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12 Exploring the structural, chemical, and physical properties of matter on the nano- and atomic scales 

13 has become possible with the recent advances in aberration-corrected electron energy-loss 

14 spectroscopy (EELS) in scanning transmission electron microscopy (STEM). However, the current 

15 paradigm of STEM-EELS relies on the classical rectangular grid sampling, in which all surface 

16 regions are assumed to be of equal a priori interest. However, this is typically not the case for real-

17 world scenarios, where phenomena of interest are concentrated in a small number of spatial 

18 locations, such as interfaces, structural and topological defects, and multi-phase inclusions. One 

19 of foundational problems is the discovery of nanometer- or atomic scale structures having specific 

20 signatures in EELS spectra. Here we systematically explore the hyperparameters controlling deep 

21 kernel learning (DKL) discovery workflows for STEM-EELS and identify the role of the local 

22 structural descriptors and acquisition functions on the experiment progression. In agreement with 

23 actual experiment, we observe that for certain parameter combinations the experiment path can be 

24 trapped in the local minima. We demonstrate the approaches for monitoring automated experiment 

25 in the real and feature space of the system and monitor knowledge acquisition of the DKL model. 

26 Based on these, we construct intervention strategies, thus defining human-in the loop automated 

27 experiment (hAE). This approach can be further extended to other techniques including 4D STEM 

28 and other forms of spectroscopic imaging. The hAE library is available at (Github: 

29 https://github.com/utkarshp1161/hAE/tree/main/hAE).
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31 Electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy 

32 (STEM)1 has emerged as a transformative technique in modern materials science, offering an 

33 unparalleled window into the structural and electronic properties2,3 of materials at the atomic and 

34 nano scales. This tool has been crucial in the development of advanced nanomaterials4, 

35 semiconductor technology, and nanoelectronics, enabling breakthroughs in these fields. It has 

36 also contributed significantly to energy research, particularly in solar cells5 and battery 

37 materials6, and in analyzing and optimizing catalysts7 for more efficient chemical processes. 

38 Furthermore, STEM-EELS has provided critical insights into plasmons in nano-optical structures 

39 and the study of quasiparticles and vibrational excitations89, advancing fundamental physical 

40 understanding in fields like photovoltaics, sensing technologies, and solid-state physics. 

41 The current paradigm of STEM-EELS is based either on single point spectroscopic 

42 measurements or hyperspectral imaging on rectangular grids. For the former, human operator 

43 selects the measurement locations based on the structural features observed in the structural STEM 

44 image. It is also important to note that in many cases the imperfection in the scanning systems can 

45 result in the misalignment between the intended and actual measurement points, leading to difficult 

46 to detect errors. For the second, the region of interest is identified, and multiple EELS spectra are 

47 acquired over rectangular grid of points. The resulting 3D hyperspectral data set can be analyzed 

48 using physics-based methods10 or linear11 or non-linear dimensionality reduction methods to yield 

49 2D images that are amenable to human perception and potentially interpretation. However, in this 

50 approach the information is uniform over the image plane, whereas in most materials systems the 

51 objects of interest are typically localized in a small number of locations. Similarly, this approach 

52 is typically associated with significant beam damage and large acquisition times. 

53 The limitations of the classical EELS measurements and recent emergence of the Python 

54 interfaces to commercial instruments have resulted in strong interest towards automated 

55 spectroscopic measurements. One such approach is based on combination of the application of 

56 computer vision-based approaches to identify a priori known objects of interest and subsequent 

57 spectroscopic measurements on these chosen locations.12–15  

58 The alternative approach to automated EELS measurements is represented by the inverse 

59 workflow.14 In this, the spectral signature of interest such as specific peak positions, integrated 

60 intensity, peak ratios, etc. is identified based on the prior knowledge and intended goals of the 

61 experiment. This scalar measure of physical interest is referred to as the scalarizer function, and 
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62 the purpose of the experiment is to discover microstructural elements at which this scalarizer is 

63 maximized. In this sense, DKL is targeting the exploration of physics of interest as reflected in a 

64 spectrum16. The example of such an approach is DKL based workflows recently demonstrated by 

65 Roccapriore for EELS and 4D STEM17,18, and Liu for several SPM(Scanning probe microscopy) 

66 modalities19,20. There is also a study which times the performance gain of the DKL in capturing 

67 the spectrum-imaging which is speed’s up more than 300x21.

68 However, until now the DKL22 AE(Automated experiment) workflows14,15 were realized 

69 using largely ad hoc hyperparameter values chosen before the experiment. These included the 

70 choice of scalarizer and acquisition functions defining exploration-exploitation balance during 

71 experiment. Over the last 2 years, we have observed that the experimental path can be strongly 

72 affected by these parameters, sometimes resulting in the process being stuck at selected locations 

73 or exploring only one specific type of microstructural elements. This sensitivity to 

74 hyperparameters and propensity to be trapped in metastable minima is well known for 

75 ML(Machine learning) methods.23,24 However, for active learning problems on the experimental 

76 tools, the classical strategies for hyperparameter tuning are inapplicable. While some parameter 

77 optimization can be achieved using pre-acquired ground truth data, this approach is sensitive to 

78 out of distribution shift effects even for similar samples and cannot be expected to generalize for 

79 different materials. 

80 Correspondingly, implementation of the AE for the STEM-EELS experiments requires the 

81 introduction of a different paradigm based on the interactive, or human in the loop, hAE. In this 

82 hAE approach, the human operator monitors the progression of the AI-driven automated 

83 experiment and introduces high-level modifications in the policies that govern the actions of the 

84 machine learning agent at each step of the experiment. This integrative approach between AI and 

85 human was proposed for SPM;15 however, the nature of the possible control parameters, 

86 exploration policies, and their effects on the exploration pathway has been unexplored.

87  The human-in-the-loop approach allows direct control over three critical aspects of the 

88 DKL automated experiment. First, the human operator can adjust the reward function to define the 

89 discovery target or specify the type of physics they are most interested in exploring. Second, the 

90 human can influence the behavior of the machine learning agent, making it more or less 

91 exploratory. For example, at the beginning of an experimental campaign, the operator might 

92 prioritize exploratory targets, while toward the end of the session, they could narrow the focus, 
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93 guiding the algorithm to follow a more gradient-based approach. Finally, the human can intervene 

94 to define objects or phenomena that are known a priori to be of interest. The manuscript discusses 

95 how specific parameters and intervals can be adjusted to implement these steps effectively. 

96 However, the overarching purpose is to present a comprehensive workflow that integrates these 

97 elements. To the best of our knowledge, this represents a novel development in the community.

98 Here, we present a benchmark study across a comprehensive range of hyperparameters, 

99 including local structural descriptors and various acquisition functions (AFs) tailored for both 

100 exploitation and exploration phases. Additionally, we explore different AF parameters to optimize 

101 our experimental setup. A pivotal aspect of our methodology involves monitoring the learning 

102 progression within both the real and feature spaces  of the system. The latter can in turn be defined 

103 via the Variational Autoencoder (VAE25–27) approach. This dual monitoring provides critical 

104 insights into the progression of automated experiments. Through a detailed study, we quantify 

105 these observations, establishing a direct link to the pivotal role humans play in selecting the 

106 appropriate parameters. This discussion further extends to potential human interventions, 

107 highlighting the balance between automated processes and human expertise in optimizing 

108 experimental outcomes. Our findings underscore the significance of human intuition and decision-

109 making in refining and guiding automated experimental workflows. 

110

111

112 I. General setting of automated experiment

113 The general setting of the STEM-EELS experiments is illustrated in Figure 1 and can be 

114 generalized for any imaging experiments based on structural and spectral images. Structural data 

115 S(x,y) are easy to acquire and have high density in image plane, but have relatively low information 

116 density per pixel in one or few channels. In comparison, spectroscopic data A(E), Figure 1b, 

117 contains a wealth of information on materials properties, but acquiring spectroscopic data is time 

118 consuming. Thus, by now standard approach is to acquire both the structural and the hyperspectral 

119 data sets A(x,y,E) , Figure 1c, over rectangular grid of points. For hyperspectral data and analyze 

120 using ML or physis based methods to get a set of 2D maps.

121
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122

123

124 Figure 1. An example of (a) structural and (b) spectral data (coming from a single point) available 

125 in STEM. Generally, structural images are fast to acquire, whereas spectral acquisition is more 

126 time consuming. In (c) hyperspectral imaging, the spectra are acquired over dense grid, giving rise 

127 to 3D (or higher-dimensional) data set. Alternatively, (d) human selects the measurement locations 

128 based on structural elements of interest and iteratively explores image plane collecting spectral 

129 data. Overall, the goal of the experiment is to explore physical behaviors of interest visible in the 

130 spectral data using the structural images as a guide. Note that hyperspectral imaging acquires 

131 spectral data everywhere, whereas human (or ML based) feature identifications identifies location 

132 of interest based on the features visible in structural image (direct workflow). The inverse 

133 workflow as realized in DKL(as shown in Figure 3) solves inverse problem – discovery of 

134 structural features based on their spectral signatures of interest. 

135

136 The rectangular sampling is easy to implement and, after suitable dimensionality 

137 reduction28, is readily amenable to human perception. It is also optimal in a sense that natural way 

138 to sample unknow space if we have no prior information. However, in most cases the information 

139 of interest is concentrated in specific spatial locations. The grid-based measurements in this case 
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140 are sub-optimal and are associated with potential for beam damage and small explorable areas 

141 because large grids result in long acquisition times longer than microscope stability allows.

142 The further development are dynamic techniques that use prior information to create 

143 sampling pattern. For spectral methods, the natural approach is to use structural information to 

144 identify objects of interest. One way to do it is via human selection to identify objects of interest, 

145 i.e. create the locations for the spectral measurements. A similar paradigm can be implemented via 

146 deep convolutional neural network (DCNN) trained on human-labeled data13 or discovering 

147 elements in the unsupervised manner29. Once the data is acquired, it can be analyzed to build 

148 structure-property relationships, and if necessary, expanded to yield 2D images via variants of 

149 inpainting, Gaussian processing30, etc. However, this strategy relies on a priori knowledge of 

150 which structural objects comprise the information of interest or purely on statistical properties of 

151 objects in the image plane. 

152 At the same time, in many scenarios it is the specific aspects of spectral data that we aim 

153 to discover. The examples include signatures of quasiparticles, valence states, signatures of surface 

154 and bulk plasmons, peaks or edge onsets corresponding to specific elements, peak ratios related to 

155 the oxidation states or orbital populations, and so on.31–33 In these cases, we can introduce the 

156 measure of physical interest A(E) that maps the EELS spectrum to a signature of interest. The 

157 scalarizer P can be a scalar functional of spectra, or a (low dimensional) vector. Hence, a setting 

158 for automated experiment is whether we aim to explore the image plane I(x,y) based on the features 

159 of interest in the spectra. For example, this can be learning the relationship between the structural 

160 features and spectra, or discovery of structural features that give rise to certain signatures, i.e., 

161 those that maximize P.  For scalar P this is optimization, for vector P multiobjective optimization. 

162 Overall, there are three primary strategies for the spectroscopic experiments. The classical 

163 approach is to acquire A(x,y,E) based on structural domain using a rectangular grid, shown in 

164 Figure 1c. This approach is slow and associated with the beam damage to the sample. This strategy 

165 is optimal when we have no other information regarding the sample (or if the structural and spectral 

166 data are uncorrelated). The alternative approach is to acquire A(E) manually based on structural 

167 domain and supervision of human at each step, as shown in Figure 1d. This method can be 

168 expensive and heavily biased by the level of expertise of the human, and strongly affected by the 

169 imperfection of the positioning system. Finally, the third approach is the inverse approach. Here, 

170 the goal of the experiment is to sequentially acquire EELS spectra to discover at which structural 
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171 elements in real space does the certain spectrum manifest. To achieve this goal, the ML algorithm 

172 learns a mapping between structure domain and the spectrum domain. 

173 The established approach for inverse experiment workflows is based on Deep Kernel 

174 Learning16 (DKL). To illustrate mathematical foundations of the DKL, we first consider the simple 

175 Gaussian Process, defined as:

176 𝑓(𝑥) ∼ 𝒢𝒫 𝑚(𝑥),𝑘(𝑥,𝑥′)                                                           (1)

177 In Eq.(1), 𝒢𝒫(x) represents the Gaussian Process, where x is the parameter space. The f(x) 

178 is the function we observe (e.g. image contrast). The m(x) is the mean function of the GP, which 

179 describes the expected value of the process at input. In typical imaging problems m is taken as 

180 zero. Finally, k(x, x') is the covariance (kernel) function of the GP, which models the dependencies 

181 between different input points x and x'. Basically, GP represents the strategy to interpolate 

182 unknown black-box function, yielding the surrogate model that predicts the function value and its 

183 uncertainty over the full parameter space. These predictions and uncertainty can be further used to 

184 guide the active learning over this parameter space, i.e. guide the selection of the next measurement 

185 points. Bayesian Optimization is an example of such an approach, as will be discussed later.  

186 Conversely, deep kernel learning learns the representation of some unknown function from 

187 some high dimensional descriptor, building the correlative relationship between the two.  In the 

188 context of the STEM-EELS experiment, the high dimensional descriptor can be chosen to be the 

189 local structure within a certain sampling window (image patch), whereas discoverable function is 

190 either the full EEL spectrum or some representations of the spectrum (scalarizer).

191 A deep kernel learning34 is defined as:

192 𝑘𝐷𝐾𝐿 𝑥𝑖,𝑥𝑗│𝑤,𝜃 = 𝑘𝑏𝑎𝑠𝑒 𝑔 𝑥𝑖│𝑤 ,𝑔 𝑥𝑗│𝑤 │𝜃                                           (2)

193 In Eq.(2), 𝑔 represents a neural network characterized by its weights 𝑤, while 𝑘𝑏𝑎𝑠𝑒 denotes 

194 a standard Gaussian process (GP) kernel (e.g. RBF or Matern)35. The neural network's parameters 

195 and those of the GP base kernel are jointly learned through either Markov chain Monte Carlo 

196 (MCMC) sampling methods or stochastic variational inference. Following training, the resulting 

197 DKL model is employed to acquire predictive mean and uncertainty values, as well as to construct 

198 the acquisition function, similar to standard GP. The difference between the two is the standard 

199 GP learns to reconstruct the black-box function by iterative sampling (e.g. reconstruct the image), 

200 whereas the DKL actively learns the correlative relationship between known structural and 

201 dynamically explored spectral data (i.e. learn structure-property relationships). 
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202

203 II. The DKL automated experiment

204 The steps of the DKL automated experiment (AE) include selection of scalarizer and 

205 control of the exploration-exploitation balance via acquisition function. These elements and the 

206 outputs of the AE are discussed in detail below using the pre-acquired STEM-EELS data set on 

207 fluorine and tin co-doped indium oxide infrared plasmonic nanoparticles. A monochromated 

208 electron beam (~50 meV full width half max) was used to access the near infrared spectral regime 

209 where the plasmon resonances of these nanoparticles exist. Other relevant conditions and sample 

210 preparation are reported in elsewhere;36–38 the analysis here was performed on the data sets 

211 obtained under equivalent conditions.

212

213 II.1. Selection of scalarizer:

214 By our definition, the scalarizer function defines the measure of scientist’s interest to a 

215 spectrum A(E). In the active learning terminology, scalarizer is the myopic (i.e. available at each 

216 experiment step) reward function. Scalarizer is designed with the help of the domain scientist based 

217 on knowledge of the material and enabling scientists to explore the material's properties with a 

218 high degree of specificity and relevance to the domain of interest. Here, we discuss the possible 

219 definitions of the scalarizer function for the EELS on nanoplasmonic particles.

220 Here, the electron beam excites multiple plasmon modes within the nanoparticle cluster in 

221 Figure 2, which exist at different locations in space and different energies. Three primary plasmon 

222 modes are shown in Figure 2: a low energy and long-range collective mode (dipole mode - This is 

223 plasmon mode of the collection of the particles), a mode confined to the particle edges (edge mode), 

224 and a mode confined to nanoparticle interior (bulk mode). Since these modes occur at different 

225 energies, they can be selectively imaged from a hyperspectral image by integrating the energy 

226 band associated with each plasmon mode. Correspondingly, we can define a scalarizer as a spectral 

227 bandpass filter:  the scalarizer 1 captures dipole mode, 2 captures edge mode, 3 captures bulk 
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228 mode. Dependent on the experiment goals, the scalarizer function can be chosen to be more 

229 complex – e.g. peak height ratio, peak width, asymmetry, and any other functional of the spectrum. 

230

Figure 2. This figure represents the nanoplasmonic system: (a) is the HAADF image detailing 

nanoparticle structure; (b), (c), and (d) are scalarizer images representing the dipole, edge, and 

bulk plasmon modes, highlighting different plasmonic oscillations; and (e) is the averaged EELS 

spectrum, with scalarizer regions exemplified. Note we use the terminology scalarizer 1, 2 

and 3 for dipole, edge and bulk mode respectively in the paper.

231 It is important to note that previously scalarizer was defined before the experiment. 

232 However, in the interactive hAE the scalarizer can be dynamically tuned during the experiment, 

233 or the type of the scalarizer can be changed. For example, the boundaries of the region of 

234 integration can be dynamically adjusted, or more complex scalarizers such as peak fit parameters, 

235 peak ratios, etc. can be chosen. These behaviors will be explored in the sections below.

236

237 II.2. Policies in DKL
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238 Policy refers to a strategic approach that guides the decision process of the ML algorithm. 

239 For the myopic optimization frameworks, the policy is generally built based on the estimated 

240 prediction and uncertainty of prediction for unexplored parts of the parameter space, where 

241 predictive model is built based on prior measurements via GP or DKL. In the context of the STEM-

242 EELS experiments, policy determines the selection of locations for new EELS measurements 

243 based on structural image and results of previous EELS measurements. 

244 The DKL policy is determined by the acquisition function parameters which is tuned for 

245 exploration and exploitation. While the number of possible policies is large and new policies can 

246 be formulated, the basic policies include expected improvement (EI), upper confidence bound 

247 (UCB), and maximum uncertainty (MU). These acquisition functions39 are explained below. 

248

249                                            (3)

250 Where x is the point to evaluate,  μ(x) is the predictive mean, σ(x) is the predictive standard 

251 deviation, f(x) the function value at (x), f(xbest) is the current best observed function value, ϕ(z) 

252 is the standard normal probability density function, and z is a standard normal random variable.  

253 (or xi) is the parameter that controls the trade-off between exploration and exploitation. The 

254 parameter  in the Expected Improvement (EI) acquisition function controls the balance between 

255 exploration and exploitation. 

256 The expected improvement (EI) acquisition function (equation 3) is typically used to 

257 balance exploration and exploitation. It encourages the selection of points where the predicted 

258 function value is likely to improve upon the current best value. EI, measures the expected 

259 improvement over the current best observation. However, in some scenarios, one might want to 

260 explicitly maximize the maximum uncertainty (MU) to improve exploration, especially in the early 

261 stages of the search or when the global structure of the function is unknown. This can help to 

262 ensure a more thorough search of the parameter space and avoid premature convergence to local 

263 optima. 

264 Finally, the Upper Confidence Bound(UCB) acquisition function (equation 4) balances 

265 exploration and exploitation by selecting points based on both the predictive mean and the 

266 predictive standard deviation (uncertainty) of the GP model.

267
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268 𝑈𝐶𝐵(𝑥) = μ(𝑥) + δ ⋅ σ(𝑥)                                                                (4)

269 Where μ(x) is the predictive mean of the GP at point (x), σ(x) is the predictive standard deviation 

270 (uncertainty) of the GP at point (x), and δ is the UCB parameter that determines the balance 

271 between exploration and exploitation. Note from here on we will use (beta) instead of δ.

272 In realistic settings, the acquisition function can also include the cost of measurements. 

273 This cost can be either a priori known, or be a discoverable function of the experiment, e.g. 

274 predicted over the full image space by a separate Gaussian Process. However, in STEM EELS we 

275 assume that the measurement costs are equal for all locations within the image plane. 

276 Similarly to the scalarizer, the acquisition function has control parameters, e.g. exploration 

277 – exploitation balance. During the automated experiment we can consider dynamically tuning the 

278 acquisition function or switching between different acquisition functions. We also note that 

279 spectrum acquisition can be driven by a different strategy, e.g. random selection of points or 

280 sampling specific structural features. These can be switched dynamically during the experiment. 

281 Like the scalarizer, this requires approaches to monitor the AE to make these decisions. 

282

283 II.3. Experiment progression and output.

284 With the scalarizer and acquisition functions defined, we discuss the general setting of the 

285 DKL experiment. The DKL based Automated experiments is summarized in a flowchart form in 

286 Figure 3 and is recommended to be referred along with the text in this section. The goal of the 

287 DKL experiment is to discover which structural features in the S(x,y) maximize P = P(A(E)). To 

288 accomplish this goal, the image is represented as a collection of M patches each of size NxN, 

289 where N is the patch size and M is the total number of patches. Each patch scan be indexed by 

290 location (xi,yi), where xi,yi correspond to the point on the global image S(x,y) from which the patch 

291 has been taken. In other words, the patches are sampled over the rectangular grid. All the patches 

292 are available from the beginning. 

293 The microscope performs the AE on a set of seed patches (can be a single) to generate a 

294 set of spectra Ai(xi,yi,E) and hence evaluate the scalarizer in these locations, P(xi,yi). The seed 

295 points xi, yi can be chosen randomly, or selected based on the analysis of the features in the global 

296 image S(x,y). The DKL algorithm is trained on all the patches s(xj,yj) and the scalarizer functions 

297 available in the locations (xj,yj).

298
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Figure 3. Deep kernel learning workflow: a) Acquire an image and extract patches around 

interesting features (atoms, nano-particles, grains, etc). b) Select seed points c) Perform 

spectroscopy at the seed points, generating patch-scalarizer pairs, d) Select active learning 

policy, f) Train deep kernel model g) Select next point based on policy. Steps c)-d)-f)-g) repeat 

until experimental budget. Notice e) that is policy, is set once at start of experiment.

299 After training and prediction, the DKL algorithm performs the spectral measurement in the 

300 patch with coordinates:

301  (xn, yn) = argmax (Acq(xi,yi))        (5)

302 Where i goes over all M patches (i.e. all structural descriptors). With the new measured spectrum 

303 An(xn, yn, E), the scalarizer function, P(An) is calculated and the DKL algorithm is retrained with 

304 the additional data set. This is repeated until the expiration of experimental budget. Finally, 

305 experimental trace is defined as the sequence of patches, locations, and measured spectra acquired 

306 during the experiment progression. 

307

308 II.4. Additional Types of DKL experiment

309 The output of the DKL AE is the experimental trace, or collection of the patches and 

310 corresponding spectra. With the trace and after the experiment, we found it useful to define 

311 several forensic tools15 that make the understanding of the DKL easier. These include:
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312 The "DKL Explore" process is designed to systematically explore a dataset using Deep 

313 Kernel Learning (DKL) techniques. It begins by preparing the dataset, extracting patches and 

314 associated scalarizer values, and splitting the data into training and testing sets. Over a series of 

315 exploration steps, a DKL model is trained on the training data, enabling the prediction of scalarizer 

316 mean and variance values for all data patches. The selection of the next data point is guided by an 

317 acquisition function, which aids in identifying valuable information. The chosen data point, along 

318 with its associated scalarizer value, is then added to the training data. This process is repeated for 

319 each step, recording critical information such as mean, variance, selected index, acquisition 

320 function value, and scalarizer value. Finally, the final training and testing datasets are saved. This 

321 approach allows to simulate the DKL over pre-acquired data set, and do the initial parameter 

322 tuning, reveal the relationships between the parameters, etc.

323 The "DKL Counterfactual" process conducts dataset exploration with a unique focus on 

324 counterfactual scenarios within the context of Deep Kernel Learning (DKL). It initiates by 

325 collecting data patches and their associated scalarizer values and establishes an initial train-test 

326 split. Over each exploration step, a DKL model is trained on the existing training data to facilitate 

327 the prediction of scalarizer mean and variance values for all data patches. This process employs 

328 records from previous exploration steps to inform the selection of the next data point, without 

329 relying on traditional acquisition function’s. This counterfactual approach allows for a 

330 comprehensive examination of alternative scenarios and a deeper understanding of the automated 

331 experiment trajectory.

332 We have further summarized related terminology live, final and complete model required 

333 to monitor knowledge acquisition in the DKL experiment in Table 1. The table also contains 

334 definition to terminologies, Latent space, Latent embedding and Latent images which are 

335 introduced later in the paper

336

337 III. DKL on full data and the role of the window size

338 The DKL experiment is defined in a large space of hyperparameters corresponding to the 

339 selection of patch (window) sizes, scalarizer function, acquisition function, and their 

340 hyperparameters. Hence, similarly to classical ML, it is advantageous to examine the effects of 

341 these hyperparameters using the pre-acquired data. 
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342 As a first step, we have explored the effect of the varying patch sizes. We have 

343 systematically explored 5,10 and 15 window sizes. Each patch is measured in terms of there area 

344 whose units are pixel square. We have noted that increasing the patch size results in the change in 

345 the effective resolution in the latent embedding image as shown in Figure 4[see also 

346 Supplementary for quantification]. We observed a distinct scalarizer pattern emerging in the 

347 DKL embedding, which indicates that DKL is effectively learning the structure-property 

348 relationship inherent within the data.

349

Figure 4 Showing DKL embedding for scalarizer “3”. a) and b) correspond to patch size 5, c) 

and d) correspond to patch size 10, e) and f) correspond to patch size 15.  See supplementary for 

all simulation. Here, 1 pixel corresponds to 5.10 nm.

350

Page 14 of 34Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 4

/2
9/

20
25

 1
2:

35
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00033E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00033e


15

351 The complementary information can be derived from the classical variational autoencoder 

352 (VAE) analysis of the structural data only. Over the last several years, VAEs have emerged as a 

353 powerful tool for building low-dimensional representations of data in the form of latent vectors. 

354 The encoder part of the VAE compresses data to the latent vector, whereas decoder expands the 

355 latent vector back to the original dimensionality, balancing the reconstruction loss and the 

356 Kullback-Leibler loss between latent distribution and Gaussian. The key aspect of the VAE is their 

357 capability to disentangle the factors of variability in the data, for example the width and tilt of 

358 handwritten digits. These can be conveniently represented for the 2D space as latent 

359 representations as shown in Figure 5. In this, the 2D latent space of the trained VAE is sampled 

360 over 2D grid, and reconstructed objects are plotted as an image. The applications of VAEs for 

361 imaging data are discussed in depth in Refs25–27. In particular, VAEs also allow to explicit 

362 separation of invariances in data, for example rotations or translations. This comes handy in 

363 microscopy images as we often visualize lattices with symmetry in both translation and rotation, 

364 if the model is unaware about this inductive bias, it will have to see a lot of data to just learn 

365 symmetry.  Having this already encoded in model helps in better model performance in active 

366 learning setup where data is already scarce. The rotationally invariant VAE (rVAE) will discover 

367 the features with any rotational angle and separate it as an additional physically defined factor of 

368 variation. The subfigures 5.a-c illustrate how the VAE's latent manifold changes with different 

369 patch sizes 5, 10, and 15. From these visualizations, it is evident that there is less variation along 

370 the y-axis (one of the latent dimensions) for a patch size of 5. This suggests that features extracted 

371 from patches of size 5 contain less information compared to those from patches sized 10 and 15, 

372 where both latent variables show noticeable variability. The point is that before doing the actual 

373 automated experiment this analysis should be carried out to determine the ideal patch size. For 

374 further details on the VAE's latent manifold definition, please refer to Table 1.

375 Here, we note that the structure of the DKL latent space is determined both by the structural 

376 and spectral features. Conversely, the structure of the VAE latent space is determined only by the 

377 data itself. Due its capability to disentangle the latent representations, VAE gives us access to a 

378 feature space which is helpful in navigating the search space. For example, the initial selection of 

379 windows size can be guided by this analysis based on structure of latent representations and 

380 complexity of latent distributions. For example, we can see the scalarizer property is highlighted 

381 better in embedding of DKL with patch size 5.
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382

Figure 5. a), b) and c) showing latent space of rVAE for patch size 5,10 and 15 respectively. d, 
e and f are corresponding latent images for patch size 5. Note that the image patch can be 
decoded from any point in the latent space. The latent representations (top row) are generated 
via decoding the rectangular sampling grid in the latent space of VAE and illustrate evolution 
of features over the latent space. Angle latent vector is represented by z0  in radians. 

383

384 IV. DKL active learning

385 In DKL active learning, ML agent issues the commands to the microscope. Human operator 

386 can amend the ML behavior via choice of policies and scalarizer. However, the steering of the AE 

387 requires the monitoring the progression of the DKL experiments. Here we explore these 

388 monitoring functions and show how hyperparameters of DKL algorithm affect the process. 

389 In the actual automated experiment, we always must contend with drift, beam damage, and 

390 other non-stationary effects. In order to simulate a wide range of scenarios, stress-test our system 

391 under various conditions, and fine-tune the active learning algorithms to achieve optimal 

392 performance here we explore the AE using the pre-acquired data. 

393

394 IV.1. Monitoring learning

395 The first set of monitoring variables are directly available from the DKL itself, namely the 

396 predicted scalarizer and predicted uncertainty. Note that by the nature of the DKL experiment, 
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397 these are defined for all patches within the image. Hence, for prediction and uncertainty we can 

398 visualize the overall behavior, including the mean and dispersion, and explore the evolution of the 

399 full distribution functions. 

400

401

402

403

404

405

406

407
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Figure 6.  Monitoring learning using predictive uncertainty. a) is for acquisition function EI b) 

for MU and c) for UCB. Black, blue and orange curve represents live, final and complete 

model. The predictive uncertainty values varying “ ” and “  ” values illustrated in d). Note: 

The values in “d” have been scaled up by a factor of 10000. Note: The “Units” values should 

be seen just as a comparison based on magnitude for different “ ” and “  values – it’s not 

directly tied to a physical measurement but computed monitoring metric.

408

409 As an example, shown in Figure 6 are the learning curves for the predictive uncertainty, 

410 with bold black line represents mean of the prediction from the model and shaded region 

411 correspond to uncertainty intervals. Here, the mean and dispersion of uncertainty are calculated 

412 for all structural patches. The mean hence quantifies average uncertainty for prediction of 

413 scalarized for all patches. The corresponding dispersion quantifies the distribution of uncertainties 

414 over the collection of the patches. The “ ”=0.08 is highlighted in red because it has the highest 

415 predictive uncertainty among all the runs as shown in table 6d.

416 For comparison, we also show the predictions of the final and complete models. The final 

417 model coincides with the live model by the end of the experiment, whereas complete model has 

418 been trained on the full data (patch-spectrum pairs), and provides the comparison point for the 

419 effectiveness of learning. Generally, of interest is the overall learning dynamics, namely the rate 

420 of the evolution of the predictive uncertainty and its distribution, and the knowledge gain (decrease 

421 of uncertainty) from the initial state and closeness to the predictions of the complete model. 

422 The analysis of the learning curves for multiple scenarios as described in Figure 8, reveals 

423 a spectrum of potential behaviors, with detailed variations outlined in the appendix. Depending on 

424 the parameterization, the learning progression may exhibit a rapid decline followed by a plateau, 

425 an exponential-like decrease as exemplified in Figure 6b or display intermittent jumps indicative 

426 of sporadic learning phases. Crucially, the variance in predictive uncertainty serves as a gauge for 

427 the stability of the learning process. As evidenced by the comparative analysis between Figures 

428 6a and 6b, it is apparent that the latter demonstrates a more consistent and stable learning 

429 trajectory. This stability reflects the reliability of the learning algorithm in developing an accurate 

430 model over the course of iterative training sessions. Such insights are invaluable for refining the 

431 active learning framework, guiding the selection of parameters that foster a balance between rapid 

432 convergence and consistent learning stability.
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433

434 IV.2. Monitoring discovery 

435 The second observable which aids AE is monitoring learning as described by next step 

436 uncertainty, as shown in figure 7. Panel a), b) and c) shows how the uncertainty varies for the 

437 next step over the experimental trajectory for different acquisition functions,  panel d)  further 

438 quantifies the values, showing maximum(non-desirable) for configuration “ ”=0.08 highlighted in 

439 red.  For the STEM-EELS data explored here, the evolution of the model prediction is typically 

440 very noisy. We attribute this behavior to the presence of multiple geometries with almost 

441 equivalent values of the scalarizer function, resulting in a very shallow landscape for the 

442 acquisition function. This supposition is further confirmed in section below(IV.3).

443

444

445
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Figure 7.  a), b) and c) shows next step uncertainty evolution with steps for three acquisition 

function. The next step uncertainty values varying “ ” and “  ” values illustrated in d). Note: 

The next step uncertainty values(represented as units) in “d” have been scaled up by a factor of 

1000. Note: The “Units” values should be seen just as a comparison based on magnitude for 

different “ ” and “  values – it’s not directly tied to a physical measurement but computed 

monitoring metric.

446

447 IV.3. Monitoring experimental progression in real space

448 The third monitoring parameter that readily emerges in the context of the DKL STEM-

449 EELS experiment is the experimental trajectory in real space, i.e. the sequence of measurement 

450 points selected by the algorithm. We define distance travelled in trajectory as:

451

(5)

452 where, i is trajectory point goes from 1 to 100, xi represents movement in x direction, yi represents 

453 movement in y direction.
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454

Figure 8. a) and b) showing 2 examples of AE experimental progression  with acquisition 

function EI (   = 0.08, patch size =5) and EI(   = 0.02, patch size =10)  in the simulation where 

trajectory exploring the edge and other getting stuck. The trajectory traversed(quantification 

introduced in eqn 5) values varying “ ” and “  ” values illustrated in panel d). Note: The scaling 

factor is applied to only the Units and is done independently for analysis presented in  Figures 

6,7 and 8. Also to clarify,  and  values are not normalized. The “Units” values should be seen 

just as a comparison based on magnitude for different “ ” and “  values – it’s not directly tied 

to a physical measurement but computed monitoring metric.

455

456 Figure 8 illustrates the monitoring of experimental progression, where: [elaborated line 455 
457 onwards in the main text]

458
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459 o Subfigure (a) shows the successful navigation through regions of plasmons.

460 o Subfigure (b) highlights the challenge of getting stuck in local minima in vacuum areas, 

461 where the target property is not expected to lie. presents a process with a patch size of 10 

462 and an  value of 0.02, resulting in a travel distance of 2495 units.

463 o Subfigure (c) presents a metric that quantifies the travel distance, with a  value of 0.08 

464 yielding a travel distance of 1642 units, which was the lowest and indicates that the 

465 experiment did not get stuck in local minima.

466

467 These results suggest that human insight and trial can be used to carefully find ideal parameters, 

468 such as the value mentioned above. The longer distance and larger patch size suggest a broader, 

469 more exploratory search behavior that covers diverse regions within the parameter space, 

470 potentially offering an advantage in avoiding local optima.

471

472 The examination of active learning trajectories reveals a complex relationship between the 

473 learning process and the chosen hyperparameters. For most scenarios, the trajectory starts with 

474 active exploration of the image space at the initial stages of the active learning. However, upon 

475 exploration the trajectory can get trapped at the specific minimum. This behavior is particularly 

476 often for the smaller patch sizes, as demonstrated by a patch N = 5, and Mean Uncertainty (MU) 

477 policy. In contrast, larger patch sizes exhibit a lower propensity for the trajectory to become stuck 

478 in the local minimum, suggesting a direct link between the patch size and the trajectory's 

479 susceptibility to stagnation. 

480 We note that for the explored scenarios as summarized in Figure 8 d), there is no clear 

481 correlation between chosen policy, policy hyperparameters, and window sizes that can guarantee 

482 the lack of local minima. In principle, one way to address this problem may be via the introduction 

483 of additional components to the acquisition functions that de-prioritize the already explored areas. 

484 Similarly, the acquisition function can include the cost of measurement, e.g. the time associated 

485 for the traversing form one image location to the next one.  We expect these additional components 

486 to be highly instrument specific and to be optimized for specific instruments. However, from the 

487 general perspective these additional policies will further introduce additional hyperparameters, 

488 necessitating the development of both monitoring and intervention strategies, as discussed below. 

489
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490 IV.4. Monitoring in feature space

491 We define the feature space of the system as the latent representation of the variational 

492 autoencoder trained on the full set of patches. This approach allows to use full power of simple, 

493 joint, semi-supervised, and conditional autoencoders to identify relevant aspects of materials 

494 structure. The detailed discussion of the VAE for materials structure exploration are discussed in 

495 multiple previous references40,41.

496 We note that the capability of the VAEs to disentangle factors of variation within the data 

497 provides a very powerful tool for the exploration of the materials structure visualized via latent 

498 reorientations and latent distributions. The addition of the rotation and translation invariances 

499 naturally allows to compensate for the uncertainty in the object selection and presence of the 

500 rotational disorder in the system. Finally, semi-supervised VAE approach allows to incorporate 

501 prior knowledge on objects of interest (e.g. preferred classes), combining the classification and 

502 representation disentanglement tasks.

Figure 9. a), b) and c) shows example trajectory of experiment progression in rVAE latent 

space[see Table 1 for definition] for patch size 5, 10 and 15 respectively. 

503 The trajectory of the automated experiment can be visualized within the Variational 

504 Autoencoder (VAE) space of the system. To analyze the distribution of points in this space, we 

505 employ kernel density estimation (KDE), which provides a smoothed representation of the 

506 underlying probability density function. The KDE allows us to identify regions with high 

507 concentrations of points, which we refer to as "aggregation points". An aggregation point is 

508 defined as a location in the latent space where the kernel density estimate exhibits a local 

509 maximum, indicating a cluster or dense region of points. In the context of our experiment, we 
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510 observe that the latent space of the VAE exhibits distinct patterns depending on the patch size: For 

511 a patch size of 5, a single aggregation point is observed, characterized by a prominent peak in the 

512 kernel density estimate. For a patch size of 10, two primary aggregation points are present, with 

513 kernel density estimates showing maxima at these locations, as well as several dense regions where 

514 the experiment progresses. Similarly, for a patch size of 15, multiple aggregation points and dense 

515 regions are evident. This behavior is intriguing, as it suggests that the latent space of the VAE 

516 encodes structural information, which varies with different patch sizes. Furthermore, the 

517 experiment's trajectory appears to jump between local maxima in the latent space, implying 

518 transitions between distinct structural regions. This is significant, as different regions in the latent 

519 space correspond to different types of structural information, providing valuable insights into the 

520 system's behavior. 

521  

522

523 V. Interventions

524 The simulation studies above illustrate that the progression automated experiments in 

525 STEM-EELS can be monitored based on the learning curves of the DKL model, real space, and 

526 feature space trajectories. At the same time, for the certain parameter values the experiment can 

527 be trapped in the local minima both in the real and feature spaces. The corresponding behaviors in 

528 the parameter space, while demonstrating certain trends, can be highly irregular, necessitating the 

529 strategies for real-time interventions during automated experiment. Note that these have to be 

530 dynamic almost by definition, given the active nature of real experiment compared to the static 

531 nature of the data in classical ML benchmarks (or example workflows used here).

532
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Figure 10.a) Shows the overall interactive experimentation flow. b) and c) shows how next point 

acquisition change with change in policy parameters, called policy intervention. Similarly, d) 

shows scalarization effect for next point acquisition referred to as scalarizer intervention, e) 

demonstrates scalarizer tuning effect for three tuning intervals shown for three steps.

533

534 Here, we identify the possible interventions in the DKL workflow. We note that the initial 

535 step of the DKL workflow is the selection of the patch size and initial seed points. The effects of 

536 the seed points have been explored by Slautin42 .The patch size effects can be explored prior to the 

537 experiment using the VAE feature space exploration, allowing the complexity of the latent 

538 distribution and the nature of the disentangle factors of variations to be tuned. We further note that 

539 in principle the patch size can be varied during the experiment, i.e. this is a valid intervention. This 

540 is turn requires the retraining of the whole model based on the new patch size. It is important to 

541 realize that in this case the full experimental trajectory prior to intervention will correspond to off-

542 policy process and can at best be considered as a new extended seed. 

543 The second intervention channel is the exploration target, or scalarizer. This allows to tune 

544 the relationship between the full spectrum and the myopic optimization target. The scalarizers can 

545 be chosen from multiple classes (e.g. integral intensity, peak ratio, physics base reconstruction), 

546 or tuned within class, e.g. change boundaries of the integrated intensity. 

547 The effect of the scalarizer tuning is illustrated in figure 10 e). Here, the scalarizer is 

548 integral of the EELS spectrum over an interval [a, b] where a and b can be tuned based on interested 

Page 25 of 34 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 4

/2
9/

20
25

 1
2:

35
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00033E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00033e


26

549 physics. We note that the smooth changes in the integration boundaries result in the formation of 

550 several distinct clusters of the possible future points. We attribute this behavior to relatively 

551 shallow nature of the acquisition function landscape related to highly degenerate relationship 

552 between the local geometries and EELS spectra. The flexibility in choice of the interval i.e. a and 

553 b values lead in exploring diverse experimental trajectories converging to interesting properties.

554 Finally, the policies can be tuned on the fly via the selection and hyperparameter tuning of 

555 the acquisition functions. Similarly, to scalarize, these can be visualized via the selection of the 

556 Upper Confidence Bound (UCB), Expected Improvement (EI), and Maximum Uncertainty (MU), 

557 or parameter tuning.

558 Shown in Figure 10 is the effect of  value in EI and the   value in UCB being adjusted to 

559 fine-tune this balance. The scalarizer is also switched to align with the specific physics of interest, 

560 such as interface, bulk, or surface plasmons, as identified by the human expert seen in d).

561

562 VII. Summary

563 To summarize, here we introduce the detailed framework for the human in the loop 

564 automated experiment in STEM-EELS based on the myopic optimization workflows. We describe 

565 the intrinsic assumptions of the myopic workflows and illustrate how it can be applied to the active 

566 experiment in STEM. Based on the exploration of the broad parameter space of the system for the 

567 pre-acquired data, including patch sizes, policies, and scalarizers, we demonstrate that for many 

568 parameter combinations that AE can be trapped in local minima. Our comprehensive analysis, as 

569 evidenced by the metrics presented in figures 6d), 7d), and 8d) (with optimal scenarios highlighted 

570 in red), reveals that hyperparameter behavior can be highly localized, making it challenging to 

571 identify universally effective and robust hyperparameter values. The results demonstrate that 

572 hyperparameter performance can be strongly dependent on local conditions, and therefore, it is 

573 difficult to determine a set of universally good and robust hyperparameter values.

574 We hence introduce the strategies of the interactive automated experiment, in which ML 

575 agent issues the control signals to the microscope and the human operator monitors the progression 

576 of automate experiment of the suitable time scales. To enable hAE STEM-EELS, we introduce a 

577 set of monitoring functions based on the DKL model performance and real-space and feature space 

578 exploration. 
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579 We introduce the intervention strategies for the DKL workflows based on object selection, 

580 scalarizer tuning, and policy tuning. These strategies have been both operationalized and tested on 

581 pre-acquired data and indicate strong degeneracies in the STEM-EELS data sets. We note that 

582 while all interventions bring the experiment off policy, this allows the dynamic interaction between 

583 the human operator and the microscopes.

584 Finally, we note that proposed human in the loop approach will be applicable to all other 

585 myopic workflows, as long an enabling algorithm can yield predictions of function and 

586 uncertainty. This includes those based on ensembled neural networks and physics-informed neural 

587 networks, contextual bandits, and many other model classes. Similarly, these workflows can be 

588 directly translated to other experimental tools including scanning probe microscopy, chemical 

589 imaging, and combinations such as nanoindentation with optical and scanning electron 

590 microscopy. As such, these developments are universal and can improve multiple areas of 

591 materials science and chemical and physical imaging. 

592
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607 Table 1:

608

Term Definition Availability

Global structural image 
S(x,y)

Initial dataset of structural 
information was provided 
prior to the DKL (Deep 
Kernel Learning) experiment, 
which was utilized for 
generating patches to train the 
DKL model.

Before 

Spectrum A(E) The EELS measurement During

Hyperspectral image A(x,y,E) Collection of patches and 
spectra

During

Scalarizer function, P Extract interested physics 
from spectrum

Before

Experimental trace Spectrum and patches 
together

After

Acquisition function Decides exploration or 
exploitation.

Before

Policy The guiding criterion for 
choosing the next path in the 
sequence involves, at its most 
basic, the maximization of the 
acquisition function.

Live model The model being trained 
during the experiment

During

Final model The model as soon as active 
learning terminates

After

Complete model The DKL model trained from 
full dataset generated on grid.

NA

VAE latent Trained on full patches Before

Latent space The lower-dimensional 
encoded space pertaining to 
VAE/DKL 

During

Latent embeddings The feature representation of 
input in the latent space

During

Latent Images Representation of entire 
dataset along each of the 
dimensions. Number of 
Latent images = Number of 
dimensions of latent space

NA

Full DKL Trained on complete data NA
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Learning curve Curve showing how the DKL 
model behaving in active 
learning.

During

Monitoring curve Curve representing next point 
uncertainty

During

609

610
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Data availability
The code and data for the study reported in this article can be found on zenodo repository at 
https://doi.org/10.5281/zenodo.15175786
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