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ble acquisition function for batch
Bayesian optimization: comparison of serial and
Monte Carlo approaches†

Imon Mia, a Mark Lee, b Weijie Xu, a William Vandenberghe a

and Julia W. P. Hsu *a

Batch Bayesian optimization is widely used for optimizing expensive experimental processes when several

samples can be tested together to save time or cost. A central decision in designing a Bayesian optimization

campaign to guide experiments is the choice of a batch acquisition function when little or nothing is known

about the landscape of the “black box” function to be optimized. To inform this decision, we first compare

the performance of serial and Monte Carlo batch acquisition functions on two mathematical functions that

serve as proxies for typical materials synthesis and processing experiments. The two functions, both in six

dimensions, are the Ackley function, which epitomizes a “needle-in-haystack” search, and the Hartmann

function, which exemplifies a “false optimum” problem. Our study evaluates the serial upper confidence

bound with local penalization (UCB/LP) batch acquisition policy against Monte Carlo-based parallel

approaches: q-log expected improvement (qlogEI) and q-upper confidence bound (qUCB), where q is

the batch size. Tests on Ackley and Hartmann show that UCB/LP and qUCB perform well in noiseless

conditions, both outperforming qlogEI. For the Hartmann function with noise, all Monte Carlo functions

achieve faster convergence with less sensitivity to initial conditions compared to UCB/LP. We then

confirm the findings on an empirical regression model built from experimental data in maximizing power

conversion efficiency of flexible perovskite solar cells. Our results suggest that when empirically

optimizing a “black-box” function in #six dimensions with no prior knowledge of the landscape or noise

characteristics, qUCB is best suited as the default to maximize confidence in the modeled optimum

while minimizing the number of expensive samples needed.
Introduction

Many types of scientic or engineering experiments seek to
identify the global optimum (maximum or minimum) of an
unknown relationship between a set of experimental inputs X
and an output objective y = f(X), where X is a multidimensional
vector of input parameters. The “black box” function f(X) is
unknown and usually too complicated to be approximated by
any specic physics-based parametric representation. In such
cases, Bayesian optimization1 using a data-based non-
parametric surrogate regression model has emerged as
a powerful and widely adopted machine learning method to
guide empirical searches of parameter space seeking the
optimal input Xopt and the optimal objective value yopt = f(Xopt).
Bayesian optimization is particularly useful when generating
new samples to test f(X) is expensive in cost or time, so the
eering, The University of Texas at Dallas,

xas at Dallas, USA

(ESI) available: ESI Notes 1–3 and
9/d5dd00066a

the Royal Society of Chemistry
campaign success can be achieved with as small a data set as
possible, usually a few hundred data points at most. Some
examples of Bayesian optimization applications include new
materials synthesis and processing,2–4 mechanical design,5 new
drug discovery,6 and maximizing manufacturing yield.7

In many real experiments, the cost of generating and
experimentally evaluating a small batch of q new samples at one
time, where usually q # 10, only marginally exceeds the cost of
a single sample. It then makes sense to use batches of q new
samples to test f(X) and provide additional data to update the
surrogate model in each Bayesian optimization iteration step,
a process called batch Bayesian optimization.8 The goal for real
experiments is to maximize condence in the accuracy of the
modeled global optimum using the fewest number of expensive
experimental iterations possible.

The key component of batch Bayesian optimization lies in
a batch acquisition function that suggests the most promising
input parameters to test in the next experimental batch. In each
iteration of the process, a chosen acquisition function evaluates
existing data, the current surrogate model, and the uncertainty
of that model to assess statistically how much new X inputs will
contribute towards advancing the search for yopt.9 For non-
Digital Discovery, 2025, 4, 1751–1762 | 1751
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batch (q = 1) cases, the suggested next input is the X that
maximizes the acquisition function. Many standard acquisition
functions are available for non-batch Bayesian optimization
problems, the most common being expected improvement (EI)
or its logarithm (logEI)10 and, for maximization problems,
upper condence bound (UCB).11

For batch Bayesian optimization, how to generate a batch of
q > 1 next X inputs that together most efficiently advance the
optimization progress is signicantly more challenging.8 Most
batch-picking strategies fall into two general approaches: serial
and parallel. Serial batch picking chooses the rst X of a batch
in the same way as non-batch optimization, then modies the
acquisition function using some strategy to pick a second X that
is meaningfully different from the rst and iterates the proce-
dure until q new X inputs are assembled. The most common
examples of this serial approach include local penalization
(LP),12 and heuristic or “greedy” simplications of parallel batch
acquisition functions known as continuous liar and Kriging
believer.13 Parallel batch picking generalizes a non-batch
acquisition function by integrating it over a q-point joint
probability density function obtained from the surrogate
model's covariance kernel.13–15 The suggested next batch is
composed of the q X points that jointly maximize the integrated
acquisition function. Examples of q-points parallel batch
acquisition functions include qEI, qlogEI, and qUCB.15,16

Serial batch acquisition functions are usually computed and
maximized using deterministic numerical methods, i.e.,
without stochastic sampling. These calculations become
computationally more difficult and less accurate when the
dimension of X exceeds 5 or 6.17 Since parallel batch acquisition
functions integrate over a probability density function, their
calculation and maximization are well suited to be done by
stochastic Monte Carlo methods and therefore offer an attrac-
tive alternative, especially for high dimensional X.15,17,18 For this
reason we call parallel batch acquisition functions such as
qlogEI and qUCB “Monte Carlo” acquisition functions.

In this paper, we conduct a direct comparison of serial and
parallel batch acquisition functions in batch Bayesian optimi-
zation campaigns. The black box functions being optimized
include two analytic mathematical functions, one of them
evaluated with and without normally distributed noise, that are
proxies for input dimensionalities and functional landscapes
typically encountered in real experiments on materials
synthesis optimization, and one empirical regression model
built from real experimental data. The rst mathematical model
is the Ackley function in 6 dimensions.19 Ackley epitomizes
a “needle-in-haystack” functional landscape because it is
a highly heterogeneous function, oscillating near its minimum
value through most of its domain except for a sharp peak that
occupies a small fraction of its domain hypervolume. The
secondmathematical model is the Hartmann function, also in 6
dimensions.20 Hartmann represents a “false maximum” land-
scape because it has a secondary maximum with an objective
value nearly degenerate with its true maximum, but at
a different X. The empirical model is a 4-dimensional ensemble
regression model built using data from an experiment to
fabricate exible halide perovskite solar cells with maximum
1752 | Digital Discovery, 2025, 4, 1751–1762
power conversion efficiency (PCE).21 This PCE model embodies
the real-world difficulties of having only a small number of data
points due to the time and cost expense of performing experi-
ments, the inclusion of noise and possible systematic errors
that may not be well quantied, and an unknown landscape not
guaranteed to be mathematically analytical. Details of this PCE
model and its construction are given in ref. 21 and Note 1 in the
ESI.† Fig. S1 in the ESI† shows projected maximum ground
truth landscapes for all three models.

For the serial batch acquisition function, we use UCB/LP
because UCB has been reported to outperform EI or logEI for
non-batch Bayesian optimization on a wide range of synthetic
functions.3,22–24 (For completeness, the ESI (Fig. S2†) shows
learning performance using log EI/LP). LP is used because it has
a sounder intellectual basis than heuristic serial batch picking
approaches and, in our experience, outperforms continuous liar
and Kriging believer in test cases on synthetic data.25 For Monte
Carlo batch acquisition functions, we use qUCB and qlogEI for
noiseless problems, and add a noise-integrated version of qlo-
gEI called qlogNEI for evaluations of the Hartmann function
with noise as well as for the PCEmodel since it was built on data
with real-world noise.26 We do not test qEI because it offers no
advantages over qlogEI, but is more prone to numerical
instability.27

qUCB is found to give the best overall performance:
producing reliable results in all functional landscapes tested,
converging with relatively few iterations, and showing reason-
able noise immunity. Thus, when the general landscape and
noisiness of the black-box function are a priori unknown, as is
the case for real-world experiments, we recommend qUCB as the
default acquisition function choice.

Results and discussion
Setup of batch Bayesian optimization process

The code used to generate all results shown in this study is
publicly available on GitHub (see Data availability). All code was
implemented in Python and run in normal mode (CPU only) on
the Lonestar6 system of the Texas Advanced Computing Center.
We used the Emukit package for UCB/LP (and logEI/LP) and the
BoTorch package for the Monte Carlo batch acquisition func-
tions. Computational time and memory usage are given in the
ESI (Note 2).†

Fig. 1 depicts a block diagram of the batch Bayesian opti-
mization workow. In all cases the procedure used a Gaussian
process regression surrogate model with an ARD Matern 5/2
kernel. Kernel hyperparameters were optimized by maxi-
mizing log-likelihood. For all problems, at each iteration, X
training data were normalized to the [0, 1]d hypercube, where
d = 6 for Ackley and Hartmann functions and d = 4 for the PCE
model, and y training data were standardized before computing
the posterior surrogate model. New batch selections Xnew were
then unnormalized to make new evaluations, y = f(Xnew), to add
to the training data set for the next iteration. For UCB/LP and
qUCB, the exploration/exploitation parameter b was set at 2.
Finding the X value that maximizes UCB/LP for each serial pick
in the batch was done by a deterministic quasi-Newtonian
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Block diagram of the Bayesian optimization workflow to compare performance of different batch acquisition functions on various test
functions that serve as proxies for functional landscapes typically encountered in real materials synthesis optimization experiments. The initial
functional evaluations and Gaussian process regression (GPR) model use Latin Hypercube sampled (LHS) points from each function's domain.
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method in Emukit. Finding the q points that jointly maximize
the MC batch acquisition functions was done by a stochastic
gradient descent method in BoTorch. Reasons for the choices
made for these Bayesian optimization settings are given in Note
3 of the ESI.†

In each batch Bayesian optimization campaign, the rst
surrogate model was built from an initialization training data
set {X, f(X)} of 24 X points selected from each test function's
domain by Latin hypercube sampling. This avoids clustering of
X points that can result from purely random sampling and is
a commonly used method to select initial processing parame-
ters in materials synthesis experiments when no previous
knowledge exists.28 To collect statistics of learning performance
arising from the choice of initial training set, 99 such initiali-
zation sets were generated, which were used as the common
starting points to test each acquisition function on a given
ground truth model. Aer initialization, in each subsequent
Bayesian optimization iteration, the posterior mean surrogate
model was updated with additional batches of q = 4 data points
selected by the batch acquisition function under test and the
corresponding surrogate model. The number of iterations in
each campaign was capped at 50, so the number of sampled
data points is 224 for each run.

For qlogEI to show learning progression on Ackley, we found
it necessary to adaptively narrow the domain search hyper-
volume in each iteration. Several domain-narrowing methods
have been proposed to handle “needle-in-haystack” prob-
lems.29,30 We implemented a trust region BO (TuRBO) strategy
coded using the BoTorch package.31

The robustness of the batch acquisition functions against
output noise was examined with the Hartmann function by
adding a normally distributed random value to f(X) in every
evaluation of the Hartmann function. The mean of this noise
distribution was zero. Noise amplitude was controlled by setting
the noise distribution standard deviations to values between 1%
to 20% of the Hartmann function's peak-to-peak amplitude.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Results and discussion on Ackley function

The inverted Ackley function has its true maximum at Xmax = [0,
0, 0, 0, 0, 0] with a true maximum objective value ymax = f(Xmax)
= 0. Its domain is the hypercube [–32.768, 32.768]6, with side
length L= 65.536, and its range is [–22.3, 0], giving peak-to-peak
amplitude Dy = 22.3. A maximum projection surface plot of the
Ackley function is shown in Fig. S1(a) in the ESI.† Ackley is
a highly heterogeneous function; y < −18 through the vast
majority of its domain, with a large central peak centered on
ymax that occupies only ∼0.08% of its domain hypervolume and
drops steeply from its central maximum.

Fig. 2 summarizes the batch Bayesian optimization learning
progression on Ackley for UCB/LP compared to qUCB, qlogEI,
and qlogEI + TuRBO. Each plot shows results from all runs for
each acquisition function under test starting from the same 99
initial training data sets. In Fig. 2 m(X*) is the maximum
objective value predicted by themean posterior surrogate model
m(X), and X* is the input vector that produces the maximum
m(X), up through the nth iteration. The le column plots
Fig. 2(a)–(d) show m(X*) at each iteration relative to ymax = 0,
indicated by the yellow dashed line. Fig. 2(e)–(h) show the
Euclidean distance magnitude between X* and Xmax at each
iteration, so zero indicates the model has found Xmax. Aer the
nal (50th) iteration, the 99 runs are percentile ranked by how
close the nal kX* − Xmaxk is to zero, with the 99th percentile
being the best. Green, red, and blue points highlight the runs
ranked 25th, 50th, and 75th percentile, respectively.

From Fig. 2, it is clear that UCB/LP and qUCB perform
comparably well, with both signicantly outperforming qlogEI.
In terms of nding Xmax, Fig. 2(e) and (f) show that kX* − Xmaxk
for UCB/LP and qUCB both converge to near zero, within a few
percent of the domain hypercube side length L = 65.536, in
fewer than ∼15 iterations for nearly all 99 initial sets. In terms
of how accurately ymax can be modeled, Ackley presents a diffi-
cult challenge for surrogate models because its maximum sits
on a very steep peak, so relatively small values of kX* − Xmaxk
Digital Discovery, 2025, 4, 1751–1762 | 1753
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Fig. 2 Learning progression data on Ackley comparing UCB/LP against qUCB, qlogEI, and qlogEI + TuRBO. Plots (a)–(d) are m(X*), the maximum
values of the mean posterior surrogate model, with X* being the input value that produces the maximum m(X), up to that iteration of the
campaign. Plots (e)–(h) are Euclidean distancemagnitudes between the true Xmax and X*. The ground truth Xmax and ymax are indicated by yellow
dashed lines. Gray points show the spread in learning progress of the 99 batch Bayesian optimization runs starting from the 99 LHS initial data
sets. Green, red, and blue points indicate the runs ranked in the top 25th, 50th, and 75th percentile, respectively.
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can yield m(X*) � ymax, causing the surrogate model to
systematically underestimate ymax. In Fig. 1(a), UCB/LP shows
the best nal m(X*) estimate of ymax, converging to within ∼2 of
ymax (<10% of the amplitude Dy = 22.3) for all 99 initial
conditions by the nal iteration. qUCB performs a close second,
converging to within ∼3 of ymax (<15% of Dy) for all 99 initial
conditions.

By contrast, Fig. 2(c) and (g) show that qlogEI fails to model
anything close to ymax or Xmax aer 50 iterations for most of the
99 initial conditions. In fact, qlogEI essentially fails to show
further learning progress aer 5 to 10 iterations in most cases.
This is consistent with ref. 24, where qEI failed to model 6-
dimensional Ackley. Upon augmenting with TuRBO, Fig. 2(d)
and (h) show that learning is partially restored for qlogEI for
many, but far from all, 99 initial conditions. While qlogEI with
TuRBO can converge within roughly 3 of ymax, there is much
1754 | Digital Discovery, 2025, 4, 1751–1762
larger variation depending on the initial conditions. The
performance of UCB/LP and qUCB remain obviously superior to
qlogEI even with TuRBO.

Table 1 summarizes the learning progression graphically
depicted in Fig. 2 using the quantitative metrics: instantaneous
regret (IR), which measures how accurately the nal optimal
point is modeled, and cumulative regret (CR), which measures
how fast the batch Bayesian optimization process converges
onto the optimal point, in both y and X. The values given in
Table 1 are averaged over all runs from the 99 initial conditions.
IR(y) and CR(y) are normalized to the Ackley amplitude, Dy =

22.3, and IR(X) and CR(X) are normalized to the Ackley domain
side L = 65.536. The closer IR and CR are to zero, the better the
nal accuracy and convergence rate of the process.

The metrics in Table 1 show that while UCB/LP generates the
best average nal surrogate model, both UCB/LP and qUCB
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of normalized instantaneous regret (IR) and
normalized cumulative regret (CR) in y and X on Ackley for each batch
acquisition function, averaged over the results of all 99 campaigns
starting with different initial data sets. Box and violin plots visualizing
the IR and CR distributions for the 99 campaigns in each case are given
in the ESI (Fig. S3a)

Acq. Fn. hIR(y)i/Dy hCR(y)i/Dy hIR(X)i/L CR(X)i/L

UCB/LP 0.017 4.9 0.0016 1.2
qUCB 0.026 5.1 0.016 2.7
qlogEI 0.56 32 0.18 11
qlogEI + TuRBO 0.34 17 0.14 6.5
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produce accurate and reliable estimations of the true Ackley
maximum within 20 to 30 iterations, independent of initial
conditions. For both, hIR(X)i/L and hIR(y)i/Dy are �1.

An interesting question is why UCB/LP outperforms qUCB on
Ackley, especially in producing a nearly perfect hIR(X)i/Lmetric.
A possible answer lies in the stochastic nature of Monte Carlo
based compared to deterministic serial batch-picking algo-
rithms. Local penalization (LP) adaptively becomes more
exploitative and less explorative as new data become available,
biasing its batch picks to increase sampling density in domain
regions that generate higher objective values.12 Consequently,
as soon as one point in the steep central maximum region is
found, LP biases all subsequent batch picks to exploit that
domain region in greater detail, giving a better surrogate model
reconstruction of Ackley's central peak and hence better
performance as measure by IR(y) and IR(X). By contrast, the
stochastic nature of Monte Carlo evaluation and optimization of
qUCB results in greater scattering of batch picks in all itera-
tions. Even aer one point in the central maximum region is
found, qUCB may assign only a single new point in the next
iteration batch to exploit the nearby region and stochastically
scatter other batch points to explore the domain. As a result, the
region near the maximum is not tested in as much detail
Fig. 3 Distribution of all sampled points picked by (a) UCB/LP and (b) qUC
underlying z-axis contour plot shows the shape of the final surrogatemod
(red curves in Fig. 1) by projecting the maximum value of m(X) evaluate
maximum (GT Max) of the Ackley function. Input points belonging to the
optimization points (bBO points) picked by the batch acquisition functi
picked in early iterations and darker red circles indicating points picked

© 2025 The Author(s). Published by the Royal Society of Chemistry
compared to UCB/LP, giving a less accurate surrogate model
reconstruction of the central peak, though possibly a better
model of the overall function. Fig. 3 shows a graphic example of
this difference in sampling distribution between UCB/LP and
qUCB, and a time series showing batch picks and surrogate
model aer each iteration is shown in Fig. S4 in the ESI.†

Results and discussion on Hartmann function without noise

The inverted Hartmann test function has its true maximum at
Xmax = [0.2017, 0.1500, 0.4769, 0.2753, 0.3117, 0.6573] with
a maximum objective value ymax = f(Xmax) = 3.3224. Its domain
is the hypercube [0, 1]6, with side length L = 1, and its range is
[0, 3.3224], giving peak-to-peak amplitude Dy = 3.3224. A
maximum projection surface plot of the Hartmann function is
shown in Fig. S1(b) in the ESI.†Hartmann is complicated by the
existence of a secondary maximum at X2 = [0.4047, 0.8824,
0.8461, 0.5740, 0.1390, 0.0385] whose objective value y2 = f(X2)
= 3.2032 is nearly degenerate with ymax; the distance kX2 −
Xmaxk = 1.10. Consequently, maximization searches can easily
converge onto the “false maximum” X2 rather than Xmax.

Fig. 4 summarizes the learning progression on Hartmann for
UCB/LP compared to qUCB and qlogEI. The use of TuRBO was
unnecessary because qlogEI works for Hartmann. Each plot
shows the results of all batch Bayesian optimization runs
starting from the common set of 99 initial data sets in the
Hartmann domain. Themeaning of all terms and symbols is the
same as for Fig. 2. The le column plots (a)–(c) show m(X*) at
each iteration relative to ymax = 3.3224, which is indicated by
the yellow dashed line. Fig. 4(d)–(f) show the Euclidean distance
magnitude between X* and Xmax at each iteration. One obvious
feature of Fig. 4(d)–(f) is that X results for all three acquisition
functions bifurcate, converging upon two different best X
points. This is a consequence of the existence of a second
maximum with a nearly degenerate objective value in Hart-
mann. Some initial conditions lead to convergence onto X2.
This result is not as obvious in Fig. 4(a)–(c) because y2 is only
B in the x1, x2 plane, where the input vector X= (x1, x2, x3, x4, x5, x6). The
el m(X) for the initial data set that achieves the 50th percentile outcome
d at each x1, x2. coordinate. The blue “×” indicates the ground truth
initial sampling (initial LHS) are shown as blue circles. Batch Bayesian

ons are shown as reddish circles, with light red/pink indicating points
in later iterations.

Digital Discovery, 2025, 4, 1751–1762 | 1755
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Fig. 4 Learning progression data on the noiseless Hartmann test function comparing UCB/LP against qUCB and qlogEI. All variable labels and
symbols have the same meanings as in Fig. 2.
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0.12 less than ymax. Because of the false maximum nature of the
Hartmann landscape, an additional batch acquisition function
performance metric is the percentage of the 99 initial condi-
tions that converge onto X2 instead of Xmax in Fig. 4(d)–(f), with
a smaller percentage being better, shown in the rightmost
column of Table 2.

Fig. 4 shows that all three batch acquisition functions
converge to a nal value of m(X*) near ymax and a nal X* near
either Xmax or X2 within ∼20 iterations. Visually, qUCB appears
to converge the fastest, in <10 iterations for most initial
conditions. Aer∼15 iterations both UCB/LP and qUCB become
insensitive to initial conditions, except for the bifurcation.
qlogEI appears to converge more slowly and clearly has a larger
performance spread depending on initial conditions compared
to UCB/LP and qUCB.
Table 2 Summary of normalized instantaneous regret (IR) and
normalized cumulative regret (CR) in y and in X on Hartmann for each
batch acquisition function, averaged over the results of all 99
campaigns starting with different initial data sets. Box and violin plots
visualizing the IR and CR distributions for the 99 campaigns in each
case are given in the ESI (Fig. S3b)

Acq. Fn hIR(y)i/Dy hCR(y)i/Dy hIR(X)i/L hCR(X)i/L % False max

UCB/LP 0.0081 3.3 0.24 19 30
qUCB 0.012 2.1 0.36 20 32
qlogEI 0.015 3.1 0.37 20 34

1756 | Digital Discovery, 2025, 4, 1751–1762
Table 2 summarizes the learning performance metrics on
Hartmann: normalized IR(y), CR(y), IR(X), and CR(X), averaged
over all runs from the 99 LHS initial conditions, and the
percentage of the LHS initial conditions that converge onto the
false maximum. IR(y) and CR(y) are normalized to the Hart-
mann range amplitude, Dy = 3.3224. IR(X) and CR(X) do not
technically need to be normalized because the domain hyper-
cube side L= 1, but are listed as normalized to L for consistency
with Table 1. In all columns, smaller numerical values indicate
better nal accuracy, convergence rate, and convergence onto
the true maximum of the batch Bayesian optimization process.

The hIR(y)i/Dy and hCR(y)i/Dy values in Table 2 are generally
smaller compared to the same metrics for Ackley (see Table 1),
but hIR(X)i/L and hCR(X)i/L are signicantly larger for all
acquisition functions relative to Ackley. This again reects the
false maximum nature of Hartmann. For each acquisition
function, roughly one-third of the initial conditions produce
Bayesian optimization campaigns that converge onto the false
maximum. Each of these runs contributes a regret of kX2 −
Xmaxk = 1.10 towards the IR(X)/L and CR(X)/L averages but
contributes a regret of only 0.036 towards the IR(y)/Dy and
CR(y)/Dy averages.

The metrics in Table 2 show that UCB/LP and qUCB perform
very similarly on Hartmann without noise, with UCB/LP doing
slightly better in hIR(y)i/Dy, hIR(X)i/L, and hCR(X)i/L while qUCB
shows somewhat better hCR(y)i/Dy. Although qlogEI shows
reasonable learning behavior unlike for Ackley, both UCB/LP
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and qUCB outperform qlogEI on noiseless Hartmann in all
metrics.
Results and discussion on Hartmann function with noise

Learning progression plots on Hartmann with noisy functional
evaluations are shown in Fig. 5 for 5% noise amplitude and
Fig. 6 for 20% noise amplitude. In addition to the three batch
acquisition functions investigated for the noiseless Hartmann
study in Fig. 4, included here is qlogNEI, which is qlogEI inte-
grated over a normally distributed noise probability, which is
designed to deal specically with noise.26 Visually comparing
the plots in Fig. 5, at a moderate 5% noise, all acquisition
functions still model a nal value of m(X*) close to ymax and
converge close to Xmax or X2 for most initial conditions,
although there is degradation in learning performance
compared to the noiseless case (Fig. 4). From Fig. 6, at very high
Fig. 5 Learning progression data on Hartmann with noisy functional eva
same meaning as in Fig. 2.

© 2025 The Author(s). Published by the Royal Society of Chemistry
20% noise, all Monte Carlo acquisition functions clearly
outperform UCB/LP. A far higher number of initial conditions
converge to something reasonably close to true maximal values
in both y and X for the three Monte Carlo acquisition functions
compared to UCB/LP.

Fig. 7 summarizes the dependence of these learning results
on noise amplitude for UCB/LP, qUCB, qlogEI, and qlogNEI for
noisy Hartmann. Fig. 7(a), (b) plot regrets in y and Fig. 7(c), (d)
plot regrets in X, all vs. noise amplitude. These measure
degradation in how well ymax and best Xmax are modeled and in
convergence onto the optimal values as noise increases.

At 5% noise amplitude, Fig. 5 and 7 show that aer 50 iter-
ations, all acquisition functions converge reasonably close to
ymax, with UCB/LP and qUCB slightly outperforming both qlogEI
and qlogNEI in hIR(y)i/Dy and hCR(y)i/Dy. Also, all acquisition
functions converge on Xmax or X2, with UCB/LP giving lower
hIR(X)i/L and hCR(X)i/L than the Monte Carlo acquisition
luations at 5% noise amplitude. All variable labels and symbols have the

Digital Discovery, 2025, 4, 1751–1762 | 1757
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Fig. 6 Learning progression data on Hartmann with noisy functional evaluations at 20% noise amplitude. All variable labels and symbols have the
same meaning as in Fig. 2.
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functions. However, looking at the X learning plots Fig. 5(e)–(h),
UCB/LP shows greater sensitivity to initial conditions than the
Monte Carlo acquisition functions. UCB/LP's lower hIR(X)i/L
and hCR(X)i/L values at 5% noise mostly stem from the fact that,
for those runs converging onto X2, UCB/LP converges to an kX2

− Xmaxk value < the true 1.10 on average, while the Monte Carlo
functions converge to an kX2 − Xmaxk >1.10 on average. This is
evident from the values of the upper (X2) branch in Fig. 5(e)–(h).
For those runs converging onto Xmax, by the 50th iteration the
performance of all acquisition functions are nearly equal.

At high noise amplitude of 20%, Fig. 6 and 7 show that all
Monte Carlo acquisition functions perform better than UCB/LP,
although with clearly degraded accuracy. The three Monte Carlo
acquisition functions do a reasonable job of modeling the value
of ymax and nding Xmax or X2 for the large majority of initial
conditions. By contrast, Fig. 6(a) shows that at 20% noise level,
UCB/LP nearly fails to model ymax, and Fig. 6(e) shows that UCB/
1758 | Digital Discovery, 2025, 4, 1751–1762
LP is much more sensitive to initial conditions in modeling
Xmax compared to the Monte Carlo functions. Fig. 7(a) and (b)
reect the fact that at higher noise levels UCB/LP is signicantly
worse at modeling ymax accurately and in convergence onto an
optimal objective. At high noise, qUCB shows the best perfor-
mance overall in the y-regret metrics. Fig. 7(c) and (d) show the
UCB/LP appears to have slightly better X regret metrics even up
to 20% noise, but again this is mostly a result of UCB/LP
systematically underestimating kX2 − Xmaxk while the Monte
Carlo functions tend to overestimate kX2 − Xmaxk.

From Fig. 7, all Monte Carlo acquisition functions behave
similarly with regard to noise level on Hartmann, with qUCB
showing a slight advantage. Perhaps the stochastic nature of the
Monte Carlo computations partially compensates for the
randomness of noisy functional evaluations. It should be noted
that qlogNEI was developed specically for noisy batch Bayesian
optimization problems to increase surrogate model accuracy
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Performance of batch acquisition function (UCB/LP, qUCB, qlogEI, and qlogNEI) against noise magnitude in batch evaluations of Hart-
mann. Left column: optimality and convergence in modeled best objective value y as measured by (a) instantaneous regret and (b) cumulative
regret. Right column: optimality and convergence in modeled best predictor value X as measured by (c) instantaneous regret and (d) cumulative
regret. All regrets are averaged and normalized as described in the text.
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and decrease model sensitivity to noise, but in these tests,
qlogNEI showed no signicant advantage over qUCB.

Results on empirical perovskite PCE model

To evaluate how these batch acquisition functions would
perform on a real experimental optimization problem as
opposed to analytic mathematical functions, we used a fully
trained non-parametric regression model built from experi-
mental data on maximizing power conversion efficiency (PCE)
of exible perovskite solar cells as the ground truth function.
Details of the experiment and construction of this “PCE model”
are given in ref. 21 and Note 1 in the ESI.† The PCE model is 4-
dimensional with true ymax = 11.2 at Xmax = [0.40, 0.60, 0.40,
0.21] in the normalized domain hypercube of [0, 1]4, so the
domain length L = 1. Its y range is [0.5, 11.2], giving peak-to-
peak amplitude Dy = 10.7. Truth function values from the
PCE model were evaluated on a gridded domain with grid
spacing in each dimension of X determined by the experimental
step size used for each input predictor. Truth function values
are stored as a look-up table, available on-line (see Data avail-
ability). In the batch Bayesian optimization process, functional
evaluations for each batch of recommended next X values were
drawn from this look-up table.

Fig. 8 summarizes learning results on the PCE model for
UCB/LP, qUCB and qlogNEI, which was used because the PCE
model was built using data with real noise and it is of interest to
see whether qlogNEI offers any advantages in a real-world noise
scenario. Learning progression data for m(X*) and kX* − Xmaxk
© 2025 The Author(s). Published by the Royal Society of Chemistry
for each batch acquisition function under test are shown in
Fig. 8(a)–(f). Each of these plots shows the results of all batch
Bayesian optimization runs starting from the common set of 99
initial data sets in the PCE model domain. The meaning of all
terms and symbols is the same as for Fig. 2. The le column
plots Fig. 8(a)–(c) show m(X*) for each acquisition function at
each iteration relative to ymax = 11.2, which is indicated by the
yellow dashed line. The middle column plots Fig. 8(d)–(f) show
the Euclidean distancemagnitude between X* and Xmax for each
batch acquisition function at each iteration. Most notably, the
convergence of X* to Xmax for all three acquisition functions is
non-zero and strongly dependent on initial conditions, similar
to the synthetic functions with noise (Fig. 5 and 6).

The reason for this apparent poor learning performance in
kX* − Xmaxk is shown in Fig. 8(g)–(i). These are heat map plots
of the ground truth landscape made by projecting the
maximum value of the ground truth function at each X= (x1, x2,
x3, x4) onto the x1, x2 plane. Surface plots of this landscape are
shown in the ESI (Fig. S1(c)).† This landscape has a broad,
nearly at plateau near the maximum PCE in the x1, x2 plane.
Consequently, the batch Bayesian optimization process can
stop at many different X* inputs that give m(X*) values very close
to ymax. Comparing Fig. 8(g)–(i) shows that the X* from the
model (color circles) are closest to Xmax with qUCB as the batch
acquisition function. Additionally, real-world experimental
results inherently contain non-Gaussian and unknown
systematic errors and uncertainties.
Digital Discovery, 2025, 4, 1751–1762 | 1759
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Fig. 8 Summary of learning results on the PCE model comparing UCB/LP (top row) against qUCB (middle row) and qlogNEI (bottom row). For
learning progression plots (a)–(f), all variable labels and symbols have the samemeaning as in Fig. 2. Plots (g)–(i) are heat map plots of the ground
truth function made by projecting the maximum value the ground truth function at each X = (x1, x2, x3, x4) onto the x1, x2 plane. The true
maximum is marked by an “×”. The x1, x2 coordinates of the final X* points found by each batch acquisition function are indicated by green (25th
percentile run), red (50th percentile run), and blue (75th percentile run) dots. A surface contour plot of the PCE model landscape is shown in
Fig. S1(c) in the ESI.†
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In this experiment, getting a PCE value close to ymax (i.e.,
within experimental uncertainty or reproducibility) regardless
of X is more important than nding Xmax. For this reason, the
m(X*) learning plots should outweigh the kX* − Xmaxk learning
plots. From Fig. 8(a)–(c), qUCB shows the best overall perfor-
mance, nding PCE values within ∼10% of ymax in ∼30 itera-
tions and within ∼2% of ymax in ∼40 iterations for all 99 LHS
initial conditions. UCB/LP and qlogNEI also nd PCE values
within ∼2% of ymax in ∼50 iterations but converge more slowly
and do signicantly worse on a signicant fraction of the 99
initial conditions compared to qUCB.

These observations are quantied by the IR and CR metrics
shown in Table 3. All metrics are normalized and averaged over
Table 3 Summary of normalized instantaneous regret (IR) and
normalized cumulative regret (CR) in y and in X on the empirical PCE
model for each acquisition function, averaged over the results of all 99
campaigns starting with different initial data sets. Box and violin plots
visualizing the IR and CR distributions for the 99 campaigns in each
case are given in the ESI (Fig. S3c)

Acq. Fn. hIR(y)i/Dy hCR(y)i/Dy hIR(X)i/L hCR(X)i/L

UCB/LP 0.038 4.2 0.26 17
qUCB 0.026 2.7 0.18 13
qlogNEI 0.030 2.8 0.21 14

1760 | Digital Discovery, 2025, 4, 1751–1762
the 99 runs for each batch acquisition function tested. As ex-
pected, all hIR(X)i/L and hCR(X)i/L values are large due to the
broad at near-maximum plateau of the landscape. Consistent
with the above discussion, qUCB shows better performance in
nding near-optimum objective values as measured by hIR(y)i/
Dy and converges onto a near-optimum objective value some-
what faster than qlogNEI and signicantly faster than UCB/LP
as measured by hCR(y)i/Dy values.
Conclusions

Batch Bayesian optimization is a useful machine learning tool
to guide real-world scientic and engineering experiments
towards cost-effectively searching input parameter space X to
nd the optimal objective value for an unknown black-box
functional relationship y = f(X). The goal of a batch Bayesian
optimization campaign is to produce a data-based regression
model that can model yopt and Xopt with high condence while
using the minimum number of expensive evaluations of f(X)
possible.

Critical to achieving this goal is choosing a batch acquisition
function. Unfortunately, literature provides little advice on what
the “best” choice might be at the start of a Bayesian optimization
campaign when little or nothing is known about the black box
function being optimized. To provide some empirical guidance,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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this paper presents results of a direct comparison between
a widely used and effective serial batch acquisition function,
UCB/LP, computed by standard deterministic numerical
methods, against a set of Monte Carlo based parallel acquisition
functions, qUCB, qlogEI, and qlogNEI (for test cases with noise).

The test problems used, Ackley, Hartmann, and the PCE
Model, are proxies for real materials synthesis and optimization
experiments in terms of the number of input dimensions,
functional landscapes, and noise levels. UCB/LP and qUCB do
very well on Ackley, with UCB/LP overall performing slightly
better than qUCB. qlogEI, on the other hand, struggles to
correctly model Ackley even with assistance by an adaptive
domain-narrowing algorithm. On noiseless Hartmann, all
acquisition functions perform adequately. UCB/LP and qUCB
perform similarly to each other while both outperform qlogEI.
On Hartmann with noise, all Monte Carlo acquisition functions
outperform UCB/LP, particularly at very high noise levels where
qUCB shows better ability to accurately model the objective
maximum. Although qlogNEI was developed specically to
handle noisy functional evaluations, it shows no clear perfor-
mance advantage over qUCB. On the PCE model, qUCB nds
input conditions giving near-optimum PCE values in fewer
iterations and is less sensitive to initial conditions compared to
UCB/LP and qlogNEI.

In the real-world materials optimization experiments this
work is meant to emulate, usually nothing is known a priori
about the general landscape of the functional relationship f(X)
being tested, and empirical evaluations of f(X) always include
noise, though the noise level and its probability distributionmay
not be known. Our results suggest that for batch Bayesian opti-
mization, qUCB overall outperforms its Monte Carlo cousins
qlogEI and qlogNEI as well as its serial version UCB/LP on needle-
in-haystack, false optima, and a real experimental functional
landscape, and against moderate to high levels of normally
distributed noise and unquantied real-world noise. We note
that ref. 24 settled on qUCB as the batch acquisition function
best suited to Bayesian optimization applied to computational
uid dynamics problems, although they did not try UCB/LP,
considered only relatively small Gaussian noise amplitudes,
and did not test on models built from real data. In our work,
qUCB is recommended as the default choice of batch acquisition
function when applying Bayesian optimization to materials
synthesis experiments, at least up to 6 input dimensions, when
minimizing the number of expensive iterations and maximizing
condence in the correctness of the result are important.
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