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Viral infections represent a significant global health concern. Viral diseases can range from mild symptoms
to life-threatening conditions, and the impact of these infections has grown due to increased contagious
rates driven by globalization. A prime example is the SARS-CoV-2 pandemic, which emphasized the
urgent need to design and develop new antiviral drugs. This study aimed to generate a curated data set
of compounds relevant to respiratory infections, focusing on predicting their antiviral activity. Specifically,
the study leverages ML classification models to evaluate focused and on-demand compound libraries
targeting pathways associated with viral respiratory infections. ML models were trained based on the
antiviral biological activity related to respiratory diseases deposited on a major public compound
database annotated with biological activity. The models were validated and retrained to classify and
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1 Introduction

Viral infections can range from mild, self-limited illnesses to
severe, human life-threatening diseases." In an era of increased
global interdependence, climate change, forced migration and
intensified globalization, the rapid replication and high conta-
gion rates of viruses have become a critical concern. The
resurgence of infections once believed to be under control,
driven by viral genetic mutations and anti-vaccine movements,
has further heightened the threat of deadly pandemics.> To
combat this global health crisis, there has been a renewed focus
on drug development strategies. The World Health Organiza-
tion (WHO) has emphasized the challenge posed by limited
resources for disease research and development, particularly
given the vast array of potential pathogens. WHO has estab-
lished a prioritized list of diseases with the greatest public
health impact, based on their epidemic potential and the lack of
effective countermeasures.® This list is further detailed by the
WHO's document “Pathogens Prioritization” which outlines the
viral families and their respective members considering the risk
of causing Public Health Emergencies of International Concern
(PHEICs) or a pandemic (Table S17).**

Despite ongoing efforts, developing effective antivirals for
most viruses remains a significant challenge due to several key
obstacles in antiviral discovery. These include the identification
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design antiviral-focused libraries on seven respiratory targets.

of specific targets, narrow treatment windows, vector spread
and control, and the emergence of mutations that contribute to
antiviral resistance.” In response, there has been a growing
focus on developing structurally diverse antivirals with
enhanced safety profiles, as well as those that retain efficacy
against drug-resistant strains. This shift in focus has led to
renewed interest in compounds with novel mechanisms of
action.?

Acute respiratory disease (ARD) represents a significant
portion of acute illnesses and fatalities worldwide. Acute viral
respiratory tract infections alone are responsible for approxi-
mately 80% of ARD cases.® Key viral pathogens in this category
include influenza, respiratory syncytial virus (RSV), coronavi-
ruses, adenovirus, and rhinovirus, all of which are related to
some of the most highlighted diseases on the WHO's prioritized
list (Table S1f). While viruses like adenovirus and rhinovirus
typically result in lower mortality rates, they contribute
substantially to morbidity and place a significant economic
burden on healthcare systems.*

The emergence of highly pathogenic coronaviruses, such as
the SARS-CoV-2 virus, responsible for the COVID-19 pandemic,
has highlighted the severe threat posed by these pathogens.
Other coronavirus strains, including those that caused the
Severe Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS) outbreaks, persist as significant
public health risks, and place substantial pressure on health-
care systems, especially in regions with high comorbidity rates
and limited financial resources.'>*?

The COVID-19 pandemic represented one of the most
significant threats to global health and stability in recent
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Fig.1 Compounds with antiviral activity against targets associated with respiratory infections, identified or developed from different sources. (A)
Inhibit viral RNA-dependent RNA polymerase (RdRp), preventing viral replication. (B) Block the viral neuraminidase enzyme, preventing viral
release from infected cells. (C) Inhibit viral proteases required for processing viral polyproteins. (D) Plant-derived compounds with antiviral
activity through various mechanisms. (E) Inhibits viral cap-dependent endonuclease, blocking viral mRNA synthesis. (F) Blocks the JAK-STAT

signaling pathway, reducing excessive immune responses.

history, triggering an unprecedented surge in antiviral drug and
vaccine research, alongside broader innovations in healthcare
and daily life. Antiviral development integrates a diverse array of
strategies, spanning well-established therapeutic approaches
and emerging targeted interventions.” This field draws upon
both synthetic and natural sources, yielding compounds that
exhibit a wide range of chemical structures and mechanisms of
action, including direct inhibition of viral replication, immune
system  modulation, and disruption of host-virus
interactions.*¢

Guo et al. reviewed recent advances in natural products (NPs)
for antiviral research, with a particular focus on addressing
drug resistance.'® Various NPs target essential viral enzymes
such as integrase, reverse transcriptase, and protease.'” Flavo-
noids and polyphenols constitute the largest group of antiviral
NPs, followed by diterpenes and triterpenes, with fewer exam-
ples found among alkaloids.'®* Examples of plant-derived
compounds with demonstrated antiviral properties are quer-
cetin, curcumin, and baicalein. Quercetin has shown effective-
ness against RSV, MERS-CoV, influenza, and rhinoviruses
through inhibition of viral entry and replication."” Curcumin
has been proven to inhibit the SARS-CoV-2 spike glycoprotein,
ACE2 receptor, and proteases.”® Scutellaria baicalensis root

1240 | Digital Discovery, 2025, 4, 1239-1258

extract is traditionally used in Asia, as an antiviral, antioxidant,
and anti-inflammatory. This extract contains baicalein, which
has demonstrated inhibition of SARS-CoV-2 main protease
(Mpro) activity and viral replication in vitro (Fig. 1).2"*

Drug repositioning of approved drugs and advanced stages
developing molecules has also played a key role in the devel-
opment of novel antivirals with known molecules, as is the case
of SARS-CoV-2.%%%*

Computer-aided drug design (CADD) has significantly
advanced antiviral discovery. Liao et al. identified five natural
compounds - narcissoside, kaempferol-3-O-gentiobioside,
rutin, vicin-2, and isoschaftoside - as potential SARS-CoV-2
Mpro inhibitors.”® Generative topographic mapping (GTM)
has aided in identifying antiviral motifs and screening virtual
chemical libraries, as demonstrated in the design of anti-herpes
compounds (herpes simplex virus type 1).2**” CADD methods
have also identified several promising antiviral compounds.
These include baricitinib, galidesivir, and molnupiravir. Bar-
icitinib was predicted by artificial intelligence (AI)-driven anal-
ysis to inhibit viral entry and inflammation in SARS-CoV-2.?
Galidesivir, an antiviral for Ebola and Zika, was evaluated
through structural modeling as a potential inhibitor of SARS-
CoV-2 RdRp.?” Molnupiravir (EIDD-2801), a prodrug of B-p-N,-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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hydroxycytidine, was optimized through docking and molecular
dynamics to interfere with SARS-CoV-2 replication (Fig. 1).*°
Approved antivirals such as remdesivir, favipiravir, and ritona-
vir have been repurposed for respiratory viruses through virtual
screening (VS), further confirming their potential to inhibit RNA
polymerases (Fig. 1).*

Focused virtual libraries of compounds are valuable
resources for bioactive compound discovery. These libraries
compile data on molecules with potential biological activity,
identified through ligand-based and structure-based drug
discovery approaches. They play a crucial role in prioritizing
candidates for synthesis, biological evaluation, and efficient
allocation of resources. Notable recent examples of disease-
specific focused virtual libraries include those targeting
neglected infectious diseases,** SARS-CoV-2,%*** Sirtuin-1 dys-
regulation,® and type 2 diabetes mellitus.*

Given the ongoing demand for respiratory-focused antivi-
rals, extensive research has generated a wealth of structure-
activity data available in public repositories such as
ChEMBL.*”*® This data serves as a crucial input for machine
learning (ML) models to design focused libraries for further
experimental screening.

The main goal of this study was to design antiviral libraries
focused on molecular targets related to respiratory diseases. To
achieve this, we trained, retrained and validated ML classifica-
tion models using bioactivity data from ChEMBL 33.*”°* The
predictive models were used to filter compound libraries from
diverse sources. As part of the data preparation to train the ML
models, the chemical data sets were analyzed and characterized
in terms of chemical diversity and coverage in chemical space
using chemoinformatics methods. The resulting antiviral-
focused chemical libraries, which are freely available in the
public domain, offer valuable starting points for further
computational and/or experimental screening, which is the next
logical step of this study.

2 Methods

The methodology followed in this study is outlined schemati-
cally in Fig. 2 and is detailed in the subsequent sections.

2.1 Data acquisition and preparation

Using the ChEMBL Application Programming Interface (API),*
we retrieved all compounds from ChEMBL 33 (updated June
2023) associated with 13 viral targets linked to respiratory
diseases. Molecular structures of these compounds were enco-
ded in Simplified Molecular Input Line Entry System (SMILES)
format.*® A specific acronym was assigned to each virus with
a target of interest, based on its strain, ensuring consistent and
accurate identification throughout the analysis. Table 1 lists the
names and target IDs for each of the 13 targets.

For compounds with multiple recorded biological activity
values (“standard value”) against a target, we ranked these
values from smallest to largest to ensure consistency in the data.
The pICs, was calculated for each compound, and compounds
were classified according to the following criteria:

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) IC50 = 10 uM: were labeled as “Inhibitor”.

(b) 10 uM < IC5q < 20 uM: were labeled as “Unknown”.

(¢) ICs5o = 20 uM: were labeled as “No_Activity”.

If a single category represented at least 80% of the recorded
data for a compound, that category was used; otherwise, the
label “Mixed” was assigned. Compounds with fewer than five
data points retained their original classification, with “Mixed”
assigned if they were labeled across multiple categories.

Additionally, one supplementary compound database was
assembled, containing approved antivirals from DrugBank
5.1.12.*° Compounds from ChEMBL associated with each viral
target, along with those from DrugBank, were compiled into two
collections.

A comprehensive data curation process was applied to data
sets to ensure data integrity. Compounds with null values,
empty entries, or duplicates were removed, resulting in a final
count of 4521 compounds from ChEMBL 33, and 92 approved
antivirals from DrugBank. Molecular structures were stan-
dardized using RDKit version 2024.03.5," and MolVS,*
following a well-established and wused standardization
protocol.** Data sets and code notebooks are publicly accessible
through DIFACQUIM's GitHub repository at https://
github.com/DIFACQUIM/antiviral_ML.

2.2 Data modelability and target selection

To assess the feasibility of developing binary classification
models, we calculated the modelability index (MODI), proposed
by Golbraikh et al* MODI measures the proportion of
compounds in a data set whose nearest neighbor belongs to the
same class within a defined feature space. We calculated the
MODI values for the ChEMBL data sets using Molecular ACCess
System (MACCS) keys (166 bits)** and Morgan Chiral of radius 2
(2048 bits) fingerprints,*® using the RDKit, NumPy, pandas, and
SciPy libraries for Python 3. For each target in the ChEMBL data
sets, MODI was calculated using two approaches: (1) including
compounds classified as “Mixed” in the overall classification,
and (2) excluding them (Table S2+).

Target selection for predictive model development was
guided by the criteria established by Sanchez-Cruz and Medina-
Franco.” According to these guidelines, a target was deemed
suitable for predictive modeling if it included at least 30 active
and 30 inactive compounds, and if it had a MODI score of 0.7 or
higher for at least one molecular representation. Based on these
criteria, we selected the seven targets listed in Table S2t for the
construction of predictive models.

2.3 Chemoinformatic characterization of training data sets
of selected targets

For each training data set of selected targets, active compounds
were collected to perform a chemoinformatic characterization,
detailed hereunder.

2.3.1 Data visualization of physicochemical and constitu-
tional properties. For each active molecule in each data set of
selected targets, physicochemical properties of pharmaceutical
interest and constitutional descriptors were computed with
Python language using RDKit toolkit version 2024.03.06 and
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Fig. 2 Workflow followed in this study to design antiviral focused libraries.

Molecular Operating Environment (MOE), version 2022.02,*® to
analyze their distribution so as to compare it with approved
antivirals from DrugBank. Utilizing RDKkit's “Descriptors”
module, 15 physicochemical and constitutional properties were
computed: number of H-bond acceptors (HBA), number of H-
bond donors (HBD), partition coefficient octanol/water (log P),
topological polar surface area (TPSA), molecular weight (MW),

1242 | Digital Discovery, 2025, 4, 1239-1258

number of saturated rings, fraction of sp® carbon atoms (CSP3),
number of heavy atoms, number of rings systems, number of
alicyclic rings formed by carbon atoms, number of alicyclic
rings that include heteroatoms, number of heteroatoms, rotat-
able bond fraction, number of aromatic rings formed by carbon
atoms, number of aromatic rings that include heteroatoms.
Additionally, 11 descriptors were calculated using MOE: the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Viral targets associated with respiratory diseases considered in this work

Family Virus Acronym ChEMBL target ID
Coronaviridae Feline coronavirus FCoV CHEMBL612744, CHEMBL4295624
Human coronavirus 229E HCoV-229E CHEMBL613837, CHEMBL4888440
Human coronavirus NL63 HCoV-NL63 CHEMBL3232683
Middle East respiratory MERS-CoV CHEMBL4296578, CHEMBL4295557
syndrome-related coronavirus
Severe acute respiratory SARS-CoV CHEMBL4802007
syndrome coronavirus
Severe acute respiratory SARS-CoV-2 CHEMBL4888460, CHEMBL5169223,
syndrome coronavirus 2 CHEMBL4303835
Picornaviridae Enterovirus A71 HEV-71 CHEMBL612436, CHEMBL4295606, CHEMBL4295525
Human rhinovirus HRV CHEMBL613760, CHEMBL2857, CHEMBL612470
Paramyxoviridae Human parainfluenza virus 1 HPIV-1 CHEMBL1764934
Pneumoviridae Human respiratory syncytial virus HRSV CHEMBL4635143, CHEMBL2364165,
CHEMBL4630897
Orthomyxoviridae Influenza A virus IAV CHEMBL613740, CHEMBL612610, CHEMBL2367089
Influenza B virus IBV CHEMBL613129, CHEMBL4295840, CHEMBL2028641
Paramyxoviridae Henipavirus nipahense Niv CHEMBL6047, CHEMBL615055

number of acid atoms, aromatic atoms, basic atoms, nitrogen,
oxygen, bromine, chlorine, fluorine, iodine, the fraction of
rotatable bonds, and the number of chiral centers.

2.3.2 Scaffold analysis. Scaffolds were generated using the
Bemis-Murcko definition using RDKit's “MurckoScaffold”
module, which consists of removing all side chains in mole-
cules and preserving the ring systems and their linkers.* To
remark on the most frequent scaffolds, including acyclic
molecules, we counted and ordered them from highest to
lowest, then calculated their proportion on the data set.

2.3.3 Visualization of the chemical space and multiverse.
Visualization of the chemical space and chemical multiverse
(e.g., chemical space based on different molecular representa-
tions) was conducted for each data set of selected targets using
t-distributed stochastic neighbor embedding (+-SNE) based on
MACGCS keys (166 bits) and Morgan Chiral of radius 2 (2048 bits)
fingerprints. The chemical multiverse of compounds with
antiviral activity by each pre-selected target was compared with
approved antivirals from the DrugBank data set. ¢-SNE analysis
was implemented utilizing the Python library Scikit-Learn
version 1.5.211 (ref. 50) and the code is freely available from
DIFACQUIM's GitHub repository at https://github.com/
DIFACQUIM/antiviral_ML.

2.4 Machine learning models

To transform the activity data into a binary format, compounds
labeled as “Mixed” and “Unknown” in the ChEMBL data set
were discarded, yielding two classes: “Inhibitor” = 1 and
“No_Activity” = 0. Then, we computed Morgan Chiral of radius
2 (2048 bits) fingerprint with RDKit,** and 19 drug-likeness
descriptors from the Datamol library.®® These descriptors
included Lipinski-related parameters® and other descriptors of
pharmaceutical relevance: MW, CSP3, HBA, HBD, number of
rings, number of heteroatoms, number of heavy atoms, number
of rotatable bonds, TPSA, log P, number of aliphatic carbo-
cycles, number of aliphatic heterocycles, number of aliphatic

© 2025 The Author(s). Published by the Royal Society of Chemistry

rings, number of aromatic carbocycles, number of aromatic
heterocycles, number of aromatic rings, number of saturated
carbocycles, number of saturated heterocycles, and number of
saturated rings.

Only data corresponding to the seven selected targets (Table
S2+) was filtered for model building. To evaluate and reduce
multicollinearity, the Pearson correlation between descriptors
was computed. The second descriptor was discarded if any pair
showed a correlation above 0.8, prioritizing drug-likeness
relevance.

For supervised binary classification modeling, we employed
PyCaret version 3.3.2 for Python to develop models using 15
different ML algorithms (Table S3 in the ESI{).** Each model
was trained on ChEMBL data for the selected targets, associated
with a binary activity label (active/inactive). Morgan Chiral of
radius 2 (2048 bits) fingerprint and physicochemical descriptors
were used as molecular representation, with PyCaret's default
hyperparameter settings.

Normalization, fold generation, and imbalance correction
were achieved using z-score normalization, stratified k-fold
cross-validation, and the Adaptive Synthetic Sampling (ADA-
SYN) algorithm, respectively.** Additionally, we mitigated the
risk of overfitting by enabling an early stopping mechanism to
ensure that the models remain capable of generalizing well to
new data points.

2.5 Training, test, and validation data sets

The predictive models generated for each target were evaluated
by internal and external validations. Data sets were divided into
training (80%) and test (20%) sets, using DeepChem library for
Python,*>*® selecting Morgan Chiral of radius 2 (1024 bits)
fingerprint. The internal validation of all the models was con-
ducted by cross-validation, in which a new training/testing split
multiple times from the available data is chosen. The external
validation of all the models was conducted with the 20 percent
of unseen testing properties. For both validations, the following

Digital Discovery, 2025, 4, 1239-1258 | 1243
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Table 2 Chemical libraries for VS in antiviral activity identification
Compounds

Database Acronym Description after curation
ChemDiv coronavirus ChD_covL Collection of small molecules with potential antiviral activity against 20750
library®® coronavirus
ChemDiv antiviral library®® ChD_AvL Collection of small molecules with potential antiviral activity, 64958

targeting over 50 key proteins in viruses
OTAVA drug-like green OT_DLGC Drug-like green collection compound library, curated based on 169 356
collection® screening compounds for prompt delivery and pre-formatted

according to Lipinski's rule of five
Enamine antiviral library®* Ena_AvL Collection of molecules designed for discovery of new nucleoside-like 3200

antivirals
ChemSpace discovery ChE_DDS Collection of small molecules that are synthesized from in-house 10 000
diversity set®? building blocks using carefully developed and optimized reactions
LifeChemicals helicase LC_HTL Collection of structurally diverse molecules with potential activity 3291
targeted library® against key helicase-related drug targets, selected by

a chemoinformatics team through in silico molecular docking
LifeChemicals helicase LC_HFL A curated collection of compounds targeting helicases, including 3665
focused library® viral and genetic disorder-related enzymes like hepatitis C NS3 and

Werner syndrome helicases. Compounds were selected based on

structural similarity (84% Tanimoto threshold)
LifeChemicals 2019-nCoV LC_plpL A curated collection of drug-like compounds designed to target the 1736
papain-like protease (PLP) PLP of SARS-CoV-2, using docking-based screening without
targeted library® constraints. Compounds were filtered for binding accuracy and

removed if they were PAINS, toxic, or reactive
LifeChemicals DNA LC_dptL Library of structurally diverse compounds targeting DNA polymerase- 628
polymerase targeted related drug targets, developed using pharmacophore-driven
library®® screening
LifeChemicals polymerase LC_polL A library of molecules identified for potential polymerase inhibition, 15676
focused library 15 created by screening 4567 active compounds from 15 polymerase
polymerase assays®’ assays targeting RNA and DNA polymerases. Compounds were

selected using Tanimoto similarity from the life chemicals HTS

compound collection and ranked by predicted activity
LifeChemicals polymerase LC_polsL A library of drug-like screening compounds selected through a 2D 13 608
focused library similarity to fingerprint similarity search (Tanimoto index > 85%) against
ChEMBL database® a reference set of 20 000 compounds from the ChEMBL database, all

with reported activity against DNA and RNA polymerase targets
LifeChemicals SARS LC_covL A curated collection of small-molecule compounds selected through 436
coronavirus focused a 2D fingerprint similarity search, targeting key SARS-CoV proteins.
library®® The compounds were chosen based on activity criteria from

a reference set of 300 known SARS inhibitors
LifeChemicals 2019-nCoV LC_mproL A curated collection of drug-like compounds designed to target the 2338
main protease targeted main protease of SARS-CoV-2, using docking-based screening
library®” without constraints. Toxicophore filters were applied, while peptide-

like structures were retained to enhance binding potential
LifeChemicals antiviral LC_AVL A curated library of diverse compounds identified through structure- 1350
targeted library®® based screening, targeting antiviral proteins like hepatitis B core

protein and influenza A PA endonuclease. Developed using phase

modeling and life chemicals' HTS collection, with customization

options available
LifeChemicals merged LC_MASS Data set of small-molecule compounds consolidated into individual 45 546
antiviral screening screening subsets for various viral diseases, providing
superset®® a comprehensive resource in one collection
LifeChemicals antiviral LC_ALCLBSBA A curated library of potential antiviral agents, designed using protein 3514
library combined ligand- crystal structures of key viral targets. Selected through glide docking
based and structure-based and UNITY pharmacophore searches, with PAINs and reactive
approaches” compounds excluded
LifeChemicals antiviral LC_ASCL2DS The antiviral screening compound library was designed using a 2D 15455
screening compound fingerprint similarity search against a reference set of 46 518
library 2D similarity”® biologically active compounds from therapeutically relevant viral

assays, covering various virus species and their target proteins
LifeChemicals bioactive LC_BCL A collection of structurally diverse screening compounds, each with 9897

compound library”*

1244 | Digital Discovery, 2025, 4, 1239-1258

confirmed biological activity against approximately 600
pharmaceutical targets

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00037h

Open Access Article. Published on 04 April 2025. Downloaded on 1/20/2026 6:23:58 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
Table 2 (Contd.)
Compounds

Database Acronym Description after curation
LifeChemicals EF1A LC_gdp Library that includes compounds selected through docking-based VS 1267
targeted library GDP site” of GDP site on the eEF1A protein. The compounds have high

predicted affinity, are Ro5-compliant, and exclude PAINS, toxic, or

reactive groups. Subsets for each binding site are provided with

docking scores
LifeChemicals EF1A LC_efib Library that includes compounds selected through docking-based VS 1544
targeted library EF1B site”? of EF1B site on the eEF1A protein. The compounds have high

predicted affinity, are Ro5-compliant, and exclude PAINS, toxic, or

reactive groups. Subsets for each binding site are provided with

docking scores
LifeChemicals pre-plated LC_cov19 Screening set consists of drug-like compounds from the 2019-nCoV 2300
coronavirus COVID-19 Mpro targeted library, designed to support anti-coronavirus drug
screening set-384 well”? discovery efforts
LifeChemicals preplated LC_PHSS384 Screening sets that include drug-like small-molecule compounds 6080
helicase screening set 6080 with potential helicase-related activity for drug discovery targeting
cmpds 384 well” infectious diseases and cancer. Alternatively, two smaller, non-

overlapping subsets of 3520 and 2560 helicase-focused molecules are

also available for separate purchase
General screening antiviral VS data set Data set containing only unique structures from all chemical 339040

data set” libraries

% Number of compounds before curation: 396 595.

metrics were calculated with PyCaret: accuracy, Area Under the
Curve (AUC), recall, precision, F; score, kappa, Matthew's
Correlation Coefficient (MCC) and Balanced Accuracy (BA). All
seven metrics are statistical indicators of quality, used for
model evaluation, offering insight into prediction accuracy with
a focus on the active class.””

For both validations, we obtained the MCC and calculated its
average for all models, so as to select the three best architec-
tures for the data sets studied in this analysis (Table S4t). MCC
is a robust metric for assessing the quality of binary classifica-
tion models, ranging from —1 to 1. A value of 1 indicates perfect
classification, 0 corresponds to random predictions, and —1
represents completely inverse predictions. The architectures
selected for modeling were retrained on the complete data set
corresponding to each target, aiming to significantly enhance
the MCC and improve model generalization by optimizing
performance. This retraining process utilized the same hyper-
parameters as those in the initial model construction and was
applied to predict the final antiviral activity class of the data set
assembled for VS, as described in Section 2.7. Cross validation
was performed to assess the effectiveness of this retraining by
obtaining the MCC retraining value.

2.6 Consensus ML models

For each target, the three top-performing ML models selected
and retrained as outlined in Section 2.5, were combined to
generate a consensus model. These consensus models under-
went internal validation through cross-validation to calculate
the MCC value using Scikit-Learn®® functions, enabling perfor-
mance comparison with each individual model.

© 2025 The Author(s). Published by the Royal Society of Chemistry

2.7 Classification and design of antiviral focused libraries

In order to classify and design antiviral-focused libraries, first
a total of 22 diverse focused and commercial chemical libraries
from various online sources (Table 2) were compiled. The
assembled database contained 339 040 compounds after cura-
tion (Table 2), that were classified and filtered using the
predictive models developed for each target to assign a final
antiviral activity class (see Section 2.5).

2.8 Distance to model

To establish a quantitative measure that relates to the applica-
bility domain of the classification models, the similarity or
distance for each predicted molecule to the training set was
computed. Since the models were constructed using Morgan
fingerprints and physicochemical properties, two types of
similarity metrics were calculated. Jaccard distance was calcu-
lated using Morgan Chiral of radius 2 (2048 bits) fingerprint.
While physicochemical properties’ distance to the model was
calculated with Euclidean distance, based on the preserved
drug-like descriptors for each model architecture during the
construction process, as outlined in Section 2.4. All predictions
were categorized into four quartiles based on their mean Jac-
card or Euclidean distance, as appropriate, from the
compounds in the retraining set.” To assess this quartile, the
mean distance between the predicted molecule and all
compounds in the retraining set was compared with the
resulting quartiles from the intraset distances of the corre-
sponding retraining set. If the resulting distance fell into the
distances from the training set, the same quartile was assigned;
otherwise, the predicted compound was labeled as “Out.”
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2.9 ADMET properties calculation

Absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties were calculated for the VS data set, gener-
ated by the assembly of focused and commercial libraries (see
Section 2.7). This was accomplished using ADMET-AL’>7®
utilizing the Python library for local predictions. ADMET-AI
computes eight physicochemical properties with RDKit and
predicts forty-one ADMET properties through its Chemprop-
RDKit graph neural networks.

3 Results and discussion
3.1 Data acquisition and preparation

Fig. 3 presents an overview of the initial data set, which includes
4521 compounds retrieved from ChEMBL 33. These compounds
are associated with 32 distinct viral targets across 13 viruses

View Article Online
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implicated in respiratory infections. Among these, IAV is the
most represented, with 1968 compounds, followed by SARS-
CoV-2, with 1139 compounds. This distribution underscores
a predominant research focus on these viruses, likely driven by
their significant global impact, recurrent outbreaks, and the
prioritization of pandemic-related research efforts. Indeed, the
data set highlights a strong emphasis on highly studied targets
such as proteases and polymerases, which play critical roles in
viral replication and are central to current antiviral strategies.
Conversely, targets with minimal representation, such as heli-
cases and spike glycoproteins, represent potential gaps in
current research and may offer promising avenues for future
drug discovery. Interestingly, the inclusion of compounds tar-
geting less-studied (or reported in ChEMBL) viruses, such as
HRV (487 compounds) and IBV (228 compounds), indicates
a growing interest in broad-spectrum antiviral strategies. This
trend suggests a shift towards addressing a wider range of

Distribution of Viral Target Organisms

Neuraminidase (1314)

Polymerase (PA) (277) o0
Ny
2
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%

RdRp (149) 8

@

29, #

M2 proton channel (120)
2‘7’6
Polymerase (PB2) (79) o Others
Hemagglutinin (29) . % 13% Hema_ggIutinin—neuraminidase (36)
.6% . . &3% Capsid protein (22)
13 Viral Organisms ﬁ& 2% Mpro (26)
32 Targets Sox
4521 Reports 3.0% Neuraminidase (228)
C.0% M2 proton channel (1)
oo Protein P (1)
‘9'“.‘. o "* RdRp (1)
Mpro (875) 5; Fusion glycoprotein FO (253)
Helicase (NSP13) (19)
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o 3'95395 © Mpro (260)
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PLP (118) Mpro (21)
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Helicase (NSP13) (5)
Simbology
IAV: 1968 | HRV: 487 m HRSV: 256 HEV-71: 48 HPIV-1: 36 Others: 61

SARS-CoV-2: 1139 mmm SARS-CoV: 298 IBV: 228

Fig. 3 Overview of the viral target multiverse as reported in ChEMBL 33 (updated June 2023).
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respiratory viruses, which could enhance preparedness for
emerging infections.

3.2 Data modelability and target selection

As summarized in Table 3, seven out of 32 targets related to
respiratory diseases were selected according to the criteria
detailed in Section 2.2. Although the IAV M2 proton channel
target did not meet the criterion of having at least 30 inactive
compounds, it was selected as a test case to explore the impli-
cations of this criterion. This decision was based on the obser-
vation that many targets in the data set faced similar
limitations—failing to meet the required number of active or
inactive compounds—yet still achieved a MODI score of 0.7 or
higher. The premise was that models built for such targets might
exhibit different performance characteristics. The details of this
analysis and its implications are further discussed in Section 3.4.

Targets such as SARS-CoV-2 Mpro and IAV neuraminidase
exhibited the highest MODI scores (0.88 for MACCS keys (166
bits) and 0.91 for Morgan Chiral of radius 2 (2048 bits)), indi-
cating strong modelability. In contrast, targets like SARS-CoV
Mpro, which was selected for its relatively higher MODI score
with Morgan Chiral of radius 2 compared to MACCS keys, or IBV
neuraminidase, which had lower MODI scores (0.72 for MACCS
keys and 0.71 for Morgan Chiral of radius 2), suggest potentially
more challenging modelability. Notably, when comparing the
performance of the two fingerprints, most targets showed
slightly better modelability with Morgan Chiral of radius 2,
suggesting that these fingerprints capture relevant chemical
features more effectively for these targets.

The ratio of active to inactive compounds also appears to
influence the MODI score. For instance, IAV neuraminidase,
with a high number of both active (733) and inactive (390)
compounds, had a correspondingly high MODI score. Addi-
tionally, the relationship between the median pICs, values and
the MODI scores is worth highlighting. For example, SARS-CoV-
2 Mpro, with the highest median pICs, value (6.35), aligned with
its strong modelability, whereas targets with lower pIC;, values
may exhibit more variable performance. Similarly, the total
number of compounds may serve as another important indi-
cator of modelability. For example, SARS-CoV-2 Mpro, with the
second largest data set, likely benefits from a richer data set for
model training. Conversely, smaller data sets, such as IAV M2
proton channel, may result in reduced predictive performance
due to limited data diversity, as discussed further in the next
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sections. It is also notable that targets, such as IBV neuramin-
idase, had lower MODI scores despite a reasonably balanced
data set. This discrepancy could be attributed to factors such as
structural complexity or compound heterogeneity, which may
pose additional challenges for predictive modeling.

3.3 Chemoinformatic characterization of training data sets

For the seven selected data sets, we performed a characteriza-
tion of the structural content, diversity and coverage in chem-
ical space using different structural representations and
descriptors (e.g., chemical multiverse).

3.3.1 Analysis of physicochemical and constitutional
properties. Fig. S1 in the ESIt shows boxplots of the distribu-
tions of ten physicochemical properties, including those related
to drug-likeness as defined by Lipinski's “Rule of Five”. Table
S5t summarizes the calculated physicochemical properties and
other constitutional descriptors along with their statistical
metrics across the data sets. When comparing the distributions
of the calculated properties against the reference set of
approved antiviral drugs, it was observed that most of the
analyzed compounds exhibit physicochemical properties
compatible with Lipinski's Rule of Five. Exceptions were iden-
tified, most notably in compounds targeting IAV polymerase
(PA), which deviated from the drug-likeness parameters and did
not match with the approved antivirals data set. These devia-
tions could be attributed to the unique structural or functional
requirements of compounds targeting this specific viral protein.

It is important to emphasize that the ML models were con-
structed using different sets of physicochemical properties
tailored to each target. This variation could significantly influ-
ence the data modelability, as certain properties might be more
relevant for specific viral targets. For future research, exploring
the impact of these individual properties on the performance of
the models could provide deeper insights and help refine
predictive frameworks.

3.3.2 Scaffold analysis. An analysis of the most frequent
structural scaffolds present in the data sets with known bio-
logical activity (training data sets), shown in Fig. 4, revealed
notable trends among the targets. For instance, the HRV
protease and the IAV M2 proton channel share at least one
scaffold with the set of approved antivirals. Additionally, the
neuraminidases from influenza types A and B were found to
share common scaffolds, despite the generally low percentage
of sequence homology reported between them.”” Interestingly,

Table 3 Targets selected based on the modelability index (MODI) criteria

MODI MACCS keys MODI Morgan Chiral

Target Organism Count PICso median Active Inactive (166 bits) of radius 2 (2048 bits)
M2 proton channel 1AV 92 5.45 68 24 0.82 0.83
Mpro SARS-CoV 197 4.52 77 120 0.66 0.77
SARS-CoV-2 815 6.35 651 164 0.88 0.91
Neuraminidase 1AV 1123 5.72 733 390 0.88 0.91
IBV 202 5.47 132 70 0.72 0.71
Polymerase (PA) 1AV 256 5.40 151 105 0.84 0.88
Protease HRV 389 5.96 298 91 0.83 0.85

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Absolute and relative percentage frequencies of the most frequent scaffolds in compounds with known activity for seven selected
antiviral targets. Prominent scaffolds are categorized by target, highlighting key structural features in the data set used for ML model

development.
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these shared scaffolds are predominantly single-ring structures,
which may indicate a tendency toward compounds with lower
MW within these data sets. This observation could have impli-
cations for the drug discovery process, particularly in terms of
scaffold-based design and the potential for optimizing molec-
ular properties.

More details about the most frequent scaffolds in the
training data sets for each target are illustrated in Fig. S27 after
following the curation and standardization processes.

Antiviral drugs commonly exhibit diverse structural scaf-
folds, including adenine derivatives and privileged frameworks
that facilitate interactions with multiple viral mechanisms.
These compounds frequently feature key atoms such as
nitrogen, oxygen, and carbon, which play critical roles in their
biological activity and contribute to their structural diversity.”®

View Article Online
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As presented in the ESI, Fig. S37 shows the most frequent
ring systems in the training data sets, while Fig. S4 and S57
depict the predominant scaffolds and ring systems in the VS
data set, respectively. Not surprisingly, the benzene ring was the
most frequent scaffold and ring system, reflecting its ubiqui-
tous presence across the chemical data set. Notably, the top ring
systems in the VS data set has a high prevalence of nitrogen-
containing rings, a feature that holds significant promise for
enhancing antiviral activity due to their well-established role in
molecular recognition and binding to viral targets.”*"

3.3.3 Visualization of the chemical multiverse. Fig. 5 and
S6+1 show visual representations of the chemical multiverse (e.g.,
multiple chemical spaces, each defined by different represen-
tations) of the active compounds of the seven antiviral data sets
(Table 3) and 92 antivirals in DrugBank. The chemical
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© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4,1239-1258 | 1249


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00037h

Open Access Article. Published on 04 April 2025. Downloaded on 1/20/2026 6:23:58 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

multiverse is based on Morgan Chiral of radius 2 (2048 bits)
(Fig. 5) and MACCS keys (166 bits) fingerprints (Fig. S61). The
visualization highlights distinct patterns in the chemical space.
The distribution of active compounds in the chemical space
emphasized the diversity of chemical scaffolds that may be
associated with antiviral activity. This diversity was particularly
evident in targets such as SARS-CoV-2 Mpro and IAV neur-
aminidase with large coverage of the chemical space. Further-
more, visualizations with both fingerprints suggest the presence
of structurally similar compounds to approved antivirals within
the active subset derived from the retraining phase. This over-
lap reinforces the predictive models' reliability in identifying
bioactive compounds while also supporting the hypothesis that
structurally similar compounds are likely to exhibit similar
biological activity. A complementary visualization of the
chemical multiverse is presented in Fig. S7,T featuring a general
constellation plot* centered on chemical scaffolds. This plot
employs t-SNE for dimensionality reduction, with point sizes
reflecting the number of compounds associated with each
molecular scaffold and a color scale representing pICs, values
reported in ChEMBL. This visualization offers valuable insights
into the distribution and activity patterns of scaffolds within the
chemical data set.

3.4 Machine learning models

Table S6 in the ESIT summarizes the MCC values from each
validation phase for the top three best-performing architectures
selected for each target. To determine the optimal model, we
prioritized the MCC values obtained during the retraining
phase (refer to Methods Section 2.4 for further details). As
shown in Table S6,F MCC values improved in general after the
retraining phase, with the AdaBoost model for IBV neuramini-
dase standing out as a particularly strong performer. These
results showed the capability of the models to accurately
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identify promising compounds, underscoring their potential
utility in antiviral drug discovery.

According to the discussion of data modelability in Section
3.2, as expected, the IAV M2 proton channel target had the
lowest MCC values for all three top models in each validation
phase. This result emphasized the importance of the minimum
amount of compounds and reinforced the relevance of imple-
menting several criteria while selecting and analyzing molec-
ular targets to develop reliable and useful ML models.

As illustrated in Fig. 6, some models were robust for a few
targets at different validation phases but not in all of them. For
instance, the AdaBoost classifier performed best for IBV neur-
aminidase during retraining while others like the Support
Vector Machine (SVM - linear kernel) performed best for IAV
polymerase (PA) during the internal validation of the training
process. Moreover, this model showed consistent MCC values
across training and retraining. This consistency suggests robust
model performance and generalizability.

3.5 Consensus machine learning models

The three best-performing models discussed in Section 3.4 were
combined to create a consensus model for each target. Table S6
in the ESIf summarizes the MCC values calculated for the
consensus model in comparison with those obtained from each
of the top three models individually. In general, the consensus
models improved the MCC value or maintained it at a compa-
rable level. This result underscored the robustness of
combining predictions from diverse algorithms, which likely
reduces individual model biases. Indeed, combining outcomes
from complementary methodologies has shown advantages in
several areas of chemoinformatics.*” A notable improvement
was obtained for SARS-CoV Mpro, where the consensus model
surpassed the performance of any single model, further vali-
dating this approach as a reliable strategy for enhancing

Consensus Validation

Comparison of MCC per target, best-fit model (highlighted in yellow in Table S67), and validation phase.
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predictive accuracy. However, a few exceptions were noted. For
example, the IAV M2 proton channel exhibited the lowest MCC
value for the consensus model. This result aligns with previ-
ously discussed limitations for the IAV M2 proton channel,
including the small and imbalanced data set (see Section 3.2 for
further details). Such cases highlight that while consensus
models generally provide stability and enhancement, their
effectiveness depends on the quality and representativeness of
the input data.

3.6 Classification of antiviral-focused libraries

The prediction of antiviral activity for the compounds from the
assembled general screening data set (VS data set) (Table 2) led
to the design of seven individual antiviral-focused libraries for
each target. The design consisted in the calculation of two
outputs using PyCaret's prediction function: binary values (0/1)
for labeling, indicating whether a compound is predicted
(classified) to be active (1) or inactive (0); and a prediction score,
which represents the probability of the compound belonging to
the active class (for further details, see Section 2.5). Table 4
summarizes the results of these predictions from the VS data set
for the seven antiviral targets. The table includes the number of
compounds predicted to be active by one, two, and three models
and for the top, second, and third best models, as well as its
relative frequency.

3.6.1 Distance to model. At the classification (prediction)
step, the performance of the best individual model (highlighted
in yellow in Table S67) and the consensus model (highlighted in
green in Table S6t) was assessed based on their distance-to-
model, which serves as an estimation of the applicability
domain of the models. Since all models were constructed using
the Morgan Chiral of radius 2 (2048 bits) fingerprint and various
physicochemical properties, the distance-to-model was evalu-
ated separately for each representation. Descriptive statistics of
both distances for each target are detailed in Table S7.f The
compound's predictions were categorized into four quartiles
based on their mean Jaccard or Euclidean distance from the
compounds in the retraining set (see Methods Section 2.8 for
further details). Table 5 summarizes the distribution of pre-
dicted compounds across these quartiles, as well as those
falling out of the defined applicability domain, using the
Morgan Chiral of radius 2 (2048 bits) fingerprint. Similarly,
Table 6 presents the distribution of compounds using their
corresponding preserved drug-like descriptors. The analyses in
Tables 7 and S8f provide insight into how well the models
generalize to novel compounds and highlight compounds lying
beyond the applicability domain, which could serve as candi-
dates for further experimental validation or re-evaluation of the
models' chemical space coverage. Compounds on quartile 1
(Q1) should be prioritized for further analysis, including bio-
logical testing.

In general, fewer compounds are considered “Out” when the
distance is calculated with physicochemical properties. This
could be due to the preservation of drug-like properties for the
commercial and focused libraries, and the ChEMBL
compounds, as observed in Section 3.3.1. The results for IBV

© 2025 The Author(s). Published by the Royal Society of Chemistry

Table 4 Number and proportion of compounds classified as active in the VS data set

Number of predicted active compounds by*

Active

Third best model

Active

Top best model Active Second best model

2 models 1 model

3 models

Target

27916 (8.23)

Gradient

26 444 (7.80)

Extra trees classifier

11272 (3.32) 26409 (7.79)  SVM - linear kernel 22 295 (6.58)

9234 (2.72)

IAV_polymerase

(PA)

boosting

classifier

View Article Online

Digital Discovery

P —
(%) o —~ —
® © (% < —_

< [32) - ~ 3 ~

~ ig) 1) © T o

Tz = aQ Toe -

< ) ©

— N N ) < N

~ & ) ~ N N

o — — © n ©

10 ) 1) Q o o

S — % N Q )

o
= 5]
o g 5. 8.8
- = . - — -

d T >3 = Ssfogd

QE ESE g RECTE S

l'-‘QmEm Cvammwﬁw

< © %] RS I  w  B w

T=E2 s TR E XS xS

< S ATT nh2AOHK©OTHADO

= )

2= T3 @

) %) N

* N & I~ NG

I © N

n oo ®x o o =

— S N ~ N ~

< N N < o ©

) © — < o0 —

Q Q — S ) )

= =

L ] =

2 1 173

F:?; ©n ©n —g 2 ©n

B o 8 B 8 B

on R = Q = o0 [N I
gEEE cgerEZE S
.= Bp o0 8.5 0F& &
o 9 =7 B A TR s B
@ ‘g @ o @ @ w g @

H O %] n H O c 0 %)

XoFfd FfoRogsEs

H.aXo X OH.aXOTXTO

—_ = —_ =~

S - w3 8§

N ) ~ c\i o) ~

L 2 o s 2 2

) o) o5 o 0

<+ S N ) S o

— 53 I =) — S

N © D 1 ) N

=) Q =) < e ©

o o < [a\] i i

o

o0 g v § o]

£ = gz &

) = = ‘»

2 . E E£58 ¢

e S 5 L& g

Q o 8 A "UEQ) ©

o =3 8 = < oy k7

SO RZ@wT v 2o 3

SgEEG LG ™ES 8

TBeTE2T 282 0.2 s}

8 2890 cTHpQ 0 ©

LS8 3.8 c=c2o o =]

O O0OT s A8 <
— — —_ =
=) a ~ © o)

—~ n < <+ "

2 S ERT S

0 <t on [Te} o <t

~ N /Rt NN

& < An >

< [ o N Q S

I5e) < R o) o o

e © o o o ~ 3

< < =] N Q ) bsy

[a\] — i [Ie} i i =

[}
=}

— = —_ = ISy

©o < ) © PPN L

< - «Q @ I ~ A

=) 10 I o N < o

N — — N O =) o0

a3 0 o8 L 2 =

< ] b N = = =

© Q I ~ = o S

I32) < > « — <) 154

o) ~ © o — N =

o — < ~ N ) g,

— — 2

N I~ B

e = 2 -

8 9 a 2 T < S

- & X TN @ )

— <

-

- <
n S o S o A
S ) © o — =] ©n
[
<
(5} =
° 3 2] =]
I o < o
o o, =] =] =
a I = = g

g g s 5 £ £

g 2 2\ qQ % § £

S E_ % 3z £ E 3

I —

5 93 O O o 5] <
= £ =

> =] & B & 5 5

s 2 = 2
Z =S z B =
jas = %) %) = s

Digital Discovery, 2025, 4,1239-1258 | 1251


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00037h

Open Access Article. Published on 04 April 2025. Downloaded on 1/20/2026 6:23:58 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Table 5 Distance to model performance of the retraining data set, the best classification model and consensus model for each selected target,
attired by Morgan Chiral of radius 2 (2048 bits) fingerprint

IAV_polymerase (PA)

SARS-CoV-2_Mpro

Range Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)
Out 4855 310 125 1162 881 593
Q1 11 — — 3 2 2
Q2 660 44 16 3 2 1
Q3 14 083 926 410 19210 13975 9622
Q4 319431 21015 8683 318662 231090 159216
HRV_protease IAV_neuraminidase
Range Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)
Out 2883 2569 1936 1162 476 35
Q1 404 371 268 3 1 —
Q2 3552 3224 2469 20 8 1
Q3 28978 25835 19322 28109 10786 611
Q4 303 223 270150 201756 309 746 121 829 7454
IAV_M2 proton channel IBV_neuraminidase
Range Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)
Out 5277 5086 3537 320156 152989 997
Q1 2879 2776 1981 — — —
Q2 119 392 115160 79248 — — —
Q3 149 663 144277 99610 2 1 —
Q4 61 829 59510 41375 18 882 9095 57
SARS-CoV_Mpro
Range Total Best model (actives) Consensus (actives)
Out 1506 210 55
Q1 83 12 2
Q2 11376 1676 597
Q3 195 827 28 807 9526
Q4 130248 19287 6480

neuraminidase had the greatest number of compounds labeled
as “Out” for both distances. This is aligned with the MODI
results since IBV neuraminidase was the target with the lowest
value for fingerprints.

3.7 ADMET properties profiling of antiviral-focused libraries

Among the main reasons for antiviral drug failure are issues
related to pharmacokinetics (PK) and pharmacodynamics (PD).
To this end, ADMET profiling serves as a critical step in
reducing attrition rates during preclinical and clinical stages.*®
ADMET property profiling also provides critical insights into the
PK and safety profiles of compounds identified as potentially
active against the selected respiratory viral targets. ADMET
profiling provides early indications of potential safety issues,
including hepatotoxicity, cardiotoxicity, and drug-drug inter-
actions. These factors are particularly relevant for antiviral
therapies, which are often administered in combination with
other treatments. Maintaining sufficient plasma concentrations
within the therapeutic window is critical for inhibiting viral

1252 | Digital Discovery, 2025, 4, 1239-1258

replication effectively while minimizing toxicity and preventing
resistance. Key PK parameters, such as the volume of distribu-
tion (VD) and clearance (Cl) significantly influence
a compound'’s antiviral effectiveness.?

For all 339 040 compounds in the VS data set (see Table 2)
forty-one ADMET properties were calculated using ADMET-AI
(see Methods Section 2.9 for further details). This detailed
profiling is included in the structure file of the VS data set to
facilitate a comprehensive evaluation of candidate molecules.
The user of the newly assembled and designed libraries is free
to use other tools to estimate the ADMET profile of the newly
assembled and designed libraries (see Section 3.9).

3.8 Machine learning-driven antiviral libraries targeting
respiratory viruses

The classification step enabled the identification of 398 prom-
ising compounds with a high likelihood of antiviral activity,
which were subsequently organized into seven focused libraries
for each target. These libraries aim to streamline the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Distance to model performance of the retraining data set, the best classification model, and consensus model for each selected target,

attired by physicochemical properties

IAV_polymerase (PA)

SARS-CoV-2_Mpro

Range Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 1360 95 34 85 56 44

Q1 78 691 5356 2298 102 608 74 364 51313

Q2 83268 5609 2276 54 992 39935 27 668

Q3 97 040 6262 2614 85659 62136 42 693

Q4 78 681 4973 2012 95 696 69 459 47716
HRV_rotease IAV_neuraminidase

Range Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 909 817 628 846 332 17

Q1 74 326 66 105 49 283 58267 22808 1386

Q2 87 034 77 425 57 813 86 483 33667 2054

Q3 90 649 80835 60 465 101979 40126 2428

Q4 86122 76 967 57562 91 465 36167 2216
IAV_M2 proton channel IBV_neuraminidase

Range Total Best model (actives) Consensus (actives) Total Best model (actives) Consensus (actives)

Out 7 7 4 13 563 6500 37

Q1 46163 44539 30710 84952 40 397 262

Q2 56 607 54 556 37522 55476 26488 176

Q3 74969 72264 49778 87531 42181 257

Q4 161 294 155443 107 737 97 518 46 519 322

SARS-CoV_Mpro

Range Total Best model (actives) Consensus (actives)

Out 1709 274 77

Q1 66411 9898 3346

Q2 85126 12 495 4255

Q3 90323 13285 4407

Q4 95471 14 040 4575

Table 7 Number of active compounds from the newly designed antiviral-focused libraries for each target across quartiles

TIAV_M2 proton

IAV_polymerase

Quartile HRV_protease channel IAV_neuraminidase (PA) IBV_neuraminidase SARS-CoV_Mpro SARS-CoV-2_Mpro
Q1 268 126 — — e 2 2

Q2 2469 4484 1 16 — 597 1

Q3 19317 5948 611 410 — 9526 9622

Q4 201730 2518 7454 8683 57 6480 159213

Out 1934 220 35 125 997 55 592

prioritization of candidates for further experimental validation
or biological testing and are publicly accessible at https://
github.com/DIFACQUIM/antiviral_ML.

To provide a comprehensive overview of the compounds and
take all analysis and predictions together, eight distinct
libraries focused on respiratory viruses were designed: the VS
data set in conjunction with its predictions and seven subsets
for each target. Each library is annotated with: “Canonical
SMILES, Murcko SMILES, identifier (ID), database (DB),

© 2025 The Author(s). Published by the Royal Society of Chemistry

number of repetitions, prediction label (for each model),
prediction score (for each model), Quartile Pairsim (structural),
Quartile (structural), Quartile Distance (physicochemical prop-
erties), Quartile (physicochemical properties)” plus the ADMET
profile in the VS data set library.

Fig. 7 shows the chemical structures of representative
compounds included in the newly generated antiviral-focused
libraries. Specifically, the figure highlights predicted active
compounds for four selected antiviral targets, with high
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Fig.7 Chemical structures of Q1 compounds (top five for targets HRV_protease and IAV_M2 proton channel) attired by Morgan Chiral of radius
2 (2048 bits) fingerprint. The label below each structure represents the acronym of each library as stated in Table 2.

predictive confidence (e.g., predictions within the first quartile
(Q1) of the distance to model as described in Section 3.6).
Notably, the presence of nitrogen atoms across all illustrated
compounds aligns with the findings discussed in Section 3.3.2,
emphasizing its relevance to antiviral activity.

Fig. S8 in the ESIf illustrates the chemical space distribution
of top predicted active compounds, specifically those with the
highest prediction confidence (Q1, as detailed in Table 7),
across the newly designed target-focused libraries. These visu-
alizations, generated using ¢-SNE based on the Morgan Chiral of
radius 2 (2048 bits) fingerprint, highlight the structural diversity
of Q1 compounds.

Notably, certain libraries lack Q1 compounds entirely, while
libraries such as HRV protease and IAV M2 proton channel
exhibit broader structural diversity, as reflected by the dispersed
distribution of Q1 compounds, moreover, SARS-CoV-2 Mpro
library, shows clustering, indicating structural similarity among
predicted actives. This analysis underscores variability in
structural diversity across libraries, suggesting that improve-
ments in library design and model training could enhance the
identification of high-confidence active compounds.

4 Conclusions

Herein we designed seven compound libraries with prospective
antiviral activity, targeting respiratory viruses. The libraries
were assembled and designed using available data in ChEMBL
and predictive ML models. The designed libraries target specific
antiviral targets: M2 proton channel of IAV, Mpro of SARS-CoV
and SARS-CoV-2, neuraminidase of IAV and IBV, polymerase of
IAV, and protease of HRV. Additionally, we report the results of

1254 | Digital Discovery, 2025, 4, 1239-1258

a chemoinformatics analysis of the training compounds to
assess their drug-like properties and scaffold diversity,
comparing these features with those of approved antiviral
drugs. The analysis revealed that training compounds exhibited
favorable drug-like physicochemical properties. Scaffold anal-
ysis of the most frequent scaffolds from the construction of the
ML models data set indicated that compounds targeting HRV
protease and IAV M2 proton channel share at least one scaffold
with the set of approved antivirals. Furthermore, compounds
targeting neuraminidases of influenza A and B exhibited
common scaffolds, predominantly single-ring structures. Anal-
ysis of the chemical space based on different fingerprint
representations emphasized the large diversity of compounds
with activity against SARS-CoV-2 Mpro and IAV neuraminidase.

For the seven antiviral target data sets with high model-
ability, we developed ML predictive models, which showed
improved MCC values after retraining. Among these, the Ada-
Boost model for IBV neuraminidase demonstrated the best
performance. Overall, consensus ML models outperformed
individual models, particularly for targets with larger and more
balanced data sets. Compounds within the top confidence
predictions from the seven newly designed antiviral-focused
libraries represent strong candidates for further screening,
including biological testing, which is the next step of this study
from the wet lab experimental point of view. All seven antiviral-
focused libraries developed in this study are freely available at
https://github.com/DIFACQUIM/antiviral ML for the scientific
community to select, acquire, and biologically test the
chemical libraries. To facilitate the use of these databases,
each compound is annotated with confidence predictions and
ADMET property profiles.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ADASYN
ADMET

Adaptive synthetic sampling

Absorption, distribution, metabolism, excretion,
and toxicity

Al Artificial intelligence

API Application programming interface
ARD Acute respiratory disease

AUC Area under the curve

BA Balanced accuracy

CADD Computer-aided drug design

Cl Clearance

CSP3 Fraction of sp® carbon atoms

ECFP Extended connectivity fingerprint

FCoV Feline coronavirus

GTM Generative topographic mapping

HBA H-bond acceptors

HBD H-bond donors

HEV-71  Enterovirus A71

HCoV- Human coronavirus 229E

229E

HCoV- Human coronavirus NL63

NL63

HIV Human immunodeficiency virus

HPIV-1 Human parainfluenza virus 1

HRV Human rhinovirus

HRSV Human respiratory syncytial virus

IAV Influenza A virus

IBV Influenza B virus

JAK Janus kinase

log P Partition coefficient octanol/water

MACCS  Molecular ACCess system

MCC Matthew's correlation coefficient

MERS Middle East respiratory syndrome

MERS- Middle East respiratory syndrome coronavirus
CoV

ML Machine learning

MODI Modelability index

MOE Molecular operating environment

Mpro Main protease

MW Molecular weight

Niv Henipavirus nipahense

NPs Natural products

PD Pharmacodynamics

PK Pharmacokinetics

PLP Papain like-protease

PHEIC Public health emergencies of international concern
R&D Research and development

RDKit Rational discovery kit

RdRp RNA dependent RNA polymerase

RSV Respiratory syncytial virus

RVs Rhinoviruses

SARS Severe acute respiratory syndrome
SARS-CoV Severe acute respiratory syndrome coronavirus
SARS- Severe acute respiratory syndrome coronavirus 2
CoVv-2

SMILES  Simplified molecular input line entry system
TPSA Topological polar surface area
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t-SNE t-Distributed stochastic neighbor embedding
VD Volume of distribution

\S Virtual screening

WHO World Health Organization
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