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Due to its potential for high-dimensional black-box optimization and automation, Bayesian optimization(BO)

is an excellent match for the iterative low-to-no-data regime many experimentalist practice in. It can be

cumbersome to make BO work for real-world problems, as the application of code frameworks focusing

only on implementing the core loop often requires substantial adaptation. Furthermore, with an extremely

active research community, it can be challenging to find, select and learn the right components and code

frameworks that best match the specific problem at hand. This is striking, as the BO framework in

principle is highly modular, and such fragmentation is a headwind for the adoption of BO in industry. In

this work, we present the Bayesian Back End (BayBE), an open-source framework for BO in real-world

industrial contexts. Besides core BO, BayBE provides a wide range of additions relevant for practitioners,

four of which we highlight in case studies in the domains of chemical reactions and housing prices: The

impact of (i) chemical and (ii) custom categorical encodings; (iii) transfer learning BO; and (iv) automatic

stopping of unpromising campaigns. These features can reduce the average number of experiments by at

least 50%, cost and time requirements being reduced by the same factor compared to default

implementations such as one-hot encoding. With this, we engage interested users and researchers from

either industrial or academic backgrounds, and actively invite them to evaluate and contribute to the

framework.
1 Introduction

Chemical, materials, and pharmaceutical industries are facing
an ever-growing complexity in the experimental effort to create
their products. For instance, the ratio of R&D spending to total
sales in the pharmaceutical industry increased from 11.9% to
17.7% from 2008 to 2019.1 As pointed out by Bannigan et al.,2

a 51-fold increase in R&D spending has only led to a two-fold
increase in approved FDA drugs between 1980 and 2020.3

Overall, this is not unexpected as any industry will progressively
transition from readily achievable objectives to more complex
issues to address. This, in turn, creates new challenges for all
elds participating in physical product development, from
Darmstadt, Germany. E-mail: jan-gerit.

50, 64293 Darmstadt, Germany
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riedrich-Wilhelms Universität Bonn,
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the Royal Society of Chemistry
synthesis of compounds and materials to formulation
screening and process optimization.

Traditional ways of approaching these growing experimental
challenges, including some of their downsides, are typically:

(1) Unsystematic: this oen involves human judgment
coming from a longstanding expertise. While this is not an
issue per se, humans are not good at optimizing many variables
and targets simultaneously, oen falling back into simplistic
one-at-a-time approaches. Beyond that, human bias has also
been identied as a potential issue,4 increasing the risk of
masking important factors or getting trapped with suboptimal
settings.

(2) Classical design of experiments (DOE): DOE offers
a mathematically sound way to produce a plan to gather results
in an information-efficient way.4,5 However, it comes with
limited options to include prior data, oen uses too simplistic
models, and struggles with high-cardinality categorical
parameters.6,7

(3) Brute-force via high throughput-screening (HTS): HTS is
oen enabled by technical achievements allowing to screen
a large number of samples. Due to the combinatorial explosion
of parameter combinations, HTS still remains unfeasible in
most cases, while in other cases the design spaces are reduced
as a compromise to make it amenable to HTS.8,9
Digital Discovery, 2025, 4, 1991–2000 | 1991
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Bayesian optimization (BO) has emerged as a formidable
tool for conquering complex search spaces in both academic
and industry settings. Due to its inherent ability to balance
exploration and exploitation, it offers the prospect of global
optimization.10,11

Moreover, BO aligns nicely with the data regime in which
most experimental campaigns operate: in contrast to many of
the impressive achievements that the deep learning eld has
produced,12 the vast majority of chemistry andmaterials science
problems in daily industrial context do not have the big data
basis required for deep learning. On the other hand, most
industrial problems are too complex to be modeled directly by
entirely mechanistic (non-data-driven) methods, such as uid
dynamics13 or density functional theory.14

Thus, by far the most common practice to tackle design
problems is to work in an iterative manner, performing make-
test-learn cycles while generating a small amount of data. We
term this regime the low-to-no-data regime. Since this is also
the modus operandi of BO, whilst also being exible to start
from any kind of data situation, BO is a natural match for
experimental planning. BO has already been applied in various
problem domains, e.g. reaction conditions,15,16 mixtures,17–19

biological assays,20 or exploring chemical compound space.21–24

Despite the growing adoption of BO, applying it in realistic
scenarios still requires much adaptation because many aspects
are not handled well by implementations focusing only on the
core optimization loop. As an example, label encoding does not
usually take into consideration the chemical nature of the
entities (such as solvents, ligands or bases) represented by the
labels. Simple one-hot encoding distorts the useful relations
between substances in chemical space by imposing a uniform
distance between labels. Since BO use cases are extremely
frequent and interest from even non-technical experts increases
steadily, such important technical details contribute to forming
an adoption barrier.

To address this barrier and to assemble all required tools
needed to perform industrial BO, we created the open-source
Python package BayBE (Bayesian Back End), released under
a non-restrictive Apache-2.0 license.25 It provides easy access to
the core BO methodology, while also including a range of very
useful additions that are at the disposal of the user within a few
lines of code: (1) chemical and custom categorical encodings;
(2) minimization, maximization, and target matching in
discrete, continuous, or hybrid parameter spaces; (3) multi-
target optimization via desirability scalarization or Pareto-
front search; (4) model insights such as parameter impor-
tance; (5) distributed asynchronous workows between several
experimenters and support for partial measurements; (6) active
learning; (7) bandit optimization; (8) full serializability of all
objects, and (9) transfer learning for unlocking data treasures
found in similar experiments. Beyond this, the code undergoes
extensive review, integration testing, and hypothesis tests, and
we provide comprehensive user guides and templates with
educational character.26

The need for bringing BO to real-world labs is also reected
in the many recent frameworks developed around this topic to
achieve similar goals, such as ,27 ,28 ,29 ,30
1992 | Digital Discovery, 2025, 4, 1991–2000
,31 ,32 33 or ;34 as
well as commercial offerings.35–39

In this work, following a brief explanation of the BO meth-
odology and our investigation process, we show four case
studies utilizing features mentioned beforehand that we found
to be most relevant in realistic use cases: (i) the impact of
chemical and (ii) custom encodings for categorical variables;
(iii) transfer learning between chemical reactions performed
under slightly different conditions; and (iv) automatic stopping
of unpromising campaigns.

2 Methods

We provide detailed explanations of the methods applied in
their respective subsections of Section 3, while this section
contains a summary of BO basics, backtesting, and how results
and outcomes are evaluated.

BO aims to sequentially optimize an expensive-to-obtain,
unknown objective function f, which typically delivers noisy
and gradient-free information.11 To this end, two main
components are used: rst, a probabilistic surrogate model f̂ of
the objective function f, and second, an acquisition function
a encoding the optimization strategy30 for proposing new
measurements. In its most basic variant, optimizing the func-
tion f is performed by repeating the following steps:40

� Update the probabilistic model f̂ of f using all available
data D.

� Maximize the acquisition function a computed from f̂ .
� Evaluate the true objective function f at the calculated
maximizer of a and update D.

Optimizing the function f is typically referred to as a BO
campaign. Critical is the choice of suitable a, as it balances
exploration and exploitation by considering both the predicted
values and their associated uncertainty. This results in
enhanced robustness against becoming trapped in local
minima. Most oen, the expected improvement (EI) is used,
integrating the probability-weighted model prediction that is
higher than the currently best observed value.41,42 Special
acquisition functions are available as well, e.g. for active
learning43 or custom control of the exploration/exploitation
trade-off.44 If not mentioned differently, we are using EI and
Gaussian Process (GP) models throughout.

A GP denes a probability distribution over functions,
offering a non-parametric Bayesian approach. Formally, a GP is
a collection of random variables which have a joint Gaussian
distribution. It is fully specied by a mean function m(x) and
a covariance function k(x,x̂) commonly referred to as kernel.
k(x,x̂) models the covariance between function values at points x
and x̂. By carefully choosing k, it is also possible to include prior
information, e.g. knowledge about an underlying periodicity.
For a nite set of input points {x1, ., xn}, the corresponding
vector of function values f = {f(x1), ., f(xn)} follows a multivar-
iate Gaussian distribution: f � N ðm;KÞ, where the mean vector
m has elements mi = m(xi) and the covariance matrix K has
elements Kij = k(xi, xj).

In contrast to supervised machine learning, the outcome of
BO campaigns is not commonly judged by regression or
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Chemical encodings: (a) Illustration of different encodings
applied to molecular substances. The top and bottom solvents are
chemically very similar and both are less similar to the central solvent.
This is not reflected in the numbers generated by integer (INT) and
one-hot (OHE) encodings. By contrast, an encoding with chemically
meaningful quantities reveals the similarities. (b) Optimization perfor-
mance for the direct arylation reaction from Shields et al.,15 with the
task to maximize reaction yield among 1728 possible combinations.
Each curve corresponds to different encodings used for the cate-
gorical labels belonging to the substance entries of bases, ligands and
solvents. The dashed lines mark the number of experiments needed to
reach a reasonably high yield of 90% for MORDRED and OHE. This
backtest was performed with 100 Monte-Carlo iterations, and shaded
areas indicate 95% confidence intervals.
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classication metrics.45 Rather, one is primarily interested in
the trajectory the optimization takes, considering the specic
problem and corresponding setup at hand. The latter includes
a translation of the experimental parameters, constraints, and
targets into a machine-treatable language. Typically, there are
several choices to make, which we refer to as the overall
settings. Examples for settings are the parameter types (e.g.
discrete or continuous numerical), the encodings for categorical
parameters, and the surrogate model.

To judge the BO performance of a given problem and setting,
backtesting is frequently the method of choice in the computer
science domain. This approach is well known, e.g. also in
nancial modeling46 for evaluation on historical data. It is
a Monte Carlo (MC) like procedure, where entire BO campaign
trajectories with different initial conditions are repeated.
Backtesting with different settings provides insights into their
inuence on the campaign. For a backtest in the context of BO,
we need a lookup mechanism (e.g. on historical data) or oracle
corresponding to the black-box function f, which provides the
target values for any proposed set of input parameter values.
BayBE provides utilities to quickly perform these backtests,47

enabling the study of various algorithms and settings without
having to worry about things like parallelization. The full
recommend-measure loop is repeated several times to account
for random effects, e.g. caused by the selection of starting points
or stochastic components of the recommendation algorithm. If
not mentioned differently, all results in this work are obtained
by choosing a different set of initial measurements randomly
for each MC run (although this behavior can be congured
exibly in BayBE).

The outcome of the aforementioned process is an average
trajectory, in the sense that the measurements of the target are
averaged point-wise per iteration. We refer to this as an opti-
mization curve, see e.g. Fig. 1b. Visualizing the optimization
curves across several settings for a xed problem indicates
which settings are superior and should be preferred for actual
campaigns. We generally judge the resulting plot in two aspects:

(1) Is the global optimum found? If so, how fast and stable is
the convergence?

(2) How steep is the optimization curve at the initial itera-
tions? We judge this by the number of iterations until 90% of
the best possible value has been reached.

We note that in the traditional machine learning literature,
the rst aspect is oen emphasized. However, industrial
applications can have different goals. It can be more valuable to
obtain a sufficiently good result (close but not identical to the
global optimum) in a small number of experiments. Take, for
instance, reaction condition screening in medicinal chemistry:
usually, it is not critical to nd a perfect set of conditions with
100% yield. Instead reaching a problem-specic lower limit
might already be acceptable to move the project forward. While
it is difficult to generalize what qualies as sufficiently good and
how many constitute a small number of experiments, these
questions are typically clear for domain experts who understand
the objectives, time characteristics and budget limits of their
specic problem. Thus, our assessment of BO performance will
focus more on the second aspect.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3 Results

To highlight some of the features mentioned in the introduc-
tion, we present four case studies. These use-cases highlight the
concepts that are impactful additions to the basic BO workow
when used in practice. However, to the best of our knowledge,
these are still somewhat underutilized and underappreciated.
3.1 Chemical encodings

One important aspect of real-world campaigns in chemical,
pharmaceutical, or materials industries is that they work with
substances as parameters. The choice of which substance to
choose as solvent, ligand, base, phase agent, buffer, or mixture
component appears frequently. This comprises a choice
between a set of categories, corresponding to the available
substances (e.g. identied by their name). To be treatable by
tabular machine learning models, these labels are transformed
into a machine-interpretable representation, typically a numer-
ical encoding.

Two oen used encodings are integer (INT) and one-hot
encoding (OHE).48 These approaches have severe downsides,
Digital Discovery, 2025, 4, 1991–2000 | 1993
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as they can impose spurious orders and distances between the
labels. Fig. 1a illustrates this issue. Consider the three depicted
solvents, where solvents 1 and 3 are extremely similar, and both
are dissimilar to solvent 2. If this situation is encoded with
integers 1, 2, 3, the imposed order does not reect the under-
lying chemical similarity. Instead, solvents 1 and 3 would always
be more similar to solvent 2 than to each other – the exact
opposite of the preposition. This can have detrimental effects
on the machine learning model, e.g. for a random forest per-
forming binary splits along the ordered histogram of values.
Since molecules can generally not be ordered along one
dimension, INT encoding is a poor choice for substance
representations. A similar argument can be made for OHE
encoding, where all labels are represented as orthogonal unit
vectors. This imposes a uniform pairwise distance, which also
does not capture the similarities in chemical space.

In the case of chemical categorical parameters, a straight-
forward improvement is to use chemical descriptors49 as
encoding. Similar to OHE, this leads to a multivariate repre-
sentation of the labels but with a structure reecting the actual
(dis-)similarities in multiple dimensions of chemical variability
(see also Fig. 1a). For small molecules, this can easily be ach-
ieved by using common cheminformatics libraries such as

50,51 or .52 Alternatives to this descriptor-based
approach are latent space representations, which have
successfully been applied in chemical BO,53 but will not be
investigated further here.

In addition to generating these descriptors, BayBE performs
a (user-congurable) feature reduction via sequentially select-
ing descriptors and including a descriptor only if it has a Pear-
son correlation below a certain threshold (0.7 being applied in
this work). This reduces the dimensionality of the search space
while limiting information loss, and results in a different set of
descriptors being used for each problem, depending on the
substances behind the labels.

Fig. 1b demonstrates the impact of using different encodings
for a chemical use case. We utilize the dataset from Shields
et al.,15 where reaction conditions for a direct arylation have
been optimized. The temperature and concentration of the
substrate are modeled as discrete numerical parameters, and
the solvent, base, and ligand substances as discrete categorical
parameters. The latter three can be encoded in various ways, as
displayed in the legend. Since all possible parameter combi-
nations were tested in the lab, we can perform a backtest on this
dataset.

First, we note that there is a tremendous difference between
the optimization curves for different encodings in the investi-
gated scenario. The aforementioned encodings from
(MORDRED) and (RDKIT2DDESCRIPTORS) perform
best, both in the early and late trajectory. In contrast, OHE
encoding performs poorly, in parts even worse than random
exploration. The encoding with extended connectivity nger-
prints (ECFP54) performs worse than the other chemical
encodings, but still better than OHE.

As practical consideration, we highlight a potential early stop
of this campaign at a 90% yield with dashed lines. This iden-
ties aer how many experiments the MORDRED and OHE
1994 | Digital Discovery, 2025, 4, 1991–2000
trajectories reach this yield on average. With 16 experiments,
MORDRED needs less than half the number of iterations
compared to OHE, which requires 37 experiments. Hence, in
practice, such a simple switch from categorical encodings to
chemical encodings can save as much as 50% of the invested
time or budget.

Additionally, we also investigated the performance of
,55 a popular BO package in the data science community.

With default settings, uses a probabilistic surrogate56

that does not employ any numerical representation for labels
and instead models their sampling probabilities directly. For
the given problem, we nd that the performance to be poor, i.e.
on par with random exploration. We attribute this in part to the
inability to use chemical encodings, causing difficulties for the
underlying tree-based model.55 Beyond this consideration, the
framework is also unable to perform batch optimization –

another important feature required for real-world campaigns,
which oen need to run experiments in parallel. We see the
strengths of more in searching highly nested spaces,
commonly encountered in hyperparameter optimization, where
the underlying search space cannot be easily represented in
tabular form.

Finally, we note that the similarity between chemicals can be
directly incorporated into the model architecture instead of
using a tabular encoding of their labels, by employing an
appropriate kernel for the underlying surrogate model. This has
been done, for instance, using Tanimoto or SMILES string
kernels57 in Gaussian processes. As long as the induced simi-
larity measures are reasonable, we can expect comparable
performance from both approaches.
3.2 Custom encodings

Using the ideas from Section 3.1, we can enable the use of
arbitrary categorical parameters. Although BayBE provides
built-in chemical encodings for small molecules, these might
not be the best choice for larger substances that are either not
correctly identied by a single molecular graph, where the
molecular graph is unknown, or where the relevant properties
cannot even be gleaned from the molecular graph. Chemical
examples for this are polymers, biomolecules, strongly folded
molecules or mixtures. This also opens the avenue to think
beyond chemicals and substances, as there are quantities that
are categorical but have no chemical nature, such as ZIP codes
or vendors.

In many cases, we can cra context-specic numeric repre-
sentations as alternatives to the generic INT and OHE encod-
ings, provided there exists some underlying structure that is
relevant to identify similarities between the otherwise randomly
ordered labels. For example, it is common to characterize
a polymer by its molecular weight and glass transition
temperature.58 We call these representations custom encodings.

Custom encodings can comprise computational and exper-
imental values, offering users an opportunity to collaborate
with subject-matter experts to identify or measure advanced
descriptors that they believe are important to the campaign.
BayBE supports the use of any custom descriptor set via
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a dedicated custom parameter type. Thinking beyond pure
optimization performance, this can be a great help in lowering
the adoption barrier to engage experimentalists and decision
makers going beyond pure black-box modeling – an aspect that
should not be underestimated.

To illustrate the impact in such a situation, we take the
California housing data set59 and consider the task of nding
the highest house price through BO. Although this is not
a common use case in itself, we can imagine it as a proxy for, e.g.
political or advertisement campaigns that do not have the
budget to perform a large-scale screening to nd regions with
desired properties.

First, we pre-process the data to add the latitude and longi-
tude of each region in the data set, as well as its ZIP code. We
then model the data using a BO campaign with the ZIP code as
the only parameter. The spatial distribution of the ZIP code
values, as well as the spatial distribution of the median house
value (MEDV, maximization target of the campaign) can be seen
in Fig. 2a and b. The ordering of ZIP codes taken as numbers
increases roughly from south to north. However, a certain
arbitrariness can be seen by looking at the highlighted regions
Fig. 2 Custom encodings: (a) spatial distribution of locations in the
California housing data set59 as identified by their ZIP code. Color
coding corresponds to numerical magnitude, and the largest five ZIP
codes are highlighted by stars. Each point on the map corresponds to
a distinct ZIP code. (b) The same as (a) but color-coded according to
the median house value (MEDV) of the region identified by the ZIP
code. (c) Optimization performance for different encodings of the ZIP
code parameter. The inlay above the legend shows the histogram of
MEDV, which is the target property of the maximization task. Dashed
lines indicate when a high MEDV value of 4.5 was found, shown for our
custom encoding and OHE. This backtest was performed with 200
Monte-Carlo iterations, and shaded areas indicate 95% confidence
intervals.

© 2025 The Author(s). Published by the Royal Society of Chemistry
with the largest ZIP codes (red stars). Furthermore, the
numerical ordering of ZIP codes does not match with the spatial
distribution of the MEDV in panel b. Thus, we anticipate that
a spatial encoding of ZIP values can boost the optimization
performance in this case.

This hypothesis is conrmed in Fig. 2c, where the OHE and
INT encodings perform as badly as random search. The lati-
tude–longitude encoding of the ZIP codes causes a much better
convergence to the best possible value of 5. When stopping the
campaign at a near-optimal value of 4.5 (dashed lines), we nd
that our simple custom encoding needs 12 iterations on
average, while OHE needs 23 – a saving in experimental budget
and time of almost 50%.
3.3 Transfer learning

Another downside that standard BO shares with DOE is that
campaigns in slightly different environments still need to be
run fully independently. This means if one or several campaigns
in similar but not quite identical environments were already run
(referred to as source campaigns), the next campaign (referred
to as target campaign) would still need to start from scratch,
even though the results of the source campaigns may contain
valuable information for the target campaign. There are plenty
of industrially relevant examples for such a situation:

� Reaction conditions: while campaigns optimizing reaction
conditions for different substrates are not identical, they
can share a large amount of similarity, especially if they
optimize the same reaction type (such as industrial work-
horses like Suzuki or Buchwald couplings).

� Site transfer: a complex calibrated piece of equipment
might need to be moved between two locations. In the new
location, it does not work as well as in the original loca-
tion, requiring renewed calibration. Ideally, the latter
should be informed by the calibration that was performed
in the rst location.

� Cell culture media: nding growth media for cells is oen
done in identical parameter spaces. However, if a new type
of cell is used, the corresponding campaign usually starts
from scratch. If there are similar cell types (e.g. liver cells,
but from different mammals), information transfer of pre-
existing source campaigns should be possible.

� Vendor change: in case a material needs to be obtained
from a replacement vendor due to unavailability, there can
be severe implications even though the materials are
supposedly equivalent. We can still assume some degree of
similarity between the campaign associated with material
from the old vendor and the campaign using the new
material. This situation can be encountered in elds such
as the semiconductor industry, where complex materials
are utilized and even transportation can have an inuence.

The examples above are comparable in that they describe
several tasks, i.e. represented by the source and target
campaigns and their respective data sets, which are very similar
but not exactly identical. Due to their differences, a naive
combination of data without any further consideration is clearly
suboptimal.
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The approach to utilize data from similar but not identical
campaigns can be called transfer learning in the BO context (TL-
BO), borrowing from the deep learning literature where transfer
learning describes the reutilization of models originally trained
for other tasks. It is closely related to multi-delity BO (MF-BO),
where target measurements can be done at different levels of
complexity and cost, such as the simulation of a property versus
an actual experiment.60,61 While the underlying surrogate-based
treatments in MF-BO and TL-BO are extremely similar, they
differ mainly in their usage. In MF-BO, the user is interested in
adding results from different delities and also being recom-
mended the optimal delity to measure in the next iteration. In
TL-BO, the delities can be seen as different tasks, however, the
user in practice will always restrict the recommendation to one
(or few) tasks corresponding to the currently active campaign,
i.e. not switch between delities during a campaign. For further
information about the terminology, the interested reader is
referred to our user guide.62

In case the differences between campaigns are known and
measured (e.g. the temperature used in different labs for exactly
the same reaction condition optimization), the data can be
mixed by adding explicit parameters accounting for them. The
target campaign would then be restricted to run only at the
currently relevant temperature, but data from other campaigns
(i.e. other temperatures) could still be ingested.

However, in general, the exact parameters that distinguish
the tasks are not known. Moreover, even if they were known,
they are typically not measured. It might also be the case that
there are so many task-specic parameters that explicitly
modeling them would render the entire problem infeasible for
BO. These situations are, for instance, encountered for the cell
culture media example, where the exact differences between cell
types are not easy to enumerate.

Consequently, it is attractive to enable the TL-BO approach
via implicit modeling of the differences between tasks. For this,
we follow the ansatz proposed by Bonilla et al.,63 which allows to
abstract differences between any two tasks into a single number
– their inter-task covariance. For a GP model, this is achieved by
augmenting the kernel used for regular parameters with an
explicit index kernel component,

kTL(x,x̂,t,t̂) = kGP(x,x̂)$kindex(t,t̂) (1)

where kTL is the overall pair-wise covariance kernel of the GP in
the TL-BO case, kGP(x,x̂) is the standard kernel used for the non-
task parameters (vectors x for the rst point and x̂ for the
second), and kindex is the kernel for the task parameter (t for the
rst point and t̂ for the second). Alternatives to this model-
based approach to TL-BO exist,64 but are not investigated
further here.

Note that t is a regular categorical parameter with integer
encoding – it just gets special treatment in the model. Within
BayBE, users can also provide their own models, but the treat-
ment of task parameters is highly dependent on the architec-
ture and might require a different approach to enable TL-BO.
kindex can be represented as a simple covariance matrix
capturing the relationships between all possible tasks,
1996 | Digital Discovery, 2025, 4, 1991–2000
kindex(i,j) = di,jVar(i) + (1 − di,j)Cov(i,j) (2)

where d is the Kronecker delta, Var(i) is a variance component of
data belonging to task i, and Cov(i, j) models the covariance
between tasks i and j. Since these matrix elements need to be
learned from data, it can be expected that this approach
generally performs worse than the explicit modeling mentioned
before. However, in practice, it is this implicit ansatz that
enables the application of TL-BO in the rst place, as explicit
modeling is almost always unfeasible for the reasons discussed
earlier.

We compare both modeling approaches for TL-BO in Fig. 3.
For demonstration, we choose the direct arylation reaction from
Section 3.1. Since there were three explicit temperatures, we can
act like these are results from three different labs, which per-
formed the otherwise identical experiments. While this is
a constructed example, it is not unreasonable that such situa-
tions arise in the real world, as mismatches in settings and
calibrations are likely one major cause of differences between
different campaigns on an otherwise identical task. As a target
campaign, we choose the middle temperature and assume that
the yield for this setting is to be maximized. The data from
lower/higher temperatures have a Pearson correlation of 0.88/
0.91 to the middle temperature, respectively. Our setup means
that there are twice as many source data points as parameter
combinations in the target campaign. This allows us to sub-
sample different amounts of the source data (corresponding
to different color hues in Fig. 3), which further enables us to
assess how many source data points are needed to positively
affect the target campaign.

In essence, we nd the expected behavior, in that the
implicitly modeled transfer learning (right panel) performs
slightly worse than the transfer via explicit parameter (le
panel). However, the performance improvement over no trans-
fer learning (blue curves corresponding to no ingested source
data) is signicant in both approaches. The optimization curves
are particularly improved in the early phase, which is of
immense practical value. It is also remarkable that even for
small amount of source data utilized (green and orange curves)
there is already a substantial improvement. For the task
parameter variant, we can also see that there is a sort of satu-
ration, as curves belonging to larger amounts of source data
ingested (red, purple and brown) differ less from each other.
Indeed, we have indications that the t procedure for the
surrogate model has a strong inuence on the results and
seems to be more challenging for the task parameter case.
Preliminary results from our ongoing work on more robust
settings indicate that an even better TL-BO performance is
possible.

This study was repeated for all other combinations of
temperatures as well as concentrations (which also had three
distinct possible values) and the outcome can be found in the
ESI.† The very same model-based approach to TL-BO has also
been successfully tested for chemical reactions by Taylor et al.65

These results suggest that TL-BO can be a game changer in the
industry. There are countless and frequent optimization
campaigns for materials or chemistry that have been run in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Assessment of transfer learning: We optimize the reaction data from Shields et al.15 for high yield, split into three sub-sets based on the
temperature (90, 105, and 120 °C). The optimization was done for the middle temperature (referred to as target data or campaign), treating the
data from the lower/higher temperature as source data. This mimics a situation where a lab gets auxiliary data on a supposedly identical task with
hidden parameters (known to be the temperature for this example) being slightly different. The left panel models this via an explicit numerical
parameter for the temperature, while the right panel models this via the transfer learning procedure described in the text. Colors visualize
different amounts of source data ingested into the target campaign before starting it. Note that the two models employ different kernels and
hence have different performance even when no source data are used (blue curves). This plot was generated from 100 Monte Carlo runs, which
also randomized the source data sampling. Shaded areas indicate 95% confidence intervals.
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similar but not identical contexts in the past. Therefore, TL-BO
can be the key that truly unlocks the data lakes many companies
have been building in the last decades.
Fig. 4 Automatic campaign stopping: Average trajectory of uninter-
rupted optimization campaigns (blue) versus five campaigns that were
interrupted when the EI-based stopping criterion was hit. This test was
performed on the same reaction data as in Fig. 1, but with candidates
that achieved a yield above 80% removed from the search space to
make the best point of stopping non-obvious. The transparent circles
indicate when a campaign was stopped. The shaded areas indicate
95% confidence intervals from 20 MC runs.
3.4 Automatic campaign-stopping

Budget and time considerations are important for experimental
campaigns and can even mean that suboptimal results are
preferred if achieved quickly. The reduction of cost and time is
one of the main reasons to use BO in the rst place. However,
one major downside of the vanilla BO approach is that it
requires a xed search space to be dened before optimization
can begin. If no acceptable target value lies within this space,
the campaign is effectively futile. One solution to this is to make
the search space dynamically self-adjusting, which can be tricky
implementation-wise and comes with its own challenges.66,67 A
much simpler remedy for this situation is stopping unprom-
ising campaigns based on a criterion that relates to the proba-
bility of improving the best result any further.

We tested this behavior on the same reaction data as in
Section 3.1, where we removed candidates with yields above
80% to make the best point of stopping non-obvious. This is
not strictly required to demonstrate the effectiveness of the
algorithm, but more closely resembles a situation encountered
in the lab: since 100% yield is the physical limit, we would
trivially know to stop there without any data-driven consider-
ations. By contrast, if an optimization curve seemingly attens
out before the physical limit, knowing when to stop is not
trivial but very useful from a budget perspective. To identify
the stopping point, we calculate the expected improvement (EI)
acquisition values and stop the campaign when fewer than
50% of remaining candidates have an EI of at least 0.5% yield.
We anticipate that there are many more viable stopping
© 2025 The Author(s). Published by the Royal Society of Chemistry
criteria to achieve something similar and encourage further
study.

As demonstrated in Fig. 4, this simple EI criterion already
works surprisingly well: all ve interrupted campaigns have
reached the best accessible target value of 80%, successfully
realizing that there is nothing to gain from further experimen-
tation. The plot also shows a trajectory that has a near-optimal
yield right from the start – this might also happen in practice
and highlights the importance of deciding how long to keep
looking for further improvements.
Digital Discovery, 2025, 4, 1991–2000 | 1997
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4 Conclusions

We introduced the Bayesian Back End as all-in-one-place
computational toolbox for real-world BO. Through four case
studies on some of its features, we demonstrated how additions
to the vanilla BO approach can have a tremendous impact on
experimental campaigns. We consider chemical and custom
encodings an easy improvement over the prevalent OHE, as well
as a binding element allowing collaboration between compu-
tational, experimental, and data scientic contributors. We
believe it is always worth spending more time on the encoding
of categorical variables than is currently appreciated, and
encourage readers to utilize custom encodings that offer the
prospect of better BO campaigns for any conceivable categorical
parameter. Similarly, automatic criteria applied to judge
a campaign's current status, including its chance of continued
success or underlying model t qualities, are promising.
Further work is currently underway to provide more features in
this direction.

Transfer learning in the context of BO was highlighted and
studied for a chemical reaction. We reiterate the tremendous
impact TL-BO has for large corporations in possession of data
for many similar campaigns, or in shared data environments
such as collaborative consortia. We found a strong speedup of
the optimization campaigns when combining data from similar
but not identical campaigns via TL-BO, which allows transfer
learning in many situations where explicit modeling of
parameters that distinguishes tasks is practically not possible.
The benets beyond cost-savings are reduced go-to-market
times, which is critical in today's increasing development
pace and fast moving markets.

Looking forward, we anticipate many more developments in
the thriving eld around real-world BO, in both the technical
and adoption aspects. For instance, how to robustly incorporate
human knowledge into the BO process is an ongoing eld of
research68–70 that we are excited to include in the future, also for
reasons of lowering adoption barriers of experimentalists
running traditional campaigns.

Data availability

All technical functions discussed in this work are consolidated
in the Python package , available open-source under an
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Faraday Discuss., 2025, 256, 221–234.

34 S. Bertelsen, S. Carlsen, S. Furbo, M. B. Nielsen, A. Obdrup
and R. Taaning, J. Chem. Inf. Model., 2025, 65(4), 1702–1707.

35 D. P. Gutierrez, L. M. Folkmann, H. Tribukait and
L. M. Roch, Chimia, 2023, 77, 7–16.

36 D. Gala, G. Becker, K. Kaul, D. Marcelo, A. Hegde,
S. Moisselin, C. Fuda, S. Doraiswamy, V. Verma and X. Wu,
SPE Annual Technical Conference and Exhibition?, 2023, p.
D032S023R002.

37 G. J. Dovonon and J. Zeitler, arXiv, 2023, preprint,
arXiv:2312.12633, DOI: 10.48550/arXiv.2312.12633.

38 M. Eskandari, L. Puiman and J. Zeitler, arXiv, 2023, preprint,
arXiv:2311.05776, DOI: 10.48550/arXiv.2311.05776.

39 B. Folie and M. Hutchinson, Mach. Learn.: Sci. Technol.,
2023, 4, 015022.

40 P. I. Frazier, A Tutorial on Bayesian Optimization, 2018.
41 D. R. Jones, M. Schonlau and W. J. Welch, J. Global Optim.,

1998, 13, 455–492.
42 S. Ament, S. Daulton, D. Eriksson, M. Balandat and

E. Bakshy, Adv. Neural Inf. Process Syst., 2023, 36, 20577–
20612.

43 S. Seo, M. Wallat, T. Graepel and K. Obermayer, Proceedings
of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, 2000,
vol. 3, pp. 241–246.

44 F. Hase, L. M. Roch, C. Kreisbeck and A. Aspuru-Guzik, ACS
Cent. Sci., 2018, 4, 1134–1145.

45 V. Beiranvand, W. Hare and Y. Lucet, Optim. Eng., 2017, 18,
815–848.

46 P. Christoffersen, Encyclopedia of Quantitative Finance, John
Wiley & Sons, Ltd, 2010.

47 BayBE user guide on backtest simulations, https://
emdgroup.github.io/baybe/paper/simulation.

48 E. C. Garrido-Merchán and D. Hernández-Lobato,
Neurocomputing, 2020, 380, 20–35.

49 J. Adamczyk and P. Ludynia, SowareX, 2024, 28, 101944.
50 H. Moriwaki, Y.-S. Tian, N. Kawashita and T. Takagi, J.

Cheminform., 2018, 10, 4.
51 mordred-community – A community-maintained version of

the mordred molecular descriptor calculator, https://
github.com/JacksonBurns/mordred-community.

52 RDKit: Open-source Cheminformatics, 2024.
53 N. Aldulaijan, J. A. Marsden, J. A. Manson and A. D. Clayton,

React. Chem. Eng., 2024, 9, 308–316.
54 D. Rogers and M. Hahn, J. Chem. Inf. Model., 2010, 50, 742–

754.
Digital Discovery, 2025, 4, 1991–2000 | 1999

https://emdgroup.github.io/baybe/stable/
https://emdgroup.github.io/baybe/stable/userguide/userguide.html
https://emdgroup.github.io/baybe/stable/userguide/userguide.html
https://arxiv.org/abs/2408.05040
https://doi.org/10.48550/arXiv.2502.06815
https://doi.org/10.48550/arXiv.2312.12633
https://doi.org/10.48550/arXiv.2311.05776
https://emdgroup.github.io/baybe/paper/simulation
https://emdgroup.github.io/baybe/paper/simulation
https://github.com/JacksonBurns/mordred-community
https://github.com/JacksonBurns/mordred-community
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00050e


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 1
0:

13
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
55 T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama,
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

56 S. Watanabe, arXiv, 2023, preprint, arXiv:2304.11127.
57 R.-R. Griffiths, L. Klarner, H. Moss, A. Ravuri, S. Truong,

Y. Du, S. Stanton, G. Tom, B. Rankovic, A. Jamasb, et al.,
Adv. Neural Inf. Process Syst., 2024, 36, 76923–76946.

58 R. Xie, A. R. Weisen, Y. Lee, M. A. Aplan, A. M. Fenton,
A. E. Masucci, F. Kempe, M. Sommer, C. W. Pester,
R. H. Colby, et al., Nat. Commun., 2020, 11, 893.

59 R. Kelley Pace and R. Barry, Stat. Probab. Lett., 1997, 33, 291–
297.

60 J. Wu, S. Toscano-Palmerin, P. I. Frazier and A. G. Wilson,
Uncertainty in Articial Intelligence, 2020, pp. 788–798.

61 E. Judge, M. Azzouzi, A. M. Mroz, A. del Rio Chanona and
K. E. Jelfs, Applying Multi-Fidelity Bayesian Optimization
in Chemistry: Open Challenges and Major Considerations,
2024, https://arxiv.org/abs/2409.07190.

62 BayBE user guide on transfer learning, https://
emdgroup.github.io/baybe/paper/transfer_learning.

63 E. V. Bonilla, K. Chai and C.Williams, Adv. Neural Inf. Process
Syst., 2007, https://papers.nips.cc/paper_les/paper/2007/
hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html.
2000 | Digital Discovery, 2025, 4, 1991–2000
64 T. Bai, Y. Li, Y. Shen, X. Zhang, W. Zhang and B. Cui, arXiv,
2023, preprint, arXiv:2302.05927, DOI: 10.48550/
arXiv.2302.05927.

65 C. J. Taylor, K. C. Felton, D. Wigh, M. I. Jeraal, R. Grainger,
G. Chessari, C. N. Johnson and A. A. Lapkin, ACS Cent.
Sci., 2023, 9, 957–968.

66 H. Ha, S. Rana, S. Gupta, T. Nguyen, H. Tran-The and
S. Venkatesh, Adv. Neural Inf. Process Syst., 2019, https://
papers.nips.cc/paper_les/paper/2019/hash/
ccf0304d099baece7ff6844e1f6d91-Abstract.html.

67 L. Papenmeier, L. Nardi and M. Poloczek, Adv. Neural Inf.
Process Syst., 2022, 11586–11601.

68 A. I. Cooper, P. Courtney, K. Darvish, M. Eckhoff,
H. Fakhruldeen, A. Gabrielli, A. Garg, S. Haddadin,
K. Harada, J. Hein et al., arXiv, 2025, preprint,
arXiv:2501.06847, DOI: 10.48550/arXiv.2501.06847.

69 R. Guay-Hottin, L. Kardassevitch, H. Pham, G. Lajoie and
M. Bonizzato, Knowledge-Based Systems, 2025, 113039.

70 Q. Feng, Z. J. Lin, Y. Zhang, B. Letham, J. Markovic-Voronov,
R.-R. Griffiths, P. I. Frazier and E. Bakshy, NeurIPS 2024
Workshop on Bayesian Decision-making and Uncertainty, 2024.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://arxiv.org/abs/2409.07190
https://emdgroup.github.io/baybe/paper/transfer_learning
https://emdgroup.github.io/baybe/paper/transfer_learning
https://papers.nips.cc/paper_files/paper/2007/hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html
https://papers.nips.cc/paper_files/paper/2007/hash/66368270ffd51418ec58bd793f2d9b1b-Abstract.html
https://doi.org/10.48550/arXiv.2302.05927
https://doi.org/10.48550/arXiv.2302.05927
https://papers.nips.cc/paper_files/paper/2019/hash/ccf0304d099baecfbe7ff6844e1f6d91-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/ccf0304d099baecfbe7ff6844e1f6d91-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/ccf0304d099baecfbe7ff6844e1f6d91-Abstract.html
https://doi.org/10.48550/arXiv.2501.06847
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00050e

	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e

	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e
	BayBE: a Bayesian Back End for experimental planning in the low-to-no-data regimeElectronic supplementary information (ESI) available: Correlation analysis and further results for the transfer learning study. See DOI: https://doi.org/10.1039/d5dd00050e




