adoption of graph databases integrated with a semantic

structure to enable knowledge transfer between humans and machines. To this end, a property graph

schema (PG-schema) has been specifically designed for high-throughput experiments in robotic

Received 19th February 2025
Accepted 10th June 2025

platforms, focused mainly on the automation of the computational workflow used to ensure the

reproducibility, reusability, and credibility of learned bioprocess models. A prototype implementation of

DOI: 10.1039/d5dd00070j

rsc.li/digitaldiscovery

1. Introduction

In the era of autonomous discovery,* high-throughput robotics
platforms integrated with liquid handling stations,** have
established the foundation for applying artificial intelligence
(AI) methodologies in bioprocess development. By increasing
significantly the amount of data generated, and the informative
content gained through automated parallel experimentation,*
these platforms have revolutionized the discovery process in
different areas, presenting new opportunities in biotechnology,
pharmaceuticals and bioengineering.**

Unfortunately, manual metadata annotation methods are
error-prone for these complex dynamic experiments, high-
lighting the need for an automated extraction system to scalable
feed machine-readable’ metadata from the workflow manage-
ment system (WMS) into a database schema which must be
specifically designed to enable knowledge discovery and
semantic understanding of data generation.®

As robotics facilities evolve over time,® experimental repro-
ducibility has lagged behind and remains a challenge.'®"* The

“INGAR (CONICET - UTN), Avellaneda 3657, Santa Fe, Argentina

*Technische Universitdt Berlin, Institute of Biotechnology, Chair of Bioprocess
Engineering, Berlin, Germany. E-mail: mariano.n.cruzbournazou@tu-berlin.de

(EST) DOL:

+ Electronic supplementary information available. See

https://doi.org/10.1039/d5dd00070j

© 2025 The Author(s). Published by the Royal Society of Chemistry

the PG-schema and its integration with the workflow management system using simulated experiments
is presented to highlight the advantages of the proposed approach in the generation of FAIR data.

increasing complexity of cloud” and autonomous laborato-
ries,"" coupled with experimental control using model-based
computational methods,”*® exacerbates the difficulty of
ensuring consistent and reproducible results. Moreover, these
experiments are dynamic, meaning that in order to maximize
the information content of the generated data need to be
redesigned online. Without proper metadata collection and
format, it is impossible to reach experimental reproducibility,
even in self-driving laboratories (SDLs), thereby undermining
trust in the conclusions drawn from such studies.>*!

The key to ensuring findability, accessibility, interopera-
bility, and reusability (FAIR)* of experimental data lies in the
automatic capture of all metadata, which is essential for
answering elaborated queries to a knowledge base. Reproduc-
ible experiments and adherence to FAIR principles are crucial to
effectively accumulate, share and reuse knowledge and exper-
tise in high-throughput bioprocess development (HTBD).>*>*
This paper addresses these challenges by means of a property
graph schema (PG-schema) integrated with a WMS that enables
comprehensive and automated metadata capture throughout
the experimental process, thereby facilitating knowledge
discovery and enhancing reproducibility.

As highlighted by Reder et al.,® many laboratories still lack
robust database platforms designed to support the advanced
capabilities of AI systems. These platforms are fundamental for
storing the knowledge generated and fostering SDLs,

Digital Discovery

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00070j&domain=pdf&date_stamp=2025-06-30
http://orcid.org/0000-0001-8272-478X
http://orcid.org/0009-0006-3867-1354
http://orcid.org/0000-0002-1214-9713
http://orcid.org/0000-0001-9461-4414
https://doi.org/10.1039/d5dd00070j
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j
https://pubs.rsc.org/en/journals/journal/DD

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

facilitating transfer learning, and enabling the automated
generation of Al-ready data that is essential for autonomous
discovery.*® Providing metadata about the experimental dataset
in the form of linked data graph is a key step towards enabling
FAIR data. The ability to represent not only data but knowledge
with focus on semantic relationships and contextual metadata
is increasingly gaining attention” and is the very aim of
knowledge graphs (KGs). A KG uses graph-based data structure
to represent entities of a specific domain and the relationships
between them.

Although several knowledge representation models exist
(Section 2.1), labeled property graphs (LPGs) have been chosen
since they provide better support for highly interconnected
datasets compared to the relational model. On the other hand,
while a flexible storage of information in LPGs without pre-
defined formats or structures, could be considered a beneficial
feature for software developers, it may become challenging to
navigate and understand when the amount of data scales.
Therefore, a conceptualization is needed that defines and
delimits what these knowledge bases can represent and how
constraints are formalized.”® These constraints are enforced
through schemas, providing a formal structure to the data® and
establishing a common vocabulary for entities involved in the
domain of analysis. Formalization of a KG as a set of premises
grants machines inherent deductive capability for knowledge
discovery, enabling them to perform inference reasoning with
a level of precision, efficiency, and scale beyond human capa-
bilities.* The contribution of schemas to efficiently navigate the
graph following a predefined set of rules, improve the answer to
user queries.** For this reason, the integration of the PG-schema
with the workflow execution timeline, merging entities from
both platforms as a single source of knowledge, is a key enabler
for generating FAIR data in SDLs.

Computational workflows designed to control and monitor
the experimentation provide a modular framework for defining
dependencies between tasks, specifying inputs and outputs for
each of them. Through the integration of a WMS, the precise
documentation of how data has been generated is ensured,
facilitating data provenance capture®** and adherence to FAIR
data principles.***

Furthermore, computational methods are not entirely
reproducible just by code sharing, as they also depend on the
hardware used for execution, along with specific frameworks,
dependencies, libraries, and operating systems, including their
respective versions.** Detailed information of executed
processes and the computational environment used, promotes
experimental and computational reproducibility. Combining
provenance data from the WMS, experimental information
from the laboratory, and computational methods used into
a timeline-based KG structured by a PG-schema, constitutes
a significant contribution to the field.

Several approaches exist for integrating a WMS with the
storage of structured data and metadata. In ChemOS,*” a plat-
form for orchestrating laboratory software and hardware is
introduced, but relies on diverse files formats and an SQL
database to store the generated information. ESCALATE®®
provides an ontological framework for describing experiments

Digital Discovery

View Article Online

Paper

and managing data lake files across various Google Drive
folders, with a primary focus on material discovery field, which
differs significantly from the dynamic nature of experiments in
HTBD. Additionally, The World Avatar,* also oriented towards
material science, incorporates an ontological approach with
simpler workflows, presenting a promising method for
distributed SDLs. Still, none of the above mentioned methods
can provide a seamless integration between a WMS and
a schema-based relationship-oriented storage system that
facilitates knowledge discovery and ensures the reproducibility
of experiments in HTBD.

In this work, a methodology for modeling and prototyping
a PG-schema for automatic metadata capture in bioprocess
development is presented. The computational workflow for
online redesigning parallel experiments is implemented using
Apache Airflow® and represented as directed acyclic graphs
(DAGs). The WMS is dynamically linked to a Neo4j database
employing an LPG data model, with the defined schema serving
as the core of the proposed approach. Each task executed within
Airflow automatically saves its results and associated metadata
into the graph database, aiming to centralize all experimental
data in a unified knowledge base. To facilitate interaction with
the LPG, a web interface was developed, enabling users to create
the experimental design file for Airflow execution, monitor
experiments in real time, manage entities for metadata related
to laboratory devices, and query historical data. As a case study,
a simulated experiment involving 24 parallel E. coli fed-batch
cultivations was performed, replacing robotic devices with
a local emulator to replicate the cultivation dynamics.

The proposed approach demonstrates the pivotal role of
a PG-schema and the use of graph databases for integrating
diverse information sources from the laboratory into a KG in
order to share a semantic vocabulary and lay down foundations
for trust, reproducibility, knowledge discovery and reuse of
costly experimental data in HTBD.

The remainder of this article is structured as follows: Section
2 describes the relevant background for the study, Section 3
elaborates on the methodology adopted to model the repre-
sentation schema and the implementation of the prototype,
Section 4 introduces the simulation case study, in Section 5 the
significance of results are summarized, and finally, Section 6
presents the conclusions and final remarks of the presented
work.

2. Background
2.1 Knowledge graphs

KGs have emerged as an alternative of choice for representing
and managing common knowledge about the real world in
a formal and structured manner.* Despite the growing adop-
tion of KG, its definition is still a subject of debate, with several
interpretations ranging from specific technical definition to
broader perspectives that consider it a field of study on its
own."

Every graph, denoted as G = (N, E), is composed of a set of
nodes N and edges E, where each edge connects a pair—or
more—nodes, either in a directed or undirected relationship.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Depending on the specific domain, the nodes and edges can be
enriched with attributes and labels. Accordingly, the formal
definition of a KG is a graph-based data structure where the
entities of interest are represented as nodes and influence or
causal relationships between them as edges (Fig. 1).

The concept of KGs gained significant attention in 2012
when Google introduced it to enhance search results. Since
then, KGs have become increasingly important in fields such as
machine learning, natural language processing, and semantic
web technologies, where they serve as a backbone for organizing
large volumes of data.”® One of the key strengths of KGs lies in
their ability to encode complex relationships and semantic
descriptions in a structured format, which facilitates inference
and automates reasoning.

There are multiple data representations in the semantic web
field, each offering different approaches to data formalization
and modeling. Two of the most commonly used are the resource
description framework (RDF) and the LPG. While RDF provides
a formal structure that is well suited for automated knowledge
inference, LPG has gained popularity for its scalability and
flexibility in performing graph analytic tasks. Several studies
have attempted to link both models, either to leverage their
respective strengths*> or to enable interoperability from one to
the other.**** However, this integration is still not considered
a well-established standard. A summary of these two represen-
tations is presented in the next subsections.

2.1.1 Resource description framework. The RDF is
a language for describing digital resources,* widely used for
representing highly interconnected, linked data. It was
designed and standardized by the world wide web consortium
(W3CQ) as a basic layer for the semantic web representation in
a machine-readable approach.

The main goal of RDF is to create statements about resources
to express information with semantic meaning. An RDF state-
ment can be expressed by a uniform structure via triples, con-
sisting of three linked data pieces: subject, predicate and object.
Subject is the resource being described by the triple, object is

View Article Online

Digital Discovery

another resource related to the subject, and predicate describes
the relationship between them. A collection of RDF triples can
be seen as a directed graph where subjects and objects are
nodes, and predicates are represented as edges. Due to its
structure, one of the key features of RDF is to support
a complete atomic decomposition. In other words, detailed
information about a resource is expressed through additional
sets of triples.

To uniquely identify each component of the triple, RDF uses
internationalized resource identifiers (IRIs). IRIs are defined as
a superset of the uniform resource locator (URL) and have the
same structure with a scheme, path and fragment. Generally,
they are used for most popular ontologies in order to reuse
predefined vocabularies.

RDF enables the expression of statements about resources
through named properties and values. To further enrich these
statements, the RDF schema (RDFS) provides a set of reserved
words for defining classes and properties, which adds another
layer of semantics to the vocabulary used. For querying RDF
data, SPARQL* serves as the standardized query language, also
developed by the W3C.

Many graph databases that support RDF also have means for
reasoning over the stored knowledge. Several reasoning strate-
gies exist, all of these with the general purpose of generating
new statements (implicit knowledge) based on predefined RDF
statements (explicit knowledge). This inference process is
considered a pivotal feature of the RDF data model.

2.1.2 Labeled property graphs. Models based on LPGs also
use nodes and edges to represent the entities and relationships
between them in a directed graph. Unlike the RDF model, LPGs
allow for an internal structure for nodes and edges where
properties are modeled as key-value pairs. This approach is
closely aligned with object-oriented design (OOD) patterns,
where each object has a set of attributes that describe the state
of an instance. Furthermore, both components of the graph can
be labeled to organize data into a collection-like structure,

A) - B)
® °® o 0
° :°eo§:0:9:§.: :e
o 9% ¢ (3 o o -
:the‘ < 8890 :e :g .,;.3:;° Experiment

INCLUDES

Bioreactor

Measurement

Measurement

SAMPLE_FROM

Measurement

Fig. 1 Knowledge graph example. (A) Parallel experimentation including six bioreactors with measurements associated to each of them. (B)
Detailed view of one bioreactor from the parallel experimentation with three sampled measurements.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Table 1 Vis-a-vis comparison between resource description framework (RDF) and labeled property graph (LPG) data models

Aspect RDF

LPG

Data model representation

Schema definition RDF schema (RDFS) and OWL

Data format
JSON-LD)

Data integration
using IRIs

Graph storage and processing

processing
Reasoning Enables ontology-based reasoning, allowing for
inference to derive implicit knowledge
Scalability Vertical, focused on enhancing the hardware

capacity of a single server

Database implementation

Query language SPARQL

Use cases/applications
ontologies

similar to classes in OOD. This results in a more compact,
intuitive and human-readable data representation.

LPGs lack a formal knowledge representation such as the
entity-relationship model for relational databases. While
several schema representations exist,*”** most fail to provide
the required means to perform automated schema validation
and knowledge inference.

There exists a high number of graph database alternatives
that implement LPG data models. Neo4j is one of the most
popular® open source system written in Java with native graph
storage capability. Native graph databases are designed with
specialized engines highly optimized to support graph work-
loads and built-in graph functions.>***

In contrast to RDF, LPG do not have a unified query
language. However, there is an official standard known as graph
query language (GQL),”> which provides guidelines for data
manipulation and basic operations on property graphs. In the
case of Neo4j, the formal query language is Cypher,* a declar-
ative language based on pattern matching. A comparative
summary of the two data models is provided in the Table 1.

2.2 Graph versus relational databases

The increasing complexity and volume of generated informa-
tion demand new approaches for its organization and pro-
cessing, especially in contexts where the relationships between
data are as important as the data themselves.

This challenge underscores the need to develop alternative
storage models to traditional databases, whose tabular

Digital Discovery

Subject, predicate, object triples

Uses standardized data formats (XML, Turtle,

Easy integration with external data sources

Does not support native graph storage or

Allegro Graph, Blazegraph, Dgraph, Apache Jena

Semantic web, linked data, integration with

Nodes, edges with properties and labels

No standardized schema (schema-less or
schema-flexible)

Custom serialization based on the specific
database implementation

No native data integration. A linked data
approach is viable

Supports native graph storage and native graph
processing

No native reasoning capabilities. Extra tools
needed

Horizontal, oriented to increase the number of
servers through a distributed approach with
load balancing

Memgraph, TigerGraph, Neo4j
Gremlin, Cypher

Big data analysis, social networks, complex
graph traversal queries

structure presents limitations in representing complex and
dynamic relationships.* Although the term relational database
suggests that this type of system is inherently suited to handling
relationships, in practice, this is often not the case, especially
when queries involve multiple relationships (or hops) across
tables, where both performance and semantic clarity tend to
degrade significantly as more metadata are involved in the
answer.>

One of the main reasons for this limitation lies in the way
relationships are represented, which reduces their semantic
richness and can only be reconstructed through an additional
application layer. However, when relying solely on the database
structure, it becomes difficult for an AI agent to process and
interpret these connections effectively.

On the other hand, a graph database with native processing
capabilities using index-free adjacency can directly reference its
adjacent (neighboring) nodes, meaning that accessing rela-
tionships and related data is essentially a memory pointer
lookup.®® As a result, native graph processing time becomes
proportional to the amount of data processed, rather than
increasing exponentially with the number of relationships
traversed or hops navigated.

Consider a simple example in the specific domain of interest
where an experiment has only one responsible person. Fig. 2A
presents the two tables corresponding to the relational model,
in which the association is established through a foreign key
(FK). In this schema, the only way to infer the relationship
between Person and Experiment entities is through the property
name (IdResponsible) chosen arbitrarily by the database

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper
A) Person Experiment
+ Id: int PK |¢ FK + Id: int PK
+ FirstName: string + Type: string
+ LastName: string + Date: datetime
+ NIC: string + IdResponsible: int FK
B) Person Experiment
+ Id: int PK + Id: int PK
+ FirstName: string + Type: string
+ LastName: string + Date: datetime
+ NIC: string
Responsible
FK2
+ Id: int PK

+ IdPerson: int FK1
+ IdExperiment: int FK2

Expe;gnt

) \
[

\ RESPONSIBLE
+ Id: int + Id: int

+ FirstName: string
+ LastName: string
+ NIC: string

+ Type: string
+ Date: datetime

Fig.2 Comparison between relational and graph database models for
Person and Experiment entities with the Responsible association. (A)
Relational model for one-to-many relationship. (B) Relational model
for many-to-many relationship. (C) Graph database model.

designer or developer. However, such representations are
insufficient for AI agents, as they lack the contextual richness
required for reasoning or inference. Extracting meaning from
a fragment of an attribute name provides little clarity about the
underlying relationship between entities.

To mitigate this, it is possible to explicitly design the rela-
tionship—typically in the case of many-to-many associations
—Dby creating a dedicated table to store the links between enti-
ties (Fig. 2B). In such a case, the semantics of the relationship is
preserved; however, retrieving the related data requires two
JOIN operations—links between tables—, which become
increasingly inefficient when navigating three or more rela-
tionship hops.

In contrast, Fig. 2C illustrates the same scenario modeled in
a graph database. In this approach, the Person and Experiment
entities are represented as nodes, and their relationship is
explicitly defined through a labeled edge that indicates the type
of connection. The use of these structures, like subject-predi-
cate-object in RDF triples, significantly enhances the ability of
AI agents to reason over data. This representation not only
preserves the semantics of the relationships but also enables
more expressive and efficient queries, facilitating data analysis,
inference processes and contextual interpretation by both
humans and AI agents.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

3. Methodology

The main objective of the proposed approach is to drastically
increase experimental reproducibility, knowledge discovery,
and to foster the generation of FAIR data in SDLs. Achieving
reproducibility demands a comprehensive understanding of the
underlying experiment and its provenance. KGs are essential for
understanding the context of the experiment and through the
WMS, traceability of events and actions are also part of the
represented knowledge.

The foundation of the proposed data model lies in ensuring
data traceability at each stage of the experimentation process
and storing rich metadata, including hyperparameters in the
computational workflow established to control the experiment
execution. Through the definition of a PG-schema, a common
structure is introduced for the storage of HTBD data, enabling
standardized data organization and supporting experiment
data interoperability.

By employing an LPG as a knowledge storage base with the
formal specification of its structure, the obtained data can be
enriched with semantic and descriptive metadata. This
contextual information provides a better understanding of the
experimental design and execution, thereby facilitating subse-
quent analysis and supporting the transfer of acquired knowl-
edge. As a result, the experimental data become Al-actionable,
which is an essential building block for explainable machine
learning models.

The use of a WMS to orchestrate the computational tasks
involved in execution control is imminent to achieve traceability
and enable reproducibility of SDL experiments. Furthermore, it
is not possible to ensure the identical conclusions between
repeated executions of the same experiment without storing the
specific input/output of each task as a timeline related to the
execution of the different steps including all the metadata
related to the decisions made by software agents.

Apache Airflow is employed as a WMS* to handle the
execution of the tasks necessary to achieve a specific goal
throughout the experiment, creating the computational envi-
ronments required for each step by means of the instantiation
of docker containers.”®*® As shown in Fig. 3, the interaction
with robotic devices is carried out through the relational data-
base associated with the manufacturer's software for these
devices.

This work addresses the formalization of a common schema
or vocabulary for the experiments in a robotic platform and its
control component, associated with the computational work-
flow implemented in parallel and directly integrated into the
graph database, more specifically an LPG. To interact with the
database, a web interface has been implemented to facilitate the
access of different types of users to the knowledge stored, to
monitor the online progress of an experiment execution or to
query historical data.

The following subsections begins with a resume of the PG-
schema capabilities (Section 3.1), the data modeling process
with its different stages (Section 3.2), the formalization of the
PG-schema (Section 3.3), its subsequent prototyping in Python,

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper
Apache Airflow Lab DB
o
. Create computational workflow / algorithms @‘} Read measurements
- - 4 - G
Al Engineer / = o
System Designer Create config file // - Write feeding setpoints
/ N
= \\\
) - \ A
Set experiment / FAIR data Knowledge |
configuration/ [| generation Discovery ‘
Add metadata / WebApp /
Query data /
& o}_ﬁ?ﬁ?‘{roo N Read feeding Write
>, o N\ i
Yo ‘ PG-Schema oé,_k— % \ . setpoints measurements
Jes)
&)
ata
Charts e N v . /" Lab Responsible Y.
~—_ —
g : Robotic Facilities
Add metadata / S BecH Prepare
. Manage entities R ° cultivation /
L Check
- o facilities
Experimental Historical data /
Planner / Modeler Queries / Charts

Fig.3 Overall architecture. Apache Airflow interacts with the SQL database that coordinates laboratory devices, and stores data and metadata in
Neo4j graph database with a property graph schema. A web application is included to configure the experiment, manage nodes metadata and

query the knowledge graph.

and the integration with the Airflow orchestrator and the web
interface (Section 3.4).

3.1 PG-schema

One of the most promising approaches for specifying a well-
structured LPG is the PG-schema formalism* developed by
the Property Graph Schema Working Group of the Linked Data
Benchmark Council. This section provides a concise overview of
the formalism's capabilities.

In the context of relational and semi-structured data, the
definition of a schema typically involves two main components:
types and constraints. This structure is also applicable to graph
databases, and specially LPGs. Types define the structure of the
data and the datatype for each element, including nodes and
relationships. Complementary, constraints, specifies a set of
rules to maintain data consistency and integrity.

In order to define a schema, two alternatives are available:
STRICT and LOOSE. In the first option, a graph instance is
considered valid with respect to a schema if it is possible to
assign at least one type from that schema to each node and
relationship within the instance. In contrast, the LO0OSE keyword,
allows for creating nodes and relationship in the graph instance
without a formal type definition. Accordingly, a statement for
graph definition has the following structure:

CREATE GRAPH TYPE schemaNameType LOOSE | STRICT {}

To define nodes and relationships, the ASCII-art formatting
is adopted: () notation is used for node types specification, and

Digital Discovery

()-[1->C) foredge types. Available datatypes for properties
are aligned with GQL standards, including INT, FLOAT, BOOL,
STRING and DATE. An example for defining two nodes and one
relationship has the following structure:

// nodes definition

(personType: Person OPEN {name STRING,
birthdate DATE, OPEN}),

(cityType: City {name STRING,

OPTIONAL

zipcode STRING}),

// relationship definition
(personType) -[place0fBirthType: placeOfBirth
{0PTIONAL registration STRING}]->(cityType)

The opTIONAL clause indicates that a property is not
mandatory. Besides, the 0PEN keyword allows nodes to have
additional properties. Notice that the 0PEN modifier also applies
to labels, enabling an additional and arbitrary label to be
assigned to a specific node. Multiple labels can be designated
using the &-operator. Extra features include abstract types,
which define types that cannot be instantiated, and inheritance,
to reuse previously defined types.

The second component, although not always included in
definition languages, is nevertheless crucial: the specification of
constraints. Formally, a constraint is defined by the statement:
FOR p(x) <qualifier> ¢(x, y). Here, <qualifier> outlines the
expressed constraint using combinations of EXCLUSIVE,
MANDATORY, and SINGLETON keywords. Both p(x) and gq(x, y)
represent queries, with y denoting the tuple (yy, ¥, ..., ¥»)- The
keywords definitions are:

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

e EXCLUSIVE: it is not possible to share one tuple y by two
different values of x.

e MANDATORY: for every output x of p(x) there must be at least
one tuple y that satisfies g(x, y).

e SINGLETON: for each x there should be at most one y that
satisfies ¢(x,).

It is possible to use the keyword WITHIN inside a query to
describe what its output is about (Section 3.3). To simplify the
definition, an IDENTIFIER keyword is also available:

EXCLUSIVE + MANDATORY + SINGLETON = IDENTIFIER

The following constraint statement exemplifies the defini-
tion of a mandatory place of birth for a person, allowing at most
one city per person while emphasizing that a city is not exclu-
sive, as multiple individuals can be born in the same city:

FOR (p: personType)
MANDATORY SINGLETON pob WITHIN (p)-[pob:
place0fBirthTypel->(c: cityType)

Using these specifications it is possible to define participa-
tion constraints, denial constraints, key constraints, SQL-style
CHECK constraints, range constraints and other custom
constraints. For a deeper understanding of the formalism,
please refer to PG-schema® and PG-keys.*

3.2 Data modeling process

Despite the absence of a unified schema for designing graph
databases,” the data modeling process is generally standard-
ized and closely related to conceptual modeling in information
systems development.**** Both representations focus on estab-
lishing entities, their characteristics, and relationships between
them. The main difference among these processes lies in the
iterative nature of graph database modeling, which is essential
for refining its structure to align it with the specific domain. The
set of queries intended to be answered based on the database

View Article Online

Digital Discovery

content defines how knowledge is going to be structured using
the data model.**®

As show in Fig. 4, the first step for the data modeling process
begins with a thorough understanding of the domain. This
stage encompasses requirements gathering from different
sources through activities such as interviews with stakeholders
directly involved in the experimentation process, reviewing
documentation of the experimental protocols, technical reports
and publications, and finally extracting data from existing
subsystems, storage, repositories and devices.®® The aim is to
capture and define a common vocabulary for the most relevant
objects within the domain, thereby creating a knowledge base
that represents the data and its associated context (metadata).*®

With knowledge acquisition and collaboration of domain
experts, it is possible to define the competency questions,* also
referred to in the literature as uses cases. The specification of
these queries is a key enabler for identifying the main entities
(nodes) and establishing connections between them. These
queries serve as a description of what the knowledge base is
expected to answer, therefore, constituting a testing indicator
for the generated data model as the main result of each
iteration.

The next step focuses on modeling the entities and rela-
tionships with their properties, generating an initial whiteboard
sketch of the data model. A graph data model by itself contains
no data, however, it is crucial as it defines the names for labels,
relationship types, and properties to be used when the graph is
created and instantiated by an external application.

The iterative cycle involves testing the generated model
against the defined questions. This requires creating an
instance model for the proposed nodes with dummy data, and
performing the corresponding Cypher queries to evaluate
effectiveness and performance. From this point, the iteration
resumes with new entities, relationships or properties added to
the data model to account for missing responses or partially
answered queries. Additionally, as the data scales, it may be

ORNO

Domain
Analysis

Competency

Questions Model

Graph

Refactor Model

Queries

DATA MODELING
STEPS

Data .

\

Instance |

Implementation Integration

PROTOTYPING
STEPS

Fig. 4 Methodology steps for data modeling and prototyping a graph database.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Table2 Competency questions divided in two categories. The first set
of queries refers to a single experiment whereas in the second to
multiple experiments. Fluo-RFP: red fluorescent protein; DOT: dis-
solved oxygen tension; run ID: refers to a set of parallel experiments

In reference to a single experiment:

#1 Which were the computational methods implemented to control
the last experiment performed?

#2 Who were responsible for the last experiment where the objective
was strain screening?

#3 Which values were used for the model parameters to calculate the
feeding profile in the fifth iteration of the workflow for the
experiment with run ID 623?

#4 Which devices were used to analyze the samplings taken in the last
experiment performed?

#5 Which computational environment was used for the initial
parameter estimation executed in the experiment having the run ID
7247

#6 Which protocol was followed to obtain the acetate concentrations
from samples in the last experiment?

In reference to multiple experiments:

#7 From the last 5 experiments aimed at maximizing biomass, in
which bioreactors did the DOT measurements reach values below
20% for 5 consecutive samplings at any given time throughout the
cultivation?

#8 Which are the bioreactor and the experiment ID where the cell dry
weight (CDW) had reached the highest value in gram per liter using
the” E. coli BL21(DE3)” strain?

#9 Which experiments were controlled using the macro-kinetic growth
model published in the paper Anane et al.?**

#10 How many experiments did the person “John doe” perform as
responsible in the role “laboratory_experimentation”?

#11 How many bioreactors used strains containing the plasmid “pET28-
NMB2-mEFGFP-TEVrec-(V2y)15-His?”

#12 Which were the model-based state predictions variables at
induction time in the last two experiments preformed aiming to
maximize the product Fluo-RFP?

necessary to carry out graph (re)factorization to achieve optimal
performance for the defined use cases.

The Neo4j database offers indexing capabilities to ensure
performance at query filtering. Therefore, it is important to
consider this potential, to reformat the graph for the next iter-
ation. When no more iterations are needed and a concrete data
model is achieved, the graph formalism with the correct data-
types for properties and constraints explicitly indicated
becomes the expected outcome of the complete data modeling
process.

The domain of this study has been extensively addressed and
discussed in Mione et al.,’” and is further elaborated here in the
case study presented in Section 4. The competency questions
derived from the domain analysis process are shown in Table 2.

These questions are categorized into two main types: there
are queries that can be answered based on data and metadata
from a single experiment, whereas other queries are designed to
extract knowledge from multiple experiments. It is considered
relevant to differentiate these groups, because the second group
of queries is considered transversal (as they traverse the entire
database) and provides a strong justification for the use of
graph databases over relational ones. This is based on the fact

Digital Discovery

View Article Online

Paper

that graph databases allow for filtering operations to be per-
formed directly with the database engine rather than through
data processing using a programming language as would be
necessary when using a traditional database.

The following entities could be identified from the list:
Experiment, Person, Objective, Bioreactor, Strain, Plasmid, Work-
flowNode, ComputationalMethod, ComputationalEnvironment, Fee-
dingSetpoint, Measurement, ModelParameters, ModelState, Model,
Device and ProtocolTask. Furthermore, based on the protocols of
the experimentation process, two more entities were identified:
FeedingConfig and InductionConfig. The outcome of the data
modeling process which is needed to provide a formal definition
of the graph is presented in the next section.

3.3 Knowledge representation and formalization

The proposed schema for storing knowledge using an LPG is
defined through the data model presented in Fig. 5, by
following the guidelines established for a PG-schema and its
predecessor PG-keys, with the complete definition provided in
the schema.pgs file of the public repository.

It is essential to highlight that the main objective of the
presented model is to encompass the computational processes
carried out for controlling and monitoring automated experi-
ments. In the future, it should be extended to account for all
tasks and protocols involved in the experimental workflow
execution,® with special reference to the different microorgan-
isms and robotic devices available in a laboratory.

To begin with the formal definition, it is mandatory to
specify the name of the schema and the type of graph. In this
context, the STRICT type is selected to ensure that an instance of
this graph remains valid only if all its entities and relationships
can be associated to at least one entity type or relationship type
defined within the schema.

The Experiment node constitutes the first definition, incor-
porating properties like the identifier, start time, and duration
horizon with their units. In accordance with PG-schema
guidelines, the possibility of adding extra properties to this
node is indicated by the 0PEN clause. Therefore, the initial
definition is structured as shown in Table 3.

Subsequently, six relationships are established to link other
entities with the Experiment. The first one connects with the
Objective node and includes information about the name and
description of the overall objective of the experiment. The
second one, describes the relationship with a Person respon-
sible for its execution. Several relationships between Experiment
and Person may exist with different roles (property of the rela-
tionship), such as supervisor, modeler, planner, or others. The
schema formalization for these two relationships can be seen in
Table 4.

The third relationship corresponds to the general Fee-
dingConfig profiles in all the bioreactors that made up the
platform, specifying parameters like feeding pulse frequency,
minimum and maximum volume, substrate concentration, and
their units. Additionally, the InductionConfig is stored in
a separate node where its configuration with the necessary

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

View Article Online

Paper Digital Discovery
///,4\\\\
/ \ -
/ \ y R
[. . / \
| Objective £ \ _—
\\\ / \\ Person | /// \\\\
/
_/// A [Feeding]
f /X\\//// \\ Config | B
& / =N
S) / y SN =
& T / \ ~
g’ @& \\\‘7//// ' /// N\
© 5 Induction
% Config Strain
/
(] /
- \\ \‘7/// ey %5 /V\\ J
g y R g
Q 4 —
=3 T
c \ N\
] (Experiment ! INCLUDES Bioreactor | ////' N
= \ / — — \ J=uses—f Plasmid \
5 \ / y / DN ¢e® . / asmi |
% 0 - y / \ \/? " / .. /
= [. \ .
-:g // \ (Computational| | Feeding \ L 54 & /
b z / \ Environment / (Setpoint ,\9*’ e o
%) i Computational| \ / & *
S 9 Method \ / & =
£ 2 | T - & z e
g 2 N / > ~/ =z y ~
o > y \ a4 ? R
o E A \ - // \
= 2 [Model N { DV \
S State \ —> evice ‘
g F 5 & | TAKEN_FROM—>{ /
o 'z Q &L \y/~\ Measurement r \ /
© S £ S L / AN /
o] = 3 & e 4 ~———
= = ~ & y t%}
S = I <5 S W
B o \o ~o,
. g 6. / \
2 — e N — ~/ \
E // \, 4 // \ / \\\ // \
° / / b / \ [Protocol
S Workflow | [Model | [Task
% \ Node /r——————ESTIMATES———————»K Paranateran| PART_OF———»(Model) ¢ //
R \ \ / \ 2
= / \ / \ / _//
= /
. 4 \\// - o
DEPENDENCY

Fig. 5 Data model for a property graph schema.

(cc)

details is provided, including induction time, concentration
value, units, and stock used.

The fifth relationship links the Experiment node to the
Bioreactor node, detailing metadata about the Strain and the
associated Plasmid used in each of them, both represented as
linked nodes. Several bioreactors may be included in a single
experiment as the robotic platform allows for parallel

Table 3 PG-schema graph definition with one example node

// graph definition
CREATE GRAPH TYPE
HTBDComputationalWorkflowGraphType STRICT {

// nodes definition
(experimentType: Experiment {run_id INT,
start_time DATE, horizon FLOAT,

horizon_unit ENUM("h", "m", "s"), OPEN}),

© 2025 The Author(s). Published by the Royal Society of Chemistry

experimental processes. Finally, there is the “has_computatio-
nal_workflow” relationship, which must initialize a Work-
flowNode named “start” to begin the execution of an
experiment. This relationship may include several parameters
for workflow definition, such as the number of iterations to
execute, start time of the first iteration, time elapsed between
iterations and others. As execution progresses, nodes related to
computational tasks are dynamically attached to the graph
database, based on task dependencies specified in the compu-
tational DAG defined in Airflow. To achieve reproducibility,
each WorkflowNode is optionally linked with the corresponding
ComputationalMethod and ComputationalEnvironment. The
association of these nodes is not mandatory, allowing for the
definition of Airflow empty operators, which perform no task, or
time sensor operators, which pause the execution for a specified
time window. As a result, these special Airflow operators do not
require a computational setup to be designated.

In the specific case of closed loop experimental re-design
operation, four special nodes are identified as outcomes of

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Table 4 Examples of PG-schema relationships

// relationships definition for experiment node

(:experimentType)
-[designedForType:

(:objectiveType),

DesignedFor]->

(:experimentType)
-[responsibleType:
(:personType)

Responsible {rol STRING}]->

each applied computational method and subsequently con-
nected to the workflow node executed. The first node, called
ModelParameter, indicates the results obtained from the model
parameter adjustment process as nhew measurements are
received from sample processing; the second node, ModelState,
stores the states predicted at different times by the model for
each bioreactor until the end of the experiment; the third node,
FeedingSetpoint, is obtained for each bioreactor during the
optimization task which is part of the experiment redesign
pipeline; and lastly, new Measurement nodes for each bioreactor
are processed and dynamically added to the graph, specifying
the ProtocolTask followed and the Device used. The ModelState
and ModelParameters nodes are associated with the corre-
sponding Model node, which contains the properties name,
description, and optionally the digital object identifier (DOI).

For this type of graphs, all relationships are unidirectional. If
a bidirectional representation is required, two separate rela-
tionships with opposite directions between the same pair of
nodes must be created.

Several formalized constraints according to the adopted
guidelines are presented in Table 5. These encompass keys,
cardinalities and other specific requirements including the
mandatory assignment of the name “start” to the task_id
property of the first node in the workflow.

As mentioned before, the main contribution of this scheme
focuses around the computational workflow used to control the
execution of an experiment, predominantly expressed through
the recursive relationship “dependency” on WorkflowNode
entity. For a more comprehensive understanding of the data
model, Fig. 6 presents the instance model generated with
limited test data for the aforementioned use case, covering

Table 5 Examples of PG-schema constraints

// keys: unique run_id for experiments
FOR (e: experimentType)
IDENTIFIER e.run_id,

// cardinalities:
// responsible
FOR (e: experimentType)
MANDATORY r WITHIN
(e) -[r:responsibleType] ->(:personType),

experiment has at least one

// other: first workflow node named "start"
FOR (e: experimentType)
MANDATORY wn.task_id = "start" WITHIN
(e)-[:computationalWorkflowTypel->(wn:
workflowNodeType)

Digital Discovery

View Article Online

Paper

three iterations of the same control process. The image depicts
a detailed view of the primary computational tasks executed by
the workflow nodes, illustrating the corresponding nodes for
each task type (extensively detailed in Section 3.4.3).

The complete definition of the proposed model can be
adapted, as its formulation is open. Other researchers may also
extend this model using the IMPORTS clause, which allows them
to inherit the existing formalism while also enabling the
rewriting of current formulation in the data model or the
incorporation of new entities and relationships associated with
the laboratory facilities involved and its specific experimental
domain.

CREATE GRAPH TYPE InheritedGraphType STRICT
IMPORTS HTBDComputationalWorkflowGraphType
{...}

3.4 Implementation and prototyping

To validate the designed scheme, a Python prototype was
experimentally implemented for an specific HTBD scenario at
the KIWI-biolab, Chair of Bioprocess Engineering, TU-Berlin.
The implementation, the subsequent integration with Airflow,
and the web interface created to interact with the corresponding
knowledge base are detailed in the following subsections.

3.4.1 Neomodel classes. An instance of the proposed PG-
scheme is implemented using the Neomodel library, which
serves as an object graph mapper (OGM) for the Neo4j database.
This tool is built based on the official Neo4j Python driver and
enables the definition of the classes (nodes), their properties,
relationships, cardinalities, and other constraints involved in
the data model. This subsection describes the created knowl-
edge base, which can be fully accessed from the model.py file in
the public repository.

The use of the OGM facilitates the interaction between the
programming language used and the graph database, making it
more accessible to developers.®® The queries can be executed
using Python's language style, resulting in data structures
known as Python objects. When CRUD (create, read, update and
delete) operations are executed, the OGM ensures data consis-
tency based on the defined model, allowing the action to
proceed without requiring any additional methods to be
implemented. These features introduce an abstraction layer
that provides a database-agnostic API. However, there are
instances where queries become highly complex and cannot be
performed through this Python-based interface.> In such cases,
the library incorporates the capability to run Cypher queries for
large volumes of data, using the database's native language to
handle these requests more efficiently compared to the OGM
alternative.

It is important to note that not all properties defined in the PG-
schema are present in the current implementation, as some
attributes were designated as optional. Additional attributes can
be added to certain classes that have room for their inclusion.
This also applies to the defined constraints, which cannot be fully
implemented explicitly due to limitations of the adopted library.
For instance, the definition of the first WorkflowNode with the

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

task_id: GetMeasurements_2

task_id: ParameterEstimation_2

Workflow
Node

Workflow

DEPENDENCY Node

DEPENDENCY ———>

name: VBA

name: QueryDB

NI 03L03X3
,Galnda*a

N

Computational
Method

Computational

Computational
Environment

Computational
Environment

type: DOT
)

name: Ks

Model

Measurement Parameter

S,
44uQ£ B
~“R0y,

exp_id: 19416
position: "A2"

Fig. 6

task_id attribute labeled “start”, or the relationship of the same
node to a single resulting type (Measurement, FeedingSetpoint,
ModelState, or ModelParameter). These limitations are present at
the model definition layer, but to fully enforce the PG-schema, the
safeguard implementation was included in the code.

Furthermore, with the aim of simplifying the implementa-
tion, the violation of constraints is not managed on the software
side. Only unique identifiers violation are considered, and in
cases where duplicates exist in the database, a random number
is concatenated, and the event is logged into the WMS. This log
can then be reviewed and managed by an administrator
through the web interface.

To achieve portable and reproducible development, docker
is used to create the instance of the Neo4j database with the
official image, and an extra container to execute the Neomodel
library. Both environments are defined as services in the docker-
compose.yml file of the repository.

The definition of the class and the
Experiment- Person relationship are presented as an example
of the implementation. To define a new node class, the

Experiment

© 2025 The Author(s). Published by the Royal Society of Chemistry

task_id: OnlineRedesign_2

Bioreactor

task_id: Prediction_2

Workflow Workflow

DEPENDENCY

name: AdamOpt

name: LinReg

Computational Computational

Method

Computational
Environment

Computational
Environment

type: DOT

Model
State

Feeding
Setpoint

FOR 3
R0t T o #

name: "Anane2017"
doi: 10.1016/j.bej.2017.05.013

Instance model detailing a single iteration of the computational workflow.

Neomodel Structured-Node class —or SemiStructuredNode if
it allows for additional unmodeled attributes— should be
extended. Subsequently, its properties are defined according to
the datatypes supported by the library, including
FloatProperty, DateTimeProperty, StringProperty, and
IntegerProperty. Within the definition of each property,
certain parameters can be specified to denote constraints
defined in the schema, such as uniqueness (unique_index),
mandatory status (required), or enumeration (choices).

Edges can be declared within the node wusing the
RelationshipTo keyword, specifying the destination node class
(remembering that relationships are directed) and the rela-
tionship name. Afterwards, it is possible to establish the
cardinality constraints as a parameter of the relationship,
including One, OneOrMore, ZeroOrQOne, or ZeroOrMore. If the
relationship has its own properties, a new object must be
defined by extending the StructuredRel class and specifying
the attributes and datatypes, similarly to node properties. In
Table 6, ExperimentPerson relationship includes the role

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Table 6 Neomodel code for the experiment node definition and
a relationship with a Person

relationship with properties definition
class ExperimentPerson(StructuredRel):
rol = StringProperty(required=True)

node definition
class Experiment (SemiStructuredNode):
properties
run_id = IntegerProperty(unique_index=True,
required=True)
start_time = DateTimeProperty(required=True)
horizon = FloatProperty(required=True)
horizon_unit =
StringProperty (choices=TIME_UNITS,
required=True)

relationships

objective = RelationshipTo("Objective",
"DESIGNED_FOR", cardinality=0ne)

person = RelationshipTo("Person",
"RESPONSIBLE", model=ExperimentPerson,
cardinality=0neOrMore)

feeding_config =

RelationshipTo ("FeedingConfig", "HAS",
cardinality=ZeroOr0One)

induction_config =
RelationshipTo ("InductionConfig", "HAS",

cardinality=ZeroOrOne)

bioreactor = RelationshipTo("Bioreactor",
"INCLUDES", cardinality=0neOrMore)

workflow_node =
RelationshipTo(”WorkflowNode”,
"HAS_COMPUTATIONAL_WORKFLOW",
model=ExperimentWorkflowNode,
cardinality=0ne)

attribute, and it is added as a model parameter of the defined
relationship.

3.4.2 Apache Airflow integration. Once the PG-schema and
its implementation are defined, their integration with Airflow®”
is needed. The information obtained during planning and
execution of an experiment must be automatically and
dynamically stored in Neo4j, either from the different files
generated during the process (see Mione et al.*’) or from the
initial configuration defined before the experiment is executed
(metadata.yaml).

With a focus on automation and controlled execution
through the computational workflow, different methods are
defined for storing data and metadata in a graph database. The
main structure is implemented through specific Airflow call-
backs, invoked upon different events during the execution
lifecycle of a node (Fig. 7). The four main events that trigger
these callbacks are detailed below:

e on_execute: represents the creation event of a node. The
function defined in this callback will be executed whenever
a given node's virtual environment is created, prior to the
execution of its specific task. It receives the node instance
context as a parameter, including predecessor tasks, initial
state, node type, task name, start execution time, and other
details.

e on_success: represents the successfully finished event of
a node. The callback defined for this event will be triggered only
if there were no errors during the entire execution of the node's
specific task. Similarly to the other defined events, it receives

Digital Discovery

View Article Online

Paper

the node instance context with all its information. Additional
entities are created within the graph database as a consequence
of the successful execution of the task (detailed on Section
3.4.3).

e on_failure: represents the event of an interruption of the
node execution due to an unsolved error detection. It receives as
parameters the node instance context and details of the asso-
ciated error. No additional entities are generated in the KG due
to inconsistencies in the computational method.

e on_retry: represents the event of a new execution call for
a given node due to a detected failure. This event will be trig-
gered if and only if this option is enabled for such node.

Each callback invocation demands some execution time
within the node. Consequently, if this task takes an unreason-
able time, it could significantly affect the metadata collected
regarding the node's execution time. However, any failure in
these callback functions will not impact the normal processing
of the node's specific task.

The execution of the task begins with the dispatch of the
Airflow executor, initiated by the scheduler. An instance of the
corresponding node (operator) is created, usually a docker
container or a Python virtual environment for executing simple
computational tasks. At this point, the first callback, on_execute,
is invoked. This callback is responsible for adding initial
information of the node into Neo4j, including start time,
execution status, task name, and other details. Additionally, it
assigns the precedence relationships of tasks defined in the
corresponding DAG for the computational workflow, based on
the information received in the callback context. Subsequently,
execution is returned to the node instance to perform the
designated task. If an error occurs, an on_failure callback is
invoked to record the end time, the failure status, and save an
error message in the node's properties. On the other hand, if no
errors occur, these parameters are recorded in the on_success
callback, along with the corresponding ”successful” status.
Whenever the node has a retry parameter defined, this value is
recorded in the graph database, and the retry count is incre-
mented by one for each attempted execution. The partial start
time of each attempt is stored in a dictionary to compute the
total execution time of the node across its successive trials.

This approach is particularly suited for the type of experi-
mentation addressed in this work, where experiment control is
executed at intervals of several minutes (10, 30, 60 minutes,
etc.), rather than in real time. If adaptation for real-time oper-
ation is required, it could similarly be implemented in the WMS
using Apache Airflow and the PG-schema with Neomodel.
However, an additional communication layer with IoT (internet
of things) devices would be needed, using Redis, MQTT, or
another message broker specifically designed for such connec-
tions, while maintaining parallel communication with the WMS
and Neo4j. The PG-schema and Neomodel implementation can
be extended to incorporate these new data structures based on
the data model presented in Section 3.3.

3.4.3 Computational execution nodes. Graph database
entities are generated dynamically as the Airflow execution of
the computational workflow progresses. Additional information
can be added based on the successful completion of the task,

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

(cc)

View Article Online

Paper Digital Discovery
Callback interaction)
e) «interface» «datastore»
:Airflow Executor :Node Instance -Callback ‘Neo4jDB
scheduler
dispatch ' ' '
execute i ' '
P ‘ .
on_execute ! '
P '
‘ add_initial_node_info |
<] reum .. gn
perform specific task . .
alt ' '
on_success _ ;
[result=success] > add_success_status > i
add_additional_nodes

e retun] >
[result=failure] on failure 1 :
= > add_failure_status |

»
return :
AORRREREEEEEEEEEEEEREE - !
alt on_retry ; i
- add_retry_status |
[retry=1] VD
go to perform task !
ST x :
return '
! X : !

Fig. 7 Sequence diagram for the integration of Apache Airflow callbacks with Neo4;.

depending on the computational method executed. The specific
details are outlined below:

e Start node: this is an empty node, meaning it does not
perform any task; rather, it serves as an execution trigger for
each defined workflow. At the end of the dummy execution, the
on_success callback loads the metadata.yaml file, which contains
information about the DAG definition and experimental meta-
data. Data related to the DAG is stored as properties of the
relationship between the experiment and the initial workflow
node instance in Neo4j. The remaining data includes details
about the duration of the experiment, feeding and induction
configurations, people who are responsible for planning and
executing the experiment, the objective, the definition of the

© 2025 The Author(s). Published by the Royal Society of Chemistry

bioreactor groups with the corresponding strains and plasmid
used as well as the specifications for the computational
methods implemented to control them. All of these metadata is
stored at the beginning of the Airflow execution to associate the
generated dynamic data with these prior metadata.

e Get measurements: this method queries the relational
database linked to the robotic devices software in the labora-
tory, where information is stored upon completion of analytical
sample processing. Therefore, it is responsible for retrieving
these new measurements for some state variables and creating
the corresponding nodes for each of them.

e Parameter re-estimation: as a result of completing this
specific task, different nodes for all model parameter types are

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

created, with properties indicating the type of parameter and
the assigned value. These nodes are associated with the work-
flow node entity in the corresponding iteration to achieve
traceability of model changes.

e Online redesign: several nodes descriptive of the feeding
profile used for each bioreactor are obtained by solving an
optimization problem implemented through this method. Each
node includes properties for the corresponding time and
feeding concentration volume for each pulse of the fed-batch
step until the end of the experiment.

e Model state predictions: at the end of this task, nodes cor-
responding to model state predictions for each bioreactor are
generated. Each node includes the type of measurement, the
future time for the prediction, and the predicted value until the
end of the experiment.

The implementation of the class to define all the available
callbacks can be found in the helper.py file, and its corre-
sponding invocation is included in the definition of each
Airflow node.

The current implementation considers a specific set of
Airflow nodes; however, the architecture is designed to be
extensible. Future expansions may include additional tasks,
such as a data preprocessing module. Given the heterogeneity
of data sources, arising from diverse devices, sampling
frequencies, and analytical techniques, a preprocessing layer
within the WMS could serve to standardize data structures.
Furthermore, an Al-driven agent could be employed to learn
from available measurement types and calibration settings,
enabling functionalities such as outlier detection, value
normalization, and automated inference of measurement units.

3.4.4 Web interface. Databases, regardless of their internal
structure, present an access barrier to stored information or
knowledge for individuals who lack the skills to use the asso-
ciated query languages.®® To address this issue, a web interface
has been developed to facilitate interaction with a graph data-
base for users who are not sufficiently proficient in the field. In
Fig. 8, a welcome dashboard with some information as
a summary of metadata previously loaded or past experimental
data is presented.

This interface allows users not only to query and retrieve the
necessary data for their analysis but also to add extra metadata
to certain entities. By employing a linked-data approach, users
can add references that enrich the information characterizing
an entity in the graph database. For instance, it is possible to
add the DOI of a reference article where a mathematical model
used for process simulation was defined, or the URL of
providing the technical specifications for a particular robotic
device.

The interface manages several entities related to experi-
mental and computational workflows, including Objective,
Person, Strain, Plasmid, Device, ProtocolTask, ComputationalMe-
thod, and Model. By properly managing all these entities, the
execution of a specific computational workflow is linked to the
corresponding metadata. The configuration of the experiment
can be predefined through a semantically structured section

Digital Discovery

View Article Online

Paper

that allows users to select and define groups of bioreactors, each
one involving a particular strain, or controlling them using
a specific computational algorithm, or specifying the different
people responsible for the experiment in their respective roles.
The result of the process is the metadata.yaml file needed by
Airflow to start the execution.

By incorporating information provided by human sources,
such as experimental design, configurations, conclusions, and
other manually added metadata, knowledge transfer from
humans to AI agents is enabled. Conversely, through the use of
graph visualization tools, combined with the presented schema,
knowledge transfer in the opposite direction is also facilitated.

Several commercial and freeware data analysis tools allow
Neo4j to be integrated either as an embedded web interface or
as an external application. Examples include Neo4j Bloom,*
ThornViz,” and KeyLines.” These tools enable users to navigate
and explore the knowledge base, identify relationships between
data points, and perform visual comparisons over the schema
within the graph, without requiring the implementation of
Cypher queries. This type of analysis is not feasible with rela-
tional databases, where information can only be retrieved
through explicit SQL queries in a tabular format.

In this work, the integration of an external visualization tool
into the web interface is left for future development. Never-
theless, as shown in the Results (Section 5), a visual interface
included by default in the standard installation of Neo4j is used.

The web component was developed using the Python Flask
framework,”” and the Datta Able Flask template to enhance
visual implementation and user experience. Information gath-
ered from the web sessions and authentication were fully
implemented within Neo4j, thus integrating FlaskLogin with
the scheme created in Neomodel, without the need for any
additional database. For a complete description of the func-
tionalities and associated source code, please refer to the web
folder in the public repository.

4. Case study

This section discusses the instantiation of the PG-schema and
the prototype developed through an in silico case study that
emulates an experimental setup used at the KIWI-biolab at TU-
Berlin.? The study involves the simulation of robotic devices and
their connection to the SQL database for an initial testing phase
of the PG-schema. Notably, the WMS has already been tested in
real fully automated experiments with three different algo-
rithms running in parallel,”” a groundbreaking achievement
that provided crucial insights. Based on this experience and
learning, the concept of LPGs has been developed and tailored
to overcome the previous limitations.

Furthermore, while the current study relies on in silico data,
it closely mirrors real experimental conditions, incorporating
noise in both the measurements and the sample values of
variables of interest. The use of an emulator ensures that the
developed system can be seamlessly tested in a real experi-
mental setup, validating its applicability in a real world

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Biolab

NAVIGATION

Last Month Exps.

@ Dashboard

258

o 3

| LastExperiments
) Matlab VBA control experimentation
3 Ravi\an experiment test
g Rari1ajw integration test
o

mMODE experiment

Fig. 8 Web interface with a welcome dashboard.

scenario. To replicate the dynamics of a fed-batch experiment,
a bioreactor model for E. coli cultivations is employed (based on
the ones presented in the literature’). The simulation frame-
work is designed to support parallel experimentation with 24
mini-bioreactors (MBRs), arranged in 3 columns and 8 rows.
This framework includes a MySQL database replica from the
robotics device software, enabling the WMS and the graph
database to interact with the experimental platform in a stan-
dardized manner, whether in simulation mode or during a real
HTBD experiment. The emulator reads the profile setpoints for
each MBR from the SQL database and using the current esti-
mated states of the bioreactors, simulates the subsequent steps.
The simulated data are then stored in the SQL database to
ensure readiness for WMS processing.

The parameters of the model used in the emulator are
chosen based on data from previous experiments, and the
overall experiment duration is set to 16 hours. Different initial
glucose concentrations are assigned to the MBRs, four groups of
six MBRs are then defined, each one controlled in a closed-loop
configuration.

In the emulator's experimental setup, dissolved oxygen
tension (DOT) measurements are sampled online every 2
minutes, while biomass, glucose, acetate, and the red fluores-
cent protein (Fluo-RFP) product, are obtained at-line every hour.
This setup simulates the real behavior of the robotic platform,
in terms of sampling constraints and analytical processing
delays. Each MBR column is sampled every 20 minutes due to
task scheduling constraints of the robotic facility, requiring
a total of 60 minutes to complete processing of all samples
taken from different MBRs. The subsequent at-line analytical
processing takes an additional 60 minutes, resulting in the first
measurement being written in the database 2 hours after the

© 2025 The Author(s). Published by the Royal Society of Chemistry

Total Experiments

— —_—

View Article Online

Digital Discovery

Users registered

31

—_—

Next experiment

experiment has begun. Feeding pulses are scheduled every 10
minutes, with a concentration of 200 g L™ and a minimum and
maximum addition volume of 5 uL and 150 uL respectively,
starting upon the event of total glucose consumption is trig-
gered, depending on the initial glucose level in each specific
MBR. Finally, the induction time is set to occur after completion
of the batch and fed-batch phases at 10 hours for all MBRs with
a concentration of 5 mM.

The computational workflow begins with the first feeding
profile calculation at time zero. Iterations are initiated after 2
hours when measurements become available, with subsequent
iterations occurring at one-hour intervals. Each iteration starts
by querying the SQL database to retrieve new measurements.
This new data is used to update the model parameter distri-
butions for each MBR group using the Variational Bayesian
Analysis toolbox.” The model controlling the operation is the
same as the one used by the emulator, but the exact parameter
values are considered unknown. Thus, wide prior distribution
are used for the model parameters and the initial states. As new
data become available during each iteration, the model
parameters are updated to better describe the bioreactors
operation. Based on the posterior distributions of these model
parameters, a new feeding profile is computed by solving an
optimization problem, and it is immediately stored in the SQL
database. Finally, the remaining part of the experiment is pre-
dicted by propagating the current states using the model and
the newly computed feeding strategy for each MBR.

In order to obtain the feeding profiles, an objective function
has to be defined. During the early stages of process develop-
ment, the information content of the experiment is deemed very
important. Generating different biomass profiles (which
involves having different growth rates) for the MBR is a good

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

(cc)

Digital Discovery

proxy for information content and is an interesting goal for the
experiment. However, important constraints have to be
considered to ensure experimental conditions that are relevant
for industrial scale. For example, a DOT value above 20% during
throughout the complete experiment is typically considered
necessary in aerobic cultivation processes. Thus, the optimiza-
tion problem to be solved is the maximization of the distance
between biomass profiles while maintaining the concentration

View Article Online

Paper

of DOT above the established threshold. By these a compre-
hensive exploratory experiment over the viable domain space of
physiological conditions is designed.

5. Results

Results obtained from a single experiment simulation are
illustrated in Fig. 9. The execution scheduled through Airflow

A) Workflow Management System

Aitow: suas; visie: s o (pds o @
Matiab_DAG

moo [Oowe Rumommn S i Zom A ocm Bamion vio

B) Web Interface

gluc

volume

Cumulated_feed

@ 19425
© 19426
® 19433
@ 19434
@ 19441
@ 19442

D) Knowledge Graph

Person

Plasmid

InductionConfig
Objective
 WorkflowNode

Start First Iteration

\ 4

Experiment

Final lteration Timeline

Fig.9 Results obtained from an experiment simulation with 24 mini-bioreactors (MBRs) organized in four equal-sized groups. (A) Apache Airflow
orchestrating computational workflows for each MBR group. (B) Web interface showcasing two screenshots: experimental design generation tab
and experiment monitoring tool. (C) Experimental results for one MBR group, depicting violations of the DOT measurement constraint of 20%
(left) and the exploration of the domain with different feeding profiles (right). (D) Neo4j Knowledge Graph timeline, beginning with the initial
nodes, followed by the first iteration capturing four measurements per MBR, and concluding with 80 measurements per MBR. DOT values are not
shown due to its high-frequency sampling. Color references for each entity are on the right-hand side.

Digital Discovery

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

(Fig. 94) is stored in the Neo4j KG. The timeline of the executed
computational workflow, the time spent on each task, and the
specific outcomes are available for inspection. This enables
complete traceability of the computational control imple-
mented for the experiment, ensuring full reproducibility.
Monitoring the experiment execution through the web platform
and a tab for generating the experimental design are shown in
Fig. 9B, where real-time filters can also be applied to focus on
the measurements related to certain bioreactors.

The plots illustrating the experimental results (Fig. 9C)
highlights how the different feeding profiles for the first group
of six MBRs explore the action space of the domain, maximizing
the distances among state trajectories. Due to the delay caused
by the analytical methods, the model and the optimizer are
always using data from one or two hours before, which may
result in a mismatch between the predictions and the real
values. This is particularly challenging for the optimizer,
leading to occasional violations of the DOT constraint in certain
MBRs. Once new data is available, the feeding profiles are cor-
rected and the constraints are hopefully fulfilled for the rest of
the experiment.

In Fig. 9D, the evolution of the Neo4j KG is illustrated as
successive executions of the computational workflow advances
over time. New nodes are generated to store information gathered
from the samples taken, indicating properties and relationships
for each of them, thereby ensuring FAIR data generation. This
specific case study depicts the sequence of measurements ob-
tained, excluding DOT values due to high-frequency sampling,
involving a total of 11 520 nodes for this variable type. Once the
last iteration has been completed, the 24 MBRs have each accu-
mulated 80 samples of the -corresponding state-related
measurements. One single experimental run of 24 MBRs over
16 hours cultivation time gives rise to a total of 62 127 nodes and
140 128 relationships, classified as shown in Table 7.

These results underscore the critical role of relationships in
data, effectively doubling the number of nodes instances required
to represent knowledge. Metadata in the form of relationships are
not clearly represented within a relational database approach, as
used by platforms like ChemOS or ESCALATE. This limitation
prevents the generation of Al-ready data and reduces the potential
for applying inference processes in knowledge discovery.

To demonstrate the exploratory analysis capabilities of the
proposed PG-schema and the power of graph databases, a Cypher
query was executed to analyze the knowledge captured regarding
DOT constraint violations (a measurement going below 20%).
Initial plot-based results (Fig. 9C) indicate that two MBRs have
breached this constraint at least once, including the MBR iden-
tified as #19441. Additionally, a deeper analysis provides detailed
insights about the timing (WorkflowNode) when the controller
detected the violation and the corrective actions taken to adjust
the feeding profile for the affected MBR. These findings are
shown in Fig. 10, where the violation was detected after 11 hours
of experimentation. The corresponding node, identified as
“get_measurements_10”, marks the detection event, and the
adjusted feeding profile is represented as a time vector in seconds
along with the cumulative feed volume.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Neo4j provides several engine-level functions, one of the
most notable being vector similarity, which is widely used in
recommendation systems. The comparison relies on the
Euclidean distance function, which outputs a floating-point
value between 0 and 1: values close to 1 indicate strong simi-
larity, while those near to 0 represent significant differences. In
this work, this feature is particularly valuable for comparing
a feeding profile applied to a MBR against a reference feeding
profile, specifically the mean one between all observed profiles
for that group.

The primary objective of this similarity-based analysis is to
identify a feeding profile that maximizes product yield (Fluo-RFP)
at the end of the experiment, near the mean values of all applied
profiles for that group. The evaluation metric is computed as the
product of the similarity score and the final Fluo-RFP concen-
tration. Fig. 11A presents the corresponding Cypher query and
Fig. 11B shows the table results, displaying the MBR ID, the
achieved product yield, and the computed comparison values,
sorted in descending order. In particular, the MBR with ID
#19425 achieves the highest comparative score. However, it is
important to highlight that while the MBR with ID #19441 attains
the highest productyield, its feeding profile significantly deviates
from the reference profile (Fig. 11C).

A comparison between a relational database (MySQL) and
a graph database (Neo4j), including a brief analysis focusing on
performance and query syntax can be found in the ESI7 file,
which relies on a database populated with 400 experiments,
each containing 24 MBRs.

Table 7 Results obtained from a single experiment simulation,
detailing the number of instances generated for graph nodes and
relationships

Node Instances
FeedingSetpoint 30600
ModelState 16 200
Measurement 13440
ModelParameter 1288
WorkflowNode 443
ComputationalEnvironment 116
Bioreactor 24
ComputationalMethod 4
Person 3
Others 9
TOTAL 62127
Relationship Instances
Calculates 30 600
Feeds 30600
Part_of 17 488
Predicts 16 200
Prediction_for 16200
Sample_from 13 440
Gets 13440
Dependency 442
Executes 232
Others 1486
TOTAL 140128

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

[{ec

View Article Online

Digital Discovery Paper
A) Cypher Query
1 // Get first DOT constraint violation detected by the controller
2 MATCH (br:Bioreactor)<«—(m:Measurement)<— (wn:WorkflowNode)<«[*]-(e:Experiment)
3 WHERE e.run_id=623 AND m.type = "DOT" AND m.value < 20 AND br.exp_id = 19441
4 WITH e, wn, br, m ORDER BY m.time ASC LIMIT 1
5
6 // Get controller action
7 MATCH p=(wn)-[rx..7]1—>(fs:FeedingSetpoint)—(br) WITH p, r, e, wn, br, fs, m ORDER BY fs.time ASC
8 RETURN wn.task_id AS Node, round((wn.init_time - e.start_time) / 3600, 2) AS ExpTime,
9 collect(fs.time) AS Time, collect(fs.value) AS Feed

B) Graph Result

Zz O
g 3
> 3
[
g 2
w

(95)
Experiment (1)

FeedingSetpoint (85)
Measurement (1

WorkfiowNode (7)

|-

Relationship types

[+ 179))| DEPENDENCY (6)

SAMPLE_FROM]
e
O
W sampLe_From (1) Jf GETs (1) |
Displaying 95 nodes, 179
C) Table Result
r T T T

|Node |ExpTime|Time IFeed
1 | | |
I

|"get_measurements_10

1
!

T T 1

11.1 |[14400, 15000, 15600, 16200, 16800, l7400,|[9.0, 18.5, 28.0, 37.5, 47.0, 56.5, 66.5, |
18000, 18600, 19200, 19800, 20400, 21000,[76.5, 86.5, 98.0, 109.5, 121.0, 133.0, 145|

21600, 22200, 22800, 23400, 24000, 24600,[.0 157. 174.5, 192.5, 210.5, 229.0, 248'

"

o

S 0
S 0
25200, 25800, 26400, 27000, 27600, 28200,[. 267. 285.0, 303.0, 321.5, 340.0, 359|
28800, 29400, 30000, 30600, 31200, 31800,|. 378. 399.0, 420.0, 441.0, 462.5, 484|
32400, 33000, 33600, 34200, 34800, 35400,[. S06. 528.0, 550.0, 572.0; 594.5, 6l7|
85<5; 708:-5; 731.5; 754|
39600, 40200, 40800, 41400, 42000, 42600,[. 1%1. 790.0, 802.5, 815.0, 827.5, 840'
S

852. 865.0, 877.5, 890.0, 902.5, 915|

~J

46800, 47400, 48000, 48600, 49200, 49800,[. 927. 940.0, 952.5, 965.0, 977.S5, 990|
50400, 51000, 51600, 52200, 52800, 53400,[. 1002.5, 1015.0, 1027.5, 1040.0, 1052.5|
54000, 54600, 55200, 55800, 56400, 57000,[, 1065.0, 1077.5, 1090.0, 1102.5, 1115.0, |
57600, 58200, 58800, 59400, 60000, 60600,[1127.5, 1140.0, 1152.5, 1165.0, 1177.5, lll
61200, 61800, 62400, 63000, &3600, 64200,|90.0, 1202.5, 1215.0, 1227.5, 1240.0, 1252|

64800] |.s, 1265.0, 1277.5] |
I I

2,
9, 0,
0, S,
S; 9;
36000, 36600, 37200, 37800, 38400, 39000,[.0, 639.5, 662.5, 6
S 5,
0, S,
0, b
0,

1
I

I I I

I I I

I I I

| | I

I I I

I I I

I I I

| | | 43200, 43800, 44400, 45000, 45600, 46200, |.

I | I

| | |

I I I

I I I

I I I

I I I

L 1 1

Fig. 10 PG-schema exploratory analysis from graph database results. (A) Cypher query identifying the moment when controller detects the first
DOT constraint violation and the corresponding corrective action. (B) Graph representation of the query results, illustrating the association
between the computational workflow of the controller, the DOT measurement, and the 85 nodes representing the adjusted feeding setpoints for
the mini-bioreactor with ID #19441. (C) Tabular results displaying the identifier of the computational node responsible for detecting the DOT
constraint violation, the experimentation time at which the node was executed, and the adjusted feeding profile, represented as a time vector in
seconds along with the cumulative feed volume.

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

(cc)

Paper

View Article Online

Digital Discovery

A) Cypher Query

x14.save_preproces .v' AND

| br, collect(fs value) \S feed

720.92
720.92,

N br.exp_id

(e:Experiment)-[*]—(wn: WorkflowNode)—)(fs FeedlngSetpoxnt —>(br:Bioreactor)

729.17, 737.42, 745.67, 753.92 7, 803.42, :
844,67, 852.92] AS referenceFeed, br, feed
(br)<«—(prod:Measurement{type: "Fluo_RFP"})¢«—(wn2:WorkflowNode{task_id:"get_measurements_14"})

U AS Bioreactor, round(prod.value) AS Fluo_RFP, vector.similarity.euclidean(feed, referenceFeed)
round(vector.similarity.euclidean(feed, referenceFeed) * prod.value,

br.exp_id IN [19425,

811.67, 819

AS Similarity,

4) AS Comparative ORDER BY Comparative DESC

B) Table Result

Bioreactor Fluo_RFP Similarity Comparative
19425 12313.0 0.000005383599727792898 0.0663
19434 10652.0 0.0000033434555462008575 0.0356
19433 12489.0 0.0000016787022332209744 0.021

19426 11060.0 0.000001186554641208204 0.0131
19442 13173.0 4.0322430550077115¢e-7 0.0053
19441 14149.0 3.320657810945704e-7 0.0047

C) Comparative Plot

1000 —— MBR 19425 (comp=0.0663)
MBR 19426 (comp=0.0131)
—— MBR 19433 (comp=0.0210)
g 80 ' MBR 19434 (comp=0.0356)
= MBR 19441 (comp=0.0047)
Z 800 MBR 19442 (comp=0.0053)
8 —— Reference (Mean)
el
Q
T 400
b~}
E
3
200
0

Time [h]

8 10 12 14 16

Fig. 11 Use of Neo4j engine-level functions for similarity-based analysis. (A) Cypher query leveraging vector similarity functions to compare
a reference feeding profile, defined as the mean observed profile, with all the applied feeding profiles for the group of mini-bioreactors (MBRs).
The final comparative score is computed as the product of the similarity value and the Fluo-RFP concentration at the end of the experiment. (B)
Table presenting the results obtained, highlighting the MBR with identifier #19425 as the one that achieves the highest comparative value. (C) Plot
using a color scale to indicate the comparative value and the mean profile.

6. Concluding remarks

The use of graph databases as flexible storage for both data and
metadata has proven to be fundamental in enabling autono-
mous knowledge discovery and data analysis across various
domains. In the context of HTBD, the generation of a KG to link
experimental data with the corresponding metadata based on
the proposed PG-schema is considered a cornerstone for
deploying powerful and scalable SDLs.

© 2025 The Author(s). Published by the Royal Society of Chemistry

The proposed PG-schema has been designed based on the
integration of an experimental-computational workflow chore-
ographer (Apache Airflow) with a graph-based database engine
(Neo4j) that use property graphs as semantic models. This
allows for comprehensive digital encoding of all relevant met-
protocols, computational methods,
strains, process conditions, models, software versions and
hardware configurations. The case study presented demon-
strates that the redesign of feeding rates is aligned with the

adata about devices,

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

experimental objective established, with all metadata captured
in the KG, thus fostering Al-Ready data.

The decision of resorting to Airflow and Neo4j platforms
were driven by their open-source nature, scalability, and the
robust support and comprehensive documentation provided by
their development teams. Still, no generality or flexibility has
been compromised through the use of both Airflow and Neo4;j,
since the framework leverages the use of Docker containers to
define all tasks involved in the computational workflow,
enabling migration with minimal modifications to the DAG
definition. Similarly, for Neo4j storage, it is possible to integrate
callbacks with a new framework or reuse the PG-schema with
another graph database implementation.

This study underscores the importance of having a well-
structured PG-schema for gathering metadata and represent-
ing real-world constraints, as exemplified by its application to
autonomous robotic facilities. The schema's versatility,
however, extends beyond this context; it is open and can be
adapted for use in different domains or laboratory environ-
ments such as drug, chemistry and materials discovery as well
as autonomous hypothesis testing. The computational work-
flows can also be modified to collect metadata from various
types of experimentation or executed using different computa-
tional environments, such as cloud-based or high-performance
distributed computing. An interesting avenue for future devel-
opment would be the incorporation of dynamic agents capable
of evolving the schema over time.

The integration of the proposed platforms, presents a robust
foundation for FAIR data generation in bioprocess development,
contributing to achieve SDLs and enhancing machine action-
ability for autonomous knowledge discovery. Furthermore, with
the rise of large language models and their capability to retrieve
information from diverse knowledge sources, this PG-schema
facilitates the adoption of such technologies, enabling natural
language queries to the graph database. By semantically labeling
entities and relationships, future projects can readily incorporate
this functionality, which opens up a promising avenue for further
developments in autonomous experimentation.

Data availability

In the GitHub repository https://github.com/fmione/Property-
Graph-Schema (DOI: 10.5281/zenodo.15610711) a detailed
step by step guide to deploy the project and reproduce the
results and analysis is presented. In addition, screenshots of the
web interface and queries for the graph database are included.
This comprehensive documentation aims to facilitate the
reproducibility of the methodology presented for the PG-
schema in a HTBD scenario.

Author contributions

Conceptualization: FM, ML, EM; methodology: FM, EM; soft-
ware: FM, ML, LK; validation: PN, EM, MNCB; formal analysis:
FM, ML, EM; investigation: FM, ML, EM; data curation: FM;
writing - original draft preparation: FM, EM; writing — review
and editing: ML, LK, PN, MNCB; visualization: FM; supervision:

Digital Discovery

View Article Online

Paper

ML, EM, MNCB; project administration: MNCB; funding
acquisition: PN, MNCB.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We gratefully acknowledge the financial support of the German
Federal Ministry of Education and Research (01DD20002A -
KIWI biolab) and the Open Access Publication Fund of TU-
Berlin.

References

1 P. M. Maffettone, P. Friederich, S. G. Baird, B. Blaiszik,
K. A. Brown, S. I. Campbell, O. A. Cohen, R. L. Davis,
I. T. Foster, N. Haghmoradi, M. Hereld, H. Joress, N. Jung,
H.-K. Kwon, G. Pizzuto, J. Rintamaki, C. Steinmann,
L. Torresi and S. Sun, Digital Discovery, 2023, 2, 1644-1659.

2 D. B. Nickel, M. N. Cruz-Bournazou, T. Wilms, P. Neubauer
and A. Knepper, Eng. Life Sci., 2017, 17, 1195-1201.

3 B. Haby, S. Hans, E. Anane, A. Sawatzki, N. Krausch,
P. Neubauer and M. N. Cruz Bournazou, SLAS Technol.,
2019, 24, 569-582.

4 M. N. Cruz Bournazou, T. Barz, D. B. Nickel, D. C. Lopez
Cardenas, F. Glauche, A. Knepper and P. Neubauer,
Biotechnol. Bioeng., 2017, 114, 610-619.

5 H. G. Martin, T. Radivojevic, J. Zucker, K. Bouchard,
J. Sustarich, S. Peisert, D. Arnold, N. Hillson, G. Babnigg,
J. M. Marti, C. J. Mungall, G. T. Beckham, L. Waldburger,
J. Carothers, S. Sundaram, D. Agarwal, B. A. Simmons,
T. Backman, D. Banerjee, D. Tanjore, L. Ramakrishnan and
A. Singh, Curr. Opin. Biotechnol., 2023, 79, 102881.

6 J. T. Rapp, B. J. Bremer and P. A. Romero, Nat. Chem. Eng.,
2024, 1, 97-107.

7 E. Nufiez-Andrade, I. Vidal-Daza, J. W. Ryan, R. Gomez-
Bombarelli and F.]J. Martin-Martinez, Digital Discovery,
2025, 4(3), 776-789.

8 E. Pignotti, P. Edwards, N. Gotts and G. Polhill, J. Web
Semantics, 2011, 9, 222-244.

9 L. Kaspersetz, S. Waldburger, M.-T. Schermeyer, S. L. Riedel,
S. Grof3, P. Neubauer and M.-N. Cruz-Bournazou, Front.
Chem. Eng., 2022, 4, 812140.

10 M. Baker, Nature, 2016, 533, 452-454.

11 B. Miles and P. L. Lee, SLAS Technol., 2018, 23, 432-439.

12 C. Arnold, Nature, 2022, 606, 612-613.

13 L. Hung, J. A. Yager, D. Monteverde, D. Baiocchi, H.-K. Kwon,
S. Sun and S. Suram, Digital Discovery, 2024, 3, 1273-1279.

14 N. Ishizuki, R. Shimizu and T. Hitosugi, Sci. Technol. Adv.
Mater. Methods, 2023, 3, 2197519.

15 T. Barz, A. Sommer, T. Wilms, P. Neubauer and M. N. Cruz
Bournazou, IFAC-PapersOnLine, 2018, 51, 765-770.

16 M. F. Luna, M. N. Cruz Bournazou and E. C. Martinez,
Computer Aided Chemical Engineering, Elsevier, 2022, vol.
51, pp. 1111-1116.

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/fmione/Property-Graph-Schema
https://github.com/fmione/Property-Graph-Schema
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

17 J. W. Kim, N. Krausch, J. Aizpuru, T. Barz, S. Lucia,
E. C. Martinez, P. Neubauer and M. N. Cruz Bournazou,
IFAC-PapersOnlLine, 2022, 55, 934-939.

18 M. C. Barbet, J. Lee, C. E. LaGrotta, R. E. Cornell and
M. P. Burke, Combust. Flame, 2024, 267, 113562.

19 M. Akhtar, O. Benjelloun, C. Conforti, P. Gijsbers, J. Giner-
Miguelez, N. Jain, M. Kuchnik, Q. Lhoest, P. Marcenac,
M. Maskey, P. Mattson, L. Oala, P. Ruyssen, R. Shinde,
E. Simperl, G. Thomas, S. Tykhonov, J. Vanschoren, J. Van
Der Velde, S. Vogler and C.-J. Wu, Proceedings of the Eighth
Workshop on Data Management for End-to-End Machine
Learning, 2024, pp. 1-6.

20 O. E. Gundersen, Philos. Trans. R. Soc. A, 2021, 379,
20200210.

21 K. Hose, Advances in Databases and Information Systems,
Springer Nature, Switzerland, 2023, vol. 13985, pp. 3-15.

22 M. D. Wwilkinson, M. Dumontier, I. J. Aalbersberg,
G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten,
L. B. da Silva Santos, P. E. Bourne, J. Bouwman,
A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon,
S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa,
P. A. C. 't Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok,
S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer,
B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik,
S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M. A. Swertz, M. Thompson, J. van der Lei, E. van
Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg,
K. Wolstencroft, J. Zhao and B. Mons, Sci. Data, 2016, 3,
160018.

23 H. Narayanan, M. F. Luna, M. Von Stosch, M. N. Cruz
Bournazou, G. Polotti, M. Morbidelli, A. Butté and
M. Sokolov, Biotechnol. J., 2020, 15, 1900172.

24 K. Isoko, J. L. Cordiner, Z. Kis and P. Z. Moghadam, Digital
Discovery, 2024, 3, 1662-1681.

25 G. K. Reder, A. H. Gower, F. Kronstrom, R. Halle,
V. Mahamuni, A. Patel, H. Hayatnagarkar, L. N. Soldatova
and R. D. King, Bioinf. Adv., 2023, 3(1), vbad102.

26 A. A. Volk, R. W. Epps, D. T. Yonemoto, B. S. Masters,
F. N. Castellano, K. G. Reyes and M. Abolhasani, Nat.
Commun., 2023, 14, 1403.

27 S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles,
W. Aref, M. Arenas, M. Besta, P. A. Boncz, K. Daudjee,
E. D. Vvalle, S. Dumbrava, O. Hartig, B. Haslhofer,
T. Hegeman, J. Hidders, K. Hose, A. Iamnitchi, V. Kalavri,
H. Kapp, W. Martens, M. T. Ozsu, E. Peukert, S. Plantikow,
M. Ragab, M. R. Ripeanu, S. Salihoglu, C. Schulz,
P. Selmer, J. F. Sequeda,]. Shinavier, G. Szarnyas,
R. Tommasini, A. Tumeo, A. Uta, A. L. Varbanescu,
H.-Y. Wu, N. Yakovets, D. Yan and E. Yoneki, Commun.
ACM, 2021, 64, 62-71.

28 D. Di Pierro, S. Ferilli and D. Redavid, Information, 2023, 14,
154.

29 R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, A. Green,
J. Hidders, B. Li, L. Libkin, V. Marsault, W. Martens,
F. Murlak, S. Plantikow, O. Savkovic, M. Schmidt,
J. Sequeda, S. Staworko, D. Tomaszuk, H. Voigt, D. Vrgoc,

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

M. Wu and D. Zivkovic, Proceedings of the ACM on
Management of Data, 2023.

30 A. Hogan, E. Blomgvist, M. Cochez, C. D’amato, G. D. Melo,
C. Gutierrez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier,
A.-C. N. Ngomo, A. Polleres, S. M. Rashid, A. Rula,
L. Schmelzeisen, J. Sequeda, S. Staab and A. Zimmermann,
ACM Comput. Surv., 2021, 54, 1-37.

31 H. Abu-Rasheed, C. Weber, J. Zenkert, M. Dornhofer and
M. Fathi, Informatics, 2022, 9, 6.

32 E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. Van
Dam, K. Moreland, M. Parashar, L. Ramakrishnan,
M. Taufer and J. Vetter, Int. J. High Perform. Comput. Appl.,
2018, 32, 159-175.

33 S. B. Davidson and]. Freire, Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data,
2008, pp. 1345-1350.

34 C. Goble, S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo,
Y. Gil, M. R. Crusoe, K. Peters and D. Schober, Data Intell.,
2020, 2, 108-121.

35 S. N. Mitchell, A. Lahiff, N. Cummings, J. Hollocombe,
B. Boskamp, R. Field, D. Reddyhoff, K. Zarebski, A. Wilson,
B. Viola, M. Burke, B. Archibald, P. Bessell, R. Blackwell,
L. A. Boden, A. Brett, S. Brett, R. Dundas,]J. Enright,
A. N. Gonzalez-Beltran, C. Harris, I. Hinder, C. David
Hughes, M. Knight, V. Mano, C. McMonagle, D. Mellor,
S. Mohr, G. Marion, L. Matthews, I. J. McKendrick,
C. Mark Pooley, T. Porphyre, A. Reeves, E. Townsend,
R. Turner, J. Walton and R. Reeve, Philos. Trans. R. Soc., A,
2022, 380, 20210300.

36 O. E. Gundersen, Improving Reproducibility of Artificial
Intelligence Research to Increase Trust and Productivity, Oecd
Technical Report, 2023.

37 M. Sim, M. G. Vakili, F. Strieth-Kalthoff, H. Hao,
R. J. Hickman, S. Miret, S. Pablo-Garcia and A. Aspuru-
Guzik, Matter, 2024, 7(9), 2959-2977.

38 I. M. Pendleton, G. Cattabriga, Z. Li, M. A. Najeeb,
S. A. Friedler, A. J. Norquist, E. M. Chan and J. Schrier,
MRS Commun., 2019, 9, 846-859.

39 J. Bai, S. Mosbach, C. J. Taylor, D. Karan, K. F. Lee,
S. D. Rihm, J. Akroyd, A. A. Lapkin and M. Kraft, Nat.
Commun., 2024, 15, 462.

40 S. Purohit, N. Van and G. Chin, in 2021 IEEE International
Conference on Big Data (Big Data), 2021, pp. 2672-2677.

41 J. Lin, Y. Zhao, W. Huang, C. Liu and H. Pu, Neural Comput.
Appl., 2021, 33, 681-690.

42 S. Ferilli, D. Redavid and D. Di Pierro, in Proceedings of the
30th Italian Symposium on Advanced Database Systems,
2022, pp. 256-267.

43 J. Bruyat, P.-A. Champin, L. Médini and F. Laforest, PRSC:
from PG to RDF and Back, Using Schemas, 2024.

44 R. Angles, H. Thakkar and D. Tomaszuk, IEEE Access, 2020, 8,
86091-86110.

45 C. Barba-Gonzalez, J. Garcia-Nieto, M. D. M. Roldan-Garcia,
I. Navas-Delgado, A. J. Nebro and J. F. Aldana-Montes, Expert
Syst. Appl., 2019, 115, 543-556.

46 S. Harris, A. Seaborne and E. Prud’hommeaux,
Recommendation, 2013, 21, 778.

w3cC

Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

Open Access Article. Published on 12 June 2025. Downloaded on 8/3/2025 9:13:27 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

47 A. H. Chillon, M. Klettke, D. S. Ruiz and J. G. Molina, IEEE
Trans. Knowl. Data Eng., 2024, 36, 2774-2789.

48 N. Beeren, MSc thesis, Eindhoven University of Technology,
2022.

49 Redgate Software, DB Engines Ranking, n.d., https://db-
engines.com/en/ranking/graph+dbms.

50 Y. Tian, ACM SIGMOD Record, 2023, 51, 60-67.

51 R. Angles, M. Arenas, P. Barcelo, A. Hogan, J. Reutter and
D. Vrgo¢, ACM Comput. Surv., 2018, 50, 1-40.

52 Information technology — Database languages — GQL, 2024,
https://www.iso.org/standard/76120.html.

53 N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer and
A. Taylor, in Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 1433-1445.

54 M. Dreger, M.]J. Eslamibidgoli, M. H. Eikerling and
K. Malek, J. Mater. Inform., 2023, 3(2), 1-14.

55 1. Robinson, J. Webber and E. Eifrem, Graph Databases: New
Opportunities for Connected Data, O'Reilly, Beijing, Boston,
Farnham, Sebastopol, Tokyo, 2nd edn, 2015.

56 A. Vaisman and E. Zimanyi, Data Warehouse Systems: Design
and Implementation, Springer Berlin Heidelberg, 2022.

57 F. M. Mione, L. Kaspersetz, M. F. Luna, J. Aizpuru, R. Scholz,
M. Borisyak, A. Kemmer, M. T. Schermeyer, E. C. Martinez,
P. Neubauer and M. N. Cruz Bournazou, Comput. Chem.
Eng., 2024, 187, 108720.

58 D. Merkel, Linux J., 2014, 2.

59 C. Boettiger, ACM SIGOPS Operat. Syst. Rev., 2015, 49, 71-79.

60 R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, K. W. Hare,
J. Hidders, V. E. Lee, B. Li, L. Libkin, W. Martens, F. Murlak,
J. Perryman, O. Savkovi¢, M. Schmidt,]J. Sequeda,
S. Staworko and D. Tomaszuk, in Proceedings of the 2021
International Conference on Management of Data, 2021, pp.
2423-2436.

Digital Discovery

View Article Online

Paper

61 S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin and M. T. Ozsu,
VLDB J., 2020, 29, 595-618.

62 K. S. Aggour, A. Detor, A. Gabaldon, V. Mulwad, A. Moitra,
P. Cuddihy and V. S. Kumar, Integrat. Mater. Manuf.
Innovat., 2022, 11, 467-478.

63 C. Yang, Y. Zheng, X. Tu, R. Ala-Laurinaho, J. Autiosalo,
O. Seppédnen and K. Tammi, Adv. Eng. Inform., 2023, 58,
102185.

64 E. Anane, P. Neubauer, M. N. C. Bournazou, et al., Biochem.
Eng. J., 2017, 125, 23-30.

65 L. Kaspersetz, B. Englert, F. Krah, E. C. Martinez,
P. Neubauer and M. N. Cruz Bournazou, SLAS Technol.,
2024, 29, 100214.

66 L. Costa, N. Freitas and]J. R. da Silva, J. Comput. Cult.
Heritage, 2022, 15, 44:1-44:18.

67 B. Harenslak and J. d. Ruiter, Data pipelines with Apache
Airflow, Manning Publications Co, 2021.

68 C. Sharma and R. Sinha, in Proceedings of the 6th IEEE/ACM
International Conference on Big Data Computing, Applications
and Technologies, 2019, pp. 71-80.

69 Massive graph Analytics, ed. D. A. Bader, Chapman and Hall/
CRC, 1st edn, 2022.

70 V. Lavigne and A. Bergeron-Guyard, in 2023 International
Conference on Military Communications and Information
Systems (ICMCIS), 2023, pp. 1-7.

71 Cambridge International, KeyLines White Paper,
https://cambridge-intelligence.com/.

72 M. Copperwaite and C. Leifer, Learning Flask Framework:
Build Dynamic, Data-Driven Websites and Modern Web
Applications with Flask, Packt Publishing, 2015.

73 E. Anane, A. Sawatzki, P. Neubauer and M. N. Cruz-
Bournazou, J. Chem. Technol. Biotechnol., 2019, 94, 516-526.

74 J. Daunizeau, V. Adam and L. Rigoux, PLoS Comput. Biol.,
2014, 10(1), 1-16.

2024,

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://www.iso.org/standard/76120.html
https://cambridge-intelligence.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00070j

	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j

	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j

	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j
	A property graph schema for automated metadata capture, reproducibility and knowledge discovery in high-throughput bioprocess developmentElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00070j

