
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 2
:2

7:
24

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal
Machine learning
aNeutron Scattering Division, Oak Ridge Na

USA. E-mail: doc1@ornl.gov
bCenter for Nanophase Materials Sciences, O

TN 37831, USA

Cite this: DOI: 10.1039/d5dd00038f

Received 24th January 2025
Accepted 17th June 2025

DOI: 10.1039/d5dd00038f

rsc.li/digitaldiscovery

© 2025 The Author(s). Published b
inversion from small-angle
scattering for charged polymers

Lijie Ding, a Chi-Huan Tung,a Jan-Michael Y. Carrillo, b Wei-Ren Chen a

and Changwoo Do *a

We develop Monte Carlo simulations for uniformly charged polymers and a machine learning algorithm to

interpret the intra-polymer structure factor of the charged polymer system, which can be obtained from

small-angle scattering experiments. The polymer is modeled as a chain of fixed-length bonds, where the

connected bonds are subject to bending energy, and there is also a screened Coulomb potential for

charge interaction between all joints. The bending energy is determined by the intrinsic bending

stiffness, and the charge interaction depends on the interaction strength and screening length. All three

contribute to the stiffness of the polymer chain and lead to longer and larger polymer conformations.

The screening length also introduces a second length scale for the polymer besides the bending

persistence length. To obtain the inverse mapping from the structure factor to these polymer

conformation and energy-related parameters, we generate a large data set of structure factors by

running simulations for a wide range of polymer energy parameters. We use principal component

analysis to investigate the intra-polymer structure factors and determine the feasibility of the inversion

using the nearest neighbor distance. We employ Gaussian process regression to achieve the inverse

mapping and extract the characteristic parameters of polymers from the structure factor with low

relative error.
1 Introduction

Semiexible charged polymers,1 also known as poly-
electrolytes,2,3 represent an essential class of materials that are
fundamental to both biological processes and technological
applications.4 Their unique behaviors arise from the interplay
between molecular exibility and electrostatic interactions,
which are governed by the presence of ionizable groups along
their chains. Notable natural examples include DNA,4,5 RNA,6

and proteins,7 all of which play pivotal roles in cellular func-
tions. Synthetic polyelectrolytes, on the other hand, have found
extensive use in a variety of elds, including water treatment,8

energy storage,9 drug delivery,10 and responsive materials.11 The
conformational and dynamic properties of charged polymers
are shaped by factors such as charge density, ionic strength of
the surrounding environment, and the intrinsic bending stiff-
ness of the polymer chain. A thorough understanding of these
properties is crucial for tailoring polyelectrolytes to meet the
specic demands of diverse applications.

To understand the structure and behavior of the charged
polymers, both experimental and theoretical approaches have
tional Laboratory, Oak Ridge, TN 37831,

ak Ridge National Laboratory, Oak Ridge,

y the Royal Society of Chemistry
been employed. Experimental techniques such as small-angle
scattering12 (SAS) including X-ray scattering13 and neutron
scattering14,15 have proven indispensable for understanding
these properties of the charged polymers.16 Scattering methods
provide insights into the nanoscale structure and dynamics of
charged polymers, enabling the characterization of key
conformational parameters such as radius of gyration, persis-
tence length, and inter- and intra-molecular interactions.
Theoretical and computational approaches, including analyt-
ical models17,18 and computer simulations, complement exper-
imental efforts by capturing the fundamental physics of
charged polymer systems. Techniques such as molecular
dynamics19,20 (MD) and Monte Carlo21,22 (MC) simulations have
provided signicant insights into polymer congurations,
bending rigidity, and electrostatic interactions.

Despite the progress made on both the experimental and
theoretical fronts, bridging the scattering function measured in
SAS experiments with the polymer parameters used for
modeling charged polymers in theory and simulations remains
a signicant challenge. The difficulties lie in extracting physical
quantities about polymer conformation by decoding the scat-
tering function. Recent advances inmachine learning (ML) have
opened new avenues in scattering analysis, enabling parameter
extraction without requiring explicit analytical forms of the
scattering function.23 By training ML models on simulation-
generated data, it becomes possible to establish an inverse
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http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00038f&domain=pdf&date_stamp=2025-07-04
http://orcid.org/0000-0002-2745-4606
http://orcid.org/0000-0001-8774-697X
http://orcid.org/0000-0002-5192-0777
http://orcid.org/0000-0001-8358-8417
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00038f
https://pubs.rsc.org/en/journals/journal/DD


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 2
:2

7:
24

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
mapping from the scattering function to the underlying model
parameters. This approach has shown promise in a variety of
systems, including colloids,23–25 polymers,26–29 and lamellar
structures.30,31 These applications demonstrate the potential of
ML to bridge the gap between experimental scattering data and
theoretical models, providing a robust framework for parameter
extraction in complex systems.

In this work, we introduce such an inversion by the ML
approach for the charged polymer system, where the data are
generated using MC simulations. The polymer conguration is
governed by the intrinsic bending stiffness, charge density and
salt concentration of the surrounding medium. We rst inves-
tigate the effects of these key variables on polymer conforma-
tion and then calculate the intra-polymer structure factor. To
assess the feasibility of inversion, we perform principal
component analysis of the scattering data and quantify the
feasibility using the nearest neighbor distance of the polymer
parameters in the structure factor space. Finally, we employ
Gaussian process regression (GPR) to extract both the confor-
mational and energy-related parameters of the polymers from
the structure factor, demonstrating the accuracy and robust-
ness of this approach.
2 Method
2.1 Charged polymer in an ionic uid

We model the polymer as a chain of N connected bonds with
xed length lb, such that the joint connecting bonds i − 1 and i
is ri and the tangent of bond i is ti h (ri+1 − ri)/lb. The polymer
energy is given by:

E ¼
XN�2

i¼0

k

2

ðtiþ1 � tiÞ2
lb

�
XN�1

i¼0

XN�1

jsi

A

rij
e�rij=lD (1)

where k is the bending modulus,
A
rij
e�rij=lD is the Yukawa

potential, or screened Coulomb potential,20,32 that models the

charge interaction, A is the interaction strength between
charged monomers, lD is the Debye screening length,33 and
rij ¼

��~ri �~rj
�� is the distance between joints i and j. In addition,

the self-avoidance of the polymer is enforced by adding hard
sphere interaction of diameter lb between different joints. The

interaction strength A ¼ ðselbÞ2
4p3

is directly related to the charge

density of the polymer se, where 3 is the dielectric constant of

the medium. The Debye screen length lD ¼
ffiffiffiffiffiffiffiffiffiffi
3kBT
2e2I

r
, where kB is

the Boltzmann constant, T is the system temperature, e is

elementary charge, and I ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
zi2ni

p
is the ionic strength, in

which zi and ni are the charge number of the number density of
ion species i, respectively.
2.2 Monte Carlo simulation

To calculate the conformational properties of the charged
polymer at equilibrium, we sample the conguration space of
the charged polymers using the off-lattice Markov Chain Monte
Digital Discovery
Carlo (MCMC)method34 we previously developed; this off-lattice
method provides accurate calculation of the polymer confor-
mation and overcomes the orientational bias rooted in the
lattice model.35 The polymer conguration f~r0;~r1.~rN�1g is
updated using twoMCmoves: continuous cranksha and pivot.
Cranksha picks two random joints on the polymer chain and
rotates all the bonds between them for a random angle within
the interval [−fc, fc]. Pivot randomly selects one joint k on the
chain and rotate the preceding sub-chain (k,.,N) within a cone
of angle fp(k) centering at the original orientation. To improve
the acceptance rate of these updates and thus boost the effi-
ciency of the simulation, the cranksha rotation angle is
adjusted according to the bending modulus such that

fc ¼
2p

3ð1þ kÞ, and the pivot rotation angle fp = fc. Combining

these two moves allows full exploration of the polymer cong-
uration with the contour length xed and the polymer confor-
mation calculated using this algorithm has been benchmarked
against theoretical calculations. More details on the MCMC
simulation can be found in our previous paper.34

To better characterize and understand the conformation of
the charged polymer, we calculate the radius of gyration, bond
angle correlation and structure factor of the polymer. The

radius of gyration square is Rg
2 ¼ 1

2
hrij2iij, where the h.iij

denotes the average of all pair of joints. The bond–bond
correlation is hcos(q(s))i = ĥti$̂ti+sii where h.ii denotes the
average over all bonds and s represents the contour distance
between two bonds along the polymer chain. Finally, the
isotropic intra-polymer structure factor12,14 is given by:

SðqÞ ¼ 1þ 1

N2

XN�1

i¼0

XN�1

jsi

sin
�
qrij
�

qrij
(2)

where q is the magnitude of the scattering vector. When
running the MCMC simulation, we rst randomize the system
by running 2000 MC sweeps at inverse temperature b = 1/kBT =

0, then tempering the system for another 2000 MC sweeps while
gradually decreasing the temperature to b = 1. We sample the
polymer conguration and calculate the average of the confor-
mation parameters for while running for another 4000 MC
sweeps, each MC sweep consists of N crankshas and N pivot
updates. We use a natural unit in our simulation where energy
is in unit of kBT = 1 and length is in unit of lb = 1 such that the
polymer contour length L = Nlb = N. We use degree of dis-
cretization L = 500 for all of our simulations.
2.3 Principal component analysis

To study the relationship between structure factor S(q) and the
polymer parameters including radius of gyration Rg

2, end-to-
end distance R2, bending stiffness k and interaction strength
A for various screening distance lD, we generate a data set
consisting of 4000 combinations of (k, A, lD) and corresponding
log S(q) and carry out principal component analysis for the data
sets. The S(q) is calculated for 100 q ˛ [10−1, 1], uniformly
placed in the log scale, and k ∼ U(5, 50), A ∼ U(0, 10) and lD ∼
Ud(1, 10), where U(a, b) is the uniform distribution in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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interval [a, b] and Ud(a, b) is the discrete uniform distribution.
Similar to previous work,23 we use singular value decomposition
(SVD) to nd the three most important bases of the 4000 × 100
matrix F = {log S(q)}, such that F = USVT. The diagonal entries
of S2 are proportional to the weight of the variance of the
projection of F onto each principal vector of V. Projecting F onto
the rst few bases provides a way to analyze F in a dimensionally
reduced space. A useful tool to study the distribution of the
polymer parameters Y = {(k,A,Rg

2/L2,R2/L2)} is to calculate the
nearest-neighbor distance of z ˛ {k,A,Rg

2/L2,R2/L2} on the F
manifold. For n-number of vectors, x1, x2,., xn, the rst nearest
neighbor is dened as NN1(xi) = argminxjsxijxj − xij; similarly,
the second nearest neighbor is NN1(xi) = argminxjsxi,NN1(xi)jxj −
xij, and we dene the normalized nearest neighbor distance DNN

for the z(x) as:

DNNðzÞ ¼ h2zðxÞ � zðNN1ðxÞÞ � zðNN2ðxÞÞix
ðmaxxðzÞ �minxðzÞÞ=2 (3)

where h.ix is the average overall x. The nearest-neighbor
distance helps quantify the feasibility of the parameter inver-
sion from scattering, serving as a local sensitivity metric on the
scattering F manifold. By measuring how a given parameter z
changes when moving from one scattering signature to its two
closest neighbors, DNN(z) tells us how well small differences in
log S(q) can be traced back to unique changes in z. Concretely,
large DNN(z) indicates that minor variances in log S(q) can map
to large jumps in z, signaling regions where inversion is
unstable or degenerate. Whereas small DNN(z) means that even
signicant noise in log S(q) produces only modest shis in z,
thus the inverse mapping remains well-conditioned and robust.
Fig. 1 Radius of gyration Rg
2 and end-to-end distance R2 of the

charged polymer versus various bending stiffness k, charge interaction
strength A and screen length lD. (a) Normalized end-to-end distance
R2/L2 versus screen length lD for various bending stiffness k. (b) R2/L2

versus screen length lD for various charge interaction strength A. (c)
and (d), similar to (a) and (b), respectively, but for normalized radius of
gyration Rg

2/L2.
2.4 Gaussian process regression

To perform inverse mapping from the scattering function, x =

log S(q), to the system parameters, or inversion targets y = (k, A,
Rg/L

2, R2/L2), we employ a Gaussian Process Regression (GPR)
model trained on data generated through Monte Carlo (MC)
simulations. Under the framework of GPR,36,37 the goal is to
obtain the posterior distribution p(Y*jX*, X, Y) for the function
output y. In this setup, the training and test sets are dened as X
= {log S(q)}train and X* = log S(q)test, respectively, while Y and Y*

correspond to the inversion targets (k, A, Rg/L
2, R2/L2). GPR

assumes a Gaussian process prior over the regression function,
g(x) ∼ GP(m(x), k(x, x0)), where m(x) is the prior mean function
and k(x, x0) is the covariance kernel. The joint distribution for
the Gaussian process is expressed as follows: 

Y

Y*

!
� N

 "
mðXÞ
mðX*Þ

#
;

"
kðX;XÞ kðX;X*Þ
kðX*;XÞ kðX*;X*Þ

#!
(4)

Here, we use a constant prior mean function m(x), while the
kernel function is modeled as a combination of a Radial Basis
Function (RBF) and a white noise term:

k
�
x; x

0
�
¼ exp

 
�
��x� x

0 ��2
2l

!
þ sd

�
x; x

0
�
; (5)
© 2025 The Author(s). Published by the Royal Society of Chemistry
where l represents the correlation length, s is the variance of the
observational noise, and d is the Kronecker delta function.
These hyperparameters are optimized during training using the
simulation data. In practice, we utilize the scikit-learn38,39

Gaussian Process library due to its convenience and efficiency.
3 Results

We rst study the effect of each polymer parameter on the
conformation of the polymer, then investigate the scattering
function of the charged polymer, where we also show the
principal component analysis of our data set F = {log S(q)}. We
then discuss the feasibility of inversion based on the SVD of F.
With the feasibility established, we nally test our trained GPR
for the inversion.
3.1 Variation of polymer conformation

Both the local bond-to-bond bending and long-range charge
interaction contribute to the stiffness of the entire polymer.
Such stiffness will affect the overall size of the charged polymer,
which can be captured by the radius of gyration Rg

2 and end-to-
end distance R2. Fig. 1(a) and (c) shows both Rg

2 and R2 increase
with screening length lD and bending stiffness k, and intui-
tively, the effects of k on both Rg

2 and R2 are more signicant
when lD is small, as the Rg

2 and R2 versus lD curves for different
k start to converge as the lD increases. In contrast, while Rg

2 and
R2 also increase with larger charge interaction strength A, these
curves diverge as lD increases, which happens because the
increasing screening length lD amplies the effect of charge
interaction.

When the polymer is only subjected to bending k, or in the
case of A = 0, the polymer is a classic semiexible polymer
Digital Discovery
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whose bond angle correlation can be described by a single
exponential decay:

hcos q(s)i = e−s/l0 (6)

where l0 is the persistent length. s is the bond–bond distance
along the polymer contour. However, as pointed out in
a previous study,20 the charge interaction introduces new length
scales, and as a result, the bond angle correlation can be
described by:

hcos q(s)i = (1 − a)e−s/l1 + ae−s/l2 (7)

l1 and l2 correspond to two different length scales, and it is also
notable that the effective bending rigidity can be calculated by
le = l2/a.20

Fig. 2(a) shows the bond angle correlation function hcos q(s)i
for various screening length lD, and the tted lines are calcu-
lated using the single scale model as in eqn (6). As lD increases,
the single scale model tting starts to diverge from the data
point, indicating the necessity of switching to the double length
scale model (eqn (7)); Fig. 2(b) shows such tting results, and
the two length scale model can still describe the decay of hcos
q(s)i at large lD.

Fig. 2(c) show all three length scales l0, l1 and le versus
screening length lD for various bending stiffness k. At low lD the
one length scale still ts the bond angle correlation data, and
increases with increasing lD. When switching to the two length
Fig. 2 Different length scales of the charged polymer, fitted using
both single length scale and double length scale models. (a) Bond
angle correlation hcos q(s)i for various screening length lD with k = 30,
A = 5, solid lines are fitted using a single length scale (eqn (6)). (b)
Similarly, but fitted using double length scale (eqn (7)). (c) Three
persistent lengths, l0 for the solid line, l1 for the dashed line and le for
the dotted line, versus screening length lD for various k with A = 5. (d)
Similar to (c), but for various A with k = 30.

Digital Discovery
scale model, the long length scale l1 increases with increasing
lD, while the short length scale le decreases and deviates from
l1 and then plateaus. The plateau value increases with bending
stiffness k. The switch from the one-length scale l0 to two-
length scale (l1, le) in the plot is determined by monitoring
the divergence between the l0 and l1 when tting the correla-
tion function at low screening length lD. Fig. 2(d) shows
a similar result but for various charge interaction strength A.
Similar to its effect on the end-to-end distance and radius of
gyration, A amplies the effect of increasing lD, while the short
length scale le plateaus at a similar value for various A, con-
rming it corresponds to the bending stiffness k.

3.2 Scattering factor of the polymers

We then turn to the inter-polymer structure factor. For
comparison, we also calculate the structure factor of a solid rod,
whose polymer conguration is~ri ¼ ix̂, with all bonds pointing
to the same direction. Fig. 3(a) shows the variation of structure
factor S(q) for various bending stiffness k. Compared to the solid
rod, the polymer structure factor shows a bump at a structure
vector q range comparable to its radius of gyration. Fig. 3(b)
shows the structure factor of the polymer divided by the rod
S(q)/Srod(q), where the bump is better shown. As the bending
stiffness k increases, the peak in S(q)/Srod(q) lowers and the
corresponding q value also decreases, indicating an increase of
the characteristic length. Fig. 3(c) and (d) shows the S(q)/Srod(q)
for various charge interaction strength A and screening length
lD, and both show similar effects on the structure factor of the
polymer as they make the polymer more extended and stiff.

To better analyze the structure factor of the charged polymer,
we carry out principal component analysis described in Sec. 2.3.
By decomposing the F = {log S(q)} into F = USVT, we nd that
the singular value S decays rapidly versus its rank, as shown in
Fig. 3 Variation of the structure factor of the charged polymer. (a)
Structure factor S(q) for various bending stiffness k with lD = 3, A = 5
and rod effectively representing the k = N case. (b) Structure factor
S(q) normalized by the rod's structure factor Srod(q) for various k. (c)
S(q)/Srod(q) for various charge interaction strength A with k = 30, lD =

3. (d) S(q)/Srod(q) for various screening length lD with k = 30, A = 5.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Singular value decomposition of the structure factor data set F
= {log S(q)}. (a) Singular value S versus Singular Value Rank (SVR), with
the top 3 ranks highlighted in a red circle. (b) First 3 singular vectors V0,
V1 and V2. (c) Decomposition of the log S(q) with k= 10, A= 5, and lD=

3; log(S0), log(S1) and log(S2) are projections of log S(q) onto V0, V1 and
V2, respectively.

Fig. 5 Distribution of the polymer parameters (R2/L2,Rg
2/L2,k,A) in the

SVD space spanned by (V0, V1, V2). (a) End-to-end distance divided by
length square R2/L2, (b) Radius of gyration square divided by length
square Rg

2/L2. (c) Bending stiffness k. (d) Charge interaction strength A.

Fig. 6 Nearest neighbor distance analysis of the charge interaction
strength A. (a) Value distribution of A in the SVD space for various slices
of screening length lD, the axes are the same as in Fig. 5. (b) Nearest
neighbor distanceDNN for various polymer parameters versus different
slices of the data F separated by the lD value.
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Fig. 4(a), indicating we can represent the log S(q) ˛ F using few
bases. Fig. 4(b) shows the rst 3 singular vectors, and Fig. 4(c)
shows the projection of a structure factor S(q) onto each basis,
and the reconstruction from only the 3 bases closely matches
the original S(q). This decomposition will allow us to further
determine the feasibility of extracting these polymer parameters
from the structure factor.

3.3 Feasibility for machine learning inversion

While it is straightforward to calculate the structure factor S(q)
from the polymer parameters, including length L, bending
stiffness k, charge interaction strength A and screening length
lD, and calculate the end-to-end distance R2 and radius of
gyration Rg

2 using MC simulation, the feasibility of doing the
inversion is to be further assessed. Fig. 5 shows the distribution
of (R2/L2,Rg

2/L2,k,A) in the structure factor space. This mapping
is achieved by projecting all of the structure factor log S(q) ˛ F
into the space spanned by the rst 3 singular vectors (V0, V1, V2),
and the corresponding 3 coefficients of each log S(q) correspond
to a single point in the R3 space. As shown in Fig. 5(a–c), the
end-to-end distance R2/L2, radius of gyration Rg

2/L2 and bending
stiffness k are all well spread out on in the FV manifold, indi-
cating they are eligible to be extracted from the structure factor.
Fig. 5(d) shows the distribution of charge interaction strength A
and it is unclear if it can be extracted due to some randomness
in the distribution.

Intuitively, when then screening length lD is very small, the
effect of the charge interaction becomes negligible, preventing
it from having a meaningful impact on the structure factor S(q),
© 2025 The Author(s). Published by the Royal Society of Chemistry
thus it is not expected to have A feasible for extraction from the
S(q) at low lD. To quantify this feasibility, we slice the structure
factor data set F = {log S(q)} into different slices for different
screening lengths lD, and calculate the nearest neighbor
distance for each slice. As shown in Fig. 6(a), we plot 3 slices of
the charge interaction strength A distribution, and the
randomness reduces as the screening length lD increases.
Quantitatively, Fig. 6(b) shows the nearest neighbor distance
DNN for each polymer parameter and DNN(A) is much larger than
that of the others when the screening length lD is small, and
then it decays to lower value as the lD increases, leading to
a more signicant impact of the charge interaction strength A
Digital Discovery
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Fig. 7 Log marginal likelihood contour of hyperparameters correla-
tion length l and noise level s for various polymer parameters, with the
optimized value marked with a black cross. (a) End-to-end distance
R2/L2. (b) Radius of gyration R2/L2. (c) Bending stiffness k. (d) Charge
interaction strength A.
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on the polymer conformation. This indicates the charge inter-
action strength A, which is directly related to the charge density
of the polymer, is still extractable if the screening length is large
enough.

3.4 Extraction of the polymer parameters

With the feasibility for inversion and corresponding conditions
established for the polymer parameter (R2/L2,Rg

2/L2,k,A), we
train the GPR using 70% of the entire data set F = {log S(q)}as
the training set {log S(q)}train, and then test the trained GPR
using the remaining 30% data {log S(q)}test by comparing the
Fig. 8 Comparison between the polymer parameter extracted from
structure factor and input or direct calculation from MC simulation. (a)
End-to-end distance R2/L2. (b) Radius of gyration R2/L2. (c) Bending
stiffness k. (d) Charge interaction strength A. (a–c) Utilized all range of F
and (d) only used data with lD $ 4.

Digital Discovery
actual polymer parameters with the ones extracted from the
structure factor S(q). The split between the training and testing
data is random. To obtain the trained regressor, we need to nd
the optimized hyperparameters (l, s) for each inversion target,
or polymer parameters. We search for the (l, s) that maximize
the log marginal likelihood,36 which are shown in Fig. 7.

Fig. 8 shows a comparison between polymer parameters ((R2/
L2,Rg

2/L2,k,A)) obtained from ML inversion and the corre-
sponding reference used in or calculated through MC simula-
tion. We note that due to the high nearest neighbor distance
DNN(A) of charge interaction strength at low screening length lD,
we only used data with lD $ 4 for the inversion of A. Never-
theless, the data agree well, and lie closely along the diagonal
line, with relatively low error, and for polymer parameter z, the
relative error between MC reference zMC and ML inversion zML

is estimated by Err = hjzMC − zMLj/max(zMC,zML)i, where h.i is
the average over all data points. The relative error is annotated
on each panel of Fig. 8 and shows very high precision for ((R2/
L2,Rg

2/L2,k) and good precision for A. While the errors for end-
to-end distance R2, radius of gyration Rg

2 and bending
modulus k are very small, the error for charge density is rela-
tively large as we are including data with all screening length l

$ 4. In practice, the screening length can be estimated based on
the solvent conditions; a reduced range of lD will lead to better
accuracy in the extraction of charge density A.

4 Conclusions

In this work, we apply the off-lattice MC simulation for a semi-
exible polymer to study the charged polymers, and investigate
the ML inversion from scattering for such a polymer. We model
the polymer using a chain of connected bonds, and the polymer
energy consists of both bending energy and screened Coulomb
interaction, which are proportional to the bending stiffness k

and charge interaction strength A, respectively. The charge
interaction range is determined by the screen length lD. We rst
study the polymer conformation, where the polymer size,
quantied by the end-to-end distance R2 and radius of gyration
Rg

2, increases with k, A and lD. The bond angle correlation
function transits from the single length scale to double length
scale as the screening length lD increases. We calculate the
intra-polymer structure factor S(q) of the charged polymer,
compare it to that of the solid rod, and show the S(q) is sensitive
to all three polymer parameters k, A and lD. We calculate the
S(q) for a wide range of k, A and lD, then carry out principal
component analysis using singular value decomposition to nd
the singular vectors, which allows us to do dimension reduction
of the structure factor. In addition, we investigate the feasibility
for inversion from scattering for both the conformation
parameters: end-to-end distance R2 and radius of gyration Rg

2,
and the energy parameters: bending stiffness k and charge
interaction strength A. We quantify the feasibility using nearest
neighbor distance DNN, and nd that R2, Rg

2 and k are eligible
for a wide range of screening lengths lD and the charge inter-
action strength A is eligible for inversion from structure factor
when the lD is large enough. Finally, we use GPR to obtain the
inverse mapping from structure factor S(q) to polymer
© 2025 The Author(s). Published by the Royal Society of Chemistry
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parameters (R2,Rg
2,k,A) by optimizing the hyperparameters

using a training data set, apply the inversion GPR to extract
polymer parameters from structure factor for a test data set, and
compare the ML extracted value to the MC reference; they agree
well, and low relative errors are achieved.

Our approach provides a unique method to obtain the
bending stiffness and the charge density se, which is directly

related to the charge interaction strength A ¼ ðselbÞ2
4p3

using the

scattering data. A natural next step would be to carry out a SANS
experiment for some charged polymer sample, and apply our
approach on the experimentally measured SANS data. In prac-
tice, this approach assumes the experimental data falls within
the range of training data, and a procedure of trial and error
maybe required based on the tting results, in which the
training set needs to be expanded as needed. In addition,
experimental data naturally come with noise, for which
a denoising procedure40 can be helpful, and the analysis of
noisy data will naturally provide uncertainties by the GPR.28

Moreover, the effect of noise for the GPR prediction can be
systematically studied by measuring the accuracy of the inver-
sion when different levels of noise are added to the testing data.
Finally, this framework can be expanded to the study of more
complicated charged polymer systems including charge-
patterned polypeptides,41 alternating copolymers42 and zwitter-
ionic patterned polymers.43 To study these systems, it is
required to model the polymer energy accordingly. It is natural
to introduce variable charge interaction strength A for different
monomer segments to model the charge pattern and polarity,
and a screened dipole–dipole interaction can be used for
modeling the zwitterionic polymer.
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