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The integration of robotics and artificial intelligence (AI) into scientific workflows is transforming

experimental research, particularly at large-scale user facilities such as the National Synchrotron Light

Source II (NSLS-II). We present an extensible architecture for robotic sample management that combines

the Robot Operating System 2 (ROS2) with the Bluesky experiment orchestration ecosystem. This

approach enabled seamless integration of robotic systems into high-throughput experiments and

adaptive workflows. Key innovations included a client-server model for managing robotic actions, real-

time pose estimation using fiducial markers and computer vision, and closed-loop adaptive

experimentation with agent-driven decision-making. Deployed using widely available hardware and

open-source software, this architecture successfully automated a full shift (8 hours) of sample

manipulation without errors. The system's flexibility and extensibility allow rapid re-deployment across

different experimental environments, enabling scalable self-driving experiments for end stations at

scientific user facilities. This work highlights the potential of robotics to enhance experimental

throughput and reproducibility, providing a roadmap for future developments in automated scientific

discovery where flexibility, extensibility, and adaptability are core requirements.
1 Introduction

Robotics is revolutionizing scientic discovery and science-at-
scale across diverse disciplines, including biomedical,1–3

earth,4 and materials sciences.5–7 Specically, the combination
of automation and articial intelligence (AI) has enabled
scientic experiments to be conducted faster, more safely, more
accurately, and with greater reproducibility.7–11 Large scientic
user facilities, such as the National Synchrotron Light Source II
(NSLS-II), provide prime examples for the potential of trans-
forming scientic laboratories into automated factories of
discovery,12–15 and rely on robotic systems for high throughput
and sensitive experiments.16–19 However, contemporary robotic
integrations lack the exibility required to cater to diverse
experimental environments, do not include dynamic decision-
making capabilities, and are weakly integrated into the experi-
mental orchestration soware stack.20 This creates a substantial
opportunity for new architectures that integrate widely used
experimental orchestration suites with robotics and AI, and
those that provide exibility, extensibility, and adaptability.

Deploying robotics inside or alongside the unit operations of
scientic experiments—or ‘end stations’ in the parlance of user
khaven National Laboratory, Upton, NY

tion (ESI) available. See DOI:

the Royal Society of Chemistry
facilities—has been explored as a potential solution for
increasing scientic throughput, efficiency, and safety.7–11,16

These deployments include robotic arms at the core of work-
cells,21,22 mobile robots as integrators between various unit
operations,23 and active cooperation between cobots and
human researchers.7,24 This latter direct cooperation is not
possible in certain environments due to safety constraints,
albeit robotic arms can integrate with other actuation for
mobility within protected spaces.16 Many of the existing
approaches depend on vendor supplied soware for robot
orchestration6,7,17–19,23 and develop ad hoc tooling to combine
robotics and existing equipment.1,22,25 We recently demon-
strated the use of the Robotic Operating System 2 (ROS2) for
facile integration of a pick-and-place robot solution into an
existing end station;16 however, there remain limitations in
exibility, adaptability to failure, and extensibility to new
experiments.

With these advancements in automation, there is a growing
motivation in the scientic community for autonomous, or self-
driving, experiments that leverage articial intelligence in their
operational and scientic decision making.20 Robots can
leverage AI agents in their internal planning, for example in
path planning26 or environment recognition.4 At a higher level,
these systems can also leverage agents for choosing their next
experiment.27 As such, when integrating robots into experiment
orchestration, it is crucial to ensure the availability of algo-
rithmic integrations at varying levels of decision making.
Digital Discovery, 2025, 4, 1083–1091 | 1083
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An optimal arena for the development of scientic experi-
ments driven by smart robotics is provided by large scientic
user facilities, such as the NSLS-II. The NSLS-II is a light source
that offers state-of-the-art capabilities for probing the structural
and electronic properties of materials at atomic and micro-
scopic scales.13 As next-generation light sources have continu-
ally increased the ux of their facilities, attention has turned
toward experimental orchestration that can make the most
effective use of these photon beams through advanced auto-
mation and AI techniques. Experiment end stations at NSLS-II
(called beamlines) that offer routine techniques at scale repre-
sent a strategic evolution towards leveraging these advanced
capabilities for high-throughput characterization tasks.
Building on this concept, Beamline as a Service (BaaS) has
emerged as a pioneering model, re-imagining how researchers
interact with and utilize the facilities at a synchrotron.20 A BaaS
framework envisions a network of self-driving beamlines,
equipped with core information technologies, robotics, and
agentic AI that can operate autonomously or in concert with
human researchers. This potential ecosystem will maximize
resource utilization and collaboration to catalyze advancements
in energy and sustainability. Nonetheless, this will require
substantive effort in technology development, and even more so
in technology integration.

Given the complexity and diversity of scientic experiments
conducted at NSLS-II, the Bluesky project‡ was developed as an
open-source ecosystem offering unparalleled capabilities for
orchestration, data management, and analysis.28 This project
can be utilized piecemeal and has increasing adoption globally,
including across all six U.S. Department of Energy light and
neutron sources. At its core, the Bluesky RunEngine coordinates
intricate experimental workows, while complementary pack-
ages like Ophyd, Tiled, and Bluesky Adaptive enable seamless
instrument integration, advanced data management, and
adaptive experimentation, respectively.29 Its intuitive Python
interface empowers researchers to design and execute experi-
ments that were previously infeasible, including those which
leverage robotics.16 Furthermore, the project commitment to
open-source development and community-driven innovation
ensures that it remains at the forefront of scientic soware. By
bridging cutting-edge tools with accessible design, Bluesky not
only enhances experimental efficiency but also opens new
opportunities to deploy computational agents, drive adaptive
science, and tackle the nonlinear challenges of discovery in
materials science and beyond.

Considered in combination, these advancements in robotics
for self-driving laboratories, the cutting edge infrastructure of
large scientic user facilities, and the development of experi-
mental orchestration tooling have created substantial oppor-
tunities for accelerating scientic discovery, albeit with some
unresolved limitations. Robotic deployments at user facilities
must be recongurable, extensible, and robust to slight varia-
tions in environments. To achieve this, they must interface
simply with existing experiment orchestration and other
‡ https://blueskyproject.io.

1084 | Digital Discovery, 2025, 4, 1083–1091
contemporary technologies (e.g., AI). These open challenges are
largely related to the daunting task of integrating complex tools
as opposed to the development of new tools.

Herein, we describe a generic and extensible architecture for
the exible deployment of robotic sample management at
experimental end stations using Bluesky. We combined ROS2
control with Python abstractions that provide seamless inte-
gration of a robotic arm into Bluesky orchestration. We lever-
aged a development pipeline that includes simulation and test
environments for exibility and extensibility to new end
stations. We then extended this application with computer
vision and a sample database to ensure adaptability to failure
and variable environments. Lastly, we closed the experimental
loop by leveraging the tooling of Bluesky Adaptive for autono-
mous agent integrations in self-driving experiments. Our
unique contributions in this work include the extension of
a ROS-Bluesky interface to include real-time feedback and
interruption capability, the integration of computer vision and
sample management in the application, and the rst demon-
strated integration of Bluesky Adaptive with a robotic system for
autonomous experiment execution. This solution has imme-
diate implications at the many facilities deploying Bluesky,
brings the community closer to the BaaS vision, and provides
a road-map for other researchers or facilities seeking to leverage
robotics to accelerate scientic research.
2 Software architecture for robotic
sample management

The soware architecture we developed depends on function-
ality from the ROS and Bluesky ecosystems, as well as widely
available database and computer vision technologies.
2.1 ROS integration with Bluesky

The foundational innovation necessary to leverage robotics
effectively at user facilities, was the harmonization between
robotic control and end station orchestration soware. To this
end, we rst integrated ROS2 driven robotics into the Bluesky
project. At its core, this widely used platform for experiment
orchestration serves as the nervous system for scientic work-
ows, enabling researchers to dene, execute and monitor
experiments through a high-level, intuitive Python interface. We
performed the integration at the hardware abstraction layer,
Ophyd, which is used to dene devices such as motors, detec-
tors, sensors, and state controllers. With the robotic service
integrated in Ophyd, the robotic task could be integrated into
the orchestration of other devices of the end station using the
RunEngine. We successfully evaluated this integration in
a simulated environment, multiple test environments, and at
the Pair Distribution Function (PDF) beamline at NSLS-II.

The Ophyd integration primarily depends on the use of
Python's Future objects for asynchronous applications. In recent
work, we demonstrated how the Future of a ROS2 Action could be
exchanged for an Ophyd Status object to enable the RunEngine
(akin to a ROS2 executor) to conduct an experiment that combines
an existing end station and a new robot application (e.g., sample
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Axes of Adaptivity from Bluesky Adaptive documentation. The
three conceptual axes of adaptive experimental orchestration, using
color to show processing motif. The y-axis considers the degree of
processing necessary for an agent to consume data, varying between
raw sensor current and scientifically relevant state variables. The x-axis
considers the rate of the decision making with respect to the experi-
ment. These axes were used in the conceptual design of Bluesky
Adaptive. Several approaches and application areas for agents are
shown as examples, indicating where they may fall on these axes.

Fig. 2 Architecture schematic for robotic beamline scientist. Primarily
a client-server architecture, the approach to integrating the robotic
beamline scientist into the experiment orchestration with Bluesky
leveraged a sample database, ROS2 Action and pose estimation
service. The Bluesky RunEngine orchestrates the overall experiment in
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management).16 In the work described herein, we extended our
previous developments to use Action feedback to create progress
visualization of the completion of a robot action, and to enable
the RunEngine to “interrupt” an ongoing experimental plan. In
this case, the Actions were equipped with logic to pause, stop,
abort, cleanup, and rewind to a recent state. In our example of
sample management, this empowers the user to change their
mind while a robot is loading a selected sample, pause, return the
chosen sample if it is already grasped, then select a new sample.

To leverage robots for self-driving experiments in Bluesky we
depended on the Bluesky Adaptive package. This is an actively
developed and growing component of the Bluesky ecosystem,
designed to provide a harness for adaptivity and intelligent
decision making in experiment workows. At its core, Bluesky
Adaptive provides a exible API that supports a spectrum of
adaptive algorithms, ranging from simple rule-based
approaches to complex AI-driven models. Primarily for
enabling experiments to dynamically respond to data and
adjust measurement strategies in real-time, it also accommo-
dates non-interventional agents that process data and generate
visualizations to guide researchers without directly controlling
the experiment. To categorize the varying levels of adaptivity
achievable within this framework, we conceptualize adaptive
behavior along three key axes—decision-making rate, degree of
signal abstraction, and processing modality [Fig. 1]. Up-to-date
details on the design, implementation, and instructions for use
can be found in the online documentation.§ Herein, we
§ https://blueskyproject.io/bluesky-adaptive.

© 2025 The Author(s). Published by the Royal Society of Chemistry
implemented a simple agent that consumed data and per-
formed a random walk based on that data using the Bluesky
Adaptive harness.
2.2 Client-server architecture

Beyond the initial integration of the powerful open source tools,
ROS2 and Bluesky, we developed a generic client-server archi-
tecture for intelligent sample management at the beamline.
While ROS2 provides a number of architectural styles—namely
publisher-subscriber and client-server models—through their
available primitives, here we expand on their asynchronous
client-service model provided by ROS2 Action nodes. Our client
is both a ROS2 Action client and a Bluesky RunEngine client,
which maintains its own sample database and manages the
higher level experiment orchestration. The primary server
manages robotic tasks, and contains the Action service for the
robot orchestration, alongside other ROS2 Action and Service
nodes for object pose estimation, grasping, and kinematics
[Fig. 2].

The client integrates ROS2 Action-client nodes as Ophyd
objects, and provides the overall experiment orchestration. This
request for a robot action and subsequent data acquisition is
facilitated by the Bluesky RunEngine. The next subsequent
sample to be measured is suggested by Bluesky Adaptive—
a library from the Bluesky ecosystem designed for intelligent
and adaptive decision-making—based on the previous
measurements.29 The proposed sample from Bluesky Adaptive is
then queried against a database containing sample information
to retrieve the corresponding ID for the pose estimation
process. Together, data acquisition, database integration, and
sample proposals complete the feedback loop between the
Bluesky Adaptive agent and the RunEngine execution. The nal
step in the client-side operations is packaging the sample ID
into the ROS2 Action goal message, which is sent to the Action
server.

We implemented three key functionalities in the design of
the Action server. Our design allowed the cancellation of a goal
a closed loop, where an adaptive agent provides recommendations for
the next experiment and the Action server orchestrates the robotic
subsystem.

Digital Discovery, 2025, 4, 1083–1091 | 1085
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Fig. 3 A generic finite state machine. This demonstrative example
shows how a FSM can be used for process management. Starting in an
‘Idle’ state, it undergoes a ‘Start’ transition to a ‘Processing’ state.
‘Success’ or ‘Failure’ of the process will lead to different transitions to
‘Completed’ or ‘Error’ states, respectively. Finally, each penultimate
state has a distinct transition back to the ‘Idle’ state, and the process
repeats.
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during execution, tracked the progress of goal execution, and
reported updates back to the client. To accomplish this, we used
a nite state machine (FSM) to orchestrate the pick-and-place
sequence for a given sample [Fig. 3]. We integrated robot
control with this state machine and broke it into components
that included robot arm path planning, pose estimation, and
gripper control. We used MoveIt,{ a ROS2 library for robot
motion planning and execution, alongside ROS2 drivers
provided by the robot component manufacturers. We further
developed the gripper control module using ROS2 Service
nodes, enabling the gripper to operate synchronously with the
state machine while transitioning its state based on real-time
gripper status feedback. We handled sample pose estimation
with a separate Service node that interfaced with the state
machine through ROS2 communication. Each ROS2 node in
this architecture was launched in a separate container to
provide robust availability and process management.

Several types of messages and information are passed inside
this architecture. Primarily there is the ROS message between
the primary client and server describing the overall goal of the
robot action. This message contained the robot pose for
approaching and placing the sample in the end station,
a boolean ag for whether the sample was being placed or
returned to the library, and a sample ID. The communication to
the client included an update of the fractional completion of the
pick-and-place task, and whether it completed successfully.
Without computer vision, the pose for the robot to approach
and pickup the sample were also included. Messages for MoveIt
services were abstracted using the built-in “Move Group Inter-
face”. Messages for the gripper contained the percentage of the
range of motion for the gripper to open or close to. Within
Bluesky information is passed to the RunEngine using Python
{ https://moveit.ai/.

1086 | Digital Discovery, 2025, 4, 1083–1091
generator coroutines, and to the adaptive agents using the
document model prescribed by Bluesky.
2.3 Finite state machine

We chose to break down the act of grasping a chosen sample
into manageable, dened sub-tasks using a FSM [Fig. 4]. This
offered several advantages in both development and deploy-
ment. States track and communicate the robot's progress,
enabling swi identication of failures during an experiment. A
mapping between RunEngine commands and the state
machine's states enhanced usability, allowing seamless control
with directives and interruptions (e.g., user orders like ‘Pause’,
‘Abort’, or ‘Rewind’). In case of a failure, RunEngine commands
could transition the system back to the Home state aided by
a user-desired sequence of actions using the state diagram. This
functionality was designed to meet the protocols outlined in the
Bluesky documentation, and further supported by six internal
states for each primary state in the state machine: RESTING,
MOVING, PAUSED, ABORT, HALT, STOP, CLEANUP. In order to
extend the below FSM to modied or new tasks, additional
states and transitions would need to be added to the C++
implemented Enums and case statements for transitions.
Fig. 4 The robot Action progression used a finite state machine to
track progress. This FSM provided dynamic feedback to the Bluesky
RunEngine for progress updates and synchronization management.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The state machine was designed to provide an intuitive pick-
and-place process that was congurable and exible for
multiple end-stations. Each state transition is contingent upon
the successful execution of the motion planning and execution
of the robot trajectory. Instances of failure break the state
propagation, and a failure message is communicated back to
the action client. The 12-state FSM begins in a predetermined
Home pose, which is congurable through ROS2 node param-
eters, that provides a safe robot position for other actuation at
the end station and opens the gripper.

Upon accepting a goal request from the client, the Action
server begins to execute the FSM, re-initializing to Home then
progressing to Pickup Approach. State Pickup Approach was
designed to reduce path planning complexity in approaching
the library of available samples. When using computer vision to
determine the location of the desired sample, this state deter-
mines the eld of view for the camera. Upon successful
completion of the trajectory, and successful sample pose return
by the Pose Estimation Service, the FSM transitions to the
Pickup state. In this state, the robot moves to a pose where the
gripper ngers are orthogonal to the face of the sample, then
moves such that the gripper surrounds the sample. Success here
triggers a grasp attempt closing the gripper ngers, that prog-
resses the FSM to a specic Grasp Success or Grasp Failure state
depending on the closure of the gripper. Grasp success was
determined by achieving the desired fraction of closure, e.g., if
the gripper was to close too much or too little this would be
considered a failure. In the future, this could be extended to
include visual conrmation or other signal fusion. At any point
prior to this grasp, the user has the option to change course,
halt the FSM, and return to Home.

Following a successful grasp of the sample, the FSM transi-
tions the robot back to the Pickup Approach pose in a new state
Pickup Retreat. The placing of the sample into the experiment
apparatus, in our case the X-ray beam path, then follows
a similar series of states as picking up the sample. The Place
Approach state uses a trajectory in joint space to prepare the
sample for placement, and Place uses a cartesian path to align
the sample into the apparatus. This location is congured as
a static location similarly to the Home state, and can be rapidly
recongured using the ROS parameters at startup. Both of these
parameters are meant to be relatively static throughout
a deployment, as such are loaded at startup and not reloaded at
each relevant state execution in the FSM. Adjusting the
parameters required a reboot of the Action server container.
Other parameters such as the obstacles in the environment
could be modied dynamically and would update the planning
scene through callbacks. A Release operation by default
assumes success as long as the gripper opens; however, could
include additional validation using sensors at the end station.
Lastly, Place Retreat moves the robot to a position where it can
clear the geometry of the sample in its path planning to return
to Home.

At this stage, Action execution is nalized and the client can
continue the rest of the experiment as orchestrated in Bluesky.
In our development environments, this involved a simulated
detector taking noise. At the PDF beamline, this involved
© 2025 The Author(s). Published by the Royal Society of Chemistry
moving the platform that the robot was mounted on such that
the robot would not interfere with the X-ray beam, then pro-
gressing with the automated data collection on the sample
[Fig. S1†]. Following the experiment execution, the sample
could be returned back to storage using a new Action goal from
the client. The same FSM drives this object manipulation, with
the Pickup and Place poses reversed.
3 Experiment results and discussion
3.1 Hardware conguration

In this work we used a Universal Robot, UR3e, 6 degree of
freedom robotic arm. This robot was chosen for its compati-
bility with ROS2 and available simulator. For an end effector, we
used a Robotiq Hand-E gripper, which has two ngers and
controls grip strength and grasp ratio. We designed and 3-
d printed a custom coupling to mount the camera (described
below) above the gripper. The gripper was powered by a pass-
through connection to the robot arm and interfaces via an
RS483 interface. The camera required the use of external power.

We used computer vision and ducial makers for pose esti-
mation of the sample holder. We deployed an Azure Kinect DK
12-megapixel camera with a 1-megapixel Time of Flight (ToF)
depth camera. Captured images had a 640 × 576 pixel resolu-
tion and a eld of view of 75° × 65°. We deployed all services as
containers on virtual machines within a common subnet with
the exception of the camera services. We connected the camera
to a physical server (System 76 Meerkat computer powered by
13th gen Intel processor and 64GB of memory) to accommodate
its USB interface. The ducial markers were from the marker
family DICT_APRILTAG_36h11 in the ArUco class of markers,
and were affixed to a common relative location on all samples,
and printed to at 26.65 cm in width and height. DICT_AP-
RILTAG_36h11 family of makers are compatible with both
ArUco pose detection and AprilTag pose detection.30,31 The
samples we used for this study were brackets that hold varying
sizes and counts of capillaries for the PDF beamline. The
brackets at the beamline were made of machined aluminum,
and those at the experimental testbed were 3-d printed to match
this form factor.
3.2 Deployment pipeline

The soware and hardware setup facilitated an auxiliary goal of
a short deployment and re-deployment time into the experi-
ment end station. This process historically could take days of
effort, squandering precious resources of time with the
synchrotron beam.16 We further facilitated the rapid deploy-
ment across different environments with minimal modica-
tions to the existing setup by using generalized development
congurations including simulations and tabletop develop-
ment environments. Fig. 5 illustrates the mock up of two
sample environments for two distinct end-station congura-
tions and their projection within the RViz visualization tool.32

The rst development environment used pre-dened and static
locations for where to nd and load the samples. The second
setup leveraged computer vision to detect and dene the sample
Digital Discovery, 2025, 4, 1083–1091 | 1087
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Fig. 5 Tabletop environment and RViz simulation environment. The
combination of a vendor provided digital twin, RViz simulation, and
tabletop test environments empowered distributed teams to develop
applications without the use of valuable facility resources. Each row
shows two different laboratory test setups in the development pipeline
and their associated simulations.

Fig. 6 Pose detection live. The robot views the sample library and
dynamically detects the sample data and coordinate reference frames
for the sample holders (top). This information can be added to the RViz
visualization (bottom).
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poses in real time. We visualized both congurations in RViz
during development to identify obstacles or constraints, ne-
tune the system, and debug as necessary. Lastly, we leveraged
containerization to make the solution portable across develop-
ment environments, distributed across resources, and secure
within facility infrastructure. In combination, this development
pipeline enabled our team of engineers to develop solutions
outside of the beamline environment, then deploy, remove, or
re-deploy the robot in a few person-hours.
k https://redis.io/.
3.3 Soware conguration

We estimated the pose of the samples in real-time by affixing
ducial markers detected and described with computer vision.
The ArUco ducial markers were associated unique identiers
that could be mapped back to the sample database. Next, we
implemented pose estimation inside a ROS2 node using
OpenCV, leveraging its ArUco library integration. The 6-d pose
estimation was calculated for the sample of interest from the
stream of image data. This pose includes the distance from the
camera to the ducial marker along the x, y, and z axes, as well
as the roll, pitch, and yaw rotations of the ducial marker. We
passed the estimated poses through a median lter to eliminate
any outliers in the stream that could be caused by the camera
jitter. The ROS2 transform server (tf2 library) automatically
provided updates to the coordinate reference frames and
transformations relating the samples, camera, gripper, and
robot joints. The resulting camera view and projection of the
estimated poses in the RViz visualization are shown in Fig. 6. In
this scene the robot is in the Pickup Approach state, where pose
estimation occurs.

We then closed the experimental loop using Bluesky Adaptive
in combination with a sample database. From the pose esti-
mation, the Bluesky-ROS client could request any sample be
1088 | Digital Discovery, 2025, 4, 1083–1091
loaded by referencing a unique identier, then perform
a measurement on that sample. We built an in-memory sample
database using Redisk to store sample data in relation to the
ArUco identier, so that the resulting Bluesky plan could refer-
ence the ArUco tag directly. We dened the measurement as
a Bluesky plan, and used a simulated detector to create data in
our tabletop setup. Lastly, we used Bluesky Adaptive to integrate
a procedure that consumed data and decided which sample to
measure next. For this, we used a lockstep approach in Bluesky
Adaptive that placed the agent in-process with the RunEngine.
In this approach the RunEngine piped it's document stream to
the agent, which consumed images from the detector, and
requested the next sample to measure based on that image data.
Thus, we closed the loop in a workow that measured a sample,
chose which sample to measure next, cross referencing that
sample to an ArUco identier, and loading that sample prior to
measurement.

The Bluesky Adaptive package provides a harness for arbitrary
agents to act on data and drive experiments in the Bluesky
ecosystem.29 In practice with Bluesky Adaptive these agents can
be assembled in a simple closed loop, or a large agentic network
of communicating decision makers. As the degree of intelli-
gence and type of reasoning can be highly experiment specic,27

we endowed our experiment with limited intelligence to
demonstrate the pipeline integrating a closed loop
© 2025 The Author(s). Published by the Royal Society of Chemistry
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measurement. We used a Markov Chain Monte Carlo that
consumed the readings that are produced by the Bluesky
simulated detector, and suggested the next sample to load and
measure. The agent transition probabilities were based on
a uniform distribution with acceptance probabilities based on
a random pixel value. In a production setting, this agent should
be endowed with knowledge of the physics or experiment
characteristics. This demonstrated the integration of two levels
of adaptive decision making in the architecture: rst computer
vision at a control level, and secondly agent authority at
a scientic level.
3.4 Results

We successfully tested this pipeline overnight, performing 195
continuous sample manipulations without error. On a tabletop
setup, we arbitrarily placed 5 sample mounts across an M6 grid
optical table, consistent with those used in the PDF beamline
environment. Each sample mount consisted of a 50 mm long
and 25 mm high rail T-slotted framing bracket, secured to the
table at various heights and angles in the workspace of the
robot. We then secured a 25 mm square kinematic base to the
top of each framing bracket, and secured the receiving end to
the sample. We affixed a unique ArUco tag to the face opposite
the kinematic mount on each sample, aligned consistently for
all samples. Lastly, we launched our services across the previ-
ously described infrastructure, and launched an adaptive
experimental campaign through a Python interface. The self-
driving campaign ran overnight without failure, choosing
a sample, loading it into a receiving sample mount, conducting
a pseudo measurement, returning the sample to where it was
found, then choosing the next sample based on the
measurement.

To evaluate the robustness of our system to variations in
sample placement and angular positioning, we conducted
a series of repeatability tests using ducial marker-based pose
estimation with an Azure Kinect DK camera. For these tests, the
camera was mounted at a xed position separate from the robot
wrist. The sample holders were systematically positioned at
10 cm intervals along the workspace, with varying yaw angles
relative to the camera. Successful detections and grasp attempts
depended on two primary criteria: (1) the ducial tag must
remain visible to the camera within its eld of view, and (2) the
sample holder must be oriented within an angle range that
allows the robotic arm to approach and grasp it effectively.
Grasp failures primarily occurred when samples were placed
more than 65 cm from the camera [Fig. S2†]. In such cases,
inaccurate pose estimations of occluded ducial markers
resulted in a 50% success rate (2 out of 4 grasps). We also
measured the acceptable yaw range that ensured an orthogonal
approach for the robot grasp through manual variation, and
logged these ranges for each position above [Table S1†]. While
ducial markers provided reliable pose estimation under most
conditions, certain fundamental limitations must be noted.
Detection accuracy is inuenced by occlusion, extreme viewing
angles, distortions in the marker's surface, and lighting
conditions, which can impact the consistency of marker
© 2025 The Author(s). Published by the Royal Society of Chemistry
recognition. On accurate pose estimation, a successful grasp
still requires an orthogonal approach by the gripper, thus
imposing limits on the sample orientation.
3.5 Discussion of impact and limitations

This campaign demonstrated the full capacity of the architec-
ture described above, and the utility of integrating open-source
robotics tools into Bluesky orchestrated experiments. We
established in previous work that such a deployment can be re-
deployed to a beamline in under 2 person hours.16 By inte-
grating computer vision into the approach, we have further
reduced the re-deployment effort required, as samples can be
placed arbitrarily within the environment with need no indi-
vidual alignment, therefore allowing constant time scaling of
human effort. We prescribed a form factor for our samples that
is exible and precise, asserting only that the sample has
a 25 mm square kinematic base mounted opposite the ArUco
tag. This ensured that the samples can be placed in arbitrary
positions in the robot workspace, and precisely loaded and
unloaded. As each of our samples is designed to hold a sub-
library of capillaries or 2-d sample morphologies (e.g., battery
coin cells), this system can be extended through effective
packing of the robot workspace to conduct a campaign over
thousands of measurable samples. The precision afforded by
the kinematic base is limited by the consistency of the place-
ment of the ducial markers, and we suggest embedding the
markers directly in the manufacture of the sample holders.
Nonetheless, the combination used in our experiments was
robust to variation in positioning in the 3-d workspace as well as
mounting angles. In summary, this demonstrates a capability
for full shis (8 hours) of self-driving experiments with minimal
setup required, providing an opportunity for researchers to run
overnight high-throughput or adaptive experiments without
limiting the more manual involved research they might want to
accomplish during the day.

Our approach to pose estimation and integration into the
ROS2 service provides a clear path for extensibility to variable
environments and engineered sample morphologies. Nonethe-
less, there are several opportunities for enhancement in this
approach. Firstly, the requirement for a local physical server to
execute the camera nodes produced a lethargy in our overall
system infrastructure, and a networked camera would be an
immediate improvement. We chose to use the Azure Kinect DK
to exploit its ToF depth sensing capabilities; however, found
that the repeatability in pose estimation using available foun-
dation models was insufficient for our application.33,34 We
expect that as the eld advances, there will be new opportunities
to replace the ducial markers. Extending the computer vision
capabilities would only involve replacing the algorithm in the
Pose Estimation service. At present, the reliability requirements
for our systems led us to engineer sample holders and ducial
markers. Given the routine capabilities in additive
manufacturing, we see ample opportunities to extend this
system to use diverse sample morphologies, and increase the
precision of the ducial marker relative to the grasp point of the
sample by printing the marker directly into the sample holder.
Digital Discovery, 2025, 4, 1083–1091 | 1089

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00036j


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/1

3/
20

26
 5

:4
0:

06
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Furthermore, as the experiment environment becomes more
densely populated with samples, there will be a need to inte-
grate the object Pose Estimation service with the obstacle
registration services for dynamic collision avoidance.

While not innovative from an AI algorithm standpoint, our
use of Bluesky Adaptive created an extensible closed-loop system
between samples and experiments that paves way for increas-
ingly complex self-driving measurements at user facilities. The
Bluesky Adaptive harness is built to be extended to arbitrary
levels of decision making complexity, and provides a framework
for higher order decision making in Bluesky orchestrated
experiments [Fig. 1]. The agents built using this harness can
also be automatically deployed with an HTTP interface, opening
up opportunities for designing effective human-agent interac-
tion, introspection, and control with web tools. Prototype self-
driving experimental campaigns have been accomplished
using only Bluesky orchestrated automation before,27 albeit this
integration of sample databases, computer vision, and robotic
sample management with Bluesky Adaptive provides a frame-
work for long running campaigns in the BaaS model. Future
work at facilities leveraging this technology should focus on
extending the diversity of experimental environments that can
be integrated with this kind of solution. Currently, the effort
required to modify or extend this architecture to new tasks
depends on the degree of modication. Performing the same
pick-and-place task in a different environment or with
a different sample morphology is a trivial change that only
involves parametrization. Adjusting the states in the FSM or
adding additional states and transitions would require adjust-
ment of the server source code. Nonetheless, there are oppor-
tunities to make this approach more easily extensible to
completely novel tasks without substantial reprogramming.

4 Conclusions

This study demonstrates the successful integration of robotics
into the Bluesky experimental orchestration ecosystem,
achieving adaptive, high-throughput experimentation at NSLS-
II. By harmonizing ROS2 with Bluesky, we introduced a client-
server architecture for robotic sample management, incorpo-
rating real-time computer vision, adaptive decision-making,
and modular design principles. The architecture's exibility
enables rapid deployment and re-deployment across diverse
experimental setups, reducing human intervention and
enhancing experimental efficiency. Robustness tests validated
the system's ability to handle extended experimental
campaigns, achieving overnight, error-free operation. The
implications of this work extend beyond the PDF beamline or
NSLS-II, offering a scalable framework of open-source technol-
ogies for integrating robotics and AI in scientic research.
Future enhancements could include networked camera
systems, advanced pose estimation techniques, and the incor-
poration of diverse sample morphologies to further enhance
adaptability and precision. This progress represents a critical
step toward realizing the vision of collaborative and [semi]-
autonomous laboratories, empowering researchers to conduct
more efficient, reproducible, and innovative experiments.
1090 | Digital Discovery, 2025, 4, 1083–1091
Data availability

The code for this manuscript can be found at https://
github.com/maffettone/erobs/releases/tag/digitaldiscovery
under the BSD-3 license. The version of the code employed for
this study is tagged as ‘digitaldiscovery’. This code also includes
.stl les to describe all 3-d printed components in this study. A
built container image for this work is hosted at https://ghcr.io/
nsls2/erobs-common-img:digitaldiscovery. These resources
have been deposited in a persistent repository, Zenodo, under
DOI: https://doi.org/10.5281/zenodo.15025185.
Author contributions

Chandima Fernando: soware (lead); writing – original dra
(lead); writing – review and editing (equal). Hailey Marcello:
soware (supporting); writing – review and editing (equal).
Jakub Wlodek: resources (equal); writing – review and editing
(equal). John Sinshimer: resources (equal); writing – review and
editing (equal). Daniel Olds: resources (equal); conceptualiza-
tion (supporting); writing – review and editing (equal). Stuart I.
Campbell: resources (equal); conceptualization (supporting);
writing – review and editing (equal). Phillip M. Maffettone:
soware (supporting); writing – original dra (supporting);
conceptualization (lead); writing – review and editing (equal).
Conflicts of interest

There are no conicts to declare.
Acknowledgements

This research is supported in part by Brookhaven National
Laboratory (BNL), Laboratory Directed Research and Develop-
ment (LDRD) Grant No. 23-039, “Extensible robotic beamline
scientist for self-driving total scattering studies”. This research
also used resources of the PDF (28-ID-1) Beamline and
resources of the National Synchrotron Light Source II, a U.S.
Department of Energy Office of Science User Facility at BNL
under Contract No. DE-SC0012704. This work is supported by
the U.S. Department of Energy (DOE) Office of Science,
Advanced Scientic Computing Research and Basic Energy
Sciences Advanced Scientic Computing Research for DOE User
Facilities award “ILLUMINE – Intelligent Learning for Light
Source and Neutron Source User Measurements Including
Navigation and Experiment Steering”. The authors would like to
knowledge Edwin Lazo for his insightful conversations
surrounding this project, John Trunk for his engineering
support, and Richard Faussete for assistance with 3-d printing.
References

1 Y.-H. Lin, D. A. Joubert, S. Kaeser, C. Dowd, J. Germann,
A. Khalid, J. A. Denton, K. Retski, A. Tavui, C. P. Simmons,
S. L. O'Neill and J. R. L. Gilles, Sci. Robot., 2024, 9, eadk7913.

2 Y. Yang and P. Jiao, Mater. Today Adv., 2023, 17, 100338.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/maffettone/erobs/releases/tag/digitaldiscovery
https://github.com/maffettone/erobs/releases/tag/digitaldiscovery
https://ghcr.io/nsls2/erobs-common-img:digitaldiscovery
https://ghcr.io/nsls2/erobs-common-img:digitaldiscovery
https://doi.org/10.5281/zenodo.15025185
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00036j


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/1

3/
20

26
 5

:4
0:

06
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
3 Y. Jiang, H. Fakhruldeen, G. Pizzuto, L. Longley, A. He,
T. Dai, R. Clowes, N. Rankin and A. I. Cooper, Digital
Discovery, 2023, 2, 1733–1744.

4 P. Nadan, S. Backus and A. M. Johnson, 2024 IEEE
International Conference on Robotics and Automation (ICRA),
2024, pp. 18480–18486.

5 M. Walker, G. Pizzuto, H. Fakhruldeen and A. I. Cooper,
Digital Discovery, 2023, 2, 1540–1547.

6 T. Ha, D. Lee, Y. Kwon, M. S. Park, S. Lee, J. Jang, B. Choi,
H. Jeon, J. Kim, H. Choi, H.-T. Seo, W. Choi, W. Hong,
Y. J. Park, J. Jang, J. Cho, B. Kim, H. Kwon, G. Kim,
W. S. Oh, J. W. Kim, J. Choi, M. Min, A. Jeon, Y. Jung,
E. Kim, H. Lee and Y.-S. Choi, Sci. Adv., 2023, 9, eadj0461.

7 T. Dai, S. Vijayakrishnan, F. T. Szczypiński, J.-F. Ayme,
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