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scattering for charged polymers
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We develop Monte Carlo simulations for uniformly charged polymers and a machine learning algorithm to
interpret the intra-polymer structure factor of the charged polymer system, which can be obtained from
small-angle scattering experiments. The polymer is modeled as a chain of fixed-length bonds, where the
connected bonds are subject to bending energy, and there is also a screened Coulomb potential for

charge interaction between all joints. The bending energy is determined by the intrinsic bending

stiffness, and the charge interaction depends on the interaction strength and screening length. All three

contribute to the stiffness of the polymer chain and lead to longer and larger polymer conformations.
The screening length also introduces a second length scale for the polymer besides the bending
persistence length. To obtain the inverse mapping from the structure factor to these polymer

conformation and energy-related parameters, we generate a large data set of structure factors by

running simulations for a wide range of polymer energy parameters. We use principal component
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analysis to investigate the intra-polymer structure factors and determine the feasibility of the inversion

using the nearest neighbor distance. We employ Gaussian process regression to achieve the inverse

DOI: 10.1039/d5dd00038f

rsc.li/digitaldiscovery relative error.

1 Introduction

Semiflexible charged polymers,’ also known as poly-
electrolytes,”® represent an essential class of materials that are
fundamental to both biological processes and technological
applications.* Their unique behaviors arise from the interplay
between molecular flexibility and electrostatic interactions,
which are governed by the presence of ionizable groups along
their chains. Notable natural examples include DNA,** RNA,°
and proteins,” all of which play pivotal roles in cellular func-
tions. Synthetic polyelectrolytes, on the other hand, have found
extensive use in a variety of fields, including water treatment,®
energy storage,’ drug delivery,' and responsive materials." The
conformational and dynamic properties of charged polymers
are shaped by factors such as charge density, ionic strength of
the surrounding environment, and the intrinsic bending stiff-
ness of the polymer chain. A thorough understanding of these
properties is crucial for tailoring polyelectrolytes to meet the
specific demands of diverse applications.

To understand the structure and behavior of the charged
polymers, both experimental and theoretical approaches have
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mapping and extract the characteristic parameters of polymers from the structure factor with low

been employed. Experimental techniques such as small-angle
scattering (SAS) including X-ray scattering”® and neutron
scattering’*® have proven indispensable for understanding
these properties of the charged polymers.'® Scattering methods
provide insights into the nanoscale structure and dynamics of
charged polymers, enabling the characterization of key
conformational parameters such as radius of gyration, persis-
tence length, and inter- and intra-molecular interactions.
Theoretical and computational approaches, including analyt-
ical models'”*® and computer simulations, complement exper-
imental efforts by capturing the fundamental physics of
charged polymer systems. Techniques such as molecular
dynamics'?° (MD) and Monte Carlo®*** (MC) simulations have
provided significant insights into polymer configurations,
bending rigidity, and electrostatic interactions.

Despite the progress made on both the experimental and
theoretical fronts, bridging the scattering function measured in
SAS experiments with the polymer parameters used for
modeling charged polymers in theory and simulations remains
a significant challenge. The difficulties lie in extracting physical
quantities about polymer conformation by decoding the scat-
tering function. Recent advances in machine learning (ML) have
opened new avenues in scattering analysis, enabling parameter
extraction without requiring explicit analytical forms of the
scattering function.® By training ML models on simulation-
generated data, it becomes possible to establish an inverse
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mapping from the scattering function to the underlying model
parameters. This approach has shown promise in a variety of
systems, including colloids,*?* polymers, and lamellar
structures.*>** These applications demonstrate the potential of
ML to bridge the gap between experimental scattering data and
theoretical models, providing a robust framework for parameter
extraction in complex systems.

In this work, we introduce such an inversion by the ML
approach for the charged polymer system, where the data are
generated using MC simulations. The polymer configuration is
governed by the intrinsic bending stiffness, charge density and
salt concentration of the surrounding medium. We first inves-
tigate the effects of these key variables on polymer conforma-
tion and then calculate the intra-polymer structure factor. To
assess the feasibility of inversion, we perform principal
component analysis of the scattering data and quantify the
feasibility using the nearest neighbor distance of the polymer
parameters in the structure factor space. Finally, we employ
Gaussian process regression (GPR) to extract both the confor-
mational and energy-related parameters of the polymers from
the structure factor, demonstrating the accuracy and robust-
ness of this approach.

26-29

2 Method

2.1 Charged polymer in an ionic fluid

We model the polymer as a chain of N connected bonds with
fixed length I, such that the joint connecting bonds i — 1 and i
is r; and the tangent of bond i is t; = (r;, — r;)/l,. The polymer
energy is given by:

N-2 (tio: 7t_)2 NoL N-1 y /
E = St ol S 2o/ 1
DB e S D) Bl @
i= i=0 j#i Y
A o
i/*v s the Yukawa

where « is the bending modulus, €
g
potential, or screened Coulomb potential,>***> that models the
charge interaction, A is the interaction strength between
charged monomers, Ap is the Debye screening length,* and
rj = |Fi — %] is the distance between joints 7 and j. In addition,
the self-avoidance of the polymer is enforced by adding hard
sphere interaction of diameter [, between different joints. The
(‘7elb)2
4Tte
density of the polymer o, where ¢ is the dielectric constant of

interaction strength A = is directly related to the charge

. ekgT .
the medium. The Debye screen length Ap = ’/FBZI’ where kg is
the Boltzmann constant, T is the system temperature, e is

1 . c. .
elementary charge, and I = E\/zizn,’ is the ionic strength, in

which z; and n; are the charge number of the number density of
ion species i, respectively.

2.2 Monte Carlo simulation

To calculate the conformational properties of the charged
polymer at equilibrium, we sample the configuration space of
the charged polymers using the off-lattice Markov Chain Monte
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Carlo (MCMC) method** we previously developed; this off-lattice
method provides accurate calculation of the polymer confor-
mation and overcomes the orientational bias rooted in the
lattice model.** The polymer configuration {¥,,¥;...Fy_1} is
updated using two MC moves: continuous crankshaft and pivot.
Crankshaft picks two random joints on the polymer chain and
rotates all the bonds between them for a random angle within
the interval [—¢., ¢.]- Pivot randomly selects one joint k on the
chain and rotate the preceding sub-chain (, ..., N) within a cone
of angle ¢,(k) centering at the original orientation. To improve
the acceptance rate of these updates and thus boost the effi-
ciency of the simulation, the crankshaft rotation angle is
adjusted according to the bending modulus such that

T
fe = 3(1+«)
these two moves allows full exploration of the polymer config-
uration with the contour length fixed and the polymer confor-
mation calculated using this algorithm has been benchmarked
against theoretical calculations. More details on the MCMC
simulation can be found in our previous paper.**

To better characterize and understand the conformation of
the charged polymer, we calculate the radius of gyration, bond
angle correlation and structure factor of the polymer. The

, and the pivot rotation angle ¢, = ¢.. Combining

. . . 1
radius of gyration square is Ry* = 5(”z‘jz>z‘j’ where the (...);

denotes the average of all pair of joints. The bond-bond
correlation is (cos(6(s))) = (t;-tus); where (...); denotes the
average over all bonds and s represents the contour distance
between two bonds along the polymer chain. Finally, the
isotropic intra-polymer structure factor'>** is given by:

Sl = 1+ 15 S 3 omn) @)

where ¢ is the magnitude of the scattering vector. When
running the MCMC simulation, we first randomize the system
by running 2000 MC sweeps at inverse temperature § = 1/kgT =
0, then tempering the system for another 2000 MC sweeps while
gradually decreasing the temperature to 8 = 1. We sample the
polymer configuration and calculate the average of the confor-
mation parameters for while running for another 4000 MC
sweeps, each MC sweep consists of N crankshafts and N pivot
updates. We use a natural unit in our simulation where energy
is in unit of kT = 1 and length is in unit of [, = 1 such that the
polymer contour length L = NI, = N. We use degree of dis-
cretization L = 500 for all of our simulations.

2.3 Principal component analysis

To study the relationship between structure factor S(g) and the
polymer parameters including radius of gyration R,’, end-to-
end distance R*, bending stiffness x and interaction strength
A for various screening distance Ap, we generate a data set
consisting of 4000 combinations of (, 4, Ap) and corresponding
log S(g) and carry out principal component analysis for the data
sets. The S(q) is calculated for 100 g € [107", 1], uniformly
placed in the log scale, and « ~ U(5, 50), A ~ U(0, 10) and Ap, ~
U4(1, 10), where U(a, b) is the uniform distribution in the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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interval [a, b] and Uy(a, b) is the discrete uniform distribution.
Similar to previous work,* we use singular value decomposition
(SVD) to find the three most important bases of the 4000 x 100
matrix F = {log S(q)}, such that F = USV". The diagonal entries
of ¥* are proportional to the weight of the variance of the
projection of F onto each principal vector of V. Projecting F onto
the first few bases provides a way to analyze F in a dimensionally
reduced space. A useful tool to study the distribution of the
polymer parameters Y = {(k,A4,R,"/L*R*/L?)} is to calculate the
nearest-neighbor distance of { e {k,A,R,’/L*,R*/L’} on the F
manifold. For n-number of vectors, X4, X,, ..., X,, the first nearest
neighbor is defined as NN, (x;) = argminy .. |[x; — x;|; similarly,
the second nearest neighbor is NN, (x;) = argminx/;&x”NNl(x,ﬂxj -
x;|, and we define the normalized nearest neighbor distance Dyy
for the ¢(x) as:

(2€(x) — EINN; (x)) — E(NN2(x)))y
(max,(£) — ming(£))/2

where (...)x is the average overall x. The nearest-neighbor
distance helps quantify the feasibility of the parameter inver-
sion from scattering, serving as a local sensitivity metric on the
scattering F manifold. By measuring how a given parameter {
changes when moving from one scattering signature to its two
closest neighbors, Dyn({) tells us how well small differences in
log S(g) can be traced back to unique changes in {. Concretely,
large Dyn(¢) indicates that minor variances in log S(g) can map
to large jumps in {, signaling regions where inversion is
unstable or degenerate. Whereas small Dyn({) means that even
significant noise in log S(g) produces only modest shifts in ¢,
thus the inverse mapping remains well-conditioned and robust.

D (Q) =

(3)

2.4 Gaussian process regression

To perform inverse mapping from the scattering function, x =
log S(g), to the system parameters, or inversion targets y = (k, 4,
R,/L?, R*/L?), we employ a Gaussian Process Regression (GPR)
model trained on data generated through Monte Carlo (MC)
simulations. Under the framework of GPR,*** the goal is to
obtain the posterior distribution p(Y«|X+, X, Y) for the function
outputy. In this setup, the training and test sets are defined as X
= {log S(q)}rain and X« = log S(q)est, respectively, while Y and Y«
correspond to the inversion targets (k, A, Ry/L>, R*/L?). GPR
assumes a Gaussian process prior over the regression function,
g(x) ~ GP(m(x), k(x, X)), where m(x) is the prior mean function
and k(x, x') is the covariance kernel. The joint distribution for
the Gaussian process is expressed as follows:

) (4)

()

Here, we use a constant prior mean function m(x), while the
kernel function is modeled as a combination of a Radial Basis
Function (RBF) and a white noise term:

k(x,x’) —exp(—#) +05<X,X,>, (5)

m(X)
m(Xx)

k(X,X)
(X, X)

k(X, Xx)
k(X:, X.)

)
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where [ represents the correlation length, ¢ is the variance of the
observational noise, and ¢ is the Kronecker delta function.
These hyperparameters are optimized during training using the
simulation data. In practice, we utilize the scikit-learn®**°
Gaussian Process library due to its convenience and efficiency.

3 Results

We first study the effect of each polymer parameter on the
conformation of the polymer, then investigate the scattering
function of the charged polymer, where we also show the
principal component analysis of our data set F = {log S(q)}. We
then discuss the feasibility of inversion based on the SVD of F.
With the feasibility established, we finally test our trained GPR
for the inversion.

3.1 Variation of polymer conformation

Both the local bond-to-bond bending and long-range charge
interaction contribute to the stiffness of the entire polymer.
Such stiffness will affect the overall size of the charged polymer,
which can be captured by the radius of gyration Rg2 and end-to-
end distance R”. Fig. 1(a) and (c) shows both R,” and R* increase
with screening length Ap and bending stiffness «, and intui-
tively, the effects of x on both R,”> and R* are more significant
when Ay, is small, as the Rg2 and R? versus Ap curves for different
Kk start to converge as the Ap increases. In contrast, while Rg2 and
R? also increase with larger charge interaction strength A, these
curves diverge as Ap increases, which happens because the
increasing screening length Ap amplifies the effect of charge
interaction.

When the polymer is only subjected to bending «, or in the
case of A = 0, the polymer is a classic semiflexible polymer
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Fig. 1 Radius of gyration Rg2 and end-to-end distance R? of the
charged polymer versus various bending stiffness k, charge interaction
strength A and screen length Ap. (a) Normalized end-to-end distance
R?/L? versus screen length Ap, for various bending stiffness «. (b) R%/L?
versus screen length Ap for various charge interaction strength A. (c)
and (d), similar to (a) and (b), respectively, but for normalized radius of
gyration Rg%/L?.
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whose bond angle correlation can be described by a single
exponential decay:

(cos f(s)) = e (6)

where 1, is the persistent length. s is the bond-bond distance
along the polymer contour. However, as pointed out in
a previous study,? the charge interaction introduces new length
scales, and as a result, the bond angle correlation can be
described by:

(cos 8(s)) = (1 — ae M + qe % )

A; and 4, correspond to two different length scales, and it is also
notable that the effective bending rigidity can be calculated by
Ae = Apa?®

Fig. 2(a) shows the bond angle correlation function (cos 6(s))
for various screening length Ap, and the fitted lines are calcu-
lated using the single scale model as in eqn (6). As Ap, increases,
the single scale model fitting starts to diverge from the data
point, indicating the necessity of switching to the double length
scale model (eqn (7)); Fig. 2(b) shows such fitting results, and
the two length scale model can still describe the decay of (cos
(s)) at large Ap.

Fig. 2(c) show all three length scales Ay, A, and 2. versus
screening length Ay, for various bending stiffness k. At low Ap, the
one length scale still fits the bond angle correlation data, and
increases with increasing Ap. When switching to the two length

Fig. 2 Different length scales of the charged polymer, fitted using
both single length scale and double length scale models. (a) Bond
angle correlation (cos 6(s)) for various screening length Ap with k = 30,
A = 5, solid lines are fitted using a single length scale (egn (6)). (b)
Similarly, but fitted using double length scale (egn (7)). (c) Three
persistent lengths, A for the solid line, A, for the dashed line and A, for
the dotted line, versus screening length Ap for various « with A = 5. (d)
Similar to (c), but for various A with k = 30.

2078 | Digital Discovery, 2025, 4, 2075-2082

View Article Online

Paper

scale model, the long length scale A, increases with increasing
Ap, while the short length scale A, decreases and deviates from
A; and then plateaus. The plateau value increases with bending
stiffness k. The switch from the one-length scale A, to two-
length scale (A1, A.) in the plot is determined by monitoring
the divergence between the A, and A, when fitting the correla-
tion function at low screening length Ap. Fig. 2(d) shows
a similar result but for various charge interaction strength A.
Similar to its effect on the end-to-end distance and radius of
gyration, A amplifies the effect of increasing Ap, while the short
length scale A, plateaus at a similar value for various A, con-
firming it corresponds to the bending stiffness «.

3.2 Scattering factor of the polymers

We then turn to the inter-polymer structure factor. For
comparison, we also calculate the structure factor of a solid rod,
whose polymer configuration is ¥; = iX, with all bonds pointing
to the same direction. Fig. 3(a) shows the variation of structure
factor S(g) for various bending stiffness k. Compared to the solid
rod, the polymer structure factor shows a bump at a structure
vector ¢ range comparable to its radius of gyration. Fig. 3(b)
shows the structure factor of the polymer divided by the rod
S(q)/Sroa(g), where the bump is better shown. As the bending
stiffness «k increases, the peak in S(q)/Sroa(q) lowers and the
corresponding g value also decreases, indicating an increase of
the characteristic length. Fig. 3(c) and (d) shows the S(q)/Sr0a(q)
for various charge interaction strength A and screening length
Ap, and both show similar effects on the structure factor of the
polymer as they make the polymer more extended and stiff.
To better analyze the structure factor of the charged polymer,
we carry out principal component analysis described in Sec. 2.3.
By decomposing the F = {log S(q)} into F = UZV", we find that
the singular value ¥ decays rapidly versus its rank, as shown in

Fig. 3 Variation of the structure factor of the charged polymer. (a)
Structure factor S(qg) for various bending stiffness k with \p =3, A=5
and rod effectively representing the k = o« case. (b) Structure factor
S(g) normalized by the rod's structure factor S,.4(q) for various «. (c)
5(9)/S,0q4(q) for various charge interaction strength A with k = 30, Ap =
3. (d) S(g)/S,0a(q) for various screening length Ap with k = 30, A = 5.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Singular value decomposition of the structure factor data set F
= {log S(q)}. (a) Singular value X versus Singular Value Rank (SVR), with
the top 3 ranks highlighted in a red circle. (b) First 3 singular vectors Vo,
V1 and V». (c) Decomposition of the log S(g) withk =10, A= 5, and Ap =
3; log(So), log(S1) and log(S,) are projections of log S(g) onto Vj, V4 and
V,, respectively.

Fig. 4(a), indicating we can represent the log S(¢q) € F using few
bases. Fig. 4(b) shows the first 3 singular vectors, and Fig. 4(c)
shows the projection of a structure factor S(g) onto each basis,
and the reconstruction from only the 3 bases closely matches
the original S(g). This decomposition will allow us to further
determine the feasibility of extracting these polymer parameters
from the structure factor.

3.3 Feasibility for machine learning inversion

While it is straightforward to calculate the structure factor S(gq)
from the polymer parameters, including length L, bending
stiffness «, charge interaction strength A and screening length
Ap, and calculate the end-to-end distance R* and radius of
gyration R,” using MC simulation, the feasibility of doing the
inversion is to be further assessed. Fig. 5 shows the distribution
of (R*/L?,Ry’/L? x,A) in the structure factor space. This mapping
is achieved by projecting all of the structure factor log S(q) € F
into the space spanned by the first 3 singular vectors (V,, V3, V5),
and the corresponding 3 coefficients of each log S(g) correspond
to a single point in the R? space. As shown in Fig. 5(a—c), the
end-to-end distance R*/L? radius of gyration R,’*/L* and bending
stiffness « are all well spread out on in the FV manifold, indi-
cating they are eligible to be extracted from the structure factor.
Fig. 5(d) shows the distribution of charge interaction strength A
and it is unclear if it can be extracted due to some randomness
in the distribution.

Intuitively, when then screening length Ap is very small, the
effect of the charge interaction becomes negligible, preventing
it from having a meaningful impact on the structure factor S(q),

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.5 Distribution of the polymer parameters (R%/L?,R4?/L% k,A) in the
SVD space spanned by (V, V4, V>). (@) End-to-end distance divided by
length square R?/L2, (b) Radius of gyration square divided by length
square Rgz/LZ. (c) Bending stiffness «. (d) Charge interaction strength A.

thus it is not expected to have A feasible for extraction from the
S(g) at low Ap. To quantify this feasibility, we slice the structure
factor data set F = {log S(g)} into different slices for different
screening lengths Ap, and calculate the nearest neighbor
distance for each slice. As shown in Fig. 6(a), we plot 3 slices of
the charge interaction strength A distribution, and the
randomness reduces as the screening length Ap increases.
Quantitatively, Fig. 6(b) shows the nearest neighbor distance
Dy for each polymer parameter and Dyn(4) is much larger than
that of the others when the screening length Ap is small, and
then it decays to lower value as the A, increases, leading to
a more significant impact of the charge interaction strength A

w o ©

0.6

0.0

Fig. 6 Nearest neighbor distance analysis of the charge interaction
strength A. (a) Value distribution of A in the SVD space for various slices
of screening length Ap, the axes are the same as in Fig. 5. (b) Nearest
neighbor distance Dyy for various polymer parameters versus different
slices of the data F separated by the Ap value.
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Fig. 7 Log marginal likelihood contour of hyperparameters correla-
tion length [ and noise level o for various polymer parameters, with the
optimized value marked with a black cross. (a) End-to-end distance
R?/L?. (b) Radius of gyration R?/L?. (c) Bending stiffness «. (d) Charge
interaction strength A.

on the polymer conformation. This indicates the charge inter-
action strength A, which is directly related to the charge density
of the polymer, is still extractable if the screening length is large
enough.

3.4 Extraction of the polymer parameters

With the feasibility for inversion and corresponding conditions
established for the polymer parameter (R*/L?,R,*/Lk,A), we
train the GPR using 70% of the entire data set F = {log S(g)}as
the training set {log S(q)}urain, and then test the trained GPR
using the remaining 30% data {log S(q)}st by comparing the

1.2 T T |/, 0.06 F T T H
i RQ/LQ/ 1 004 Ry/L? /-
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1 (I ) 0
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Fig. 8 Comparison between the polymer parameter extracted from
structure factor and input or direct calculation from MC simulation. (a)
End-to-end distance R%/L2. (b) Radius of gyration R?/L2. (c) Bending
stiffness k. (d) Charge interaction strength A. (a—c) Utilized all range of F
and (d) only used data with Ap = 4.

2080 | Digital Discovery, 2025, 4, 2075-2082

View Article Online

Paper

actual polymer parameters with the ones extracted from the
structure factor S(g). The split between the training and testing
data is random. To obtain the trained regressor, we need to find
the optimized hyperparameters (I, o) for each inversion target,
or polymer parameters. We search for the (I, o) that maximize
the log marginal likelihood,* which are shown in Fig. 7.

Fig. 8 shows a comparison between polymer parameters ((R*/
L*R,*/L?k,A)) obtained from ML inversion and the corre-
sponding reference used in or calculated through MC simula-
tion. We note that due to the high nearest neighbor distance
Dnn(A) of charge interaction strength at low screening length Ap,
we only used data with Ap = 4 for the inversion of A. Never-
theless, the data agree well, and lie closely along the diagonal
line, with relatively low error, and for polymer parameter ¢, the
relative error between MC reference {y;c and ML inversion {y,
is estimated by Err = (|{yc — Cul/max($vc,éme)), where (...) is
the average over all data points. The relative error is annotated
on each panel of Fig. 8 and shows very high precision for ((R*/
L*R,*/L? k) and good precision for A. While the errors for end-
to-end distance R? radius of gyration R,” and bending
modulus « are very small, the error for charge density is rela-
tively large as we are including data with all screening length 2
= 4. In practice, the screening length can be estimated based on
the solvent conditions; a reduced range of A, will lead to better
accuracy in the extraction of charge density A.

4 Conclusions

In this work, we apply the off-lattice MC simulation for a semi-
flexible polymer to study the charged polymers, and investigate
the ML inversion from scattering for such a polymer. We model
the polymer using a chain of connected bonds, and the polymer
energy consists of both bending energy and screened Coulomb
interaction, which are proportional to the bending stiffness «
and charge interaction strength A, respectively. The charge
interaction range is determined by the screen length Ap. We first
study the polymer conformation, where the polymer size,
quantified by the end-to-end distance R* and radius of gyration
Rgz, increases with k, A and Ap. The bond angle correlation
function transits from the single length scale to double length
scale as the screening length Ap increases. We calculate the
intra-polymer structure factor S(g) of the charged polymer,
compare it to that of the solid rod, and show the S(q) is sensitive
to all three polymer parameters «x, A and Ap. We calculate the
S(g) for a wide range of x, A and Ap, then carry out principal
component analysis using singular value decomposition to find
the singular vectors, which allows us to do dimension reduction
of the structure factor. In addition, we investigate the feasibility
for inversion from scattering for both the conformation
parameters: end-to-end distance R* and radius of gyration Ry,
and the energy parameters: bending stiffness « and charge
interaction strength A. We quantify the feasibility using nearest
neighbor distance Dyy, and find that R? Rg2 and « are eligible
for a wide range of screening lengths Ap and the charge inter-
action strength A4 is eligible for inversion from structure factor
when the Ay is large enough. Finally, we use GPR to obtain the
inverse mapping from structure factor S(g) to polymer

© 2025 The Author(s). Published by the Royal Society of Chemistry
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parameters (R’,R,*,k,A) by optimizing the hyperparameters
using a training data set, apply the inversion GPR to extract
polymer parameters from structure factor for a test data set, and
compare the ML extracted value to the MC reference; they agree
well, and low relative errors are achieved.

Our approach provides a unique method to obtain the
bending stiffness and the charge density g., which is directly

2

related to the charge interaction strength A = % using the

scattering data. A natural next step would be to carry out a SANS
experiment for some charged polymer sample, and apply our
approach on the experimentally measured SANS data. In prac-
tice, this approach assumes the experimental data falls within
the range of training data, and a procedure of trial and error
maybe required based on the fitting results, in which the
training set needs to be expanded as needed. In addition,
experimental data naturally come with noise, for which
a denoising procedure** can be helpful, and the analysis of
noisy data will naturally provide uncertainties by the GPR.*®
Moreover, the effect of noise for the GPR prediction can be
systematically studied by measuring the accuracy of the inver-
sion when different levels of noise are added to the testing data.
Finally, this framework can be expanded to the study of more
complicated charged polymer systems including charge-
patterned polypeptides,** alternating copolymers** and zwitter-
ionic patterned polymers.*” To study these systems, it is
required to model the polymer energy accordingly. It is natural
to introduce variable charge interaction strength A for different
monomer segments to model the charge pattern and polarity,
and a screened dipole-dipole interaction can be used for
modeling the zwitterionic polymer.
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