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ws for an interactive human-in-
the-loop automated experiment (hAE) in STEM-
EELS†

Utkarsh Pratiush, *a Kevin M. Roccapriore,b Yongtao Liu,b Gerd Duscher,a

Maxim Ziatdinovc and Sergei V. Kalinin*ac

Exploring the structural, chemical, and physical properties of matter on the nano- and atomic scales has

become possible with the recent advances in aberration-corrected electron energy-loss spectroscopy

(EELS) in scanning transmission electron microscopy (STEM). However, the current paradigm of STEM-

EELS relies on the classical rectangular grid sampling, in which all surface regions are assumed to be of

equal a priori interest. However, this is typically not the case for real-world scenarios, where phenomena

of interest are concentrated in a small number of spatial locations, such as interfaces, structural and

topological defects, and multi-phase inclusions. One of the foundational problems is the discovery of

nanometer- or atomic-scale structures having specific signatures in EELS spectra. Herein, we

systematically explore the hyperparameters controlling deep kernel learning (DKL) discovery workflows

for STEM-EELS and identify the role of the local structural descriptors and acquisition functions in

experiment progression. In agreement with the actual experiment, we observe that for certain parameter

combinations the experiment path can be trapped in the local minima. We demonstrate the approaches

for monitoring the automated experiment in the real and feature space of the system and knowledge

acquisition of the DKL model. Based on these, we construct intervention strategies defining the human-

in-the-loop automated experiment (hAE). This approach can be further extended to other techniques

including 4D STEM and other forms of spectroscopic imaging. The hAE library is available on Github at

https://github.com/utkarshp1161/hAE/tree/main/hAE.
Electron energy-loss spectroscopy (EELS) in scanning trans-
mission electron microscopy (STEM)1 has emerged as a trans-
formative technique in modern materials science, offering an
unparalleled window into the structural and electronic proper-
ties2,3 of materials at the atomic and nano scales. This tool has
been crucial in the development of advanced nanomaterials,4

semiconductor technology, and nanoelectronics, enabling
breakthroughs in these elds. It has also contributed signi-
cantly to energy research, particularly in solar cells5 and battery
materials,6 and in analyzing and optimizing catalysts7 for more
efficient chemical processes. Furthermore, STEM-EELS has
provided critical insights into plasmons in nano-optical struc-
tures and the study of quasiparticles and vibrational excita-
tions,8,9 advancing the fundamental physical understanding in
eering, University of Tennessee, Knoxville,

edu; sergei2@utk.edu

ak Ridge National Laboratory, Oak Ridge,

hland, WA 99354, USA

tion (ESI) available. See DOI:

the Royal Society of Chemistry
elds like photovoltaics, sensing technologies, and solid-state
physics.

The current paradigm of STEM-EELS is based on either
single point spectroscopic measurements or hyperspectral
imaging on rectangular grids. For the former, a human operator
selects the measurement locations based on the structural
features observed in the structural STEM image. It is also
important to note that in many cases the imperfection in the
scanning systems can result in misalignment between the
intended and actual measurement points, leading to the diffi-
culty in detecting errors. For the latter, the region of interest is
identied, and multiple EELS spectra are acquired over rect-
angular grid of points. The resulting 3D hyperspectral data set
can be analyzed using physics-based methods10 or linear11 or
non-linear dimensionality reduction methods to yield 2D
images that are amenable to human perception and potentially
interpretation. However, in this approach, the information is
uniform over the image plane, whereas in most materials
systems the objects of interest are typically localized in a small
number of locations. Similarly, this approach is typically asso-
ciated with signicant beam damage and large acquisition
times.
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The limitations of the classical EELS measurements and
recent emergence of the Python interfaces to commercial
instruments have resulted in strong interest towards automated
spectroscopic measurements. One such approach is based on
a combination of the application of computer vision-based
approaches to identify a priori known objects of interest and
subsequent spectroscopic measurements on these chosen
locations.12–15

The alternative approach to automated EELS measurements
is represented by the inverse workow.14 In this, the spectral
signature of interest such as specic peak positions, integrated
intensity, peak ratios, etc. is identied based on the prior
knowledge and intended goals of the experiment. This scalar
measure of physical interest is referred to as the scalarizer
function, and the purpose of the experiment is to discover
microstructural elements at which this scalarizer is maximized.
In this sense, DKL is targeting the exploration of physics of
interest as reected in a spectrum.16 The example of such an
approach is DKL based workows recently demonstrated by
Roccapriore for EELS and 4D STEM17,18 and Liu for several SPM
(scanning probe microscopy) modalities.19,20 There is also
a study that times the performance gain of the DKL in capturing
the spectral imaging which speeds up by more than 300×.21

However, until now, the DKL22 AE (automated experiment)
workows14,15 were realized using largely ad hoc hyper-
parameter values chosen before the experiment. These included
the choice of scalarizer and acquisition functions dening the
exploration–exploitation balance during experiment. Over the
last 2 years, we have observed that the experimental path can be
strongly affected by these parameters, sometimes resulting in
the process being stuck at selected locations or exploring only
one specic type of microstructural elements. This sensitivity to
hyperparameters and propensity to be trapped in metastable
minima is well known for ML (machine learning) methods.23,24

However, for active learning problems on the experimental
tools, the classical strategies for hyperparameter tuning are
inapplicable. While some parameter optimization can be ach-
ieved using pre-acquired ground truth data, this approach is
sensitive to out of distribution shi effects even for similar
samples and cannot be expected to generalize for different
materials.

Correspondingly, implementation of the AE for the STEM-
EELS experiments requires the introduction of a different
paradigm based on the interactive, or human-in-the-loop, hAE.
In this hAE approach, the human operator monitors the
progression of the AI-driven automated experiment and intro-
duces high-level modications in the policies that govern the
actions of the machine learning agent at each step of the
experiment. This integrative approach between AI and human
was proposed for SPM;15 however, the nature of the possible
control parameters, exploration policies, and their effects on
the exploration pathway are unexplored yet.

The human-in-the-loop approach allows direct control over
three critical aspects of the DKL automated experiment. First,
the human operator can adjust the reward function to dene
the discovery target or specify the type of physics they are most
interested in exploring. Second, the human can inuence the
1324 | Digital Discovery, 2025, 4, 1323–1338
behavior of the machine learning agent, making it more or less
exploratory. For example, at the beginning of an experimental
campaign, the operator might prioritize exploratory targets,
while toward the end of the session, they could narrow the
focus, guiding the algorithm to follow a more gradient-based
approach. Finally, the human can intervene to dene objects
or phenomena that are known a priori to be of interest. The
manuscript discusses how specic parameters and intervals can
be adjusted to implement these steps effectively. However, the
overarching purpose is to present a comprehensive workow
that integrates these elements. To the best of our knowledge,
this represents a novel development in the community.

Herein, we present a benchmark study across a comprehen-
sive range of hyperparameters, including local structural
descriptors and various acquisition functions (AFs) tailored for
both exploitation and exploration phases. Additionally, we
explore different AF parameters to optimize our experimental
setup. A pivotal aspect of our methodology involves monitoring
the learning progression within both the real and feature spaces
of the system. The latter can in turn be dened via the variational
autoencoder (VAE25–27) approach. This dual monitoring provides
critical insights into the progression of automated experiments.
Through a detailed study, we quantify these observations, estab-
lishing a direct link to the pivotal role humans play in selecting
the appropriate parameters. This discussion is further extended
to potential human interventions, highlighting the balance
between automated processes and human expertise in opti-
mizing experimental outcomes. Our ndings underscore the
signicance of human intuition and decision-making in rening
and guiding automated experimental workows.
I. General setting of automated
experiments

The general setting of STEM-EELS experiments is illustrated in
Fig. 1 and can be generalized for any imaging experiments
based on structural and spectral images. Structural data S(x,y)
are easy to acquire and have a high density in the image plane
but have relatively low information density per pixel in one or
few channels. In comparison, spectroscopic data A(E), Fig. 1b,
contains a wealth of information on materials properties, but
acquiring spectroscopic data is time consuming. Thus, at
present, the standard approach is to acquire both the structural
and hyperspectral data sets A(x,y,E), Fig. 1c, over a rectangular
grid of points for analyzing using ML or physics-based methods
to get a set of 2D maps.

The rectangular sampling is easy to implement and, aer
suitable dimensionality reduction,28 is readily amenable to
human perception. It is also optimal in a sense that it is
a natural way to sample unknown space if we have no prior
information. However, in most cases, the information of
interest is concentrated in specic spatial locations. The grid-
based measurements in this case are sub-optimal and are
associated with potential for beam damage and have small
explorable areas because large grids result in long acquisition
times longer than microscope stability allows.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Examples of (a) structural and (b) spectral data (coming from a single point) available in STEM. Generally, structural images are fast to
acquire, whereas spectral acquisition is more time consuming. (c) Hyperspectral imaging; the spectra are acquired over a dense grid, giving rise
to a 3D (or higher-dimensional) data set. Alternatively, (d) human selects themeasurement locations based on structural elements of interest and
iteratively explores the image plane collecting spectral data. Overall, the goal of the experiment is to explore physical behaviors of interest visible
in the spectral data using the structural images as a guide. Note that hyperspectral imaging acquires spectral data everywhere, whereas human
(or ML-based) feature identifications identify locations of interest based on the features visible in structural image (direct workflow). The inverse
workflow as realized in DKL (as shown in Fig. 3) solves the inverse problem – discovery of structural features based on their spectral signatures of
interest.
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Further developments are dynamic techniques that use prior
information to create a sampling pattern. For spectral methods,
the natural approach is to use structural information to identify
objects of interest. One way to do it is via human selection to
identify objects of interest, i.e. create the locations for the
spectral measurements. A similar paradigm can be imple-
mented via a deep convolutional neural network (DCNN)
trained on human-labeled data13 or discovering elements in an
unsupervised manner.29 Once the data are acquired, it can be
analyzed to build structure–property relationships, and if
necessary, expanded to yield 2D images via variants of
inpainting, Gaussian processing,30 etc. However, this strategy
relies on a priori knowledge of which structural objects
comprise the information of interest or purely on statistical
properties of objects in the image plane.

At the same time, in many scenarios, it is the specic aspects
of spectral data that we aim to discover. Examples include
signatures of quasiparticles, valence states, signatures of
surface and bulk plasmons, peaks or edge onsets corresponding
to specic elements, peak ratios related to the oxidation states
or orbital populations, and so on.31–33 In these cases, we can
introduce the measure of physical interest A(E) that maps the
EELS spectrum to a signature of interest. The scalarizer P can be
a scalar functional of spectra or a (low-dimensional) vector.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Hence, a setting for automated experiment is whether we aim to
explore the image plane I(x,y) based on the features of interest
in the spectra. For example, this can be learning the relation-
ship between the structural features and spectra, or discovery of
structural features that give rise to certain signatures, i.e., those
that maximize P. For scalar P, this is optimization, and for
vector P this is multiobjective optimization.

Overall, there are three primary strategies for the spectro-
scopic experiments. The classical approach is to acquire A(x,y,E)
based on a structural domain using a rectangular grid, as shown
in Fig. 1c. This approach is slow and associated with beam
damage to the sample. This strategy is optimal when we have no
other information regarding the sample (or if the structural and
spectral data are uncorrelated). The alternative approach is to
acquire A(E) manually based on structural domain and super-
vision of human at each step, as shown in Fig. 1d. This method
can be expensive, heavily biased by the level of expertise of the
human, and strongly affected by the imperfection of the posi-
tioning system. Finally, the third approach is the inverse
approach. Here, the goal of the experiment is to sequentially
acquire EELS spectra to discover at which structural elements in
real space does the certain spectrum manifest. To achieve this
goal, the ML algorithm learns a mapping between the structure
domain and the spectrum domain.
Digital Discovery, 2025, 4, 1323–1338 | 1325
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The established approach for inverse experiment workows
is based on Deep Kernel Learning16 (DKL). To illustrate math-
ematical foundations of the DKL, we rst consider a simple
Gaussian process, dened as

f(x) ∼ GP(m(x),k(x,x0)) (1)

In eqn (1), GP(x) represents the Gaussian process, where x is
the parameter space. f(x) is the function we observe (e.g. image
contrast). m(x) is the mean function of the GP, which describes
the expected value of the process at input. In typical imaging
problems m is taken as zero. Finally, k(x,x0) is the covariance
(kernel) function of the GP, which models the dependencies
between different input points x and x0. Basically, the GP repre-
sents the strategy to interpolate an unknown black-box function,
yielding the surrogate model that predicts the function value and
its uncertainty over the full parameter space. These predictions
and uncertainty can be further used to guide the active learning
over this parameter space, i.e. guide the selection of the next
measurement points. Bayesian optimization is an example of
such an approach, as will be discussed later.

Conversely, deep kernel learning learns the representation of
some unknown function from some high-dimensional
descriptor, building the correlative relationship between the
two. In the context of the STEM-EELS experiment, the high-
dimensional descriptor can be chosen to be the local struc-
ture within a certain sampling window (image patch), whereas
the discoverable function is either the full EEL spectrum or
some representations of the spectrum (scalarizer).

A deep kernel learning34 is dened as

kDKL(xi,xjjw,q) = kbase(g(xijw),g(xjjw)jq) (2)

In eqn (2), g represents a neural network characterized by its
weight w, while kbase denotes a standard Gaussian process (GP)
kernel (e.g. RBF or Matern).35 The neural network's parameters
and those of the GP base kernel are jointly learned through
either Markov Chain Monte Carlo (MCMC) sampling methods
or stochastic variational inference. Following training, the
resulting DKL model is employed to acquire predictive mean
and uncertainty values, as well as to construct the acquisition
function, similar to the standard GP. The difference between
the two is that the standard GP learns to reconstruct the black-
box function by iterative sampling (e.g. reconstruct the image),
whereas the DKL actively learns the correlative relationship
between known structural and dynamically explored spectral
data (i.e. learn structure–property relationships).
Fig. 2 Representation of the nanoplasmonic system: (a) the HAADF
image detailing the nanoparticle structure; (b)–(d) scalarizer images
representing the dipole, edge, and bulk plasmon modes, highlighting
different plasmonic oscillations; (e) the averaged EELS spectrum, with
scalarizer regions exemplified. Note that we use the terminology
scalarizers 1, 2 and 3 for dipole, edge and bulk modes, respectively, in
the paper.
II. The DKL automated experiment

The steps of DKL automated experiment (AE) include selection of
the scalarizer and control of the exploration–exploitation balance
via acquisition function. These elements and the outputs of the
AE are discussed in detail below using the pre-acquired STEM-
EELS data set on uorine and tin co-doped indium oxide
infrared plasmonic nanoparticles. A monochromated electron
beam (∼50 meV full width at half-maximum) was used to access
1326 | Digital Discovery, 2025, 4, 1323–1338
the near-infrared spectral regime where the plasmon resonances
of these nanoparticles exist. Other relevant conditions and sample
preparation are reported elsewhere;36–38 the analysis here was
performed on the data sets obtained under equivalent conditions.
II.1. Selection of scalarizer

By our denition, the scalarizer function denes the measure of
scientist's interest to a spectrum A(E). In the active learning
terminology, scalarizer is the myopic (i.e. available at each
experiment step) reward function. Scalarizer is designed with
the help of the domain scientist based on knowledge of the
material, enabling scientists to explore the material's properties
with a high degree of specicity and relevance to the domain of
interest. Here, we discuss the possible denitions of the sca-
larizer function for the EELS on nanoplasmonic particles.

Here, the electron beam excites multiple plasmon modes
within the nanoparticle cluster, as shown in Fig. 2, which exist
at different locations in space and with different energies. Three
primary plasmon modes are shown in Fig. 2: a low energy and
long-range collective mode (dipole mode – this is a plasmon
mode for the collection of the particles), a mode conned to the
particle edges (edge mode), and a mode conned to the nano-
particle interior (bulk mode). Since these modes occur at
different energies, they can be selectively imaged from a hyper-
spectral image by integrating the energy band associated with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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each plasmon mode. Correspondingly, we can dene a scalar-
izer as a spectral bandpass lter: scalarizer 1 captures dipole
mode, 2 captures edge mode, and 3 captures bulk mode.
Depending on the experiment goals, the scalarizer function can
be chosen to be more complex – e.g. peak height ratio, peak
width, asymmetry, and any other functional of the spectrum.

It is important to note that previously the scalarizer was
dened before the experiment. However, in the interactive hAE,
the scalarizer can be dynamically tuned during the experiment,
or the type of scalarizer can be changed. For example, the
boundaries of the region of integration can be dynamically
adjusted, or more complex scalarizers such as peak t param-
eters, peak ratios, etc. can be chosen. These behaviors will be
explored in the sections below.
II.2. Policies in DKL

The term policy refers to a strategic approach that guides the
decision process of the ML algorithm. For the myopic optimi-
zation frameworks, the policy is generally built based on the
estimated prediction and uncertainty of prediction for unex-
plored parts of the parameter space, where a predictive model is
built based on prior measurements via the GP or DKL. In the
context of STEM-EELS experiments, policy determines the
selection of locations for new EELS measurements based on the
structural image and results of previous EELS measurements.

The DKL policy is determined by the acquisition function
parameters which are tuned for exploration and exploitation.
While the number of possible policies is large and new policies
can be formulated, the basic policies include expected
improvement (EI), upper condence bound (UCB), and
maximum uncertainty (MU). These acquisition functions39 are
explained below.

EIðx; xÞ ¼
ððf ðxbestÞþx�mðxÞÞ

sðxÞ

�N
ðf ðxÞ � f ðxbestÞ � xÞ � 4ðzÞdz (3)

where x is the point of evaluation, m(x) is the predictivemean, s(x)
is the predictive standard deviation, f(x) is the function value at
(x), f(xbest) is the current best observed function value, f(z) is the
standard normal probability density function, and z is a standard
normal random variable. x (or xi) is the parameter that controls
the trade-off between exploration and exploitation. The param-
eter x in the expected improvement (EI) acquisition function
controls the balance between exploration and exploitation.

The expected improvement (EI) acquisition function (eqn
(3)) is typically used to balance exploration and exploitation. It
encourages the selection of points where the predicted function
value is likely to improve upon the current best value. EI
measures the expected improvement over the current best
observation. However, in some scenarios, one might want to
explicitly maximize the maximum uncertainty (MU) to improve
exploration, especially in the early stages of the search or when
the global structure of the function is unknown. This can help
to ensure a more thorough search of the parameter space and
avoid premature convergence to local optima.

Finally, the Upper Condence Bound (UCB) acquisition
function (eqn (4)) balances exploration and exploitation by
© 2025 The Author(s). Published by the Royal Society of Chemistry
selecting points based on both the predictive mean and the
predictive standard deviation (uncertainty) of the GP model.

UCB(x) = m(x) + d × s(x) (4)

where m(x) is the predictive mean of the GP at point (x), s(x) is
the predictive standard deviation (uncertainty) of the GP at
point (x), and d is the UCB parameter that determines the
balance between exploration and exploitation. Note, from here
on, we will use b (beta) instead of d.

In realistic settings, the acquisition function can also include
the cost of measurements. This cost can be either a priori known
or a discoverable function of the experiment, e.g. predicted over
the full image space by a separate Gaussian process. However, in
STEM EELS, we assume that the measurement costs are equal for
all locations within the image plane.

Similar to the scalarizer, the acquisition function has
control parameters, e.g. exploration–exploitation balance.
During the automated experiment, we can consider dynami-
cally tuning the acquisition function or switching between
different acquisition functions. We also note that spectrum
acquisition can be driven by a different strategy, e.g. random
selection of points or sampling specic structural features.
These can be switched dynamically during the experiment. Like
the scalarizer, this requires approaches to monitor the AE to
make these decisions.
II.3. Experiment progression and output

With the scalarizer and acquisition functions dened, we discuss
the general setting of the DKL experiment. The DKL-based
automated experiments are summarized in a owchart form, as
shown in Fig. 3, and is recommended to be referred along with
the text in this section. The goal of the DKL experiment is to
discover which structural features in the S(x,y) maximize P =

P(A(E)). To accomplish this goal, the image is represented as
a collection ofM patches each of size N× N, where N is the patch
size and M is the total number of patches. Each patch scan is
indexed by the location (xi,yi), where xi,yi correspond to the point
on the global image S(x,y) from which the patch has been taken.
In other words, the patches are sampled over the rectangular grid.
All the patches are available from the beginning.

The microscope performs the AE on a set of seed patches
(can be a single) to generate a set of spectra Ai(xi,yi,E) and hence
evaluate the scalarizer in these locations, P(xi,yi). The seed
points xi, yi can be chosen randomly or selected based on the
analysis of the features in the global image S(x,y). The DKL
algorithm is trained on all the patches S(xj,yj) and the scalarizer
functions available in the locations (xj,yj).

Aer training and prediction, the DKL algorithm performs
the spectral measurement in the patch with coordinates:

(xn,yn) = argmax(Acq(xi,yi)) (5)

where i goes over all M patches (i.e. all structural descriptors).
With the new measured spectrum An(xn,yn,E), the scalarizer
function P(An) is calculated and the DKL algorithm is retrained
with the additional data set. This is repeated until the expiration
Digital Discovery, 2025, 4, 1323–1338 | 1327
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Fig. 3 Deep kernel learning workflow: (a) acquire an image and extract patches around interesting features (atoms, nanoparticles, grains, etc.),
(b) select seed points, (c) perform spectroscopy at the seed points, generating patch-scalarizer pairs, (d) select active learning policy, (f) train the
deep kernel model and (g) select the next point based on policy. Repeat steps (c), (d), (f) and (g) until experimental budget. Notice that (e) is policy,
which is set once the experiment starts.
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of experimental budget. Finally, experimental trace is dened as
the sequence of patches, locations, and measured spectra
acquired during experiment progression.
Table 1 The table containing all the definitions and terminologies introd

Term Denition

Global structural image S(x,y) Initial dataset o
provided prior t
experiment, wh
patches to train

Spectrum A(E) The EELS meas
Hyperspectral image A(x,y,E) Collection of pa
Scalarizer function, P Extract interest
Experimental trace Spectrum and p
Acquisition function Decides explora
Policy The guiding crit

in the sequence
maximization o

Live model The model bein
Final model The model as so
Complete model The DKL mode

generated on a
VAE latent Trained on full
Latent space The lower-dime

pertaining to VA
Latent embeddings The feature rep

space
Latent images Representation

of the dimensio
number of dim

Full DKL Trained on com
Learning curve Curve showing

active learning
Monitoring curve Curve represent

1328 | Digital Discovery, 2025, 4, 1323–1338
II.4. Additional types of DKL experiments

The output of DKL AE is the experimental trace, or collection of
the patches and the corresponding spectra. With the trace and
uced in this work

Availability

f structural information was
o the DKL (deep kernel learning)
ich was utilized for generating
the DKL model

Before

urement During
tches and spectra During
ed physics from spectrum Before
atches together Aer
tion or exploitation Before
erion for choosing the next path
involved, at its most basic, and
f the acquisition function
g trained during the experiment During
on as active learning terminates Aer
l trained from a full dataset
grid

NA

patches Before
nsional encoded space
E/DKL

During

resentation of input in the latent During

of the entire dataset along each
ns. Number of latent images =
ensions of latent space

NA

plete data NA
how the DKL model behaves in During

ing next point uncertainty During
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aer the experiment, we found it useful to dene several
forensic tools15 that make the understanding of the DKL easier.
These include the following:

The “DKL Explore” process is designed to systematically
explore a dataset using Deep Kernel Learning (DKL) techniques.
It begins by preparing the dataset, extracting patches and
associated scalarizer values, and splitting the data into training
and testing sets. Over a series of exploration steps, a DKL model
is trained on the training data, enabling the prediction of sca-
larizer mean and variance values for all data patches. The
selection of the next data point is guided by an acquisition
function, which aids in identifying valuable information. The
chosen data point, along with its associated scalarizer value, is
then added to the training data. This process is repeated for
each step, recording critical information such as mean, vari-
ance, selected index, acquisition function value, and scalarizer
value. Finally, the nal training and testing datasets are saved.
This approach allows us to simulate the DKL over a pre-
acquired data set, do the initial parameter tuning, reveal the
relationships between the parameters, etc.

The “DKL Counterfactual” process conducts dataset explo-
ration with a unique focus on counterfactual scenarios within
the context of Deep Kernel Learning (DKL). It initiates by
Fig. 4 DKL embedding for scalarizer “3”. Panels (a) and (b) correspond to
See the ESI† for all simulations. Here, 1 pixel corresponds to 5.10 nm.

© 2025 The Author(s). Published by the Royal Society of Chemistry
collecting data patches and their associated scalarizer values
and establishes an initial train-test split. Over each exploration
step, a DKL model is trained on the existing training data to
facilitate the prediction of scalarizer mean and variance values
for all data patches. This process employs records from previous
exploration steps to inform the selection of the next data point,
without relying on traditional acquisition functions. This
counterfactual approach allows for a comprehensive examina-
tion of alternative scenarios and a deeper understanding of the
automated experiment trajectory.

We have further summarized related terminologies like live,
nal and complete model required to monitor knowledge
acquisition in the DKL experiment (Table 1). The table also
contains denitions to terminologies, latent space, latent
embedding and latent images which are introduced later in the
paper.
III. DKL on full data and the role of the
window size

The DKL experiment is dened in a large space of hyper-
parameters corresponding to the selection of patch (window)
sizes, scalarizer function, acquisition function, and their
patch size 5, (c) and (d) to patch size 10, and (e) and (f) to patch size 15.

Digital Discovery, 2025, 4, 1323–1338 | 1329
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hyperparameters. Hence, similar to classical ML, it is advanta-
geous to examine the effects of these hyperparameters using the
pre-acquired data.

As a rst step, we explored the effect of varying patch sizes.
We systematically explored 5, 10 and 15 window sizes. Each
patch is measured in terms of area whose units are pixel square.
We noted that increasing the patch size resulted in a change in
the effective resolution of the latent embedding image, as
shown in Fig. 4 [see also the ESI† for quantication]. We
observed a distinct scalarizer pattern emerging in the DKL
embedding, which indicates that DKL effectively learns the
structure–property relationship inherent within the data.

Complementary information can be derived from the clas-
sical variational autoencoder (VAE) analysis of the structural
data only. Over the last several years, VAEs have emerged as
a powerful tool for building low-dimensional representations of
data in the form of latent vectors. The encoder part of the VAE
compresses data to the latent vector, whereas the decoder
expands the latent vector back to the original dimensionality,
balancing the reconstruction loss and the Kullback–Leibler loss
between the latent distribution and Gaussian. The key aspect of
the VAE is their capability to disentangle the factors of vari-
ability in the data, for example the width and tilt of handwritten
digits. These can be conveniently represented for the 2D space
as latent representations, as shown in Fig. 5. In this, the 2D
latent space of the trained VAE is sampled over a 2D grid, and
reconstructed objects are plotted as an image. The applications
of VAEs for imaging data are discussed in depth in ref. 25–27. In
particular, VAEs also allow us to explicit separation of invari-
ances in data, for example rotations or translations. This comes
Fig. 5 (a)–(c) Latent space of rVAE for patch sizes 5, 10 and 15, respectiv
image patch can be decoded from any point in the latent space. The laten
sampling grid in the latent space of VAE and illustrate the evolution of fea
in radians.

1330 | Digital Discovery, 2025, 4, 1323–1338
handy in microscopy images as we oen visualize lattices with
symmetry in both translation and rotation, and if the model is
unaware about this inductive bias, it will have to see a lot of data
to just learn symmetry. Having this already encoded in model
helps in better model performance in an active learning setup
where data are already scarce. The rotationally invariant VAE
(rVAE) will discover the features with any rotational angle and
separate it as an additional physically dened factor of varia-
tion. Fig. 5a–c illustrate how the VAE's latent manifold changes
with different patch sizes 5, 10, and 15. From these visualiza-
tions, it is evident that there is less variation along the y-axis
(one of the latent dimensions) for a patch size of 5. This
suggests that features extracted from patches of size 5 contain
less information compared to those from patches sizes 10 and
15, where both latent variables show noticeable variability. The
point is that before doing the actual automated experiment this
analysis should be carried out to determine the ideal patch size.
For further details on the VAE's latent manifold denition,
please refer to Table 1.

Here, we note that the structure of the DKL latent space is
determined both by the structural and spectral features.
Conversely, the structure of the VAE latent space is determined
only by the data itself. Due to its capability to disentangle the
latent representations, VAE gives us access to a feature space
which is helpful in navigating the search space. For example,
the initial selection of window size can be guided by this anal-
ysis based on the structure of latent representations and
complexity of latent distributions. For example, we can see that
the scalarizer property is better highlighted in embedding of
DKL with patch size 5.
ely. (d)–(f) Corresponding latent images for patch size 5. Note that the
t representations (top row) are generated via decoding the rectangular
tures over the latent space. The angle latent vector is represented by z0

© 2025 The Author(s). Published by the Royal Society of Chemistry
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IV. DKL active learning

In DKL active learning, the ML agent issues the commands to
the microscope. The human operator can amend the ML
behavior via choice of policies and scalarizer. However, steering
of the AE requires monitoring the progression of the DKL
experiments. Here, we explore these monitoring functions and
show how hyperparameters of the DKL algorithm affect the
process.

In the actual automated experiment, we always must
contend with dri, beam damage, and other non-stationary
effects. In order to simulate a wide range of scenarios, stress-
test our system under various conditions, and ne-tune the
active learning algorithms to achieve optimal performance,
here we explore the AE using the pre-acquired data.
IV.1. Monitoring learning

The rst set of monitoring variables are directly available from
the DKL itself, namely the predicted scalarizer and predicted
Fig. 6 Monitoring learning using predictive uncertainty. (a) is for acquisit
curves represent live, final and complete models, respectively. The predic
values in “(d)” have been scaled up by a factor of 10 000; the “Units” value
“x” and “b” values – it is not directly tied to a physical measurement but

© 2025 The Author(s). Published by the Royal Society of Chemistry
uncertainty. Note that by the nature of the DKL experiment,
these are dened for all patches within the image. Hence, for
prediction and uncertainty, we can visualize the overall
behavior, including the mean and dispersion, and explore the
evolution of the full distribution functions.

As an example, in Fig. 6 are shown the learning curves for
predictive uncertainty, with the bold black line representing the
mean of the prediction from the model and shaded region
corresponding to uncertainty intervals. Here, the mean and
dispersion of uncertainty are calculated for all structural
patches. The mean hence quanties the average uncertainty for
prediction of scalarized for all patches. The corresponding
dispersion quanties the distribution of uncertainties over
a collection of patches. The term “x”= 0.08 is highlighted in red
because it has the highest predictive uncertainty among all the
runs, as shown in Fig. 6d.

For comparison, we also show the predictions of the nal
and complete models. The nal model coincides with the live
model by the end of the experiment, whereas the complete
ion function EI, (b) is for MU and (c) is for UCB. Black, blue and orange
tive uncertainty values varying “x” and “b” values illustrated in (d). Note:
s should be seen just as a comparison based on magnitude for different
is a computed monitoring metric.

Digital Discovery, 2025, 4, 1323–1338 | 1331
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model has been trained on the full data (patch-spectrum pairs)
and provides the comparison point for the effectiveness of
learning. Generally of interest is the overall learning dynamics,
namely the rate of evolution of the predictive uncertainty and its
distribution, and the knowledge gain (decrease of uncertainty)
from the initial state and closeness to the predictions of the
complete model.

The analysis of the learning curves for multiple scenarios, as
described in Fig. 8, reveals a spectrum of potential behaviors,
with detailed variations outlined in the appendix. Depending on
the parameterization, the learning progression may exhibit
a rapid decline followed by a plateau, an exponential-like
decrease, as exemplied in Fig. 6b, or display intermittent
jumps indicative of sporadic learning phases. Crucially, the
variance in predictive uncertainty serves as a gauge for the
stability of the learning process. As evidenced by the compara-
tive analysis between Fig. 6a and b, it is apparent that the latter
demonstrates a more consistent and stable learning trajectory.
Fig. 7 (a)–(c) Next step uncertainty evolutionwith steps for three acquisit
illustrated in (d). Note: the next step uncertainty values (represented as u
should be seen just as a comparison based on magnitude for different “x”
a computed monitoring metric.

1332 | Digital Discovery, 2025, 4, 1323–1338
This stability reects the reliability of the learning algorithm in
developing an accurate model over the course of iterative
training sessions. Such insights are invaluable for rening the
active learning framework, guiding the selection of parameters
that foster a balance between rapid convergence and consistent
learning stability.
IV.2. Monitoring discovery

The second observable which aids AE is monitoring learning as
described by next step uncertainty, as shown in Fig. 7. Panels
(a)–(c) show how the uncertainty varies for the next step over the
experimental trajectory for different acquisition functions,
panel (d) further quanties the values, showing maximum (non-
desirable) for conguration “x” = 0.08 highlighted in red. For
the STEM-EELS data explored here, the evolution of the model
prediction is typically very noisy. We attribute this behavior to
the presence of multiple geometries with almost equivalent
ion functions. The next step uncertainty values varying “x” and “b” values
nits) in “(d)” have been scaled up by a factor of 1000; the “Units” values
and “b” values – it is not directly tied to a physical measurement but is

© 2025 The Author(s). Published by the Royal Society of Chemistry
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values of the scalarizer function, resulting in a very shallow
landscape for the acquisition function. This supposition is
further conrmed in Section IV.3 below.
IV.3. Monitoring experimental progression in real space

The third monitoring parameter that readily emerges in the
context of the DKL STEM-EELS experiment is the experimental
trajectory in real space, i.e. the sequence of measurement points
selected by the algorithm. We dene distance travelled in
trajectory as

X
i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðxi � xiþ1Þ2 þ

�
yi � yiþ1

�2�r �
(6)

where i is the trajectory point that goes from 1 to 100, xi
represents movement in the x direction, and yi represents
movement in the y direction.
Fig. 8 (a) and (b) 2 examples of AE experimental progression with the acq
= 10) in the simulation where the trajectory is exploring the edge and oth
eqn (6)) values with varying “x” and “b” values are illustrated in panel (c).
pendently for analysis presented in Fig. 6–8. Also, to clarify, “x” and “b”
a comparison based on magnitude for different “x” and “b” values – it's no
metric.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Fig. 8 illustrates themonitoring of experimental progression,
where:

B Subgure (a) shows the successful navigation through
regions of plasmons.

B Subgure (b) highlights the challenge of getting stuck in
local minima in vacuum areas, where the target property is not
expected to lie. It presents a process with a patch size of 10 and
an x value of 0.02, resulting in a travel distance of 2495 units.

B Subgure (c) presents a metric that quanties the travel
distance, with a x value of 0.08, yielding a travel distance of 1642
units, which was the lowest and indicates that the experiment
did not get stuck in local minima.

These results suggest that human insight and trial can be
used to carefully nd ideal parameters, such as the value
mentioned above. The longer distance and larger patch size
suggest a broader, more exploratory search behavior that covers
diverse regions within the parameter space, potentially offering
an advantage in avoiding local optima.
uisition function EI (x= 0.08; patch size= 5) and EI (x= 0.02; patch size
er is getting stuck. The trajectory traversed (quantification introduced in
Note: the scaling factor is applied to only the units and is done inde-
values are not normalized. The “Units” values should be seen just as
t directly tied to a physical measurement but is a computed monitoring

Digital Discovery, 2025, 4, 1323–1338 | 1333
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Fig. 9 (a)–(c) Example trajectory of experiment progression in rVAE latent space [see Table 1 for definition] for patch sizes 5, 10 and 15,
respectively.
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The examination of active learning trajectories reveals
a complex relationship between the learning process and the
chosen hyperparameters. For most scenarios, the trajectory
starts with active exploration of the image space at the initial
stages of active learning. However, upon exploration, the
trajectory can get trapped at the specic minimum. This
behavior is particularly oen for smaller patch sizes, as
demonstrated by a patch N = 5 and mean uncertainty (MU)
policy. In contrast, larger patch sizes exhibit a lower propensity
for the trajectory to become stuck in the local minimum, sug-
gesting a direct link between the patch size and the trajectory's
susceptibility to stagnation.

We note that for the explored scenarios, as summarized in
Fig. 8d, there is no clear correlation between the chosen policy,
policy hyperparameters, and window sizes that can guarantee
the lack of local minima. In principle, one way to address this
problem may be via the introduction of additional components
to the acquisition functions that de-prioritize the already
explored areas. Similarly, the acquisition function can include
the cost of measurement, e.g. the time associated for traversing
from one image location to the next one. We expect these
additional components to be highly instrument specic and to
be optimized for specic instruments. However, from the
general perspective, these additional policies will further
introduce additional hyperparameters, necessitating the devel-
opment of both monitoring and intervention strategies, as
discussed below.
IV.4. Monitoring in feature space

We dene the feature space of the system as the latent repre-
sentation of the variational autoencoder trained on the full set
of patches. This approach allows the use of full power of simple,
joint, semi-supervised, and conditional autoencoders to iden-
tify relevant aspects of materials structure. The detailed
discussion of the VAE for materials structure exploration is
presented in ref. 40 and 41.

We note that the capability of the VAEs to disentangle factors
of variation within the data provides a very powerful tool for
exploration of the materials structure visualized via latent
reorientations and latent distributions. The addition of the
1334 | Digital Discovery, 2025, 4, 1323–1338
rotation and translation invariances naturally allows us to
compensate for the uncertainty in the object selection and
presence of the rotational disorder in the system. Finally,
a semi-supervised VAE approach allows us to incorporate prior
knowledge on objects of interest (e.g. preferred classes),
combining the classication and representation disentangle-
ment tasks (Fig. 9).

The trajectory of the automated experiment can be visualized
within the Variational Autoencoder (VAE) space of the system.
To analyze the distribution of points in this space, we employed
kernel density estimation (KDE), which provides a smoothed
representation of the underlying probability density function.
The KDE allows us to identify regions with high concentrations
of points, which we refer to as “aggregation points”. An aggre-
gation point is dened as a location in the latent space where
the kernel density estimate exhibits a local maximum, indi-
cating a cluster or dense region of points. In the context of our
experiment, we observe that the latent space of the VAE exhibits
distinct patterns depending on the patch size: for a patch size of
5, a single aggregation point is observed, characterized by
a prominent peak in the kernel density estimate. For a patch
size of 10, two primary aggregation points are present, with
kernel density estimates showing maxima at these locations, as
well as several dense regions where the experiment progresses.
Similarly, for a patch size of 15, multiple aggregation points and
dense regions are evident. This behavior is intriguing, as it
suggests that the latent space of the VAE encodes structural
information, which varies with different patch sizes. Further-
more, the experiment's trajectory appears to jump between local
maxima in the latent space, implying transitions between
distinct structural regions. This is signicant, as different
regions in the latent space correspond to different types of
structural information, providing valuable insights into the
system's behavior.
V. Interventions

The simulation studies above illustrate that the progression
automated experiments in STEM-EELS can be monitored based
on the learning curves of the DKLmodel, real space, and feature
© 2025 The Author(s). Published by the Royal Society of Chemistry
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space trajectories. At the same time, for certain parameter
values, the experiment can be trapped in the local minima both
in the real and feature spaces. The corresponding behaviors in
the parameter space, while demonstrating certain trends, can
be highly irregular, necessitating the strategies for real-time
interventions during the automated experiment. Note that
these have to be dynamic almost by denition, given the active
nature of real experiment compared to the static nature of the
data in classical ML benchmarks (or example workows used
here).

Here, we identify the possible interventions in the DKL
workow. We note that the initial step of the DKL workow is
the selection of the patch size and initial seed points. The
effects of seed points have been explored by Slautin.42The patch
size effects can be explored prior to the experiment using the
VAE feature space exploration, allowing the complexity of the
latent distribution and the nature of disentangle factors of
variations to be tuned. We further note that in principle the
patch size can be varied during the experiment, i.e. this is a valid
intervention. This in turn requires retraining of the whole
model based on the new patch size. It is important to realize
that in this case the full experimental trajectory prior to inter-
vention will correspond to the off-policy process and can at best
be considered as a new extended seed.

The second intervention channel is the exploration target, or
scalarizer. This allows us to tune the relationship between the
full spectrum and the myopic optimization target. The scalar-
izers can be chosen frommultiple classes (e.g. integral intensity,
peak ratio, and physics base reconstruction), or tuned within
class, e.g. change boundaries of the integrated intensity.

The effect of scalarizer tuning is illustrated in Fig. 10e. Here,
the scalarizer is integral of the EELS spectrum over an interval
[a, b], where a and b can be tuned based on interested physics.
Fig. 10 (a) The overall interactive experimentation flow. (b) and (c) shows
called policy intervention. Similarly, (d) shows the scalarization effect fo
demonstrates the scalarizer tuning effect for three tuning intervals show

© 2025 The Author(s). Published by the Royal Society of Chemistry
We note that the smooth changes in the integration boundaries
result in the formation of several distinct clusters of the
possible future points. We attribute this behavior to relatively
shallow nature of the acquisition function landscape related to
a highly degenerate relationship between the local geometries
and EELS spectra. The exibility in the choice of the interval, i.e.
a and b values lead in exploring diverse experimental trajecto-
ries converging to interesting properties.

Finally, the policies can be tuned on the y via the selection
and hyperparameter tuning of the acquisition functions. Simi-
larly, to scalarize, these can be visualized via the selection of the
Upper Condence Bound (UCB), Expected Improvement (EI),
and Maximum Uncertainty (MU), or parameter tuning.

Shown in Fig. 10 is the effect of x value in EI and the b value
in UCB being adjusted to ne-tune this balance. The scalarizer
is also switched to align with the specic physics of interest,
such as interface, bulk, or surface plasmons, as identied by the
human expert seen in Fig. 10(d).
VI. Summary

To summarize, here, we introduce a detailed framework for the
human-in-the-loop automated experiment in STEM-EELS based
on the myopic optimization workows. We describe the
intrinsic assumptions of the myopic workows and illustrate
how it can be applied to the active experiment in STEM. Based
on the exploration of the broad parameter space of the system
for the pre-acquired data, including patch sizes, policies, and
scalarizers, we demonstrate that for many parameter combi-
nations that AE can be trapped in local minima. Our compre-
hensive analysis, as evidenced by the metrics presented in
Fig. 6d, 7d, and 8d (with optimal scenarios highlighted in red),
reveals that hyperparameter behavior can be highly localized,
how next point acquisition changes with change in policy parameters,
r next point acquisition referred to as scalarizer intervention and (e)
n for three steps.
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making it challenging to identify universally effective and
robust hyperparameter values. The results demonstrate that
hyperparameter performance can be strongly dependent on
local conditions, and therefore, it is difficult to determine a set
of universally good and robust hyperparameter values.

We hence introduce the strategies of the interactive auto-
mated experiment, in which the ML agent issues control signals
to the microscope and the human operator monitors the
progression of automate experiment of suitable time scales. To
enable hAE STEM-EELS, we introduce a set of monitoring
functions based on the DKL model performance and real-space
and feature space exploration.

We introduce the intervention strategies for the DKL work-
ows based on object selection, scalarizer tuning, and policy
tuning. These strategies have been both operationalized and
tested on pre-acquired data and indicate strong degeneracies in
the STEM-EELS data sets. We note that while all interventions
bring the experiment off policy, this allows the dynamic inter-
action between the human operator and the microscopes.

Finally, we note that the proposed human-in-the-loop
approach will be applicable to all other myopic workows, as
long as an enabling algorithm can yield predictions of function
and uncertainty. This includes those based on ensembled
neural networks and physics-informed neural networks,
contextual bandits, and many other model classes. Similarly,
these workows can be directly translated to other experimental
tools including scanning probe microscopy, chemical imaging,
and combinations such as nanoindentation with optical and
scanning electron microscopy. As such, these developments are
universal and can improve multiple areas of materials science
and chemical and physical imaging.

Data availability

The code and data for the study reported in this article can be
found on Zenodo repository at https://doi.org/10.5281/
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