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tural analysis of small angle
scattering data from common nanoparticles via
machine learning

Graham Roberts, a Mu-Ping Nieh, bc Anson W. K. Ma bc and Qian Yang *a

Billions of dollars have been invested in recent years to build up national scattering facilities around the

world with more advanced configurations and faster data collection for small angle scattering (SAS),

a technique that enables in situ structural analysis of nanoparticles (NP) under stringent sample

environments. However, the interpretation of experimental SAS data is typically a slow process that

requires significant domain expertise, leading to high-throughput scattering facilities such as synchrotron

scattering centers collecting large quantities of data that may potentially be left unanalyzed. Here, we

present a fast and data-efficient machine learning (ML) framework for identifying basic NP morphologies

(spherical, cylindrical and discoidal geometries) and their corresponding structural parameters. The

trained models take as input scattering curves with minimal pre-processing, and are able to identify

morphology and structural dimensions from experimental curves with comparable accuracy to human

experts. Critically, design choices that facilitate the practical application of ML models in scattering

facilities are discussed, including ease of training, extrapolability outside of the parameter range of

training data, and verifiability of predictions. The enhanced data analysis efficiency enabled by applying

ML models to real-time in situ analysis of SAS data has the potential to revolutionize the utilization of

synchrotron and neutron scattering facilities for probing nanostructures.
The properties of nanomaterials are closely related to not only
their chemical compositions but also their structures. Small
angle scattering (SAS), including small angle X-ray scattering
(SAXS) and small angle neutron scattering (SANS), is a powerful
NP characterization method that can provide global and
internal morphology and structure.1,2 Many governments have
invested billions of US dollars3,4 to design and construct scat-
tering infrastructures of high-ux synchrotron or neutron
sources, where statistically meaningful SAS data are attainable
in seconds to a few minutes. Timely analysis of SAS data,
however, is a time consuming and challenging endeavor for
nanoscience researchers. Analyzing a single curve can range
from several minutes to weeks or more of work; for this reason,
a large portion of collected SAS curves (especially SAXS curves) is
never analyzed. It also prevents experimentalists from being
able to incorporate real-time feedback to adjust subsequent
experiments. Thus, there is an increasing need and demand for
automated analysis tools that can quickly recover the
cticut, Storrs, CT, USA. E-mail: qyang@
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nce, University of Connecticut, Storrs, CT,

the Royal Society of Chemistry
morphology and structure of the NP from a given scattering
curve.

One typical SAS analytical method involves selecting a NP
morphology based on user expertise and tting the data to
a known scattering model for that morphology. SAS data are
represented by the scattering intensity, I, as a function of the

scattering vector, q ¼ 4p
l

sin
�
q

2

�
, where l and q are the wave-

length and scattering angle, respectively. The forward model is
derived from the square of the Fourier transform of a density
function of the assumed morphology, and is parameterized by
the structural parameters of the morphology, such as sphere
radius. Fitting a scattering curve to a model identies these
parameters by solving a non-convex optimization problem to
maximally match the I(q) obtained by the forward model with
the observed data. This process relies on the researcher rst
selecting the correct morphology, and if not, repeating the
process until they nd a morphology for which a good t can be
found. Selecting the correct morphology is difficult for a multi-
tude of reasons. One reason is that many morphologies exist
along a single continuous manifold, with no clear boundary
between them. For example, the scattering curve for a solid
particle is equivalent to one for a particle with a shell in the
limit that the shell becomes innitely thin, or with any shell
thickness if the shell's scattering length density is to similar to
Digital Discovery, 2025, 4, 1467–1477 | 1467
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Fig. 1 Given a scattering curve, our machine learning pipeline (1)
identifies the morphology, (2) predicts the corresponding structural
parameters, and (3) optionally verifies the ML predictions using
a forward model. The structural parameters can also be further opti-
mized if desired using conventional fitting algorithms, which converge
quickly when initialized from good estimates predicted by ML. Using
this methodology, thousands of scattering curves can be analyzed
automatically within seconds.
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that of the solvent the particles are suspended in. Another
reason is that even particles with distinct morphologies may
exhibit scattering curves that are virtually indistinguishable in
some parameter ranges, such as large at disks versus large
core–shell spheres, or small spheres versus small cylinders/
disks with small aspect ratios.

Machine learning (ML) has proven to be a powerful tool for
analyzing data, particularly when the analysis is very time
consuming for human researchers. Applying ML to SAS analysis
has garnered signicant interest from the community in recent
years,5,6 and the potential integration of ML into SAS workows
to enable accelerated analysis for applications such as auto-
mated design of experiments and active learning of phase
diagrams has been demonstrated.7 ML approaches for deriving
the morphology of unconventional structures that do not
correspond to simple forward models have recently been
successful in tackling challenging inverse analysis problems.8

However, these specialized methods can be more computa-
tionally expensive than necessary for in situ and large-scale
analysis of conventional materials. For conventional struc-
tures, existing works focusing on morphology classication and
structural parameter prediction typically attempt to explore the
efficacy of using various ML algorithms to build a single multi-
class classier over a large set of candidate morphologies.9–15

While reasonable overall accuracies are achieved given large
training datasets, this approach tends to result in lower accu-
racy in distinguishing between common but similar morphol-
ogies such as spheres and core–shell spheres. Neural network-
based approaches also require about an order of magnitude
larger datasets than classical models and more expensive
training procedures.13–15

In this work we demonstrate a machine learning (ML)
pipeline for SAS analysis that is designed to capture hierarchical
relationships between similar morphologies, thus increasing
multi-class classication accuracy, while utilizing less training
data and enabling fast inference, making it a practical approach
for integration with experiments at scattering facilities. This
pipeline is illustrated in Fig. 1. The rst stage is a hierarchical
multi-class classication model which identies the
morphology of the particle. We focus this work on six common
but potentially difficult-to-distinguish morphologies: cylinder,
disk, sphere, and their core–shell counterparts, and demon-
strate how our hierarchical approach is well-suited to physics-
informed multi-class classication. The second stage is a set
of regression models, one for each morphology and applicable
structural parameter such as radius, length, and shell thick-
ness. Finally and importantly, the predicted morphology and
structural parameters can be passed into the corresponding
forward model to verify the correctness of the ML predictions
and ensuring their trustworthiness. Optionally, the predicted
parameters can be used to initialize tting in the traditional
manner to enable rapid ne-tuning. We demonstrate our
pipeline rst on thousands of simulated curves, including
structures with parameter ranges dramatically different from
our training set, to demonstrate the robustness of our ML
models to extrapolated data. Then, we demonstrate the accu-
racy of our ML pipeline in making predictions on experimental
1468 | Digital Discovery, 2025, 4, 1467–1477
curves drawn from the literature, while having been trained
entirely on simulated data. Our light-weight ML models use
only classical algorithms without deep learning, making them
easy to train. Most importantly, they are capable of making
predictions on thousands of scattering curves within seconds,
signicantly enhancing the efficiency with which SAS data can
be analyzed and potentially unlocking new experimental
designs for scattering science.
1 Methods
1.1 Dataset generation

We train our machine learning models using simulated data
generated by the SASView open source library for small angle
scattering data.16 The prediction capability of machine learning
models depends on the quality of the data used to train them.
We simulate our data with class balance between morphologies
to ensure our model and performance metrics are not affected
by imbalance in the dataset. To improve our model perfor-
mance, we intentionally leverage physical understanding of the
morphologies being considered to over-sample data theoreti-
cally near decision boundaries in the classication task. We also
create a dataset for testing the extrapolation capabilities of the
classier (i.e., outside the range of the training data) that
contains scattering curves corresponding to larger aspect ratios
and shell-to-total ratios than those in our training data, as
explained below.

There are several steps in our data generation process. First,
we determine parameter ranges to vary our simulations over.
We then simulate the curves using SASView,16 sampling at
random over the selected parameter range, and using a q-vector
ranging from 3.7 × 10−3 to 2.6 × 10−1 (Å−1). It should be noted
© 2025 The Author(s). Published by the Royal Society of Chemistry
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that polydispersity is one of the varied parameters, and it has
a similar effect as instrument resolution on the scattering
patterns. Therefore, the simulated data with adjusted poly-
dispersity would reect truthfully the experimental data. We
also vary the scattering length density, which varies the contrast
between the studied objects and matrix, leading to similar
effects on the scattering curve to variations in scale. Next, we
screen the simulated data and remove any with non-physical
simulation artifacts, such as sharp pulses in the scattering
curve caused by numerical approximations (such as integration
or near-zero values). Then, we shi the data to mitigate the
effects of confounding variables such as concentration and
Fig. 2 (a) A schematic showing the separation of scattering data into
bins according to aspect ratio. (b) A grid corresponding to the 9 bins of
data formed from these aspect ratio bins as well as similar shell-to-
total ratio bins. 40% of the training data are sampled from the top-left
bin with small aspect ratio and low shell-to-total ratio. 20% are
sampled from each of the other surrounding bins with moderate
aspect ratio and/or shell-to-total ratio. The remaining five bins with
data containing extreme aspect ratio and/or shell-to-total ratio are
reserved for test data.

© 2025 The Author(s). Published by the Royal Society of Chemistry
background intensity. This is a simple vertical shi in log space
to maintain the structure of the curve and the relative values
between features. Finally, these scattering curves are the
“feature vectors” that we use as input to our machine learning
models, which we train to predict the corresponding “labels” for
each curve (the morphology in the classication step, and the
structural parameters in the regression step).

1.1.1 Data partitioning for model selection. During model
selection for hyperparameters of the machine learning model,
we partition our dataset into training and validation sets in
a unique way to promote selection of models that extrapolate
beyond the training data. Data were separated into nine bins in
a 3 × 3 grid pattern, as depicted in Fig. 2. First, the data are
separated into small, moderate, and large aspect ratio bins.
Then, these bins were also separated according to low shell-to-
total ratio, medium shell-to-total ratio, and high shell-to-total
ratio. In order to emphasize the distinctions between similar
morphologies with small aspect ratio (cylinder vs. disk) and low
shell-to-total ratio (solid vs. core–shell), more training data was
drawn from bins corresponding to these lower ratios. Training
data were selected primarily from the bin in our 3 × 3 grid
corresponding to the lowest aspect and shell ratios. For every
two curves sampled from this bin, totaling 670 per class, one
curve is sampled from each of the three surrounding interme-
diate ratio bins: low shell ratio with medium aspect ratio,
medium aspect ratio with low shell ratio, and medium aspect
ratio with medium shell ratio. From each of these bins 330
curves are drawn, for a total of 1660 training curves per class.
Scattering curves corresponding to larger aspect and shell ratios
in the ve remaining bins were reserved for testing only.

While traditional k-fold cross-validation was used for model
selection, with k = 5, we make a critical departure from
convention by using only 20% of the data for training and the
majority 80% for validation. Due to the hierarchical nature of
our multi-class classication algorithm (discussed in the next
section), there are an exponentially large number of possible
nal hyperparameter sets corresponding to the hyper-
parameters for each of the intermediate classiers. Using
signicantly more validation data than training data helps to
avoid overtting the model selection process.17 We nd empir-
ically that this 20–80 split signicantly outperforms the more
traditional 80–20 split in our problem.
1.2 Classication

Our classication method leverages physical knowledge to solve
the multi-class classication problem hierarchically along
physically-motivated decision boundaries. The rst binary
classication problem decides between spherical curves and
cylindrical curves. Next, each branch decides between solid and
core shell curves. It is worth noting that there is a continuous
change between solid and core–shell scattering curves in several
different cases. The rst is in the limit that the shell thickness
approaches zero. The second is in the case that the core diam-
eter or length approaches zero, so that the shell takes up the
entire volume. The last is in the case that the scattering length
density of the shell is equal to either the scattering length
Digital Discovery, 2025, 4, 1467–1477 | 1469
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Fig. 3 Overall structure of our hierarchical classification algorithm.
The first decision separates spherical morphologies from cylindrical
morphologies. Next, each branch is separated into solids versus core–
shells, since solids are a subset of core–shell in the limit as the core or
shell approaches zero thickness, or the core and shell have the same
scattering length density. Finally, the cylinders and disks are separated
on both the solid branch and core–shell branch, which simplifies to
placing a decision boundary where the length and diameter are equal.
These decisions are designed to emphasize interpretable decision
boundaries: between the presence and absence of shells, and
between the parameter cutoffs separating cylinders versus disks. The
path taken to a final classification of core–shell sphere is shown for
illustrative purposes.
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density of the solvent or of the core. In all of these cases
a technically core–shell morphology is indistinguishable from
a solid. Finally, in the last level of the classication problem, we
separate cylinders from disks. There is again a continuous
distribution bridging the cylinder and disk classes, which meet
in the case where the diameter and length are equal. We nd
empirically that better performance can be achieved by rst
resolving the challenging decision boundary between solid and
core–shell morphologies before moving on to the nal decision
separating cylinders and disks. We also tested other potential
orderings of the hierarchical classication, such as rst sepa-
rating all solids from all core–shell morphologies, but the
hierarchical structure depicted in Fig. 3 achieved the best vali-
dation performance and was thus chosen as our nal model. A
binary kernel support vector classier (SVC) is trained for each
decision within the tree, and hyperparameters are indepen-
dently optimized for each SVC.18,19 We note that support vector
classiers are signicantly easier to train than neural network
models since they involve solving a convex optimization
problem.
1.3 Regression

We use kernel ridge regression18 (KRR), a classical machine
learning algorithm for nonlinear regression, to build models for
predicting structural parameters from the scattering curves.
The choice of kernel (radial basis function, polynomial, and
cosine) and kernel hyperparameters are optimized using 10-fold
cross-validation. A separate KRR model was trained for each
parameter for each morphology. Each regression model was
trained on scattering curves of the correct morphology in the
respective training set. We also generate a separate calibration
1470 | Digital Discovery, 2025, 4, 1467–1477
dataset to enable statistically rigorous uncertainty quantica-
tion of regression predictions using conformal prediction.20,21

For many structural parameters, such as the radius of
spheres, the scattering curves vary smoothly with respect to the
structural parameter and predictive regression models are easy
to train; a few exceptions to this occur for core–shell morphol-
ogies. The training, validation and test datasets are drawn from
the same 3 × 3 grid as the classication task, but we do not
explore extrapolation of the regression models since the ranges
of each parameter are dened by the effective probing range for
our q-range. The regression data are the same data used for
classication with no additional pre-processing steps, enabling
data to be directly passed from the classier to the regressor in
the pipeline.

2 Results
2.1 Classication

Simulated data from the soware package SASView16 are used to
build a training set containing 2000 scattering curves of each
morphology (six morphologies in total), and a test set contain-
ing 1000 curves of each morphology. The performance of our
hierarchical classication model is compared against those of
several off-the-shelf multi-class classication algorithms that
have been tuned for optimal hyperparameters: support vector
classiers (SVC), k-nearest neighbors (KNN), and random forest
(RF).18,19,22 Standard so-margin SVC nds the classication
boundary which maximizes the width of a margin around it,
with as few points inside the margin and incorrect predictions
as possible. When used for multiclass classication, either
a one-vs-all or one-vs-rest ensemble of binary models is used to
make a nal class prediction. This is different from our hier-
archical multi-class classication approach, which trains
a binary SVC classier over different subsets of data for each
decision in our hierarchical classication tree. KNN is a simple
classier in which the predicted class of a new test point is voted
on by its k nearest neighbors in the training set. For KNN, the
similarity metric we use for dening nearest neighbors is the
Euclidean distance in n-dimensional feature space, where n is
the number of features, e.g. the number of distinct q values
sampled. RF classiers are ensembles of decision trees, each of
which hierarchically splits data based on features that maxi-
mally distinguish between classes. We note that our hierar-
chical approach is again conceptually different from decision-
tree based methods: our algorithm splits on predicted labels,
not given features. All off-the-shelf classiers are provided by
the scikit-learn library.23

We rst measure the expected predictive performance of our
model when interpolating within the parameter space spanned
by the training data. We divide the data set into a 3 × 3 grid of
bins according to the aspect ratio and the shell-to-total ratio, as
described in Methods. Four of the bins are used for both
training and test, and the bin with the smallest aspect ratio and
shell-to-total ratio data is sampled twice as much as the other
three for training, since these data are closest to the true deci-
sion boundary between cylinders and disks, and between solid
and core–shell. The other ve bins containing curves from
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Classification accuracy and average F1-score of our hierarchical model compared to three off-the-shelf classifiers. The top row shows
performance on test data sampled from the entire range of scattering curves generated, including data similar to those used for training. 1000
test curves are used for each class. The second row shows the classification performance only on test data with aspect ratios and shell ratios that
were not present in the training set. This measures how well the classifiers can extrapolate to new ranges of data. The bottom row shows
performance on a different test set consisting of curves drawn from the same range of structural parameters, but allowing the scale to vary from
0.5 to 1.5, corresponding to varying experimental conditions. Our hierarchical model significantly outperforms off-the-shelf models on each of
the full, extrapolation, and scaled test sets

Hierarchical (ours) SVC KNN RF

AccuracyjF1 AccuracyjF1 AccuracyjF1 AccuracyjF1

Full test set 0.88j0.88 0.86j0.86 0.81j0.80 0.74j0.73
Extrapolation only 0.86j0.85 0.83j0.82 0.77j0.76 0.71j0.69
Scale extrapolation 0.86j0.86 0.85j0.84 0.79j0.77 0.74j0.72

Fig. 4 An example of simulated SAS data using the disk model that is
predicted to be a core–shell sphere by our ML model. The best fit
scattering curve using the core–shell sphere model (top) is nearly
indistinguishable from the ground truth discoidal model (bottom), and
has been shifted upwards to visually separate the two. To understand
this degeneracy, we note that the best fit shell thickness is similar to
the thickness of the ground truth disk, while the best fit sphere radius is
more than twice the ground truth disk radius, which is itself quite large
indicating the ground truth disk is very flat. This indicates that our ML
model predicted a very large core–shell sphere that is locally similar to
the ground truth disk, much like predicting the underlying morphology
is the earth's crust when the ground truth is a single tectonic plate. For
scattering scientists, even an “incorrect” prediction in this case
provides useful understanding of the NP morphology.
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parameter space outside the range of training data are reserved
for testing only.

The performance of our hierarchical classication model
compared against those of off-the-shelf multi-class classica-
tion algorithms is shown in Table 1. All test sets have balanced
class distributions and thus prediction accuracy (number of
correct classications divided by total number of datapoints) is
an appropriate performance metric. We also report the F1-score
averaged over all classes (macro F1-score),24 which captures
more information on the per-class performance than accuracy.
The F1-score is dened as the harmonic mean of precision and
recall, or equivalently,

2TP

2TPþ FPþ FN

where TP (true positive) is the number of correctly identied
curves belonging to a certain class, FP (false positive) is the
number of curves falsely identied as members of that class,
and FN (false negative) is the number of curves missed within
a class.

We rst test themodel performance on data selected from all
nine data bins equally. We also measure the performance of
each model when tested only on data in the extrapolation test
set consisting of the ve highest aspect and/or shell-to-total
ratio bins, from which no training data were drawn. Our hier-
archical model yields higher accuracy in both extrapolation
(>0.86) and the full test dataset (>0.88) than other off-the-shelf-
classiers. As expected, extrapolation was more challenging for
all models. However, our model was able to achieve the same
performance in extrapolation as the next best performingmodel
(SVC with one-vs-rest multi-class classication) over the full test
set. Finally, we report the extrapolation performance of our
model on a third test set, called scale extrapolation, in which the
scale parameter is varied between 0.5 and 1.5. Since scale can be
an arbitrary constant that depends on experimental conditions
and choices of units, we would like to demonstrate that our
classication model is robust to differences in scale, even
though this invariance is not explicitly enforced by the algo-
rithm. In our training data, the scale parameter is held constant
but scattering length density is varied. Our results in Table 1
show that this variation is sufficient to allow our classication
model to be robust to changes in scale.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Due to the degeneracy of SAS data, such that scattering
curves can be possibly described by scattering models corre-
sponding to multiple different morphologies, the ability of ML
models to achieve “acceptable” classications is higher than
that automatically measured by comparing with test set labels.
One example of such an acceptable misclassication is when
a NP with an ultra thin shell, or a null contrast between the core
and the shell, is mistaken as a solid NP. A more rare situation is
shown in Fig. 4. Here, a curve simulated using a disk
morphology was predicted to be a core–shell sphere and can be
t well by a core–shell sphere model. The ground truth scat-
tering curve corresponding to the disk morphology and the
predicted best t scattering curve using a core–shell sphere
morphology share similar key features: two slope transitions of
the scattering intensity from plateau to q Å−2 decay and then
from q Å−2 decay to q Å−4 decay, followed by a minimum
intensity and a high-q peak from low-q to high-q. As a result,
Digital Discovery, 2025, 4, 1467–1477 | 1471
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Table 2 A comparison of our hierarchical classifier with two key methods from the literature.11,13 Our method uses an order of magnitude less
training data, while achieving better performance on the subset of targetedmorphologies. We note that the existing works considermore classes
simultaneously, which may lead to decreased performance on the six common morphologies considered in our work. This suggests that an
approach focusing on a more targeted subset of morphologies, as is practical in real experiments, may be advantageous

Algorithmic approach # Training curves per class Recall Notes

Transformer neural network
(SASformer)13

16 000 Cylinder 0.91 Cylinders and disks are
considered the same
morphology. Covers a broad
set of 55 classes

Sphere 0.88
CS-Cylinder 0.82
CS-Sphere 0.78

Weighted k-nearest
neighbors + Gaussian
processes + stochastic
gradient descent11

10 000 Sphere 0.51 Covers 39 classes, of which
only sphere and core–shell
sphere are shared with our
paper

CS-Sphere 0.80

Hierarchical model +
support vector classier

1660 Cylinder 0.94 This work
Disk 0.87
Sphere 0.98
CS-Cylinder 0.83
CS-Disk 0.84
CS-Sphere 0.85
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both the discoidal and core–shell spherical models can t the
data indistinguishably well, taking into account measurement
uncertainty and polydispersity. The intuition for why this occurs
is revealed by the structural parameters. The true disk
morphology has a large radius and is relatively thin. The best t
core–shell sphere morphology has an even larger radius, with
a predicted shell thickness almost equivalent to the ground
truth disk thickness. One could imagine that local regions of
the shell on the predicted core–shell sphere have a similar
morphology to the ground truth disk – similar to predicting that
the morphology is in the shape of the earth's crust when the
ground truth is a single tectonic plate.

To further validate the prevalence of these types of degen-
eracy, we randomly sampled ten misclassied curves and found
that ve of them were able to be t by the “incorrect” predicted
models well. This suggests that the accuracy of our ML predic-
tion should be higher than the values listed in Table 1,
presumably larger than 0.9, presenting a signicant break-
through in determining morphology from SAS data.

Finally, in Table 2, we compare our classication results to the
performance of two state-of-the-art classiers11,13 from the liter-
ature. Both of these publications report recall, which measures
how many datapoints of a given class are classied correctly. As
with most works in the literature, these methods simultaneously
consider a large number of possible morphologies. While this
increases the complexity of the multi-class classication problem
so that a direct one-to-one performance comparison should not
be made, we can see that our model achieves better performance
on every mutually considered morphology while requiring an
order of magnitude less training data per class. Our algorithm is
also easy and fast to train – a new training dataset of a similar size
can be automatically generated in minutes, and similarly a full
new hierarchical classication model can be trained (including
hyperparameter tuning) in minutes. Thus, what we have devel-
oped is an algorithmic approach that can be easily customized to
1472 | Digital Discovery, 2025, 4, 1467–1477
new experiments, rather than a single pre-trained model that
may have trouble extrapolating to new experimental require-
ments. We note that the smaller subset of morphologies being
considered by the hierarchical tree is an advantage that correlates
well with how small angle scattering is used in practice. Typically,
an experimentalist will have a general idea of the subset of
morphologies they expect and knowledge of the q-range their
experiment will include. With this information, our approach
enables a customized hierarchical classicationmodel and set of
regression models to be quickly and automatically built for each
new experiment.

2.2 Regression

For eachmorphology, we trained separate regressionmodels for
each structural parameter of interest (such as radius, length and
shell thickness). The test performance of these models are
displayed in Table 3. The performance metrics used are R2 score
and the mean absolute percentage error (MAPE):

R2 ¼ 1�
PN
i¼1

�
yi � y*i

�2
PN
i¼1

ðyi � yÞ2
(1)

MAPE ¼ 1

N

XN
i¼1

����yi � y*i
yi

���� (2)

Here yi is the true label value for datapoint i, y*i is its corre-
sponding predicted value, and �y is the mean label value over the
data. An R2 score of 1 indicates a perfectly predictive model,
while R2 # 0 indicates a model worse than a constant trivial
model that simply predicts �y for all datapoints. Most
morphologies have structural parameters that the regression
models can capture with an R2 > 0.9, although the presence of
shells does hinder the ability of some structural parameters to
be identiable from the scattering curves. For context, in Table
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00059a


Table 3 Test set results for regression models predicting the radius,
length, and shell thickness for the six morphologies studied. For each
model, the baseline performance of a trivial constantmodel is included
to provide context. While many structural parameters such as those of
solid cylinder, disk, and core radius are accurately predicted by
a regression model, some other parameters, such as length of core
shell cylinders are not easily distinguishable from the scattering curves

Morphology Param R2 Base. R2 MAPE Base. MAPE

Cylinder Radius 0.97 −0.08 0.16 1.09
Length 0.917 −0.08 0.104 0.664

Disk Radius 0.960 −0.011 0.078 0.491
Length 0.938 −0.232 0.262 1.27

Sphere Radius 1.0 −0.002 0.005 0.883

CS-Cylinder Radius 0.895 −0.027 0.107 0.384
Length −0.17 −1.45 0.330 0.377
Shell 0.448 −1.09 0.251 0.387

CS-Disk Radius 0.354 −0.745 0.193 0.246
Length 0.693 −0.209 0.262 0.641
Shell 0.274 −0.05 0.312 0.463

CS-Sphere Radius 0.908 −0.009 0.189 0.964
Shell 0.502 −0.177 0.334 0.621
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3 we also provide baseline values for R2 and MAPE that corre-
spond to a trivial constant model; these baseline values capture
information about the spread of the labels in the training data
Fig. 5 We test our trained ML models on several experimental scatterin
experimental curves. The teal lines are the scattering curves simulated b
The black lines are simulated scattering curves using the best fit from SA
parameter values are listed in Table 4.

© 2025 The Author(s). Published by the Royal Society of Chemistry
and provide a measure of the difficulty of the learning problem.
In all cases the R2 should be higher than that of the baseline and
the MAPE lower.
2.3 Experimental data

The classication and regression models have also been eval-
uated with a collection of eight experimental SAS curves ob-
tained from literature. The experimental curves drawn from the
literature had a variety of different q-ranges. To match the
experimental data to the expected input to our ML models, we
rst remove all data outside of our q-range. We then use linear
interpolation to match the grid sampling of q in our feature
vector. Finally, if there are missing values at low-q or high-q, we
use a constant t to extrapolate at those values. The intensity at
all missing low-q values are set to equal the intensity at the
lowest available q, since it is desirable for scattering curves to
have a plateau at low q. Similarly, the intensity at all missing
high-q values are set to equal the intensity at the highest
available q. Finally, we apply the same vertical shi to the
scattering curve as we did to the simulated training data.

Fig. 5 and Table 4 show the outcomes from the classication
and regression models and their performance evaluated on these
experimental curves. Our MLmodels classify most morphologies
accurately and predict reasonable values for corresponding
structural parameters. The misclassications are justied as
follows. In (A) and (D), our model predicts a core–shell
morphology with a vanishingly small shell, which effectively
agrees with the reported corresponding solid morphologies. In
g curves from the literature. The red triangles correspond to the input
y SASView using the structural parameters predicted by the ML model.
SView, optimized starting from our predictions. All morphologies and

Digital Discovery, 2025, 4, 1467–1477 | 1473
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Table 4 The columns reference the corresponding scattering curve in Fig. 5 (curve), the morphology or parameter displayed in each row
(morph., param.), the predictions from our ML model accompanied by the 95% confidence interval (pred. (95% CI)), the results of using the
SASView optimizer to refine the fit from initial guesses provided by our ML model (pred. + opt.), the value for those parameters determined by
a human expert fitting the scattering curves (manual + opt.), and finally the reported values in the literature (literature). A:25 approximately
correctly classified cylinder as cs-cylinder with vanishingly small shell; B:26 correctly classified disk; C:27 classified as a core–shell cylinder
although it is truly a flexible cylinder; D:28misclassified as a core–shell disk– is reportedly a solid disk with a radius outside of our effective probing
range; E:28 misclassified as a solid sphere – is reportedly a core–shell sphere, although our predicted solid sphere curve closely matches
experimental data; F:29 correctly classified disk; G:29 correctly classified core–shell sphere; H:30 correctly classified core–shell sphere. Curves A,
C, and D have no clear plateau at low q due to probing range, resulting in large confidence intervals and uncertainty in the largest parameter
(marked with *), which is to be expected. Note all predicted negative parameter values are treated as 0 (marked as 0**)

Curve Parameter Prediction (95% CI) Prediction + opt. Manual + opt. Literature

A Morph. CS-Cylinder CS-Cylinder Cylinder Cylinder
Radius (Å) 64 (19, 111) 98.52 77.59 100
Length (Å) 878 (166, 1646)* 450.82 308.57 410
Shell (Å) 14 (0**, 77) 5.03 N/A N/A

B Morph. Disk Disk Disk Disk
Radius (Å) 123 (90, 157) 142.82 145 145
Length (Å) 55 (40, 69) 52.71 51 51

C Morph. CS-Cylinder CS-Cylinder Cylinder Flex. cylinder
Radius (Å) 53 (35, 71) 19 22 13
Length (Å) 801 (275, 1354)* $1600 $1600 $1000
Shell (Å) 0** z0 N/A N/A

D Morph. CS-Disk CS-Disk Disk Disk
Radius (Å) 575 (362, 783)* 656.7 $1000 $3000
Length (Å) 168 (80, 266) 117.9 120 110
Shell (Å) 52 (3100) 286.5 N/A N/A

E Morph. Sphere Sphere CS-Sphere CS-Sphere
Radius (Å) 146 (145, 147) 146.3 115 130
Shell (Å) N/A N/A 32 70

F Morph. Disk Disk Disk Disk
Radius (Å) 124 (90, 158) 154.2 154.2 141
Length (Å) 54 (40, 68) 52.5 50.0 42

G Morph. CS-Sphere CS-Sphere CS-Sphere CS-Sphere
Radius (Å) 135 (111, 158) 104.7 104.7 98
Shell (Å) 84 (11, 160) 36.4 36.4 36

H Morph. CS-Sphere CS-Sphere CS-Sphere CS-Sphere
Radius (Å) 96 (77, 114) 45.1 45.0 73
Shell (Å) 42 (0**, 139) 45.7 45.0 25
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(C), the reported morphology (exible cylinder) is not one of the
six morphologies considered by our classication model;
however, the predicted morphology (core–shell cylinder) gives
a close representation. In (E), the correct spherical shape is pre-
dicted by our model, but no shell is detected in contrast to the
reported morphology. We note in this case a separate manual
optimization by a human expert found a smaller shell than the
reported value. Using the SAS models of the morphology identi-
ed by ML, reasonable ts to the experimental data could still be
found. We also nd that the corresponding estimated structural
parameters are generally in good agreement with reported values,
yielding reasonable predicted curves in comparison with the
corresponding experimental ones. We include with each
parameter prediction the 95% condence intervals calculated
with a calibration dataset using conformal prediction, which
provides statistically rigorous uncertainty estimates.20,21 Note that
1474 | Digital Discovery, 2025, 4, 1467–1477
several curves (A, C, and D) have no clear plateau at low q due to
the probing range, resulting in high uncertainty in the largest
parameter, which is to be expected. Finally, we use the predicted
morphology and structural parameters to initialize further tting
of the data using traditional optimizationmethods. Since the ML
models provided reasonable initial estimates, this enabled fast
convergence during the optimization and reduced the risk of
being trapped in an undesirable local minima. We show in Fig. 5
that this ne-tuning procedure achieved good agreement with
experimental data in all cases.
3 Discussion

Our ML pipeline is able to accurately and automatically identify
the morphology and structural parameters of NP in a matter of
seconds, enabling in situ analysis. We highlight several key
© 2025 The Author(s). Published by the Royal Society of Chemistry
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design decisions in our ML framework that make it particularly
suited for practical application at scattering facilities. First, our
method is designed to increase accuracy by focusing on a small
number of morphologies of interest in a particular experiment,
the typical use case for scattering scientists, rather than a general
classier over all possible morphologies. This allows our model
to focus on capturing hierarchical and other relationships
between the selected morphologies to derive better multi-class
classication boundaries with fewer data. For example, the set
of solid spheres should be considered a subset of the set of
particles with core–shell spheres, since the former are a special
case of the latter in which the shell has either no contrast or no
thickness, or the core becomes vanishingly small. Cylinders and
disks also fall on the same continuousmanifold, with an intuitive
boundary where diameter becomes greater than length. We use
a physics-informed hierarchical scheme for multi-class classi-
cation that is able to capture and leverage these relationships
among morphologies, as shown in Fig. 3. We demonstrate that
using a series of binary classiers separating scattering curves
into increasingly smaller subsets outperforms classical multi-
class classication methods, which typically involve extensions
of binary classiers using one-vs-one or one-vs-all schemes, non-
parametric nearest neighbor approaches, or decision tree-based
methods that split data on input features.9 We note in partic-
ular that our hierarchical method differs from decision trees in
that our tree nodes split based on a fully trained binary classier,
and not just on input features. Each split can itself utilize any
classication method, including SVC, KNN, and RF. Crucially,
these models are tuned for hyperparameters separately. This
enables two things. First, the nal overall multi-class classica-
tion boundary can be much more complex, since it does not
assume the same complexity (controlled by tuned hyper-
parameters) at each segment of the boundary. It is possible, for
example, to learn amuch simpler boundary between spheres and
cylinders/disks, than between spheres and core–shell spheres.
Second, while the nal overall classication boundary can be
complex, each individual decision boundary that is being learned
can be simple since each stage of the hierarchical classier can
focus on a limited number of differences between logical subsets
of morphologies, rather than all differences at once. This allows
us to utilize less training data for greater accuracy, since simpler
boundaries require fewer datapoints to learn. This is in contrast
to neural network-based approaches, which also enable exibility
in the decision boundary but typically requires an order of
magnitude more training data.13,15

Our second key design decision is to construct the model
specically to extrapolate well to structural parameter ranges
outside of those sampled by the training data. It is especially
important to develop ML methods that are robust to extrapo-
lation in scientic contexts, where it is likely that new data of
interest is different from existing known data. We achieve this
by designing the splitting of data into training, validation, and
test sets to capture extrapolation, as described in detail in the
Methods section. When there are no good physics-based esti-
mates for the structural parameters in a particular experiment,
models that are trained to extrapolate well rather than simply
interpolate correctly are of greater practical utility. Additionally,
© 2025 The Author(s). Published by the Royal Society of Chemistry
even when structural parameter ranges can be reasonably con-
strained a priori, models that can extrapolate better are more
likely to have captured underlying patterns in the data, thus
exhibiting increased performance overall.31

Finally, our ML pipeline highlights the verication capabil-
ities of a framework that simultaneously classies morphol-
ogies and predicts corresponding structural parameters. The
structural parameters suggested by regression are typically
sufficiently accurate that even if further optimization is needed,
the optimizer will quickly converge due to initialization at good
initial values. Researchers are encouraged to verify the output of
the ML models using the predicted morphology's forward
model to ensure condence in the results. We nd that even in
cases where the model used to generate a simulated scattering
curve disagrees with the results of the classier, a correct match
is oen found due to the inherent degeneracy of SAS curves.

4 Conclusion

As scattering instrumentation becomes more advanced, the rate
of data collection is outstripping that of data analysis by human
experts, creating a research bottleneck. This work demonstrates
ML models which rapidly and automatically identify both the
morphology and structural parameters of NP from SAS
measurements, enabling in situ analysis of scattering data. Our
hierarchical classication algorithm for morphology prediction
leads to better predictive performance than standard off-the-
shelf ML algorithms, especially when extrapolating outside of
the parameter space of the training data. Furthermore, our
method utilizes only classical ML approaches, which require
less training data, are easier to train, and have faster inference
time than more complex neural network-based approaches.
Empirical results on both simulated and experimental data
from the literature demonstrate that our ML models, which
were trained solely on simulated data, are sufficiently accurate
for analysis of experimental data. We discuss how our and
similar ML frameworks that simultaneously predict
morphology and structural parameters are compatible with
verication and renement of ML predictions to ensure trust in
scientic conclusions. Our approach highlights how carefully
designed ML pipelines for inverse analysis of scattering data
can enable practical implementation in laboratories, signi-
cantly increasing the efficiency with which data is analyzed and
potentially transforming experimental paradigms in scattering
science.
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