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Excited-state nonadiabatic simulations with quantum mechanics/molecular mechanics (QM/MM) are
essential to understand photoinduced processes in explicit environments. However, the high
computational cost of the underlying quantum chemical calculations limits its application in combination
with trajectory surface hopping methods. Here, we use FieldSchNet, a machine-learned interatomic
potential capable of incorporating electric field effects into the electronic states, to replace traditional
QM/MM electrostatic embedding with its ML/MM counterpart for nonadiabatic excited state trajectories.
The developed method is applied to furan in water, including five coupled singlet states. Our results
demonstrate that with sufficiently curated training data, the ML/MM model reproduces the electronic

Received 30th January 2025
Accepted 11th April 2025

DOI 10.1039/d5dd00044k kinetics and structural rearrangements of QM/MM surface hopping reference simulations. Furthermore,

Open Access Article. Published on 24 April 2025. Downloaded on 1/17/2026 12:19:32 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1 Introduction

Photochemistry lies at the heart of essential natural processes.
One example is photosynthesis, where the absorption of light by
chlorophyll triggers a cascade of electron transfers, ultimately
capturing solar energy and storing it in chemical bonds."?
Beyond sustaining life, light-driven reactions hold promise for
advancements in energy conversion,® molecular electronics,’
and the development of photonic materials.® Understanding
photochemical mechanisms is thus important to inspire new
technologies that harness the power of light. To this end,
computational approaches play a key role, offering time-
resolved insights that complement and enhance modern
ultrafast experimental techniques.”®
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we identify performance metrics that provide robust and interpretable validation of model accuracy.

A popular method to carry out excited-state dynamics
simulations of molecular systems is trajectory surface hopping
(TSH).? In this so-called mixed quantum-classical approach,
electrons - responsible for electronic transitions and excited-
state properties — are treated quantum mechanically, while
the heavier nuclei are described using classical mechanics. At
the expense of neglecting nuclear quantum effects, TSH effec-
tively captures the quantum nature of electrons, even if it
requires propagating numerous independent classical nuclear
trajectories to accurately simulate the behavior of a nuclear
wave packet as it splits during nonadiabatic events.”'*'* Despite
being attractive, the need for many trajectories makes TSH
simulations computationally expensive, especially when the
underlying on-the-fly calculations of the coupled potential
energy surfaces (PESs) are performed using accurate quantum
mechanical methods.

The situation becomes more challenging when simulating
photochemical processes in the condensed phase.*> For
example, chromophores in nature are rarely isolated; rather,
they are typically embedded within complex, heterogeneous
environments that include a variety of molecular interactions,
including solvent effects, hydrogen bonding, and intricate
structural features. These environmental factors can signifi-
cantly influence the photochemical behavior of the system,
altering deactivation pathways. Implicit solvation models,"
which treat the solvent as a continuous medium, are often
insufficient to capture detailed interactions. A more accurate
treatment is achieved by modeling the environment explicitly.
One efficient way to do that is by using hybrid quantum

© 2025 The Author(s). Published by the Royal Society of Chemistry
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mechanics/molecular mechanics (QM/MM) methods, where the
region of interest, such as the excited chromophore, is treated
with QM, while the surrounding environment, including
solvent or complex heterogeneous scaffolds, is modeled with
MM."** This approach offers a balance between accuracy and
computational cost by restricting expensive QM calculations to
the critical region of the system that actually requires
a quantum mechanical treatment. The advantages of QM/MM
strategies are indisputable, and in combination with TSH,
have enabled impressive simulations of time-resolved photo-
chemical processes in large complex systems.'”>* However,
because the computational expense of a QM/MM calculation is
largely determined by the level of theory employed in the QM
region, QM/MM dynamical simulations suffer from comparable
(or greater) costs than simulations of the isolated chromophore.
The situation becomes more prohibitive the more trajectories
are needed to achieve statistically meaningful results."”

Over the years, several strategies have been developed to
reduce the cost of TSH simulations. One notable example is the
use of vibronic coupling models,* which replace the expensive
on-the-fly calculations of the PESs by pre-parameterized
potentials that are approximated by scaled harmonic oscilla-
tors in the simplest case.***® Recently, TSH simulations using
linear vibronic coupling PESs have been extended to include
a classical MM environment,*® enabling efficient time-resolved
analysis of three-dimensional solvent-solute interactions.”
While this approach reduces the computational cost signifi-
cantly, it is only applicable to rather rigid molecules, where
anharmonic effects, such as large amplitude motions or bond
rearrangements, do not play a role in the relaxation dynamics.

An alternative and highly flexible approach to reduce the cost
of the underlying electronic structure problem is the use of
machine learned (ML) potentials.”®?' Trained on high-quality
quantum mechanical data, ML potentials have demonstrated
their ability to replicate the accuracy of ab initio calculations at
a fraction of the computational cost.*> ML potentials have
already shown considerable success in modeling dynamics in
the electronic ground-state.**® In contrast, their application to
excited-state dynamics, which is significantly more expensive
than ground state simulations, is currently only feasible for
small molecular systems like organic chromophores and is
limited by the availability of accurate reference data.**** This is
in contrast to ground-state ML potentials, of which many are
transferable between molecular systems and can thus simulate
large biomolecules or materials using training data of smaller
building blocks. As a consequence, the simulation of large
systems in their excited state also requires methods like mixed
ML/MM (machine learning/molecular mechanics).*® However,
the integration of ML potentials with MM for both ground- and
excited-state dynamics remains in its infancy.

One of the key challenges in developing an ML/MM
approach is to accurately describe the interaction between the
ML potential and the surrounding MM environment. In QM/
MM simulations, the interactions between the quantum
region and the classical region are clearly defined by the
Hamiltonian, which ensures that the treatment of the two
regions is physically correct.* For ML/MM, the interaction
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needs to be carefully modeled to ensure that the combined
system behaves correctly; however, there appears to be little
consensus on the best way to do so.*”"**

A recent study by Mazzeo et al.”® demonstrates the use of
Gaussian process regression to describe the excited-state
dynamics of a solvated molecule by learning ML/MM energies
and forces with kernel models in a two-step process. First, they
fit the vacuum PESs and then subsume the differences between
pure QM and QM/MM under polarization, which is described by
a second model. Their approach is restricted to purely adiabatic
dynamics in the excited state, neglecting any coupling between
states. In contrast, to the best of our knowledge, ML/MM
implementations for nonadiabatic excited-state dynamics
using an electrostatic embedding do not exist. In this work, we
propose the first ML/MM nonadiabatic excited-state dynamics
using electrostatic embedding and a general number of elec-
tronic states. We use the FieldSchNet architecture of Gastegger
et al.,”* which allows the inclusion of the electric field via an
additional ML input. The electric field is generated by point
charges of the MM environment and alters the different excited
states. As an application, we investigate the excited-state
dynamics of furan in water (Fig. 1a), including three coupled
electronic singlet states. Furan is a small heterocyclic organic
molecule that serves as a building block in biologically relevant
systems, such as DNA and proteins, and has long been the focus
of theoretical and experimental studies.®**® Few also considered
the explicit interaction of furan with water forming hydrogen
bonds,*”° highlighting the need of QM/MM studies able to
capture these interactions and their impact on the excited state
relaxation dynamics explicitly.

The remainder of the paper is organized as follows. In
Section 2, we present the theory behind a QM/MM setup with
electrostatic embedding and describe all the necessary terms
when using an ML model. Next, in Section 3 we outline the data
collection method, architecture, and training process of the ML

interatomic potentials and summarize the numerical
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Fig. 1 Depiction of the investigated system, furan, treated quantum
mechanically (QM), solvated in water, which is described with
molecular mechanics (MM). (a) 3D rendering of furan, depicted as balls
and sticks, surrounded by the water molecules of the first solvation
shell, shown as sticks. The hydrogen bond present in this configuration
is highlighted by a black dashed line. Hydrogen, carbon, and oxygen
atoms are colored in white, black, and red, respectively. (b) Lewis
structure of furan with numbered carbon atoms.
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experiments performed. The results of various training settings,
the quality of the obtained PESs, and the ML-driven dynamics
are compared to on-the-fly TSH using the quantum chemical
reference method used to train our ML potentials in Section 4.

2 Theory

2.1 Electrostatic embedding

In QM/MM simulations, the most relevant region of the
chemical system is described with quantum mechanics (QM
region), while the surroundings are modeled with computa-
tionally more efficient classical force fields (MM region). The
total Hamiltonian Hy,: and total energy E, of the system within
an electrostatic embedding framework can be expressed as,™

Hiot = Hum + Hom + Hom-mMs (1)
Ew = Exv + Egu vt + Eom + Ega“vin )
—_———
Edembed.

where the indices MM and QM represent the contributions of
each region individually, and QM-MM indicates terms that
depend on both regions. Assuming that the border between the
QM and MM regions does not cut through any chemical bonds,
the only interactions between the QM and MM regions are the
van der Waals (vdW) and Coulomb potentials (eqn (2)). In the
context of electrostatic embedding, the vdW interactions are
computed at the level of the MM region, while the Coulomb
interactions are represented by an additional term in the
Hamiltonian of the QM region.” The term Q‘;;E‘;d“;,}’ includes the
influence of the surrounding classical region through electro-
static interactions in the description of the QM region. The
partial atomic charges of the classical environment {g"™}
located at {R™™'} generate an electrostatic potential at position r:

MM

Nvm q
Vana(r) = 37—
J

MM
o

(3)

Eqn (3) is part of Hom-mm and is included in the calculation
of the quantum subsystem, thus coupling the QM and MM
regions.'**

2.2 Adapted machine-learned gradients for electrostatic
embedding

The QM calculation is set to find the wave function, ie. the
electron density, corresponding to the given Hamiltonian,
which in the case of electrostatic embedding includes the
electrostatic potential defined in eqn (3)."* Hence, as implied by
eqn (2), the energy and subsequently also the forces computed
for the electrostatic embedding Hamiltonian cannot be sepa-
rated into the vacuum and the MM polarization contributions
without additional QM calculations of the system in vacuum.
This is important, because it means that the energy (and forces)
of the same arrangement of atoms in the QM region will vary
depending on the configuration of the MM region. Therefore, to
perform electrostatic embedding simulations using an ML
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interatomic potential, it is essential to model the QM region and
its interaction with the surrounding MM region simultaneously.
This can be accomplished by either passing the positions and
charges of the MM atoms to the ML architecture, Egi\}fmbed' =
Eyvi (R}, {R™}, {g™™1}), or by considering the electric field &
created by the surrounding MM atoms at the position of each
QM atom, Egys ™% = Epy ({R?},{e}). The latter approach offers
the benefit of obviating the need to provide the positions of all
MM atoms to the model. Instead, one can conveniently use
precomputed electric field values, substantially minimizing the
data set file sizes. In this work, we use FieldSchNet,** one of the
first ML interatomic potentials capable of reproducing QM/MM
calculations with electrostatic embedding by using the electric
field as an additional input besides the atomic positions.
FieldSchNet is based on the SchNet continuous-filter convolu-
tional neural” network architecture that takes the electric field
as an additional input to learn a representation of the system.

The electric field ¢; at position R of QM atom i is the sum
over all atoms in the MM region (Nyy) and is defined as

Nvm

Num RM _ gMM
— _ MM i J
& = & = 4 T 3
J J

5 (4)
e

where g™ is the partial charge of MM atom j with coordinates
R"™. The sum in eqn (4) runs over all MM atoms, indepen-
dently of the short-range cut-off used for the construction of the
local graph. The equation highlights that the electric field
depends on both the QM and MM atoms.> Therefore, energies
that depend on this field induce forces that act on both the QM
and MM atoms. However, if only the electric field value is
passed to the ML model and not the positions and charges of
every MM atom, the gradient of the ML energy with respect to
the position of ML (or QM) atoms does not include the field-
dependent terms. To circumvent this problem, we add the
respective derivative to those forces that are computed via
automatic differentiation. The forces applied to the ML region
are then given by

dEML _ (6EML GEML de )

— = 5
dRM" ORM- " ge  gRM- ©)

whereas the contribution of the ML region to the forces acting

on the MM atoms is

dEML - 8EML de

(6)

The partial derivatives in eqn (5) and (6) of the ML energy
with respect to the ML atoms and the field are computed via
back-propagation. The derivatives of the field with respect to the
nuclear positions (MM or ML) are obtained analytically, based
on eqn (4).

2.3 Augmented loss for training ML interatomic potentials

When training ML interatomic potentials on QM data, the loss
function is usually a linear combination of the mean squared
error for energies and forces. Accordingly, the loss function for
a single configuration and electronic state can be given by

© 2025 The Author(s). Published by the Royal Society of Chemistry
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where Ny, is the number of ML atoms in a configuration, w, is
the weight for the loss of property «, and the hat “” indicates the
prediction of the ML model. However, since the ML prediction

does not include the field-dependent gradients, we amend the
loss to be

. 2
L= Wg <Egﬁmb8d' — EML>

)

Nmr

+3;:AL Z Z Fi; +

i=1 jexyz

GEML GEML de
aRML de aRML

i

Since the contribution of the field to the nuclear gradient is
expected to be small, this term was neglected in the original
FieldSchNet paper.®* We call eqn (8) the “augmented loss” and
use it for all ML trainings in this work, to be consistent with the
forces used for dynamics simulations, as we found the field-
dependent term to be crucial for stable excited-state molec-
ular dynamics simulations.

2.4 Excited-state dynamics simulations using trajectory
surface hopping

The excited-state dynamics are carried out in the context of
TSH,”® where the nuclei are propagated classically on a single
PES at each time step, solving Newton's equations of motion.
Still, TSH couples several PESs by allowing stochastic transi-
tions (or “hops”) between electronic states, which are described
by the time-dependent Schrodinger equation,

%Ck([) = —; |:%Hk£ + dy, 'V:| C[(l). (9)
Here, c(t) is the time-dependent coefficient of the electronic
wavefunction for state k and Hy, is an element of the electronic
Hamiltonian matrix in the molecular Coulomb Hamiltonian
basis, where the electronic states are ordered by energy and can
change their character.”*”> 1In this representation,
die = (¢¢|Vr|¢,) is the nonadiabatic coupling vector between
the states k and ¢, and v is the velocity vector of the nuclei. The
explicit calculation of the nonadiabatic couplings is often cir-
cumvented by using the local diabatization scheme,’®”” which
relies on calculating the overlap matrix between two sequential
wavefunctions.”””® Alternatively, when neither explicit nonadi-
abatic coupling vectors nor wavefunctions are available—as is
the case when using an adiabatic machine learning model—it is
possible to approximate the coupling vectors using the time
derivative of the nuclear forces, as in the so-called curvature-
driven Tully surface hopping.”

The probability of hopping between the electronic states is
determined by the fewest switches algorithm,® which minimizes

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the number of state transitions. The transition probability
between two states n and m is given by

2Re{c;cm {iHnm + dyn -v} }
h
At

P,m =max| 0, | |2
Cn

(10)

where At is the nuclear time step. After each time step,
a uniform random number ¢ € [0, 1] is drawn. If £ < P,_,,, the
system attempts to switch from state n to state m. If a hop
occurs, the nuclear kinetic energy is adjusted to conserve total
energy.* However, if the kinetic energy after a hop is insuffi-
cient to sustain the motion, the hop is rejected, and the system
remains on the original PES.**

3 Computational details
3.1 Molecular dynamics simulations

Initial molecular dynamics (MD) simulations of furan in water
were carried out with AMBER2022.** Partial charges for furan
were calculated with antechamber using bond charge corrected
charges derived from the semi-empirical Austin Model 1 (AM1-
BCC charges),*** which were combined with GAFF2 parameters
using parmchk. The furan molecule was solvated in a cubic box
of TIP3P water molecules with a side length of 15 A containing
1365 water molecules.

For energy minimization, heating, equilibration, and
production runs, we used the MD engine sander.** Fig. 2 shows
a schematic timeline for the MM-MD simulations and how
snapshots for the subsequent excited-state QM/MM simulations
were collected.

The MM-MD simulations employ a time step of 2 fs,
a Langevin thermostat with a friction constant of 2 ps™*, and
constrained hydrogen-heavy atom bond distances by means of
the SHAKE® algorithm. After the initial setup, the energy of
the system was minimized for 2000 steps using steepest
descent. After minimization, the system was heated for 20 ps
to 300 K through continuous heat transfer from the

Production

K
MM §c§’ @
o S X/ S . Set|
Heatingl Equlllbratlon | 1 |%| Ly 1 1 || ¥ 1 1y I{bl
L
20 ps

T 1T 1 T T T
600 ps ‘ 400 ps ‘\ \\’\’\% 2000 ps
©, Setll
o)
( 1 J
Y Y

500 snapshots

100 snapshots

Fig. 2 Timeline of the different molecular dynamics simulations per-
formed for furan in water. Molecular mechanics (MM) is first used for
heating (20 ps) and equilibration (600 ps) steps. The production run is
divided into two parts, 400 ps and 2000 ps long. Frames are saved
every 4 ps, resulting in 100 and 500 snapshots, respectively, which
serve as potential initial conditions for two sets of QM/MM-SHARC
trajectories. The number of selected trajectories (colored arrows)
depends on whether an excitation can occur within a specific energy
window (7.3to 7.5 eV for setland 6 to 7 eV for set Il). For furan in water,
this results in 46 (set |, out of 600 initial conditions) and 66 (set II, out of
500 initial conditions selecting only excitations into the S,) trajectories.
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thermostat (the bath temperature is always at 300 K). Subse-
quently, the system was equilibrated for 600 ps in the
isobaric-isothermal ensemble with the Berendsen barostat.®®
Using the same settings as for the equilibration, we performed
a production run with a total of 2.4 ns. Snapshots were
recorded every 4 ps, resulting in a total of 600 equidistant
frames, which were used to build two sets of initial conditions
(sets I and II in Fig. 2) for subsequent excited-state QM/MM
simulations — explained next.

3.2 QM/MM trajectory surface hopping simulations

Two sets of nonadiabatic QM/MM-TSH simulations were per-
formed using the QM/MM interface of the SHARC 3.0 (ref. 11,
74, and 75) package to the TINKER MM engine.”” Set I was used
for model training, validation, and testing. Set I was used to
provide reference QM/MM-TSH simulations to compare with
ML/MM-TSH dynamics carried out under the exact same
conditions (see details below).

The computational details specified here are common to
both sets, unless stated otherwise. The interactions of QM and
MM regions were described via electrostatic embedding.
RATTLE®® was used to constrain the bond vibrations of the
water molecules of the MM region, whereas the hydrogen atoms
of furan were left unconstrained. Furan was described using
time-dependent density functional theory (TD-DFT) at the BP86/
def2-SVP*-** level of theory, as implemented in Orca 5.0.%® This
level of theory was chosen based on a benchmark performed by
Hieringer et al.,** in which a total of 12 different methods were
compared, including other DFT functionals, and wave function
methods such as CASPT2 or CC3. BP86 showed the best agree-
ment with the experimental excitation energies from Kamada
et al.”®

The absorption spectrum of furan in water was calculated
using the first 100 frames from the production run of the
MM-MD simulations (recall Fig. 2). The spectrum comprises

1.2 s
Set Il Set | S,
1.0 s,
> —_—S,
= 4
@ 0.8 s,
7}
—_—5
€0.6 56
7
]
> Ss
= 0.4
£ So
[}
W) S1o
: — Sum
Set Il
0.0 Set |

60 65 7.0 7.5 8.0 85 9.0 95

Energy [eV]
Fig. 3 Absorption spectrum of furan in water (solid black line) calcu-
lated at BP86/def2-SVP level of theory from the first 100 snapshots of
the MM—-MD production run. Contributions from each state are indi-
cated by different colors. Energies and oscillator strengths were
convoluted with a Gaussian with a full width at half-maximum of
0.2 eV. Shaded vertical areas denote the two energy windows chosen
to initiate the QM/MM-TSH dynamics, using the snapshots of set | and
I, respectively.
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the lowest ten singlet excited states, covering an energy range up
to 9.5 eV, see Fig. 3 and Table S1 of the ESL.}

In the simulations set I, we use all 600 snapshots generated
from the MM simulation as possible initial conditions (position
and velocities) for the subsequent QM/MM-TSH excited-state
dynamics, which included the lowest eleven singlet states.
Furan is then excited within the energy range of 7.3-7.5 eV,
primary targeting the S; state. Based on the associated excita-
tion energies and oscillator strengths of the sampled 600
geometries, the initially excited electronic states were selected
stochastically,”® resulting in 46 initial conditions. Out of those,
39 started in S; (the state with a large dipole moment, see Table
S1t) and 7 started in S,.

Following previous studies,***® which indicate that the
relaxation of furan to the ground state occurs within approxi-
mately 200 fs, the trajectories of set I were propagated for 330 fs.
A nuclear time step of 0.5 fs and an electronic time step of 0.025
fs were employed. Nonadiabatic couplings between singlet
states were obtained from the local diabatization algorithm by
Granucci et al.,”® computing the overlap of the wave function
between two consecutive time steps.”””® To conserve energy, the
velocities of the QM particles were uniformly rescaled after each
hop to account for the potential energy difference between the
new and old states (no explicit nonadiabatic coupling vectors
were used for a projection of the velocity vectors). Since TD-DFT
cannot describe conical intersections between S, and S, due to
the degeneracy of the reference state (ground state) and the first
excited state,’” trajectories were forced to hop to the ground
state whenever the energy difference between the states S; and
So states was smaller than 0.1 eV. Once in the ground state, no
back transitions were allowed until the end of the propagation
time. The data (set I) were then used for model training, vali-
dation, and testing.

Since the local diabatization scheme cannot be used with
ML/MM simulations because of the unavailability of the
wavefunction, a second set of QM/MM-TSH simulations was
performed. In this, so-called set II, the nonadiabatic couplings
between the singlet states were determined using the
curvature-driven TSH scheme recently developed by Zhao
et al.,”® which relies on the second time derivative of the
energies only and thus is accessible in conjunction with ML
potentials. In this way, the resulting ML/MM-TSH dynamics
are directly comparable with the reference QM/MM curvature-
driven TSH ones. The initial conditions for set II of QM/MM
simulations were taken from the last 2 ns of the MM trajec-
tory, corresponding to 500 possible initial conditions (see
Fig. 2). In order to investigate the transferability of the ML
potential, we excite between 6 and 7 eV to have a different
excitation window and thus obtain a different set of trajecto-
ries with initial conditions and energies different from those
used in the training set (set I). The chosen window resulted in
66 excitations to the bright S, state. The 26 excitations to the S;
were not propagated, in order to have all trajectories starting
from the same state. This makes the dynamics and kinetic fits
easier to interpret. All other settings were identical to those
employed in set L.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.3 Machine-learning setup

To perform ML/MM simulations, we interfaced the graph con-
volutional neural network FieldSchNet>* with the SHARC
engine,” as schematically depicted in Fig. 4. This neural
network models atoms in its chemical and structural environ-
ment within a cutoff region. The radial cutoff for the
construction of the graph around the central atom was set to
10 A and we used 50 equidistantly spaced Gaussians in the filter-
generating network,'* which is used in SchNet to featurize the
interatomic distances. The atomic features were updated in
six message-passing layers, and the length of the atomic feature
vectors was 256. Since we did not observe any hops to higher-
lying states than S, in the QM/MM TSH simulations of set I,
only the five lowest-lying singlet states were considered for
learning. For the prediction of the lowest five adiabatic energies,
we used one dense read-out block with four hidden layers
(256-128-64-32-16-5), each halving the length of the previous
layer up to a final representation of size 16, followed by a linear
output layer that gives the five energies. We used the
shifted softpuls function'® for all nonlinearities, as done in

SHARC FieldSchNet
Input
extract  positions RML
E-field  e(RML, RMM, gMM)

kel
2 @
g 3
x 2
o
s
Interface Output
ML forces agﬁt + % ﬁ assemble energy E(RML ¢)
B ; OE 9B
MM forces %—f mgfw gradients  SEgr, 52

Fig. 4 Schematic representation of the communication between the
driver of the nonadiabatic dynamics, the SHARC engine,®® and the ML
model, FieldSchNet, needed to perform excited state ML/MM
dynamics. The SHARC interface extracts the value of the electric field
at the position of every ML atom and passes both the field value and
the atom positions to the ML model. The FieldSchNet model, predicts
the field-dependent energies and gradients and passes them back to
the SHARC interface. The system is then propagated in time by the
SHARC driver. Here, none of the steps are based on file 1/O further
accelerating the dynamics.
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Gastegger et al.> The forces are computed as the gradient of the
energy with respect to the input coordinates (eqn (5) and (6)).

Data set I comprises all points collected from the 46 QM/MM-
TSH trajectories, each 330 fs long with a 0.5 fs time step (i.e. 46 x
330 x 2 points). However, because a few trajectories ended
prematurely, the total amounts to 28935 data points. This
training set was then divided into training, validation and testing
using 37, 5 and 4 trajectories, respectively. The validation and
test sets were used solely for analyzing the training error on
energies and forces, but not for comparing dynamics results, as
this cannot be done under identical conditions. We call this
approach “split by trajectory”, see Fig. 5a. Furthermore, we per-
formed an alternative set of ML trainings, in which we randomly
assigned frames from the 46 trajectories to the three different
tasks (train, validation, and test) in a ratio of 80:10: 10. We call
this way of mixing the data “random split”, see Fig. 5c. The
advantage of “split by trajectory” is that the test error is more
likely to reflect the true performance, as it ensures that the model
has not seen any frames of the trajectories belonging to the test
set. The disadvantage is that the number of trajectories from
which the model can learn is smaller than in the “random split”
scheme. To further investigate the impact of data partitioning in
the dynamics, we also examined the effect of subsampling in
time for each partitioning scheme, as consecutive frames that are
0.5 fs apart are likely to be very similar and thus add little new
information to the data set. We therefore tested the effect of
using only every second (50% of data usage), third (33%), etc.,
data point. This is schematically indicated in panels b and d of
Fig. 5 for the example of 33% of data usage.

The ML trainings were performed using the Adam opti-
mizer.'”* We set the starting learning rate to a value of 10>, and
the parameters for the exponential averages of past gradients
(momentum term) and squared gradients (raw second moment)
to 0.9 and 0.999, respectively. Higher initial learning rates were
consistently found to cause numerical instabilities during
training. A learning rate scheduler was used to adjust the
learning rate. If the model's performance on the validation set
did not improve for 20 consecutive epochs, the learning rate was
decreased by 20% to avoid overstepping. The maximum
number of epochs was set to 5000; alternatively, training was
stopped early if the learning rate fell below 10~ °. The batch size
was 10. We used the augmented mean squared error from eqn
(8) as the loss function with wg = 1 and wg = 10.

c) Random Split

. Validation

l:‘ Test

Fig.5 Strategies to partition data from QM/MM-TSH dynamics, shown for 5 example trajectories of varying lengths. (a) Split by trajectory means
that all frames belonging to one trajectory are allocated to the same subset (train, validation, or test), reducing overlap particularly between the
train and test sets. (b) To avoid temporal proximity and high correlation of frames, time-based subsampling prior to splitting into train, test, and
validation sets is done (exemplary shown for retaining every third frame, i.e. 33% data usage). (c) Random split means that the trajectory frames
are pooled and randomly allocated to any of the three, train, validation, or test subtests. (d) Random split combined with time-based sub-

sampling, here also using every third frame.
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4 Results and discussion
4.1 Learning curves and test performance

The learning curves (change in test performance) of the two
partitioning schemes, “random split” and “split by trajectory”,
are shown in Fig. 6a, as a function of the equidistant sub-
sampling in time. To that end, the errors of energies and forces
are plotted against the amount of data included in the training,
averaged over all five electronic states. For every specific
combination of split and fraction of data that was retained after
subsampling in time, we trained three independent models,
which differ with respect to the randomly initialized parameter
values (a list of the random seeds together with the data sets can
be found in the Zenodo archive associated with this manu-
script). As a result, no training with the same hyperparameters
produces the exact same result, but is generally assumed to
converge to a similarly deep minimum (see Section S2). In
general, the performance of the model seems to improve as the
training data becomes denser, i.e. with more frequent temporal
sampling.

The learning curve (Fig. 6a) from the “random split” (circles)
forms a nearly perfect line on a log-log graph, suggesting
a power-law relationship between the sample count and the
error size. This partitioning scheme often places training and
testing frames in close temporal proximity. When using the
entire data set, the training set probably includes the
surrounding time frames of the test frames. This introduces
a strong dependency between training and testing errors,
raising doubts about whether a small testing error truly reflects
the model's ability to generalize (i.e. the power to correctly
extrapolate).

In contrast, the “split by trajectory” training approach shows
a different pattern. The errors initially decrease before
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stabilizing at around 33% data usage, which corresponds to
using every third time step. This behavior arises because the
training and test sets are less correlated in this scheme. The
“split by trajectory” method ensures that test errors directly
evaluate the model's generalization -capabilities. Beyond
a certain point, adding more closely spaced data does not
further improve the test performance. This is due to minimal
configuration changes within a time step of 0.5 fs, offering little
additional information for extrapolation.

The discrepancy between the “split by trajectory” and
random split test errors when using closely spaced trajectory
frames is noteworthy. The scatter (parity) plots shown in Fig. S2
and S47t for the models using 100% of the training data do not
exhibit any trends that would point to a general difference
between those models, except that the “split by trajectory”
models perform worse, which one would expect based on their
relative average test performance from Fig. 6a. However, one
should note that the models trained using the “split by trajec-
tory” exhibit a much more homogeneous test performance in
comparison to the “random split” models, where some appear
to be much better or worse than the other two. If one were to
choose settings based on Fig. 6a, then “ramdom split” with
100% and “split by trajectory” with 33% of the data are expected
to perform best.

4.2 ML/MM-TSH nonadiabatic dynamics

To further assess the ML models, we performed a second set of
nonadiabatic QM/MM dynamics using curvature-driven TSH
(set II), which allows us to directly compare both the reference
QM/MM and ML/MM dynamics. The initial conditions for the
ML/MM trajectories, including geometries, velocity vectors, and
random number seeds are the same as those employed for the

102 a)  Test Split (Set I) b) Set Il 102
= 1% 2% 20%33% 100% -
g -
S10tf g {1t {10
= 1% 2% 20%33% 100%] -
w \\‘\\o !
< L "
= S

100} o 1 ¢ {100/&

1072 107! 10° 1072 107! 10°

Fraction of Data

e Random Split
* Split by Traj

Fraction of Data

---- Mean Random Split
—— Mean Split by Traj

Fig. 6 Change in model test performance on (a) the test set taken from set | and (b) trajectories from set Il, as a function of the fraction of data
used during model training. Results of “random split” models are shown as circles, “split by trajectory” as stars. Mean absolute error (MAE) of the
energy and root mean square error (RMSE) in the forces are shown in blue and grey, respectively. All values correspond to averages over all five
electronic states, indicated by the bars over MAE and RMSE. The three symbols for each combination of split type and fraction of data correspond
to the three models trained with different random initializations. To guide the eye, lines connect the averages of the models with identical
hyperparameters. To show the trends more clearly, two outliers in subfigure (b) have been excluded from this plot, a version that includes these
points can be found in the ESI (Fig. S24).}
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Fig.7 Excited state occupation population dynamics of furan in water
using ML/MM (solid lines) trajectories, trained with random split 100%
(a) or split by trajectory 33% (b) partition sets, compared to reference
QM/MM (dashed lines) trajectories. The three plots in each partition
scheme correspond to three different FieldSchNet models trained with
different random seeds.

QM/MM trajectories of set II. Fig. 7 shows the time-resolved
electronic populations based on the active state of the refer-
ence trajectories, the QM/MM dynamics (dashed lines in each
panel). Furan relaxes rapidly from the initially populated S,
state to the S; state, followed by a decay to the electronic ground
state So. Within 75 fs about half of the trajectories in set II have
relaxed to the ground state and after 300 fs nearly all 66
trajectories have reached S, (this is reflected in the average
energy for each state, as shown in Fig. S18 of the ESIf). These
populations are compared to different ML/MM TSH simulations
(solid lines), conducted using the three models trained with the
same splitting and subsampling settings. Specifically, we
carried out simulations for 100%, 33%, and 1% for both
random and trajectory split (from which Fig. 7 shows only
random split with 100% and split by trajectory 33%, as these
were the best hyperparameters deduced from Fig. 6a). The
electronic populations for all ML/MM dynamics can be found in
Fig. S16 and S17.}

As can be seen, the electronic populations derived from ML/
MM show significant differences depending on which model
was used to generate the random split 100% and split by
trajectory 33% trajectories, even if those models differ only by
their random initialization. The random split 100% models #1
and #3 produce dynamics with very similar population curves as
the reference QM/MM dynamics, whereas the dynamics of
model #2 show much slower internal conversions. For the split
by trajectory 33% models, the visual agreement of the predicted
populations increases from model #1 to #3.

The agreement of the ML/MM electronic populations with
the corresponding QM/MM reference cannot easily be explained

© 2025 The Author(s). Published by the Royal Society of Chemistry
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with the test statistics presented in the previous section.
Inspection of the parity plots for the energy gap between
neighboring PESs (Fig. S2-S4 of the ESIT) reveals that the split
by trajectory models appear to be worse at predicting this energy
difference. This is problematic, as the energy gap is used to
force hops into the ground state from S;. To probe the model
performance in regions with small energy gaps further we
employ an energy-gap-weighted error measure,

Nrames . . 2
> (X/ -X i) w/
WRMSE(X’) = ! N
Z w/ (11)
) 1
with W,J =

min(‘E,-j - E,-'f71|, ’E,'j — E,'/HD7

where E/ represents the ground truth energy for configuration i
in state j and X/ denotes either energy or forces for this
configuration and state.

To facilitate a more effective comparison across the various
models, in addition to visually evaluating the population curves,
we fitted a kinetic model to the different steps of the relaxation
process. This model includes only two time constants: 7,_,; for
the internal conversion from S, to S; and 7, _, ; for the transition
from S; to So. The QM/MM reference simulations predict the
first internal conversion to be about five times faster (T(}EAAMM =
16.8 fs) than the second one (3™ = 64.9 fs). These time
constants are comparable to those predicted in the gas phase
(9.2 fs and 60 fs, for the lifetimes of the S, and S, states,
respectively), by Fuji et al.®® using similar TSH simulations and
TD-DFT, which in turn are also consistent with time-resolved
photoelectron spectra, recorded by the same authors. The
similarity of the time constants indicates that the effect of the
solvent is not very pronounced, slightly decelerating the decay
of the bright S, state.

The different numerical values of the kinetic fits and
(weighted) errors, obtained by the ML/MM simulations are
collected in Table 1. We observe that none of the ML/MM
models produces dynamics that relax as fast as observed in
the QM/MM simulations. Furthermore, the relative error for
7,1 is almost always larger than for 7,_,,, because of their
difference in magnitude. Intriguingly, the kinetics of the ML/
MM simulations can differ greatly even for those models that
have the same training settings and only differ by weight
initialization. In general, models trained using the random split
appear to perform better, especially when the training frames
are taken at smaller intervals. The reason for this is likely the
small set of trajectories available for training, such that splitting
by trajectory imposed a stronger limit on the phase space
available for training than the random splitting. More trajec-
tories in the training set are expected to remove this trend.
Indeed, random split with 100% of the training data delivers the
best results.

While it is generally a problem to have a confidence measure
for ML-based MD simulations where the behavior of the system
is not known, it is gratifying to see that the weighted error, as
specified in eqn (11), serves as a metric to predict which of two
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Table 1 Time constants for the sequential S, — S;and S; — Sq internal conversions of furan in water, as obtained from ML/MM models trained
with 100%, 33%, and 1% of the data from set | (subsampled in time) within the random split and trajectory split schemes. The simulations were
started from the initial conditions of set Il and are compared with the QM/MM trajectories of this set. The test errors in energies (E) and forces (F)
are averaged over the five electronic states (So—S4). The weighted RMSEs were computed according to eqgn (11). All the trainings were performed

with the augmented loss. The time constants obtained from the reference QM/MM curvature-driven TSH simulations are r?ﬁ,"/lMM =17+ 2fsand
MMM — 65 + 3 fs
RMSE(E) WRMSE(E) RMSE(F) WRMSE(F)
Split type % of data Model # Ty—q [£8] T1o0 [£8] [keal mol ] [keal mol '] [keal mol ™" A™"] [keal mol ™" A™"]
Random 100 1 29 + 4 73 £4 1.4 1.4 5.9 56.3
2 138 + 28 92 4+ 12 2.7 3.2 9.1 76.2
3 28 £ 5 73+ 6 1.3 1.3 6.0 54.9
33 1 63 + 16 90 + 8 3.3 3.8 10.8 95.3
2 36 + 8 97 £ 8 2.6 2.7 9.8 69.5
3 66 + 11 84 t6 5.0 5.8 19.0 126.0
1 1 240 + 41 164 + 29 28.5 22.9 26.0 168.0
2 134 + 18 130 £ 16 9.5 10.0 23.6 126.7
3 97 £ 10 116 + 14 11.1 11.3 23.2 124.9
By traj. 100 1 153 + 26 95 £+ 10 6.3 6.3 13.7 81.7
2 37+ 6 251 £+ 33 6.0 6.0 14.1 83.9
3 292 + 61 109 £ 17 6.0 5.9 13.9 82.6
33 1 67 £17 67 + 6 5.6 5.6 13.6 80.4
2 86 + 11 134 £+ 18 5.9 6.0 141 82.7
3 173 + 32 76 £9 5.7 5.8 14.0 82.0
1 1 231 £ 23 70 £ 11 10.0 10.7 23.2 122.8
2 393 £ 70 100 + 22 10.0 11.2 24.8 132.2
3 292 + 51 109 + 18 12.1 13.4 25.4 132.6

models with identical hyperparameters will perform better.
Comparing the normal and weighted RMSE, it can be seen that
the energy errors change by a maximum of 1 kcal mol ", except
for the models trained with only 1% of the data. We can therefore
assume that energy values close to the intersection seams are
learned with a similar accuracy as points further away from these
important regions. However, the same does not appear to be true
for the gradients of the PESs. The increase from non-weighted to
energy-gap-weighted RMSE varies, but is approximately a factor
of 5 to 10. Weighted energy and force RMSEs taken together
suggest that the distance between the different electronic PESs is
roughly correct; however, the topology close to the avoided
crossings is not. We therefore conclude that the general feature
of the avoided crossing is represented correctly, but that the
individual ML-PESs are significantly less smooth in these
regions, leading to a strong increase in the force errors, albeit not
in the energies. Surprisingly, a model with a weighted force
RMSE of 50 kcal mol™ A™* predicts the relaxation dynamics
qualitatively correctly (random split, 100%, models no. 1 and 3).
Since the weighted error decreases with larger training set sizes,
increasing the training set size even further should lead to
smaller errors. Focusing on the correct reconstruction of the
slope near the intersection seams seems to be especially impor-
tant. This interpretation is further supported by test calculations
where we used the time-derivative of the gradients instead of the
energies, which lead to significantly decreased agreement
between the ground truth and the ML models. Hence, the
computed ML transition rates have the correct order of magni-
tude, because the couplings that were used in our simulations
only depend on the energies and not on the gradients.

1486 | Digital Discovery, 2025, 4, 1478-1491

To further understand the performance of the different
models, we also performed an error analysis regarding energies,
gaps, and forces for the data in set II. Parity plots for set II are
shown in Section S2.2 of the ESIf and the average errors in
Fig. 6b. One can see that on this data — unseen by all models -
“random split” and ”split by trajectory” models perform similarly.
This underlines that test statistics based on the random splitting
(see Fig. 6a) provide a strong underestimation of the true error.
Furthermore, the parity plots of Section S2.2 in the ESIT show that
all models (random and trajectory split) appear to strongly over-
estimate Eg, for configurations with a ground state energy above
75 keal mol™" (likely geometries with strongly elongated or
broken bonds), which leads to a significant underestimation of
the energy gap to the first excited state in these regions. It may
appear confusing that the models tend to underestimate this gap
when their dynamics is always slower than the QM/MM reference.
However, this only happens for configurations with a high
ground-state energy, which are those occurring after relaxation to
the ground state, and are then prevented from hopping back up
(see discussion in Section S3.2 and Fig. S18 of the ESIY).

In general, the errors of the models based on the set II are so
large that it is surprising that they can produce reasonable
population decays. These errors are based on geometries from
the entire 300 fs, where furan displayed ring opening and
subsequent bond rearrangements (discussed in detail in
Section S4 of the ESIT), which might be difficult to describe with
(TD-)DFT. The initial part of the dynamics is much better
reproduced by the ML/MM than the latter parts, since it corre-
sponds to regions in configuration space that are reasonably
described by (TD-)DFT. To test this hypothesis, we performed

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a second round of error analysis on set II, where we only
included frames from the first 75 fs. The much better perfor-
mance of the models on these configurations becomes apparent
when looking at the parity plots in Section S2.3 of the ESI.T The
errors (MAE and RMSE) of forces, energies, and energy gaps are
significantly lower than those on the entire set II. For split by
trajectory they are basically identical to the test statistics ob-
tained from set I. This means that the models fit the PESs well
in the part of the configuration space that is explored right after
irradiation, which is the part needed for the relaxation back to
the electronic ground state. The subsequent distortions due to
the excess energy of 6-7 eV, are not well described, but these
deficiencies are less relevant to the change in electronic pop-
ulations. This is why most models were able to reproduce the
relaxation dynamics of set II even though they cannot extrapo-
late correctly to the configurations visited in later stages of the
QM/MM simulations. We want to acknowledge, however, that
FieldSchNet™ is based on the invariant SchNet architecture.”
Hence, we expect an equivariant ML model capable of handling
external charges®* to be more robust, just as such models are in
the usual field-independent setting.'*

4.3 Structural analysis of trajectories

In order to analyze whether the ML/MM simulations show the
same structural changes during the dynamics as the reference

a) Hopping geometries S, -S,
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QM/MM simulations, we compare the hopping geometries from
the QM/MM simulations with those encountered in the ML/MM
simulations, here done exemplary for model #1 with 100% of
the data and the random split procedure (for a comparison of all
18 ML/MM models, see Section S4.2 of the ESIt). The hopping
geometries from the QM/MM simulations (set II) for the S,-S;
and S;-S, transitions are shown in Fig. 8a and b, respectively.
The geometries responsible of the first internal conversion
(Fig. 8a) are very similar because the hops occur shortly after
excitation, so they closely resemble the ground-state MM
geometries of the Franck-Condon ensemble. The geometries
corresponding to the S;-S, deactivation (Fig. 8b) are more
diverse. They encompass a smooth interpolation between
configurations with a closed and an open ring. For easier visu-
alization, the geometries were aligned so that only one bond
appears to open, however, both bonds C;-O and C,-O
(following the naming convention of Fig. 1b) are equally likely
to break.

To analyze the similarities of the hopping structures found
in the QM/MM and ML/MM simulations, we performed a prin-
cipal component analysis (PCA) on the set of QM/MM geome-
tries for the transitions between S; and S, using a Coulomb
matrix representation'® of furan (Section S4 of the ESIT). We
found that the first principal component (PC1), which recovers
about 89% of the overall variance, focuses on the distance
between the oxygen atom and carbon atoms 1 and 4, whereas

b) Hopping geometries S;-S,

Structural analysis of S;-S, Hopping geometries
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Fig.8 Aligned QM/MM S,-S; (a) and S;—S; (b) hopping geometries obtained from trajectories in set Il. Comparison of S;—Sg hopping geometries
obtained from QM/MM (c) and ML/MM (d) (random split, 100% data, model #1) by projecting them onto the maximum of either the C;-O and
C4—0 bond distance (see Fig. 1b) as well as the PC2 from a PCA performed solely on the QM/MM frames (Section S5).
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PC2, which reflects 9% of the variance, is a linear combination
of several interatomic distances. In Fig. 8c we replaced PC1 with
the maximum length of the two bonds C;-O and C,-O for easier
visualization, as PC1 creates an inverted V due to the symmetry
of the breaking bonds (see Fig. S19 in Section S4 of the ESIT).
One can see that the geometries form one continuous hopping
seam.

When applying the same linear transformation to the
hopping geometries of the ML/MM simulation (here shown for
random split, 100%, model #1) and projecting them onto PC2
and the maximum of the C-O bond distances, they form the
same diagonal line, indicating that hops occur in the same
region of configuration space. This is not only true for the
single model analyzed here, but for most models (Fig. S20 in
Section S4.2.1 of the ESIf). Deviations from the rather even
distribution seen in Fig. 8c correlate with significantly
different relaxation dynamics, e.g. some models hop only at
certain points along the seam creating visual clusters in the
2D-projection. As the S,-S; hopping geometries are all very
similar, the projection onto the first two principal components
forms a single cluster (Fig. S21 in Section S4.2.2 of the ESI{).
Trajectories with slow internal conversion from S, to S; show
outliers in the 2D-projection (Section S4.2.2 and Fig. S22 of the
ESTY).

5 Conclusions

We have integrated the FieldSchNet machine learning inter-
atomic potential into the SHARC software package to enable
nonadiabatic ML/MM dynamics simulations in an electrostatic
embedding framework, in analogy to the traditional QM/MM
counterpart. By developing a training loss function that
incorporates the consistent gradients required during simu-
lation, we ensured the inclusion of electric field-dependent
components in the nuclear forces, enhancing the accuracy of
our approach. Our method was applied to furan in water,
trained with almost 30 000 data points obtained from QM/MM
nonadiabatic trajectories at the BP86/def2-SVP level of theory.
We expect our ML/MM setup to be directly transferable to
a boundary across chemical bonds, since link atoms can be
used analogously to QM/MM simulations. Moreover, the
SHARC software package can already handle QM/MM simula-
tions with link atoms.

We compared the training errors derived from using two
distinct data splitting strategies - “random sampling” and “split
by trajectory”, depending on whether the data points were
sampled randomly from any trajectory, or entire trajectories are
used for training, validation and testing. Even though its
performance is limited by the smaller number of available
trajectories, we recommend to use “split by trajectory”, as it
offers cleaner data separation and more realistic error statistics.
In general, we observe a wide range in the performance of the
ML/MM models when trying to reproduce the nonadiabatic QM/
MM dynamics of a set of held out trajectories, even for ML
models with the same hyper-parameters. Strong sensitivities of
excited state kinetics generated by ML models were already
noted in earlier studies.”* However, well-chosen test statistics
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served as reliable indicators of model performance. Energy gap-
weighted errors help to highlight discrepancies near the inter-
section seams. Projecting hopping geometries onto two
dimensions provides valuable insights to understand the
difference between ground truth dynamics and those derived
from the ML model.

Based on our findings, we recommend against using costly
nonadiabatic QM/MM dynamics simulations to generate
training data, where a single time step of the nonadiabatic QM/
MM dynamics takes already 2 minutes using (TD)-DFT for the
presented test system. A study that goes beyond a proof of
concept would likely use a more expensive level of theory that
handles bond dissociations correctly. Most computational
effort is spent on geometries that are far away from critical
regions of the PESs (the intersection seams). Furthermore, the
produced geometries are highly correlated as they are closely
spaced in time. Future applications should therefore aim to
collect training data through active learning schemes,'*>'¢
which has the added benefit that such data are not correlated,
which means that no computational effort is wasted obtaining
frames that might later be discarded by subsampling in time.
We expect models trained on such data to generate better forces
near the intersection seams and to reproduce the dynamics of
the QM method more reliably.

Data and code availability

Data, code, and processing scripts for this paper, including
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FieldSchNet with an upcoming release of SHARC, which is
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