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Automated Structural Analysis of Small Angle Scattering
Data from Common Nanoparticles via Machine Learning

Graham Robertsa , Mu-Ping Niehbc , Anson Mabc , and Qian Yang∗a

Billions of dollars have been invested in recent years to build up
national scattering facilities around the world with more advanced
configurations and faster data collection for small angle scattering
(SAS), a technique that enables in-situ structural analysis of
nanoparticles (NP) under stringent sample environments. How-
ever, the interpretation of experimental SAS data is typically a
slow process that requires significant domain expertise, leading to
high-throughput scattering facilities such as synchrotron scattering
centers collecting large quantities of data that may potentially be
left unanalyzed. Here, we present a fast and data-efficient machine
learning (ML) framework is developed for identifying basic NP
morphologies (spherical, cylindrical and discoidal geometries) and
their corresponding structural parameters. The trained models
take as input scattering curves with minimal pre-processing, and
are able to identify morphology and structural dimensions from
experimental curves with comparable accuracy to human experts.
Critically, design choices that facilitate the practical application
of ML models in scattering facilities are discussed, including ease
of training, extrapolability outside of the parameter range of
training data, and verifiability of predictions. The enhanced data
analysis efficiency enabled by applying ML models to real-time
in-situ analysis of SAS data has the potential to revolutionize
the utilization of synchrotron and neutron scattering facilities for
probing nanostructures.

The properties of nanomaterials are closely related to not only
their chemical compositions but also their structures. Small angle
scattering (SAS), including small angle x-ray scattering (SAXS)
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and small angle neutron scattering (SANS), is a powerful NP char-
acterization method that can provide global and internal mor-
phology and structure1,2. Many governments have invested bil-
lions of US dollars3,4 to design and construct scattering infras-
tructures of high-flux synchrotron or neutron sources, where sta-
tistically meaningful SAS data are attainable in seconds to a few
minutes. Timely analysis of SAS data, however, is a time consum-
ing and challenging endeavor for nanoscience researchers. Ana-
lyzing a single curve can range from several minutes to weeks or
more of work; for this reason, a large portion of collected SAS
curves (especially SAXS curves) are never analyzed. It also pre-
vents experimentalists from being able to incorporate real-time
feedback to adjust subsequent experiments. Thus, there is an in-
creasing need and demand for automated analysis tools that can
quickly recover the morphology and structure of the NP from a
given scattering curve.

One typical SAS analytical method involves selecting a NP mor-
phology based on user expertise and fitting the data to a known
scattering model for that morphology. SAS data are represented
by the scattering intensity, I, as a function of the scattering vector,
q = 4π

λ
sin( θ

2 ), where λ and θ are the wavelength and scattering
angle, respectively. The forward model is derived from the square
of the Fourier transform of a density function of the assumed mor-
phology, and is parameterized by the structural parameters of the
morphology, such as sphere radius. Fitting a scattering curve to
a model identifies these parameters by solving a non-convex op-
timization problem to maximally match the I(q) obtained by the
forward model with the observed data. This process relies on the
researcher first selecting the correct morphology, and if not, re-
peating the process until they find a morphology for which a good
fit can be found. Selecting the correct morphology is difficult for
a multitude of reasons. One reason is that many morphologies
exist along a single continuous manifold, with no clear boundary
between them. For example, the scattering curve for a solid parti-
cle is equivalent to one for a particle with a shell in the limit that
the shell becomes infinitely thin, or with any shell thickness if the
shell’s scattering length density is to similar to that of the solvent
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Fig. 1 Given a scattering curve, our machine learning pipeline (1) identi-
fies the morphology, (2) predicts the corresponding structural parameters,
and (3) optionally verifies the ML predictions using a forward model. The
structural parameters can also be further optimized if desired using con-
ventional fitting algorithms, which converge quickly when initialized from
good estimates predicted by ML. Using this methodology, thousands of
scattering curves can be analyzed automatically within seconds.

the particles are suspended in. Another reason is that even parti-
cles with distinct morphologies may exhibit scattering curves that
are virtually indistinguishable in some parameter ranges, such as
large flat disks and large core-shell spheres, or small spheres and
small cylinders/disks with small aspect ratios.

Machine learning (ML) has proven to be a powerful tool for an-
alyzing data, particularly when the analysis is very time consum-
ing for human researchers. Applying ML to SAS analysis has gar-
nered significant interest from the community in recent years5,6,
and the potential integration of ML into SAS workflows to enable
accelerated analysis for applications such as automated design
of experiments and active learning of phase diagrams has been
demonstrated.7 ML approaches for deriving the morphology of
unconventional structures that do not correspond to simple for-
ward models have recently been successful in tackling challenging
inverse analysis problems8. However, these specialized methods
can be more computationally expensive than necessary for in-situ
and large-scale analysis of conventional materials. For conven-
tional structures, existing works focusing on morphology classi-
fication and structural parameter prediction typically attempt to
explore the efficacy of using various ML algorithms to build a sin-
gle multi-class classifier over a large set of candidate morpholo-
gies.9–15. While reasonable overall accuracies are achieved given
large training datasets, this approach tends to result in lower ac-
curacy in distinguishing between common but similar morpholo-
gies such as spheres and core-shell spheres. Neural network-
based approaches also require about an order of magnitude larger
datasets than classical models and more expensive training pro-
cedures13–15.

In this work we demonstrate a machine learning (ML) pipeline
for SAS analysis that is designed to capture hierarchical relation-
ships between similar morphologies, thus increasing multi-class

classification accuracy, while utilizing less training data and en-
abling fast inference, making it a practical approach for integra-
tion with experiments at scattering facilities. This pipeline is il-
lustrated in Figure 1. The first stage is a hierarchical multi-class
classification model which identifies the morphology of the parti-
cle. We focus this work on six common but potentially difficult-
to-distinguish morphologies: cylinder, disk, sphere, and their
core-shell counterparts, and demonstrate how our hierarchical
approach is well-suited to physics-informed multi-class classifi-
cation. The second stage is a set of regression models, one for
each morphology and applicable structural parameter such as ra-
dius, length, and shell thickness. Finally and importantly, the
predicted morphology and structural parameters can be passed
into the corresponding forward model to verify the correctness of
the ML predictions and ensuring their trustworthiness. Option-
ally, the predicted parameters can be used to initialize fitting in
the traditional manner to enable rapid fine-tuning. We demon-
strate our pipeline first on thousands of simulated curves, includ-
ing structures with parameter ranges dramatically different from
our training set, to demonstrate the robustness of our ML mod-
els to extrapolated data. Then, we demonstrate the accuracy of
our ML pipeline in making predictions on experimental curves
drawn from the literature, while having been trained entirely on
simulated data. Our light-weight ML models use only classical al-
gorithms without deep learning, making them easy to train. Most
importantly, they are capable of making predictions on thousands
of scattering curves within seconds, significantly enhancing the
efficiency with which SAS data can be analyzed and potentially
unlocking new experimental designs for scattering science.

1 Methods

1.1 Dataset Generation

We train our machine learning models using simulated data gen-
erated by the SASView open source library for small angle scatter-
ing data16. The prediction capability of machine learning models
depends on the quality of the data used to train them. We simu-
late our data with class balance between morphologies to ensure
our model and performance metrics are not affected by imbal-
ance in the dataset. To improve our model performance, we in-
tentionally leverage physical understanding of the morphologies
being considered to over-sample data theoretically near decision
boundaries in the classification task. We also create a dataset
for testing the extrapolation capabilities of the classifier (i.e., out-
side the range of the training data) that contains scattering curves
corresponding to larger aspect ratios and shell-to-total ratios than
those in our training data, as explained below.

There are several steps in our data generation process. First,
we determine parameter ranges to vary our simulations over. We
then simulate the curves using SASView16, sampling at random
over the selected parameter range, and using a q-vector ranging
from 3.7e−3 to 2.6e−1(Å−1). It should be noted that polydisper-
sity is one of the varied parameters, and it has a similar effect as
instrument resolution on the scattering patterns. Therefore, the
simulated data with adjusted polydispersity would reflect truth-
fully the experimental data. We also vary the scattering length
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density, which varies the contrast between the studied objects
and matrix, leading to similar effects on the scattering curve to
variations in scale. Next, we screen the simulated data and re-
move any with non-physical simulation artifacts, such as sharp
pulses in the scattering curve caused by numerical approxima-
tions (such as integration or near-zero values). Then, we shift the
data to mitigate the effects of confounding variables such as con-
centration and background intensity. This is a simple vertical shift
in log space to maintain the structure of the curve and the rela-
tive values between features. Finally, these scattering curves are
the “feature vectors" that we use as input to our machine learn-
ing models, which we train to predict the corresponding “labels"
for each curve (the morphology in the classification step, and the
structural parameters in the regression step).

1.1.1 Data partitioning for model selection

During model selection for hyperparameters of the machine
learning model, we partition our dataset into training and vali-
dation sets in a unique way to promote selection of models that
extrapolate beyond the training data. Data were separated into
nine bins in a 3× 3 grid pattern, as depicted in Figure 2. First,
the data are separated into small, moderate, and large aspect ra-
tio bins. Then, these bins were also separated according to low
shell-to-total ratio, medium shell-to-total ratio, and high-to-total
shell ratio. In order to emphasize the distinctions between similar
morphologies with small aspect ratio (cylinder vs. disk) and low
shell-to-total ratio (solid vs. core-shell), more training data was
drawn from bins corresponding to these lower ratios. Training
data were selected primarily from the bin in our 3x3 grid cor-
responding to the lowest aspect and shell ratios. For every two
curves sampled from this bin, totaling 670 per class, one curve
is sampled from each of the three surrounding intermediate ratio
bins: low shell ratio with medium aspect ratio, medium aspect
ratio with low shell ratio, and medium aspect ratio with medium
shell ratio. From each of these bins 330 curves are drawn, for a
total of 1660 training curves per class. Scattering curves corre-
sponding to larger aspect and shell ratios in the five remaining
bins were reserved for testing only.

While traditional k-fold cross-validation was used for model se-
lection, with k = 5, we make a critical departure from convention
by using only 20% of the data for training and the majority 80%
for validation. Due to the hierarchical nature of our multi-class
classification algorithm (discussed in the next section), there are
an exponentially large number of possible final hyperparameter
sets corresponding to the hyperparameters for each of the inter-
mediate classifiers. Using significantly more validation data than
training data helps to avoid overfitting the model selection pro-
cess17. We find empirically that this 20-80 split significantly out-
performs the more traditional 80-20 split in our problem.

1.2 Classification
Our classification method leverages physical knowledge to
solve the multi-class classification problem hierarchically along
physically-motivated decision boundaries. The first binary classi-
fication problem decides between spherical curves and cylindrical
curves. Next, each branch decides between solid and core shell

Fig. 2 (a) A schematic showing the separation of scattering data into bins
according to aspect ratio. (b) A grid corresponding to the 9 bins of data
formed from these aspect ratio bins as well as similar shell-to-total ratio
bins. 40% of the training data are sampled from the top-left bin with
small aspect ratio and low shell-to-total ratio. 20% are sampled from
each of the other surrounding bins with moderate aspect ratio and/or
shell-to-total ratio. The remaining five bins with data containing extreme
aspect ratio and/or shell-to-total ratio are reserved for test data.

Journal Name, [year], [vol.],1–10 | 3

Page 3 of 11 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 5

/3
/2

02
5 

7:
00

:0
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00059A

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00059a


All

Fig. 3 Overall structure of our hierarchical classification algorithm. The
first decision separates spherical morphologies from cylindrical morpholo-
gies. Next, each branch is separated into solids versus core-shells, since
solids are a subset of core-shell in the limit as the core or shell ap-
proaches zero thickness, or the core and shell have the same scattering
length density. Finally, the cylinders and disks are separated on both the
solid branch and core-shell branch, which simplifies to placing a decision
boundary where the length and diameter are equal. These decisions are
designed to emphasize interpretable decision boundaries: between the
presence and absence of shells, and between the parameter cutoffs sepa-
rating cylinders versus disks. The path taken to a final classification of
core-shell sphere is shown for illustrative purposes.

curves. It is worth noting that there is a continuous change be-
tween solid and core-shell scattering curves in several different
cases. The first is in the limit that the shell thickness approaches
zero. The second is in the case that the core diameter or length
approaches zero, so that the shell takes up the entire volume. The
last is in the case that the scattering length density of the shell is
equal to either the scattering length density of the solvent or of
the core. In all of these cases a technically core-shell morphology
is indistinguishable from a solid. Finally, in the last level of the
classification problem, we separate cylinders from disks. There
is again a continuous distribution bridging the cylinder and disk
classes, which meet in the case where the diameter and length
are equal. We find empirically that better performance can be
achieved by first resolving the challenging decision boundary be-
tween solid and core-shell morphologies before moving on to the
final decision separating cylinders and disks. We also tested other
potential orderings of the hierarchical classification, such as first
separating all solids from all core-shell morphologies, but the hi-
erarchical structure depicted in Figure 3 achieved the best vali-
dation performance and was thus chosen as our final model. A
binary kernel support vector classifier (SVC) is trained for each
decision within the tree, and hyperparameters are independently
optimized for each SVC18,19. We note that support vector classi-
fiers are significantly easier to train than neural network models
since they involve solving a convex optimization problem.

1.3 Regression
We use kernel ridge regression18 (KRR), a classical machine
learning algorithm for nonlinear regression, to build models for
predicting structural parameters from the scattering curves. The
choice of kernel (radial basis function, polynomial, and cosine)

and kernel hyperparameters are optimized using 10-fold cross-
validation. A separate KRR model was trained for each parameter
for each morphology. Each regression model was trained on scat-
tering curves of the correct morphology in the respective training
set. We also generate a separate calibration dataset to enable
statistically rigorous uncertainty quantification of regression pre-
dictions using conformal prediction20,21.

For many structural parameters, such as the radius of spheres,
the scattering curves vary smoothly with respect to the structural
parameter and predictive regression models are easy to train; a
few exceptions to this occur for core-shell morphologies. The
training, validation and test datasets are drawn from the same
3x3 grid as the classification task, but we do not explore extrap-
olation of the regression models since the ranges of each param-
eter are defined by the effective probing range for our q-range.
The regression data are the same data used for classification with
no additional pre-processing steps, enabling data to be directly
passed from the classifier to the regressor in the pipeline.

2 Results

2.1 Classification

Simulated data from the software package SASView16 are used
to build a training set containing 2,000 scattering curves of
each morphology (six morphologies in total), and a test set con-
taining 1,000 curves of each morphology. The performance of
our hierarchical classification model is compared against those
of several off-the-shelf multi-class classification algorithms that
have been tuned for optimal hyperparameters: support vector
classifiers (SVC), k-nearest neighbors (KNN), and random forest
(RF)18,19,22. Standard soft-margin SVC finds the classification
boundary which maximizes the width of a margin around it, with
as few points inside the margin and incorrect predictions as pos-
sible. When used for multiclass classification, either a one-vs-all
or one-vs-rest ensemble of binary models is used to make a final
class prediction. This is different from our hierarchical multi-class
classification approach, which trains a binary SVC classifier over
different subsets of data for each decision in our hierarchical clas-
sification tree. KNN is a simple classifier in which the predicted
class of a new test point is voted on by its k nearest neighbors in
the training set. For KNN, the similarity metric we use for defining
nearest neighbors is the Euclidean distance in n-dimensional fea-
ture space, where n is the number of features, e.g. the number of
distinct q values sampled. RF classifiers are ensembles of decision
trees, each of which hierarchically splits data based on features
that maximally distinguish between classes. We note that our hi-
erarchical approach is again conceptually different from decision-
tree based methods: our algorithm splits on predicted labels, not
given features. All off-the-shelf classifiers are provided by the
scikit-learn library23.

We first measure the expected predictive performance of our
model when interpolating within the parameter space spanned
by the training data. We divide the data set into a 3× 3 grid of
bins according to the aspect ratio and the shell-to-total ratio, as
described in Methods. Four of the bins are used for both training
and test, and the bin with the smallest aspect ratio and shell-to-
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total ratio data is sampled twice as much as the other three for
training, since these data are closest to the true decision boundary
between cylinders and disks, and between solid and core-shell.
The other five bins containing curves from parameter space out-
side the range of training data are reserved for testing only.

The performance of our hierarchical classification model com-
pared against those of off-the-shelf multi-class classification algo-
rithms is shown in Table 1. All test sets have balanced class dis-
tributions and thus prediction accuracy (number of correct classi-
fications divided by total number of datapoints) is an appropriate
performance metric. We also report the F1-score averaged over all
classes (macro F1-score)24, which captures more information on
the per-class performance than accuracy. The F1-score is defined
as the harmonic mean of precision and recall, or equivalently,

2T P
2T P+FP+FN

where TP (true positive) is the number of correctly identified
curves belonging to a certain class, FP (false positive) is the num-
ber of curves falsely identified as members of that class, and FN
(false negative) is the number of curves missed within a class.

We first test the model performance on data selected from all
nine data bins equally. We also measure the performance of each
model when tested only on data in the extrapolation test set con-
sisting of the five highest aspect and/or shell-to-total ratio bins,
from which no training data were drawn. Our hierarchical model
yields higher accuracy in both extrapolation (> 0.86) and the full
test dataset (> 0.88) than other off-the-shelf-classifiers. As ex-
pected, extrapolation was more challenging for all models. How-
ever, our model was able to achieve the same performance in
extrapolation as the next best performing model (SVC with one-
vs-rest multi-class classification) over the full test set. Finally, we
report the extrapolation performance of our model on a third test
set, called scale extrapolation, in which the scale parameter is var-
ied between 0.5 and 1.5. Since scale can be an arbitrary constant
that depends on experimental conditions and choices of units, we
would like to demonstrate that our classification model is robust
to differences in scale, even though this invariance is not explicitly
enforced by the algorithm. In our training data, the scale param-
eter is held constant but scattering length density is varied. Our
results in Table 1 show that this variation is sufficient to allow our
classification model to be robust to changes in scale.

Due to the degeneracy of SAS data, such that scattering curves
can be possibly described by scattering models corresponding
to multiple different morphologies, the ability of ML models to
achieve “acceptable" classifications is higher than that automati-
cally measured by comparing with test set labels. One example
of such an acceptable misclassification is when a NP with an ul-
tra thin shell, or a null contrast between the core and the shell, is
mistaken as a solid NP. A more rare situation is shown in Figure 4.
Here, a curve simulated using a disk morphology was predicted
to be a core-shell sphere and can be fit well by a core-shell sphere
model. The ground truth scattering curve corresponding to the
disk morphology and the predicted best fit scattering curve using
a core-shell sphere morphology share similar key features: two

Hierarchical (ours) SVC KNN Random Forest
accuracy | F1-score accuracy | F1-score accuracy | F1-score accuracy | F1-score

full test set 0.88 | 0.88 0.86 | 0.86 0.81 | 0.80 0.74 | 0.73
extrapolation only 0.86 | 0.85 0.83 | 0.82 0.77 | 0.76 0.71 | 0.69
scale extrapolation 0.86 | 0.86 0.85 | 0.84 0.79 | 0.77 0.74 | 0.72

Table 1 Classification accuracy and average F1-score of our hierarchical
model compared to three off-the-shelf classifiers. The top row shows
performance on test data sampled from the entire range of scattering
curves generated, including data similar to those used for training. 1000
test curves are used for each class. The second row shows the classifi-
cation performance only on test data with aspect ratios and shell ratios
that were not present in the training set. This measures how well the
classifiers can extrapolate to new ranges of data. The bottom row shows
performance on a different test set consisting of curves drawn from the
same range of structural parameters, but allowing the scale to vary from
0.5 to 1.5, corresponding to varying experimental conditions. Our hier-
archical model significantly outperforms off-the-shelf models on each of
the full, extrapolation, and scaled test sets.

predicted core-shell sphere
radius 540 Å
shell thickness 33.9 Å

actual disk
radius 265 Å
length 34.6 Å

Fig. 4 An example of simulated SAS data using the disk model that
is predicted to be a core-shell sphere by our ML model. The best fit
scattering curve using the core-shell sphere model (top) is nearly indis-
tinguishable from the ground truth discoidal model (bottom), and has
been shifted upwards to visually separate the two. To understand this
degeneracy, we note that the best fit shell thickness is similar to the
thickness of the ground truth disk, while the best fit sphere radius is
more than twice the ground truth disk radius, which is itself quite large
indicating the ground truth disk is very flat. This indicates that our ML
model predicted a very large core-shell sphere that is locally similar to
the ground truth disk, much like predicting the underlying morphology
is the earth’s crust when the ground truth is a single tectonic plate. For
scattering scientists, even an “incorrect" prediction in this case provides
useful understanding of the NP morphology.

slope transitions of the scattering intensity from plateau to q Å−2

decay and then from q Å−2 decay to q Å−4 decay, followed by a
minimum intensity and a high-q peak from low-q to high-q. As
a result, both the discoidal and core-shell spherical models can
fit the data indistinguishably well, taking into account measure-
ment uncertainty and polydispersity. The intuition for why this
occurs is revealed by the structural parameters. The true disk
morphology has a large radius and is relatively thin. The best fit
core-shell sphere morphology has an even larger radius, with a
predicted shell thickness almost equivalent to the ground truth
disk thickness. One could imagine that local regions of the shell
on the predicted core-shell sphere have a similar morphology to
the ground truth disk - similar to predicting that the morphology
is in the shape of the earth’s crust when the ground truth is a
single tectonic plate.

To further validate the prevalence of these types of degeneracy,
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we randomly sampled ten misclassified curves and found that five
of them were able to be fit by the “incorrect" predicted models
well. This suggests that the accuracy of our ML prediction should
be higher than the values listed in Table 1, presumably larger
than 0.9, presenting a significant breakthrough in determining
morphology from SAS data.

Finally, in Table 2, we compare our classification results to the
performance of two state-of-the-art classifiers11,13 from the liter-
ature. Both of these publications report recall, which measures
how many datapoints of a given class are classified correctly. As
with most works in the literature, these methods simultaneously
consider a large number of possible morphologies. While this in-
creases the complexity of the multi-class classification problem so
that a direct one-to-one performance comparison should not be
made, we can see that our model achieves better performance on
every mutually considered morphology while requiring an order
of magnitude less training data per class. Our algorithm is also
easy and fast to train - a new training dataset of a similar size can
be automatically generated in minutes, and similarly a full new
hierarchical classification model can be trained (including hyper-
parameter tuning) in minutes. Thus, what we have developed is
an algorithmic approach that can be easily customized to new ex-
periments, rather than a single pre-trained model that may have
trouble extrapolating to new experimental requirements. We note
that the smaller subset of morphologies being considered by the
hierarchical tree is an advantage that correlates well with how
small angle scattering is used in practice. Typically, an experimen-
talist will have a general idea of the subset of morphologies they
expect and knowledge of the q-range their experiment will in-
clude. With this information, our approach enables a customized
hierarchical classification model and set of regression models to
be quickly and automatically built for each new experiment.

2.2 Regression

For each morphology, we trained separate regression models for
each structural parameter of interest (such as radius, length and
shell thickness). The test performance of these models are dis-
played in Table 3. The performance metrics used are R2 score
and the mean absolute percentage error (MAPE):

R2 = 1− ∑
N
i=1(yi − y∗i )

2

∑
N
i=1(yi − ȳ)2

(1)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣ (2)

Here yi is the true label value for datapoint i, y∗i is its correspond-
ing predicted value, and ȳ is the mean label value over the data.
An R2 score of 1 indicates a perfectly predictive model, while
R2 ≤ 0 indicates a model worse than a constant trivial model
that simply predicts ȳ for all datapoints. Most morphologies have
structural parameters that the regression models can capture with
an R2 > 0.9, although the presence of shells does hinder the ability
of some structural parameters to be identifiable from the scatter-
ing curves. For context, in Table 3 we also provide baseline val-
ues for R2 and MAPE that correspond to a trivial constant model;

these baseline values capture information about the spread of the
labels in the training data and provide a measure of the difficulty
of the learning problem. In all cases the R2 should be higher than
that of the baseline and the MAPE lower.

2.3 Experimental Data

The classification and regression models have also been evaluated
with a collection of eight experimental SAS curves obtained from
literature. The experimental curves drawn from the literature had
a variety of different q-ranges. To match the experimental data to
the expected input to our ML models, we first remove all data
outside of our q-range. We then use linear interpolation to match
the grid sampling of q in our feature vector. Finally, if there are
missing values at low-q or high-q, we use a constant fit to extrap-
olate at those values. The intensity at all missing low-q values are
set to equal the intensity at the lowest available q, since it is desir-
able for scattering curves to have a plateau at low q. Similarly, the
intensity at all missing high-q values are set to equal the intensity
at the highest available q. Finally, we apply the same vertical shift
to the scattering curve as we did to the simulated training data.

Figure 5 and Table 4 show the outcomes from the classification
and regression models and their performance evaluated on these
experimental curves. Our ML models classify most morphologies
accurately and predict reasonable values for corresponding struc-
tural parameters. The misclassifications are justified as follows.
In (A) and (D), our model predicts a core-shell morphology with
a vanishingly small shell, which effectively agrees with the re-
ported corresponding solid morphologies. In (C), the reported
morphology (flexible cylinder) is not one of the six morphologies
considered by our classification model; however, the predicted
morphology (core-shell cylinder) gives a close representation. In
(E), the correct spherical shape is predicted by our model, but
no shell is detected in contrast to the reported morphology. We
note in this case a separate manual optimization by a human ex-
pert found a smaller shell than the reported value. Using the
SAS models of the morphology identified by ML, reasonable fits
to the experimental data could still be found. We also find that
the corresponding estimated structural parameters are generally
in good agreement with reported values, yielding reasonable pre-
dicted curves in comparison with the corresponding experimental
ones. We include with each parameter prediction the 95% confi-
dence intervals calculated with a calibration dataset using confor-
mal prediction, which provides statistically rigorous uncertainty
estimates20,21. Note that several curves (A, C, and D) have no
clear plateau at low q due to the probing range, resulting in high
uncertainty in the largest parameter, which is to be expected. Fi-
nally, we use the predicted morphology and structural parameters
to initialize further fitting of the data using traditional optimiza-
tion methods. Since the ML models provided reasonable initial
estimates, this enabled fast convergence during the optimization
and reduced the risk of being trapped in an undesirable local min-
ima. We show in Figure 5 that this fine-tuning procedure achieved
good agreement with experimental data in all cases.
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algorithmic approach #training curves per class recall notes

transformer neural network (SAS-
former)13

16000

cylinder 0.91
sphere 0.88

cs-cylinder 0.82
cs-sphere 0.78

Cylinders and disks are considered
the same morphology. Covers a broad
set of 55 classes.

weighted k-nearest neighbors +
Gaussian processes + stochastic
gradient descent11

10000
sphere 0.51

cs-sphere 0.80

Covers 39 classes, of which only
sphere and core-shell sphere are
shared with our paper.

hierarchical model + support vector
classifier

1000

cylinder 0.94
disk 0.87

sphere 0.98
cs-cylinder 0.83

cs-disk 0.84
cs-sphere 0.85

This work.

Table 2 A comparison of our hierarchical classifier with two key methods from the literature 11,13. Our method uses at least an order of magnitude
less training data, while achieving better performance on the subset of targeted morphologies. We note that the existing works consider more classes
simultaneously, which may lead to decreased performance on the six common morphologies considered in our work. This suggests that an approach
focusing on a more targeted subset of morphologies, as is practical in real experiments, may be advantageous.
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Fig. 5 We test our trained ML models on several experimental scattering curves from the literature. The red triangles correspond to the input
experimental curves. The teal lines are the scattering curves simulated by SASView using the structural parameters predicted by the ML model. The
black lines are simulated scattering curves using the best fit from SASView, optimized starting from our predictions. All morphologies and parameter
values are listed in Table 4.

Journal Name, [year], [vol.],1–10 | 7

Page 7 of 11 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 5

/3
/2

02
5 

7:
00

:0
2 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00059A

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00059a


morphology param. R2 Base. R2 MAPE Base. MAPE
cylinder radius 0.97 -0.08 0.16 1.09

length 0.917 -0.08 0.104 0.664
disk radius 0.960 -0.011 0.078 0.491

length 0.938 -0.232 0.262 1.27
sphere radius 1.0 -0.002 0.005 0.883
cs cylinder radius 0.895 -0.027 0.107 0.384

length -0.17 -1.45 0.330 0.377
shell 0.448 -1.09 0.251 0.387

cs disk radius 0.354 -0.745 0.193 0.246
length 0.693 -.209 0.262 0.641
shell 0.274 -0.05 0.312 0.463

cs sphere radius 0.908 -0.009 0.189 0.964
shell 0.502 -0.177 0.334 0.621

Table 3 Test set results for regression models predicting the radius, length,
and shell thickness for the six morphologies studied. For each model, the
baseline performance of a trivial constant model is included to provide
context. While many structural parameters such as those of solid cylin-
der, disk, and core radius are accurately predicted by a regression model,
some other parameters, such as length of core shell cylinders are not
easily distinguishable from the scattering curves.

3 Discussion
Our ML pipeline is able to accurately and automatically identify
the morphology and structural parameters of NP in a matter of
seconds, enabling in-situ analysis. We highlight several key design
decisions in our ML framework that make it particularly suited
for practical application at scattering facilities. First, our method
is designed to increase accuracy by focusing on a small number
of morphologies of interest in a particular experiment, the typi-
cal use case for scattering scientists, rather than a general clas-
sifier over all possible morphologies. This allows our model to
focus on capturing hierarchical and other relationships between
the selected morphologies to derive better multi-class classifica-
tion boundaries with fewer data. For example, the set of solid
spheres should be considered a subset of the set of particles with
core-shell spheres, since the former are a special case of the latter
in which the shell has either no contrast or no thickness, or the
core becomes vanishingly small. Cylinders and disks also fall on
the same continuous manifold, with an intuitive boundary where
diameter becomes greater than length. We use a physics-informed
hierarchical scheme for multi-class classification that is able to
capture and leverage these relationships among morphologies, as
shown in Figure 3. We demonstrate that using a series of binary
classifiers separating scattering curves into increasingly smaller
subsets outperforms classical multi-class classification methods,
which typically involve extensions of binary classifiers using one-
vs-one or one-vs-all schemes, non-parametric nearest neighbor
approaches, or decision tree-based methods that split data on in-
put features.9 We note in particular that our hierarchical method
differs from decision trees in that our tree nodes split based on a
fully trained binary classifier, and not just on input features. Each
split can itself utilize any classification method, including SVC,
KNN, and RF. Crucially, these models are tuned for hyperparam-
eters separately. This enables two things. First, the final over-
all multi-class classification boundary can be much more com-
plex, since it does not assume the same complexity (controlled by
tuned hyperparameters) at each segment of the boundary. It is

curve param. pred. (95% CI) pred.+opt. manual+opt. literature

A morph. cs-cylinder cs-cylinder cylinder cylinder
radius (Å) 64 (19,111) 98.52 77.59 100
length (Å) 878 (166,1646)∗ 450.82 308.57 410
shell (Å) 14 (0∗∗,77) 5.03 N/A N/A

B morph. disk disk disk disk
radius (Å) 123 (90,157) 142.82 145 145
length (Å) 55 (40,69) 52.71 51 51

C morph. cs-cylinder cs-cylinder cylinder flex. cylinder
radius (Å) 53 (35,71) 19 22 13
length (Å) 801 (275,1354)∗ ≥ 1600 ≥ 1600 ≥ 1000
shell (Å) 0∗∗ ≈ 0 † †

D morph. cs-disk cs-disk disk disk
radius (Å) 575 (362,783)∗ 656.7 ≥ 1000 ≥ 3000
length (Å) 168 (80,266) 117.9 120 110
shell (Å) 52 (3,100) 286.5† N/A N/A

E morph. sphere sphere cs-sphere cs-sphere
radius (Å) 146 (145,147) 146.3 115 130
shell (Å) N/A N/A 32 70

F morph. disk disk disk disk
radius (Å) 124 (90,158) 154.2 154.2 141
length (Å) 54 (40,68) 52.5 50.0 42

G morph. cs-sphere cs-sphere cs-sphere cs-sphere
radius (Å) 135 (111,158) 104.7 104.7 98
shell (Å) 84 (11,160) 36.4 36.4 36

H morph. cs-sphere cs-sphere cs-sphere cs-sphere
radius (Å) 96 (77,114) 45.1 45.0 73
shell (Å) 42 (0∗∗,139) 45.7 45.0 25

Table 4 The columns reference the corresponding scattering curve in
Figure 5 (curve), the morphology or parameter displayed in each row
(morph., param.), the predictions from our ML model accompanied by
the 95% confidence interval (pred. (95% CI)), the results of using the
SASView optimizer to refine the fit from initial guesses provided by our
ML model (pred.+opt.), the value for those parameters determined by
a human expert fitting the scattering curves (manual+opt.), and finally
the reported values in the literature (literature). A: 25 approximately cor-
rectly classified cylinder as cs-cylinder with vanishingly small shell; B: 26

correctly classified disk; C: 27 classified as a core-shell cylinder although it
is truly a flexible cylinder; D: 28 misclassified as a core-shell disk - is report-
edly a solid disk with a radius outside of our effective probing range; E: 28

misclassified as a solid sphere - is reportedly a core-shell sphere, although
our predicted solid sphere curve closely matches experimental data; F: 29

correctly classified disk; G: 29 correctly classified core-shell sphere; H: 30

correctly classified core-shell sphere. Curves A, C, and D have no clear
plateau at low q due to probing range, resulting in large confidence inter-
vals and uncertainty in the largest parameter (marked with ∗), which is
to be expected. Note all predicted negative parameter values are treated
as 0 (marked as 0∗∗).
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possible, for example, to learn a much simpler boundary between
spheres and cylinders/disks, than between spheres and core-shell
spheres. Second, while the final overall classification boundary
can be complex, each individual decision boundary that is being
learned can be simple since each stage of the hierarchical classi-
fier can focus on a limited number of differences between logical
subsets of morphologies, rather than all differences at once. This
allows us to utilize less training data for greater accuracy, since
simpler boundaries require fewer datapoints to learn. This is in
contrast to neural network-based approaches, which also enable
flexibility in the decision boundary but typically requires an order
of magnitude more training data.13,15

Our second key design decision is to construct the model specif-
ically to extrapolate well to structural parameter ranges outside
of those sampled by the training data. It is especially important
to develop ML methods that are robust to extrapolation in scien-
tific contexts, where it is likely that new data of interest is dif-
ferent from existing known data. We achieve this by designing
the splitting of data into training, validation, and test sets to cap-
ture extrapolation, as described in detail in the methods section.
When there are no good physics-based estimates for the structural
parameters in a particular experiment, models that are trained
to extrapolate well rather than simply interpolate correctly are
of greater practical utility. Additionally, even when structural
parameter ranges can be reasonably constrained ahead of time,
models that can extrapolate better are more likely to have cap-
tured underlying patterns in the data, thus exhibiting increased
performance overall.31

Finally, our ML pipeline highlights the verification capabilities
of a framework that simultaneously classifies morphologies and
predicts corresponding structural parameters. The structural pa-
rameters suggested by regression are typically sufficiently accu-
rate that even if further optimization is needed, the optimizer
will quickly converge due to initialization at good initial values.
Researchers are encouraged to verify the output of the ML models
using the predicted morphology’s forward model to ensure confi-
dence in the results. We find that even in cases where the model
used to generate a simulated scattering curve disagrees with the
results of the classifier, a correct match is often found due to the
inherent degeneracy of SAS curves.

4 Conclusion
As scattering instrumentation becomes more advanced, the rate
of data collection is outstripping that of data analysis by human
experts, creating a research bottleneck. This work demonstrates
ML models which rapidly and automatically identify both the
morphology and structural parameters of NP from SAS measure-
ments, enabling in-situ analysis of scattering data. Our hierar-
chical classification algorithm for morphology prediction leads to
better predictive performance than standard off-the-shelf ML al-
gorithms, especially when extrapolating outside of the parame-
ter space of the training data. Furthermore, our method utilizes
only classical ML approaches, which require less training data,
are easier to train, and have faster inference time than more com-
plex neural network-based approaches. Empirical results on both
simulated and experimental data from the literature demonstrate

that our ML models, which were trained solely on simulated data,
are sufficiently accurate for analysis of experimental data. We dis-
cuss how our and similar ML frameworks that simultaneously pre-
dict morphology and structural parameters are compatible with
verification and refinement of ML predictions to ensure trust in
scientific conclusions. Our approach highlights how carefully de-
signed ML pipelines for inverse analysis of scattering data can
enable practical implementation in laboratories, significantly in-
creasing the efficiency with which data is analyzed and potentially
transforming experimental paradigms in scattering science.
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Data and source code for this article, including all training and test curves as well as scripts to 
reproduce experiments, are available in the AutomatedSAS Github repository, at DOI: 
https://doi.org/10.5281/zenodo.15283677. 
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