
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 7

/7
/2

02
5 

1:
16

:4
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Machine learning
DIFACQUIM Research Group, Departmen

Universidad Nacional Autónoma de México
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Viral infections represent a significant global health concern. Viral diseases can range from mild symptoms

to life-threatening conditions, and the impact of these infections has grown due to increased contagious

rates driven by globalization. A prime example is the SARS-CoV-2 pandemic, which emphasized the

urgent need to design and develop new antiviral drugs. This study aimed to generate a curated data set

of compounds relevant to respiratory infections, focusing on predicting their antiviral activity. Specifically,

the study leverages ML classification models to evaluate focused and on-demand compound libraries

targeting pathways associated with viral respiratory infections. ML models were trained based on the

antiviral biological activity related to respiratory diseases deposited on a major public compound

database annotated with biological activity. The models were validated and retrained to classify and

design antiviral-focused libraries on seven respiratory targets.
1 Introduction

Viral infections can range from mild, self-limited illnesses to
severe, human life-threatening diseases.1 In an era of increased
global interdependence, climate change, forced migration and
intensied globalization, the rapid replication and high conta-
gion rates of viruses have become a critical concern. The
resurgence of infections once believed to be under control,
driven by viral genetic mutations and anti-vaccine movements,
has further heightened the threat of deadly pandemics.2 To
combat this global health crisis, there has been a renewed focus
on drug development strategies. The World Health Organiza-
tion (WHO) has emphasized the challenge posed by limited
resources for disease research and development, particularly
given the vast array of potential pathogens. WHO has estab-
lished a prioritized list of diseases with the greatest public
health impact, based on their epidemic potential and the lack of
effective countermeasures.3 This list is further detailed by the
WHO's document “Pathogens Prioritization” which outlines the
viral families and their respective members considering the risk
of causing Public Health Emergencies of International Concern
(PHEICs) or a pandemic (Table S1†).4–6

Despite ongoing efforts, developing effective antivirals for
most viruses remains a signicant challenge due to several key
obstacles in antiviral discovery. These include the identication
t of Pharmacy, School of Chemistry,
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of specic targets, narrow treatment windows, vector spread
and control, and the emergence of mutations that contribute to
antiviral resistance.7 In response, there has been a growing
focus on developing structurally diverse antivirals with
enhanced safety proles, as well as those that retain efficacy
against drug-resistant strains. This shi in focus has led to
renewed interest in compounds with novel mechanisms of
action.8

Acute respiratory disease (ARD) represents a signicant
portion of acute illnesses and fatalities worldwide. Acute viral
respiratory tract infections alone are responsible for approxi-
mately 80% of ARD cases.9 Key viral pathogens in this category
include inuenza, respiratory syncytial virus (RSV), coronavi-
ruses, adenovirus, and rhinovirus, all of which are related to
some of the most highlighted diseases on theWHO's prioritized
list (Table S1†). While viruses like adenovirus and rhinovirus
typically result in lower mortality rates, they contribute
substantially to morbidity and place a signicant economic
burden on healthcare systems.10

The emergence of highly pathogenic coronaviruses, such as
the SARS-CoV-2 virus, responsible for the COVID-19 pandemic,
has highlighted the severe threat posed by these pathogens.
Other coronavirus strains, including those that caused the
Severe Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS) outbreaks, persist as signicant
public health risks, and place substantial pressure on health-
care systems, especially in regions with high comorbidity rates
and limited nancial resources.11,12

The COVID-19 pandemic represented one of the most
signicant threats to global health and stability in recent
Digital Discovery, 2025, 4, 1239–1258 | 1239
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Fig. 1 Compounds with antiviral activity against targets associated with respiratory infections, identified or developed from different sources. (A)
Inhibit viral RNA-dependent RNA polymerase (RdRp), preventing viral replication. (B) Block the viral neuraminidase enzyme, preventing viral
release from infected cells. (C) Inhibit viral proteases required for processing viral polyproteins. (D) Plant-derived compounds with antiviral
activity through various mechanisms. (E) Inhibits viral cap-dependent endonuclease, blocking viral mRNA synthesis. (F) Blocks the JAK-STAT
signaling pathway, reducing excessive immune responses.
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history, triggering an unprecedented surge in antiviral drug and
vaccine research, alongside broader innovations in healthcare
and daily life. Antiviral development integrates a diverse array of
strategies, spanning well-established therapeutic approaches
and emerging targeted interventions.13 This eld draws upon
both synthetic and natural sources, yielding compounds that
exhibit a wide range of chemical structures and mechanisms of
action, including direct inhibition of viral replication, immune
system modulation, and disruption of host–virus
interactions.14–16

Guo et al. reviewed recent advances in natural products (NPs)
for antiviral research, with a particular focus on addressing
drug resistance.16 Various NPs target essential viral enzymes
such as integrase, reverse transcriptase, and protease.17 Flavo-
noids and polyphenols constitute the largest group of antiviral
NPs, followed by diterpenes and triterpenes, with fewer exam-
ples found among alkaloids.18 Examples of plant-derived
compounds with demonstrated antiviral properties are quer-
cetin, curcumin, and baicalein. Quercetin has shown effective-
ness against RSV, MERS-CoV, inuenza, and rhinoviruses
through inhibition of viral entry and replication.19 Curcumin
has been proven to inhibit the SARS-CoV-2 spike glycoprotein,
ACE2 receptor, and proteases.20 Scutellaria baicalensis root
1240 | Digital Discovery, 2025, 4, 1239–1258
extract is traditionally used in Asia, as an antiviral, antioxidant,
and anti-inammatory. This extract contains baicalein, which
has demonstrated inhibition of SARS-CoV-2 main protease
(Mpro) activity and viral replication in vitro (Fig. 1).21,22

Drug repositioning of approved drugs and advanced stages
developing molecules has also played a key role in the devel-
opment of novel antivirals with known molecules, as is the case
of SARS-CoV-2.23,24

Computer-aided drug design (CADD) has signicantly
advanced antiviral discovery. Liao et al. identied ve natural
compounds – narcissoside, kaempferol-3-O-gentiobioside,
rutin, vicin-2, and isoschaoside – as potential SARS-CoV-2
Mpro inhibitors.25 Generative topographic mapping (GTM)
has aided in identifying antiviral motifs and screening virtual
chemical libraries, as demonstrated in the design of anti-herpes
compounds (herpes simplex virus type 1).26,27 CADD methods
have also identied several promising antiviral compounds.
These include baricitinib, galidesivir, and molnupiravir. Bar-
icitinib was predicted by articial intelligence (AI)-driven anal-
ysis to inhibit viral entry and inammation in SARS-CoV-2.28

Galidesivir, an antiviral for Ebola and Zika, was evaluated
through structural modeling as a potential inhibitor of SARS-
CoV-2 RdRp.29 Molnupiravir (EIDD-2801), a prodrug of b-D-N4-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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hydroxycytidine, was optimized through docking andmolecular
dynamics to interfere with SARS-CoV-2 replication (Fig. 1).30

Approved antivirals such as remdesivir, favipiravir, and ritona-
vir have been repurposed for respiratory viruses through virtual
screening (VS), further conrming their potential to inhibit RNA
polymerases (Fig. 1).31

Focused virtual libraries of compounds are valuable
resources for bioactive compound discovery. These libraries
compile data on molecules with potential biological activity,
identied through ligand-based and structure-based drug
discovery approaches. They play a crucial role in prioritizing
candidates for synthesis, biological evaluation, and efficient
allocation of resources. Notable recent examples of disease-
specic focused virtual libraries include those targeting
neglected infectious diseases,32 SARS-CoV-2,33,34 Sirtuin-1 dys-
regulation,35 and type 2 diabetes mellitus.36

Given the ongoing demand for respiratory-focused antivi-
rals, extensive research has generated a wealth of structure–
activity data available in public repositories such as
ChEMBL.37,38 This data serves as a crucial input for machine
learning (ML) models to design focused libraries for further
experimental screening.

The main goal of this study was to design antiviral libraries
focused on molecular targets related to respiratory diseases. To
achieve this, we trained, retrained and validated ML classica-
tion models using bioactivity data from ChEMBL 33.37,38 The
predictive models were used to lter compound libraries from
diverse sources. As part of the data preparation to train the ML
models, the chemical data sets were analyzed and characterized
in terms of chemical diversity and coverage in chemical space
using chemoinformatics methods. The resulting antiviral-
focused chemical libraries, which are freely available in the
public domain, offer valuable starting points for further
computational and/or experimental screening, which is the next
logical step of this study.
2 Methods

The methodology followed in this study is outlined schemati-
cally in Fig. 2 and is detailed in the subsequent sections.
2.1 Data acquisition and preparation

Using the ChEMBL Application Programming Interface (API),38

we retrieved all compounds from ChEMBL 33 (updated June
2023) associated with 13 viral targets linked to respiratory
diseases. Molecular structures of these compounds were enco-
ded in Simplied Molecular Input Line Entry System (SMILES)
format.39 A specic acronym was assigned to each virus with
a target of interest, based on its strain, ensuring consistent and
accurate identication throughout the analysis. Table 1 lists the
names and target IDs for each of the 13 targets.

For compounds with multiple recorded biological activity
values (“standard value”) against a target, we ranked these
values from smallest to largest to ensure consistency in the data.
The pIC50 was calculated for each compound, and compounds
were classied according to the following criteria:
© 2025 The Author(s). Published by the Royal Society of Chemistry
(a) IC50 # 10 mM: were labeled as “Inhibitor”.
(b) 10 mM < IC50 < 20 mM: were labeled as “Unknown”.
(c) IC50 $ 20 mM: were labeled as “No_Activity”.
If a single category represented at least 80% of the recorded

data for a compound, that category was used; otherwise, the
label “Mixed” was assigned. Compounds with fewer than ve
data points retained their original classication, with “Mixed”
assigned if they were labeled across multiple categories.

Additionally, one supplementary compound database was
assembled, containing approved antivirals from DrugBank
5.1.12.40 Compounds from ChEMBL associated with each viral
target, along with those fromDrugBank, were compiled into two
collections.

A comprehensive data curation process was applied to data
sets to ensure data integrity. Compounds with null values,
empty entries, or duplicates were removed, resulting in a nal
count of 4521 compounds from ChEMBL 33, and 92 approved
antivirals from DrugBank. Molecular structures were stan-
dardized using RDKit version 2024.03.5,41 and MolVS,42

following a well-established and used standardization
protocol.43 Data sets and code notebooks are publicly accessible
through DIFACQUIM's GitHub repository at https://
github.com/DIFACQUIM/antiviral_ML.

2.2 Data modelability and target selection

To assess the feasibility of developing binary classication
models, we calculated the modelability index (MODI), proposed
by Golbraikh et al.44 MODI measures the proportion of
compounds in a data set whose nearest neighbor belongs to the
same class within a dened feature space. We calculated the
MODI values for the ChEMBL data sets using Molecular ACCess
System (MACCS) keys (166 bits)45 and Morgan Chiral of radius 2
(2048 bits) ngerprints,46 using the RDKit, NumPy, pandas, and
SciPy libraries for Python 3. For each target in the ChEMBL data
sets, MODI was calculated using two approaches: (1) including
compounds classied as “Mixed” in the overall classication,
and (2) excluding them (Table S2†).

Target selection for predictive model development was
guided by the criteria established by Sánchez-Cruz and Medina-
Franco.47 According to these guidelines, a target was deemed
suitable for predictive modeling if it included at least 30 active
and 30 inactive compounds, and if it had a MODI score of 0.7 or
higher for at least one molecular representation. Based on these
criteria, we selected the seven targets listed in Table S2† for the
construction of predictive models.

2.3 Chemoinformatic characterization of training data sets
of selected targets

For each training data set of selected targets, active compounds
were collected to perform a chemoinformatic characterization,
detailed hereunder.

2.3.1 Data visualization of physicochemical and constitu-
tional properties. For each active molecule in each data set of
selected targets, physicochemical properties of pharmaceutical
interest and constitutional descriptors were computed with
Python language using RDKit toolkit version 2024.03.06 and
Digital Discovery, 2025, 4, 1239–1258 | 1241
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Fig. 2 Workflow followed in this study to design antiviral focused libraries.
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Molecular Operating Environment (MOE), version 2022.02,48 to
analyze their distribution so as to compare it with approved
antivirals from DrugBank. Utilizing RDkit's “Descriptors”
module, 15 physicochemical and constitutional properties were
computed: number of H-bond acceptors (HBA), number of H-
bond donors (HBD), partition coefficient octanol/water (log P),
topological polar surface area (TPSA), molecular weight (MW),
1242 | Digital Discovery, 2025, 4, 1239–1258
number of saturated rings, fraction of sp3 carbon atoms (CSP3),
number of heavy atoms, number of rings systems, number of
alicyclic rings formed by carbon atoms, number of alicyclic
rings that include heteroatoms, number of heteroatoms, rotat-
able bond fraction, number of aromatic rings formed by carbon
atoms, number of aromatic rings that include heteroatoms.
Additionally, 11 descriptors were calculated using MOE: the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Viral targets associated with respiratory diseases considered in this work

Family Virus Acronym ChEMBL target ID

Coronaviridae Feline coronavirus FCoV CHEMBL612744, CHEMBL4295624
Human coronavirus 229E HCoV-229E CHEMBL613837, CHEMBL4888440
Human coronavirus NL63 HCoV-NL63 CHEMBL3232683
Middle East respiratory
syndrome-related coronavirus

MERS-CoV CHEMBL4296578, CHEMBL4295557

Severe acute respiratory
syndrome coronavirus

SARS-CoV CHEMBL4802007

Severe acute respiratory
syndrome coronavirus 2

SARS-CoV-2 CHEMBL4888460, CHEMBL5169223,
CHEMBL4303835

Picornaviridae Enterovirus A71 HEV-71 CHEMBL612436, CHEMBL4295606, CHEMBL4295525
Human rhinovirus HRV CHEMBL613760, CHEMBL2857, CHEMBL612470

Paramyxoviridae Human parainuenza virus 1 HPIV-1 CHEMBL1764934
Pneumoviridae Human respiratory syncytial virus HRSV CHEMBL4635143, CHEMBL2364165,

CHEMBL4630897
Orthomyxoviridae Inuenza A virus IAV CHEMBL613740, CHEMBL612610, CHEMBL2367089

Inuenza B virus IBV CHEMBL613129, CHEMBL4295840, CHEMBL2028641
Paramyxoviridae Henipavirus nipahense NiV CHEMBL6047, CHEMBL615055
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View Article Online
number of acid atoms, aromatic atoms, basic atoms, nitrogen,
oxygen, bromine, chlorine, uorine, iodine, the fraction of
rotatable bonds, and the number of chiral centers.

2.3.2 Scaffold analysis. Scaffolds were generated using the
Bemis–Murcko denition using RDKit's “MurckoScaffold”
module, which consists of removing all side chains in mole-
cules and preserving the ring systems and their linkers.49 To
remark on the most frequent scaffolds, including acyclic
molecules, we counted and ordered them from highest to
lowest, then calculated their proportion on the data set.

2.3.3 Visualization of the chemical space and multiverse.
Visualization of the chemical space and chemical multiverse
(e.g., chemical space based on different molecular representa-
tions) was conducted for each data set of selected targets using
t-distributed stochastic neighbor embedding (t-SNE) based on
MACCS keys (166 bits) and Morgan Chiral of radius 2 (2048 bits)
ngerprints. The chemical multiverse of compounds with
antiviral activity by each pre-selected target was compared with
approved antivirals from the DrugBank data set. t-SNE analysis
was implemented utilizing the Python library Scikit-Learn
version 1.5.211 (ref. 50) and the code is freely available from
DIFACQUIM's GitHub repository at https://github.com/
DIFACQUIM/antiviral_ML.
2.4 Machine learning models

To transform the activity data into a binary format, compounds
labeled as “Mixed” and “Unknown” in the ChEMBL data set
were discarded, yielding two classes: “Inhibitor” = 1 and
“No_Activity” = 0. Then, we computed Morgan Chiral of radius
2 (2048 bits) ngerprint with RDKit,46 and 19 drug-likeness
descriptors from the Datamol library.51 These descriptors
included Lipinski-related parameters52 and other descriptors of
pharmaceutical relevance: MW, CSP3, HBA, HBD, number of
rings, number of heteroatoms, number of heavy atoms, number
of rotatable bonds, TPSA, log P, number of aliphatic carbo-
cycles, number of aliphatic heterocycles, number of aliphatic
© 2025 The Author(s). Published by the Royal Society of Chemistry
rings, number of aromatic carbocycles, number of aromatic
heterocycles, number of aromatic rings, number of saturated
carbocycles, number of saturated heterocycles, and number of
saturated rings.

Only data corresponding to the seven selected targets (Table
S2†) was ltered for model building. To evaluate and reduce
multicollinearity, the Pearson correlation between descriptors
was computed. The second descriptor was discarded if any pair
showed a correlation above 0.8, prioritizing drug-likeness
relevance.

For supervised binary classication modeling, we employed
PyCaret version 3.3.2 for Python to develop models using 15
different ML algorithms (Table S3 in the ESI†).53 Each model
was trained on ChEMBL data for the selected targets, associated
with a binary activity label (active/inactive). Morgan Chiral of
radius 2 (2048 bits) ngerprint and physicochemical descriptors
were used as molecular representation, with PyCaret's default
hyperparameter settings.

Normalization, fold generation, and imbalance correction
were achieved using z-score normalization, stratied k-fold
cross-validation, and the Adaptive Synthetic Sampling (ADA-
SYN) algorithm, respectively.54 Additionally, we mitigated the
risk of overtting by enabling an early stopping mechanism to
ensure that the models remain capable of generalizing well to
new data points.
2.5 Training, test, and validation data sets

The predictive models generated for each target were evaluated
by internal and external validations. Data sets were divided into
training (80%) and test (20%) sets, using DeepChem library for
Python,55,56 selecting Morgan Chiral of radius 2 (1024 bits)
ngerprint. The internal validation of all the models was con-
ducted by cross-validation, in which a new training/testing split
multiple times from the available data is chosen. The external
validation of all the models was conducted with the 20 percent
of unseen testing properties. For both validations, the following
Digital Discovery, 2025, 4, 1239–1258 | 1243
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Table 2 Chemical libraries for VS in antiviral activity identification

Database Acronym Description
Compounds
aer curation

ChemDiv coronavirus
library58

ChD_covL Collection of small molecules with potential antiviral activity against
coronavirus

20 750

ChemDiv antiviral library59 ChD_AvL Collection of small molecules with potential antiviral activity,
targeting over 50 key proteins in viruses

64 958

OTAVA drug-like green
collection60

OT_DLGC Drug-like green collection compound library, curated based on
screening compounds for prompt delivery and pre-formatted
according to Lipinski's rule of ve

169 356

Enamine antiviral library61 Ena_AvL Collection of molecules designed for discovery of new nucleoside-like
antivirals

3200

ChemSpace discovery
diversity set62

ChE_DDS Collection of small molecules that are synthesized from in-house
building blocks using carefully developed and optimized reactions

10 000

LifeChemicals helicase
targeted library63

LC_HTL Collection of structurally diverse molecules with potential activity
against key helicase-related drug targets, selected by
a chemoinformatics team through in silico molecular docking

3291

LifeChemicals helicase
focused library63

LC_HFL A curated collection of compounds targeting helicases, including
viral and genetic disorder-related enzymes like hepatitis C NS3 and
Werner syndrome helicases. Compounds were selected based on
structural similarity (84% Tanimoto threshold)

3665

LifeChemicals 2019-nCoV
papain-like protease (PLP)
targeted library64

LC_plpL A curated collection of drug-like compounds designed to target the
PLP of SARS-CoV-2, using docking-based screening without
constraints. Compounds were ltered for binding accuracy and
removed if they were PAINs, toxic, or reactive

1736

LifeChemicals DNA
polymerase targeted
library65

LC_dptL Library of structurally diverse compounds targeting DNA polymerase-
related drug targets, developed using pharmacophore-driven
screening

628

LifeChemicals polymerase
focused library 15
polymerase assays65

LC_polL A library of molecules identied for potential polymerase inhibition,
created by screening 4567 active compounds from 15 polymerase
assays targeting RNA and DNA polymerases. Compounds were
selected using Tanimoto similarity from the life chemicals HTS
compound collection and ranked by predicted activity

15 676

LifeChemicals polymerase
focused library similarity to
ChEMBL database65

LC_polsL A library of drug-like screening compounds selected through a 2D
ngerprint similarity search (Tanimoto index > 85%) against
a reference set of 20 000 compounds from the ChEMBL database, all
with reported activity against DNA and RNA polymerase targets

13 608

LifeChemicals SARS
coronavirus focused
library66

LC_covL A curated collection of small-molecule compounds selected through
a 2D ngerprint similarity search, targeting key SARS-CoV proteins.
The compounds were chosen based on activity criteria from
a reference set of 300 known SARS inhibitors

436

LifeChemicals 2019-nCoV
main protease targeted
library67

LC_mproL A curated collection of drug-like compounds designed to target the
main protease of SARS-CoV-2, using docking-based screening
without constraints. Toxicophore lters were applied, while peptide-
like structures were retained to enhance binding potential

2338

LifeChemicals antiviral
targeted library68

LC_AVL A curated library of diverse compounds identied through structure-
based screening, targeting antiviral proteins like hepatitis B core
protein and inuenza A PA endonuclease. Developed using phase
modeling and life chemicals' HTS collection, with customization
options available

1350

LifeChemicals merged
antiviral screening
superset69

LC_MASS Data set of small-molecule compounds consolidated into individual
screening subsets for various viral diseases, providing
a comprehensive resource in one collection

45 546

LifeChemicals antiviral
library combined ligand-
based and structure-based
approaches70

LC_ALCLBSBA A curated library of potential antiviral agents, designed using protein
crystal structures of key viral targets. Selected through glide docking
and UNITY pharmacophore searches, with PAINs and reactive
compounds excluded

3514

LifeChemicals antiviral
screening compound
library 2D similarity70

LC_ASCL2DS The antiviral screening compound library was designed using a 2D
ngerprint similarity search against a reference set of 46 518
biologically active compounds from therapeutically relevant viral
assays, covering various virus species and their target proteins

15 455

LifeChemicals bioactive
compound library71

LC_BCL A collection of structurally diverse screening compounds, each with
conrmed biological activity against approximately 600
pharmaceutical targets

9897

1244 | Digital Discovery, 2025, 4, 1239–1258 © 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 7

/7
/2

02
5 

1:
16

:4
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00037h


Table 2 (Contd. )

Database Acronym Description
Compounds
aer curation

LifeChemicals EF1A
targeted library GDP site72

LC_gdp Library that includes compounds selected through docking-based VS
of GDP site on the eEF1A protein. The compounds have high
predicted affinity, are Ro5-compliant, and exclude PAINS, toxic, or
reactive groups. Subsets for each binding site are provided with
docking scores

1267

LifeChemicals EF1A
targeted library EF1B site73

LC_ef1b Library that includes compounds selected through docking-based VS
of EF1B site on the eEF1A protein. The compounds have high
predicted affinity, are Ro5-compliant, and exclude PAINS, toxic, or
reactive groups. Subsets for each binding site are provided with
docking scores

1544

LifeChemicals pre-plated
coronavirus COVID-19
screening set-384 well73

LC_cov19 Screening set consists of drug-like compounds from the 2019-nCoV
Mpro targeted library, designed to support anti-coronavirus drug
discovery efforts

2300

LifeChemicals preplated
helicase screening set 6080
cmpds 384 well73

LC_PHSS384 Screening sets that include drug-like small-molecule compounds
with potential helicase-related activity for drug discovery targeting
infectious diseases and cancer. Alternatively, two smaller, non-
overlapping subsets of 3520 and 2560 helicase-focused molecules are
also available for separate purchase

6080

General screening antiviral
data seta

VS data set Data set containing only unique structures from all chemical
libraries

339 040

a Number of compounds before curation: 396 595.
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metrics were calculated with PyCaret: accuracy, Area Under the
Curve (AUC), recall, precision, F1 score, kappa, Matthew's
Correlation Coefficient (MCC) and Balanced Accuracy (BA). All
seven metrics are statistical indicators of quality, used for
model evaluation, offering insight into prediction accuracy with
a focus on the active class.57

For both validations, we obtained the MCC and calculated its
average for all models, so as to select the three best architec-
tures for the data sets studied in this analysis (Table S4†). MCC
is a robust metric for assessing the quality of binary classica-
tion models, ranging from−1 to 1. A value of 1 indicates perfect
classication, 0 corresponds to random predictions, and −1
represents completely inverse predictions. The architectures
selected for modeling were retrained on the complete data set
corresponding to each target, aiming to signicantly enhance
the MCC and improve model generalization by optimizing
performance. This retraining process utilized the same hyper-
parameters as those in the initial model construction and was
applied to predict the nal antiviral activity class of the data set
assembled for VS, as described in Section 2.7. Cross validation
was performed to assess the effectiveness of this retraining by
obtaining the MCC retraining value.
2.6 Consensus ML models

For each target, the three top-performing ML models selected
and retrained as outlined in Section 2.5, were combined to
generate a consensus model. These consensus models under-
went internal validation through cross-validation to calculate
the MCC value using Scikit-Learn50 functions, enabling perfor-
mance comparison with each individual model.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2.7 Classication and design of antiviral focused libraries

In order to classify and design antiviral-focused libraries, rst
a total of 22 diverse focused and commercial chemical libraries
from various online sources (Table 2) were compiled. The
assembled database contained 339 040 compounds aer cura-
tion (Table 2), that were classied and ltered using the
predictive models developed for each target to assign a nal
antiviral activity class (see Section 2.5).
2.8 Distance to model

To establish a quantitative measure that relates to the applica-
bility domain of the classication models, the similarity or
distance for each predicted molecule to the training set was
computed. Since the models were constructed using Morgan
ngerprints and physicochemical properties, two types of
similarity metrics were calculated. Jaccard distance was calcu-
lated using Morgan Chiral of radius 2 (2048 bits) ngerprint.
While physicochemical properties' distance to the model was
calculated with Euclidean distance, based on the preserved
drug-like descriptors for each model architecture during the
construction process, as outlined in Section 2.4. All predictions
were categorized into four quartiles based on their mean Jac-
card or Euclidean distance, as appropriate, from the
compounds in the retraining set.74 To assess this quartile, the
mean distance between the predicted molecule and all
compounds in the retraining set was compared with the
resulting quartiles from the intraset distances of the corre-
sponding retraining set. If the resulting distance fell into the
distances from the training set, the same quartile was assigned;
otherwise, the predicted compound was labeled as “Out.”
Digital Discovery, 2025, 4, 1239–1258 | 1245
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2.9 ADMET properties calculation

Absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties were calculated for the VS data set, gener-
ated by the assembly of focused and commercial libraries (see
Section 2.7). This was accomplished using ADMET-AI,75,76

utilizing the Python library for local predictions. ADMET-AI
computes eight physicochemical properties with RDKit and
predicts forty-one ADMET properties through its Chemprop-
RDKit graph neural networks.
3 Results and discussion
3.1 Data acquisition and preparation

Fig. 3 presents an overview of the initial data set, which includes
4521 compounds retrieved from ChEMBL 33. These compounds
are associated with 32 distinct viral targets across 13 viruses
Fig. 3 Overview of the viral target multiverse as reported in ChEMBL 33

1246 | Digital Discovery, 2025, 4, 1239–1258
implicated in respiratory infections. Among these, IAV is the
most represented, with 1968 compounds, followed by SARS-
CoV-2, with 1139 compounds. This distribution underscores
a predominant research focus on these viruses, likely driven by
their signicant global impact, recurrent outbreaks, and the
prioritization of pandemic-related research efforts. Indeed, the
data set highlights a strong emphasis on highly studied targets
such as proteases and polymerases, which play critical roles in
viral replication and are central to current antiviral strategies.
Conversely, targets with minimal representation, such as heli-
cases and spike glycoproteins, represent potential gaps in
current research and may offer promising avenues for future
drug discovery. Interestingly, the inclusion of compounds tar-
geting less-studied (or reported in ChEMBL) viruses, such as
HRV (487 compounds) and IBV (228 compounds), indicates
a growing interest in broad-spectrum antiviral strategies. This
trend suggests a shi towards addressing a wider range of
(updated June 2023).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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respiratory viruses, which could enhance preparedness for
emerging infections.
3.2 Data modelability and target selection

As summarized in Table 3, seven out of 32 targets related to
respiratory diseases were selected according to the criteria
detailed in Section 2.2. Although the IAV M2 proton channel
target did not meet the criterion of having at least 30 inactive
compounds, it was selected as a test case to explore the impli-
cations of this criterion. This decision was based on the obser-
vation that many targets in the data set faced similar
limitations—failing to meet the required number of active or
inactive compounds—yet still achieved a MODI score of 0.7 or
higher. The premise was that models built for such targets might
exhibit different performance characteristics. The details of this
analysis and its implications are further discussed in Section 3.4.

Targets such as SARS-CoV-2 Mpro and IAV neuraminidase
exhibited the highest MODI scores (0.88 for MACCS keys (166
bits) and 0.91 for Morgan Chiral of radius 2 (2048 bits)), indi-
cating strong modelability. In contrast, targets like SARS-CoV
Mpro, which was selected for its relatively higher MODI score
withMorgan Chiral of radius 2 compared toMACCS keys, or IBV
neuraminidase, which had lower MODI scores (0.72 for MACCS
keys and 0.71 for Morgan Chiral of radius 2), suggest potentially
more challenging modelability. Notably, when comparing the
performance of the two ngerprints, most targets showed
slightly better modelability with Morgan Chiral of radius 2,
suggesting that these ngerprints capture relevant chemical
features more effectively for these targets.

The ratio of active to inactive compounds also appears to
inuence the MODI score. For instance, IAV neuraminidase,
with a high number of both active (733) and inactive (390)
compounds, had a correspondingly high MODI score. Addi-
tionally, the relationship between the median pIC50 values and
the MODI scores is worth highlighting. For example, SARS-CoV-
2 Mpro, with the highest median pIC50 value (6.35), aligned with
its strong modelability, whereas targets with lower pIC50 values
may exhibit more variable performance. Similarly, the total
number of compounds may serve as another important indi-
cator of modelability. For example, SARS-CoV-2 Mpro, with the
second largest data set, likely benets from a richer data set for
model training. Conversely, smaller data sets, such as IAV M2
proton channel, may result in reduced predictive performance
due to limited data diversity, as discussed further in the next
Table 3 Targets selected based on the modelability index (MODI) criter

Target Organism Count pIC50 median A

M2 proton channel IAV 92 5.45 6
Mpro SARS-CoV 197 4.52 7

SARS-CoV-2 815 6.35 6
Neuraminidase IAV 1123 5.72 7

IBV 202 5.47 1
Polymerase (PA) IAV 256 5.40 1
Protease HRV 389 5.96 2

© 2025 The Author(s). Published by the Royal Society of Chemistry
sections. It is also notable that targets, such as IBV neuramin-
idase, had lower MODI scores despite a reasonably balanced
data set. This discrepancy could be attributed to factors such as
structural complexity or compound heterogeneity, which may
pose additional challenges for predictive modeling.
3.3 Chemoinformatic characterization of training data sets

For the seven selected data sets, we performed a characteriza-
tion of the structural content, diversity and coverage in chem-
ical space using different structural representations and
descriptors (e.g., chemical multiverse).

3.3.1 Analysis of physicochemical and constitutional
properties. Fig. S1 in the ESI† shows boxplots of the distribu-
tions of ten physicochemical properties, including those related
to drug-likeness as dened by Lipinski's “Rule of Five”. Table
S5† summarizes the calculated physicochemical properties and
other constitutional descriptors along with their statistical
metrics across the data sets. When comparing the distributions
of the calculated properties against the reference set of
approved antiviral drugs, it was observed that most of the
analyzed compounds exhibit physicochemical properties
compatible with Lipinski's Rule of Five. Exceptions were iden-
tied, most notably in compounds targeting IAV polymerase
(PA), which deviated from the drug-likeness parameters and did
not match with the approved antivirals data set. These devia-
tions could be attributed to the unique structural or functional
requirements of compounds targeting this specic viral protein.

It is important to emphasize that the ML models were con-
structed using different sets of physicochemical properties
tailored to each target. This variation could signicantly inu-
ence the data modelability, as certain properties might be more
relevant for specic viral targets. For future research, exploring
the impact of these individual properties on the performance of
the models could provide deeper insights and help rene
predictive frameworks.

3.3.2 Scaffold analysis. An analysis of the most frequent
structural scaffolds present in the data sets with known bio-
logical activity (training data sets), shown in Fig. 4, revealed
notable trends among the targets. For instance, the HRV
protease and the IAV M2 proton channel share at least one
scaffold with the set of approved antivirals. Additionally, the
neuraminidases from inuenza types A and B were found to
share common scaffolds, despite the generally low percentage
of sequence homology reported between them.77 Interestingly,
ia

ctive Inactive
MODI MACCS keys
(166 bits)

MODI Morgan Chiral
of radius 2 (2048 bits)

8 24 0.82 0.83
7 120 0.66 0.77
51 164 0.88 0.91
33 390 0.88 0.91
32 70 0.72 0.71
51 105 0.84 0.88
98 91 0.83 0.85

Digital Discovery, 2025, 4, 1239–1258 | 1247
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Fig. 4 Absolute and relative percentage frequencies of the most frequent scaffolds in compounds with known activity for seven selected
antiviral targets. Prominent scaffolds are categorized by target, highlighting key structural features in the data set used for ML model
development.

1248 | Digital Discovery, 2025, 4, 1239–1258 © 2025 The Author(s). Published by the Royal Society of Chemistry
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these shared scaffolds are predominantly single-ring structures,
which may indicate a tendency toward compounds with lower
MW within these data sets. This observation could have impli-
cations for the drug discovery process, particularly in terms of
scaffold-based design and the potential for optimizing molec-
ular properties.

More details about the most frequent scaffolds in the
training data sets for each target are illustrated in Fig. S2† aer
following the curation and standardization processes.

Antiviral drugs commonly exhibit diverse structural scaf-
folds, including adenine derivatives and privileged frameworks
that facilitate interactions with multiple viral mechanisms.
These compounds frequently feature key atoms such as
nitrogen, oxygen, and carbon, which play critical roles in their
biological activity and contribute to their structural diversity.78
Fig. 5 Chemical multiverse visualization of seven antiviral data sets foc
DrugBank. The visualization is done with t-SNE using Morgan Chiral of r
imposed data sets, followed by individual data sets using the same coor

© 2025 The Author(s). Published by the Royal Society of Chemistry
As presented in the ESI, Fig. S3† shows the most frequent
ring systems in the training data sets, while Fig. S4 and S5†
depict the predominant scaffolds and ring systems in the VS
data set, respectively. Not surprisingly, the benzene ring was the
most frequent scaffold and ring system, reecting its ubiqui-
tous presence across the chemical data set. Notably, the top ring
systems in the VS data set has a high prevalence of nitrogen-
containing rings, a feature that holds signicant promise for
enhancing antiviral activity due to their well-established role in
molecular recognition and binding to viral targets.79,80

3.3.3 Visualization of the chemical multiverse. Fig. 5 and
S6† show visual representations of the chemical multiverse (e.g.,
multiple chemical spaces, each dened by different represen-
tations) of the active compounds of the seven antiviral data sets
(Table 3) and 92 antivirals in DrugBank. The chemical
used on different targets as compared with approved antivirals from
adius 2 (2048 bits) fingerprint. On the upper left are illustrated super-
dinates for all of them.

Digital Discovery, 2025, 4, 1239–1258 | 1249
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multiverse is based on Morgan Chiral of radius 2 (2048 bits)
(Fig. 5) and MACCS keys (166 bits) ngerprints (Fig. S6†). The
visualization highlights distinct patterns in the chemical space.
The distribution of active compounds in the chemical space
emphasized the diversity of chemical scaffolds that may be
associated with antiviral activity. This diversity was particularly
evident in targets such as SARS-CoV-2 Mpro and IAV neur-
aminidase with large coverage of the chemical space. Further-
more, visualizations with both ngerprints suggest the presence
of structurally similar compounds to approved antivirals within
the active subset derived from the retraining phase. This over-
lap reinforces the predictive models' reliability in identifying
bioactive compounds while also supporting the hypothesis that
structurally similar compounds are likely to exhibit similar
biological activity. A complementary visualization of the
chemical multiverse is presented in Fig. S7,† featuring a general
constellation plot81 centered on chemical scaffolds. This plot
employs t-SNE for dimensionality reduction, with point sizes
reecting the number of compounds associated with each
molecular scaffold and a color scale representing pIC50 values
reported in ChEMBL. This visualization offers valuable insights
into the distribution and activity patterns of scaffolds within the
chemical data set.
3.4 Machine learning models

Table S6 in the ESI† summarizes the MCC values from each
validation phase for the top three best-performing architectures
selected for each target. To determine the optimal model, we
prioritized the MCC values obtained during the retraining
phase (refer to Methods Section 2.4 for further details). As
shown in Table S6,† MCC values improved in general aer the
retraining phase, with the AdaBoost model for IBV neuramini-
dase standing out as a particularly strong performer. These
results showed the capability of the models to accurately
Fig. 6 Comparison of MCC per target, best-fit model (highlighted in ye

1250 | Digital Discovery, 2025, 4, 1239–1258
identify promising compounds, underscoring their potential
utility in antiviral drug discovery.

According to the discussion of data modelability in Section
3.2, as expected, the IAV M2 proton channel target had the
lowest MCC values for all three top models in each validation
phase. This result emphasized the importance of the minimum
amount of compounds and reinforced the relevance of imple-
menting several criteria while selecting and analyzing molec-
ular targets to develop reliable and useful ML models.

As illustrated in Fig. 6, some models were robust for a few
targets at different validation phases but not in all of them. For
instance, the AdaBoost classier performed best for IBV neur-
aminidase during retraining while others like the Support
Vector Machine (SVM – linear kernel) performed best for IAV
polymerase (PA) during the internal validation of the training
process. Moreover, this model showed consistent MCC values
across training and retraining. This consistency suggests robust
model performance and generalizability.
3.5 Consensus machine learning models

The three best-performing models discussed in Section 3.4 were
combined to create a consensus model for each target. Table S6
in the ESI† summarizes the MCC values calculated for the
consensus model in comparison with those obtained from each
of the top three models individually. In general, the consensus
models improved the MCC value or maintained it at a compa-
rable level. This result underscored the robustness of
combining predictions from diverse algorithms, which likely
reduces individual model biases. Indeed, combining outcomes
from complementary methodologies has shown advantages in
several areas of chemoinformatics.82 A notable improvement
was obtained for SARS-CoV Mpro, where the consensus model
surpassed the performance of any single model, further vali-
dating this approach as a reliable strategy for enhancing
llow in Table S6†), and validation phase.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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predictive accuracy. However, a few exceptions were noted. For
example, the IAV M2 proton channel exhibited the lowest MCC
value for the consensus model. This result aligns with previ-
ously discussed limitations for the IAV M2 proton channel,
including the small and imbalanced data set (see Section 3.2 for
further details). Such cases highlight that while consensus
models generally provide stability and enhancement, their
effectiveness depends on the quality and representativeness of
the input data.
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3.6 Classication of antiviral-focused libraries

The prediction of antiviral activity for the compounds from the
assembled general screening data set (VS data set) (Table 2) led
to the design of seven individual antiviral-focused libraries for
each target. The design consisted in the calculation of two
outputs using PyCaret's prediction function: binary values (0/1)
for labeling, indicating whether a compound is predicted
(classied) to be active (1) or inactive (0); and a prediction score,
which represents the probability of the compound belonging to
the active class (for further details, see Section 2.5). Table 4
summarizes the results of these predictions from the VS data set
for the seven antiviral targets. The table includes the number of
compounds predicted to be active by one, two, and threemodels
and for the top, second, and third best models, as well as its
relative frequency.

3.6.1 Distance to model. At the classication (prediction)
step, the performance of the best individual model (highlighted
in yellow in Table S6†) and the consensus model (highlighted in
green in Table S6†) was assessed based on their distance-to-
model, which serves as an estimation of the applicability
domain of the models. Since all models were constructed using
theMorgan Chiral of radius 2 (2048 bits) ngerprint and various
physicochemical properties, the distance-to-model was evalu-
ated separately for each representation. Descriptive statistics of
both distances for each target are detailed in Table S7.† The
compound's predictions were categorized into four quartiles
based on their mean Jaccard or Euclidean distance from the
compounds in the retraining set (see Methods Section 2.8 for
further details). Table 5 summarizes the distribution of pre-
dicted compounds across these quartiles, as well as those
falling out of the dened applicability domain, using the
Morgan Chiral of radius 2 (2048 bits) ngerprint. Similarly,
Table 6 presents the distribution of compounds using their
corresponding preserved drug-like descriptors. The analyses in
Tables 7 and S8† provide insight into how well the models
generalize to novel compounds and highlight compounds lying
beyond the applicability domain, which could serve as candi-
dates for further experimental validation or re-evaluation of the
models' chemical space coverage. Compounds on quartile 1
(Q1) should be prioritized for further analysis, including bio-
logical testing.

In general, fewer compounds are considered “Out” when the
distance is calculated with physicochemical properties. This
could be due to the preservation of drug-like properties for the
commercial and focused libraries, and the ChEMBL
compounds, as observed in Section 3.3.1. The results for IBV
© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 1239–1258 | 1251
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Table 5 Distance to model performance of the retraining data set, the best classification model and consensus model for each selected target,
attired by Morgan Chiral of radius 2 (2048 bits) fingerprint

Range

IAV_polymerase (PA) SARS-CoV-2_Mpro

Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 4855 310 125 1162 881 593
Q1 11 — — 3 2 2
Q2 660 44 16 3 2 1
Q3 14 083 926 410 19 210 13 975 9622
Q4 319 431 21 015 8683 318 662 231 090 159 216

Range

HRV_protease IAV_neuraminidase

Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 2883 2569 1936 1162 476 35
Q1 404 371 268 3 1 —
Q2 3552 3224 2469 20 8 1
Q3 28 978 25 835 19 322 28 109 10 786 611
Q4 303 223 270 150 201 756 309 746 121 829 7454

Range

IAV_M2 proton channel IBV_neuraminidase

Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 5277 5086 3537 320 156 152 989 997
Q1 2879 2776 1981 — — —
Q2 119 392 115 160 79 248 — — —
Q3 149 663 144 277 99 610 2 1 —
Q4 61 829 59 510 41 375 18 882 9095 57

Range

SARS-CoV_Mpro

Total Best model (actives) Consensus (actives)

Out 1506 210 55
Q1 83 12 2
Q2 11 376 1676 597
Q3 195 827 28 807 9526
Q4 130 248 19 287 6480
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neuraminidase had the greatest number of compounds labeled
as “Out” for both distances. This is aligned with the MODI
results since IBV neuraminidase was the target with the lowest
value for ngerprints.
3.7 ADMET properties proling of antiviral-focused libraries

Among the main reasons for antiviral drug failure are issues
related to pharmacokinetics (PK) and pharmacodynamics (PD).
To this end, ADMET proling serves as a critical step in
reducing attrition rates during preclinical and clinical stages.83

ADMET property proling also provides critical insights into the
PK and safety proles of compounds identied as potentially
active against the selected respiratory viral targets. ADMET
proling provides early indications of potential safety issues,
including hepatotoxicity, cardiotoxicity, and drug–drug inter-
actions. These factors are particularly relevant for antiviral
therapies, which are oen administered in combination with
other treatments. Maintaining sufficient plasma concentrations
within the therapeutic window is critical for inhibiting viral
1252 | Digital Discovery, 2025, 4, 1239–1258
replication effectively while minimizing toxicity and preventing
resistance. Key PK parameters, such as the volume of distribu-
tion (VD) and clearance (Cl) signicantly inuence
a compound's antiviral effectiveness.84

For all 339 040 compounds in the VS data set (see Table 2)
forty-one ADMET properties were calculated using ADMET-AI
(see Methods Section 2.9 for further details). This detailed
proling is included in the structure le of the VS data set to
facilitate a comprehensive evaluation of candidate molecules.
The user of the newly assembled and designed libraries is free
to use other tools to estimate the ADMET prole of the newly
assembled and designed libraries (see Section 3.9).
3.8 Machine learning-driven antiviral libraries targeting
respiratory viruses

The classication step enabled the identication of 398 prom-
ising compounds with a high likelihood of antiviral activity,
which were subsequently organized into seven focused libraries
for each target. These libraries aim to streamline the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Distance to model performance of the retraining data set, the best classification model, and consensus model for each selected target,
attired by physicochemical properties

Range

IAV_polymerase (PA) SARS-CoV-2_Mpro

Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 1360 95 34 85 56 44
Q1 78 691 5356 2298 102 608 74 364 51 313
Q2 83 268 5609 2276 54 992 39 935 27 668
Q3 97 040 6262 2614 85 659 62 136 42 693
Q4 78 681 4973 2012 95 696 69 459 47 716

Range

HRV_rotease IAV_neuraminidase

Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 909 817 628 846 332 17
Q1 74 326 66 105 49 283 58 267 22 808 1386
Q2 87 034 77 425 57 813 86 483 33 667 2054
Q3 90 649 80 835 60 465 101 979 40 126 2428
Q4 86 122 76 967 57 562 91 465 36 167 2216

Range

IAV_M2 proton channel IBV_neuraminidase

Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 7 7 4 13 563 6500 37
Q1 46 163 44 539 30 710 84 952 40 397 262
Q2 56 607 54 556 37 522 55 476 26 488 176
Q3 74 969 72 264 49 778 87 531 42 181 257
Q4 161 294 155 443 107 737 97 518 46 519 322

Range

SARS-CoV_Mpro

Total Best model (actives) Consensus (actives)

Out 1709 274 77
Q1 66 411 9898 3346
Q2 85 126 12 495 4255
Q3 90 323 13 285 4407
Q4 95 471 14 040 4575

Table 7 Number of active compounds from the newly designed antiviral-focused libraries for each target across quartiles

Quartile HRV_protease
IAV_M2 proton
channel IAV_neuraminidase

IAV_polymerase
(PA) IBV_neuraminidase SARS-CoV_Mpro SARS-CoV-2_Mpro

Q1 268 126 — — — 2 2
Q2 2469 4484 1 16 — 597 1
Q3 19 317 5948 611 410 — 9526 9622
Q4 201 730 2518 7454 8683 57 6480 159 213
Out 1934 220 35 125 997 55 592
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prioritization of candidates for further experimental validation
or biological testing and are publicly accessible at https://
github.com/DIFACQUIM/antiviral_ML.

To provide a comprehensive overview of the compounds and
take all analysis and predictions together, eight distinct
libraries focused on respiratory viruses were designed: the VS
data set in conjunction with its predictions and seven subsets
for each target. Each library is annotated with: “Canonical
SMILES, Murcko SMILES, identier (ID), database (DB),
© 2025 The Author(s). Published by the Royal Society of Chemistry
number of repetitions, prediction label (for each model),
prediction score (for each model), Quartile Pairsim (structural),
Quartile (structural), Quartile Distance (physicochemical prop-
erties), Quartile (physicochemical properties)” plus the ADMET
prole in the VS data set library.

Fig. 7 shows the chemical structures of representative
compounds included in the newly generated antiviral-focused
libraries. Specically, the gure highlights predicted active
compounds for four selected antiviral targets, with high
Digital Discovery, 2025, 4, 1239–1258 | 1253
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Fig. 7 Chemical structures of Q1 compounds (top five for targets HRV_protease and IAV_M2 proton channel) attired by Morgan Chiral of radius
2 (2048 bits) fingerprint. The label below each structure represents the acronym of each library as stated in Table 2.
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predictive condence (e.g., predictions within the rst quartile
(Q1) of the distance to model as described in Section 3.6).
Notably, the presence of nitrogen atoms across all illustrated
compounds aligns with the ndings discussed in Section 3.3.2,
emphasizing its relevance to antiviral activity.

Fig. S8 in the ESI† illustrates the chemical space distribution
of top predicted active compounds, specically those with the
highest prediction condence (Q1, as detailed in Table 7),
across the newly designed target-focused libraries. These visu-
alizations, generated using t-SNE based on the Morgan Chiral of
radius 2 (2048 bits) ngerprint, highlight the structural diversity
of Q1 compounds.

Notably, certain libraries lack Q1 compounds entirely, while
libraries such as HRV protease and IAV M2 proton channel
exhibit broader structural diversity, as reected by the dispersed
distribution of Q1 compounds, moreover, SARS-CoV-2 Mpro
library, shows clustering, indicating structural similarity among
predicted actives. This analysis underscores variability in
structural diversity across libraries, suggesting that improve-
ments in library design and model training could enhance the
identication of high-condence active compounds.
4 Conclusions

Herein we designed seven compound libraries with prospective
antiviral activity, targeting respiratory viruses. The libraries
were assembled and designed using available data in ChEMBL
and predictive MLmodels. The designed libraries target specic
antiviral targets: M2 proton channel of IAV, Mpro of SARS-CoV
and SARS-CoV-2, neuraminidase of IAV and IBV, polymerase of
IAV, and protease of HRV. Additionally, we report the results of
1254 | Digital Discovery, 2025, 4, 1239–1258
a chemoinformatics analysis of the training compounds to
assess their drug-like properties and scaffold diversity,
comparing these features with those of approved antiviral
drugs. The analysis revealed that training compounds exhibited
favorable drug-like physicochemical properties. Scaffold anal-
ysis of the most frequent scaffolds from the construction of the
ML models data set indicated that compounds targeting HRV
protease and IAV M2 proton channel share at least one scaffold
with the set of approved antivirals. Furthermore, compounds
targeting neuraminidases of inuenza A and B exhibited
common scaffolds, predominantly single-ring structures. Anal-
ysis of the chemical space based on different ngerprint
representations emphasized the large diversity of compounds
with activity against SARS-CoV-2 Mpro and IAV neuraminidase.

For the seven antiviral target data sets with high model-
ability, we developed ML predictive models, which showed
improved MCC values aer retraining. Among these, the Ada-
Boost model for IBV neuraminidase demonstrated the best
performance. Overall, consensus ML models outperformed
individual models, particularly for targets with larger and more
balanced data sets. Compounds within the top condence
predictions from the seven newly designed antiviral-focused
libraries represent strong candidates for further screening,
including biological testing, which is the next step of this study
from the wet lab experimental point of view. All seven antiviral-
focused libraries developed in this study are freely available at
https://github.com/DIFACQUIM/antiviral_ML for the scientic
community to select, acquire, and biologically test the
chemical libraries. To facilitate the use of these databases,
each compound is annotated with condence predictions and
ADMET property proles.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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