Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue

i '.) Check for updates ‘

Cite this: Digital Discovery, 2025, 4,
1042

Received 22nd January 2025
Accepted 11th March 2025

DOI: 10.1039/d5dd00030k

BitBIRCH: efficient clustering of large molecular
librariest

Kenneth Lopez Pérez, i Vicky Jung,i Lexin Chen, ® Kate Huddleston
and Ramon Alain Miranda-Quintana @ *

The widespread use of Machine Learning (ML) techniques in chemical applications has come with the
pressing need to analyze extremely large molecular libraries. In particular, clustering remains one of the
most common tools to dissect the chemical space. Unfortunately, most current approaches present
unfavorable time and memory scaling, which makes them unsuitable to handle million- and billion-sized
sets. Here, we propose to bypass these problems with a time- and memory-efficient clustering
algorithm, BitBIRCH. This method uses a tree structure similar to the one found in the Balanced lterative
Reducing and Clustering using Hierarchies (BIRCH) algorithm to ensure O(N) time scaling. BitBIRCH
leverages the instant similarity (iSIM) formalism to process binary fingerprints, allowing the use of
Tanimoto similarity, and reducing memory requirements. Our tests show that BitBIRCH is already >1000
times faster than standard implementations of the Taylor—Butina clustering for libraries with 1500 000
molecules. BitBIRCH increases efficiency without compromising the quality of the resulting clusters. We
explore strategies to handle large sets, which we applied in the clustering of one billion molecules under

rsc.li/digitaldiscovery

Introduction

Clustering is an unsupervised machine learning (ML) technique
that organizes unlabeled data into groups, or clusters, of related
points. This can be critical to obtain insights into the struc-
ture and organization of the data,® which could also be used to
aid the development of supervised ML models.*® This is
essential in developing more accurate predictive models.* In
chemical applications, during the data generation and curation
process, clustering can assist in identifying regions of chemical
space that are lacking within the dataset.®” By ensuring that
a representative range of chemical space is covered in the
training and validation datasets, one can reduce biases and
ensure that the model performs well on diverse data, broad-
ening generalizability and enhancing the robustness of the
model.?

In drug design, the importance of clustering is highlighted
when considering the “molecular similarity principle”, which
states that structurally similar molecules will often share
similar chemical properties or biological activities.®** By iden-
tifying similar compounds, clustering can help predict the
behavior and properties of existing and new structures,

Department of Chemistry & Quantum Theory Project, University of Florida,
Gainesville, Florida 32611, USA. E-mail: quintana@chem.ufl.edu

T Electronic supplementary information (ESI) available. See DOI:
https://doi.org/10.1039/d5dd00030k

i These authors contributed equally.

1042 | Digital Discovery, 2025, 4, 1042-1051

5 hours using a parallel/iterative BitBIRCH approximation.

expediting virtual screening.'” The preponderant molecular
representations for small molecules in drug design are binary
fingerprints.” Fingerprints encode molecular information
using bitstrings (arrays of on and off bits),”* this simplicity is
particularly attractive in the exploration of large chemical
spaces, but also leads to robust results in Structure-Activity
Relationship (SAR) studies.'*® There are multiple ways to
generate fingerprints from a molecular graph or structure
(MACCS,"” ECFP,*® RDKit," MAP,* etc.), so it is important to
emphasize that the results discussed below apply to any type of
binary encoding. Tanimoto similarity*** is widely used in
cheminformatics tasks,*?® including clustering.””*® From this
binary fingerprint representations, it is easy to calculate the
Tanimoto similarity'®** between any two molecules A and B,
T(A, B), as:
a

T(A -
(A, a+b+c

B) = 1
where a indicates the number of common on bits between A and
B's bitstrings, and b + ¢ counts the on/off mismatches between
them. While there are many possibilities to quantify the simi-
larity between molecules, Tanimoto is the de facto option in the
cheminformatics community.>

Pharmaceutical applications typically use one of a handful of
clustering algorithms, with spectral,>?° hierarchical,*+** and
Jarvis-Patrick®»** clustering as common choices. However,
arguably the most popular option is the Taylor-Butina clus-
tering. All of these methods rely on the construction of the
similarity matrix between the molecules, and then use some

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00030k&domain=pdf&date_stamp=2025-04-05
http://orcid.org/0000-0002-9528-942X
http://orcid.org/0000-0003-2121-4449
https://doi.org/10.1039/d5dd00030k
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004004

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

notion of neighborhood/locality to group the points.>” Taylor-
Butina does this in perhaps the simplest and most intuitive way,
requiring a single parameter: a similarity threshold used to
count the number of neighbors of each potential cluster
centroid.””** At every iteration, the molecule with most neigh-
bors is identified as the best potential centroid and, together
with all its available neighbors, they form a cluster. This
procedure is repeated until exhausting all molecules, or until no
molecules remain that are closer than the pre-specified
threshold. This results in clusters that are easily interpretable,
as they contain molecules that are closely related to the corre-
sponding centroid.”” However, the fact that we need to compute
the similarity matrix means that all these methods scale as
O(N?) in both time and memory,* with this scaling potentially
preventing their application to ever-increasing sectors of
chemical space.

These time and memory bottlenecks are not unique to
chemical applications of clustering, so it is not strange that
methods with more favorable scaling have proliferated. One
particularly attractive alternative is the Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) algo-
rithm.*” BIRCH solves the memory problems by using a Clus-
tering Feature (CF) to encapsulate the cluster information in
a compact way that still allows computing critical indicators,
like the cluster centroids, radius, and diameter.’” The time
scaling is then improved using a CF-tree data structure, that
allows to efficiently distribute the molecules into their corre-
sponding clusters: the “leaves” of the tree*” (there has been
a renewed interest in the cheminformatics/drug-design
communities in using tree structures to accelerate similarity
searches, especially in conjunction with low-dimensional
molecular representations®®). These are very attractive
features, however, they cannot be immediately transferred to
drug-design applications for two main reasons. First, BIRCH
was originally conceived for continuous inputs, which is in stark
contrast with the discreet on/off character of the molecular
fingerprint components. Moreover, the stored information in
the CF limits BIRCH to the Euclidean distance, thus preventing
the use of the Tanimoto similarity, or any other cheminformatic
similarity index.

In this contribution we propose a novel clustering algo-
rithm with the ease of interpretation of Taylor-Butina, but
leveraging the advantages of the CF and CF-tree structures,
resulting in more attractive memory and time scaling algo-
rithm. Given the close relation with BIRCH, we termed our
method: BitBIRCH. As discussed below, we can adapt the tree
structure from the CF-tree without many changes (although
BitBIRCH uses a more efficient criterion to split the tree
nodes). The biggest challenge comes from the cluster repre-
sentation, since we need an alternative to the CF that allows
computing all the cluster's properties from the collection of
bitstrings. The solution to this comes from our work on
quantifying the chemical diversity of large datasets by
comparing an arbitrary number of molecules at the same time.
We started applying this idea with extended similarity*>*°
indices, which were successfully applied to dissecting epige-
netic libraries,** chemical space sampling,** activity cliffs,*

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

and even in the study of Molecular Dynamics simulations.****
Recently, we expanded on this framework with the introduc-
tion of the instant similarity (iSIM) formalism.*® iSIM shows
how the average of the pairwise comparisons over a library can
be calculated from two simple ingredients: the number of
points in the set and a cumulative vector obtained after adding
the fingerprints column wise. This is precisely what is needed
to replace the CF by a Bit Feature (BF) that encapsulates the
cluster's information, and to be able to use the Tanimoto
similarity in a BIRCH-like context. In the next sections, we
discuss how iSIM can lead to a cluster's centroid, radius, and
diameter, and how to include information in the BF that
allows to cluster a large set in a truly online way. Our estimates
show that already for only 1500000 molecules BitBIRCH is
>1000 times faster than the RDKit implementation of Taylor-
Butina. We also compare these methods using several clus-
tering quality metrics, which show that BitBIRCH's improved
time and memory efficiency do not diminish the final clus-
tering results, with our algorithm outperforming Taylor-
Butina in multiple instances. Finally, we discuss alternative
formulations of BitBIRCH capable of handling billion-sized
sets in just a few hours.

Results and discussion
BitBIRCH, instant similarity, and Taylor-Butina

BitBIRCH and BIRCH are based on two key features: (a) the use
of a reduced, vector-like, representation to encode the infor-
mation about each cluster, (b) a (CF-)tree structure to traverse
and store the data. The latter is similar between both algo-
rithms, with the most salient difference being the way to assign
sub-clusters after splitting a node (details about this and the full
pseudo-code are discussed in the ESI, Section S11). As far as the
simplified cluster representation, BIRCH uses the CF, while for
BitBIRCH we propose the Bit Feature (BF). Let X1) = {x(:0 }2’;1
be the j™ cluster, containing N; elements. Each of these
elements, xU’k), is a g-dimensional vector, that is: P
[x({"k),...,xg’k)]. From now onwards, bold lowercase symbols will
always represent vectors with ¢ components/features (In all the
numerical results discussed below, unless otherwise explicitly
mentioned, we worked with fingerprints with ¢ = 2048.) Then,
the CF*” of the fh cluster, CF;, has three elements:

CF; = [N,]s;,ss] (2)

Is; and ss; (eqn (3) and (4), respectively) are the linear sum and
sum of squares, respectively, of the elements of each column of
the matrix formed by the xV":

N N
{Zx({’k), - fo[’"‘)} (3)
=1

k=1

k=1 k=1

(xg’k)) 2:| (4)

Digital Discovery, 2025, 4,1042-1051 | 1043

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

This is all that is needed to calculate either the radius or
diameter of each cluster if the separation between the points is
measured using the Euclidean distance. However, it is clear that
for binary inputs (like molecular fingerprints) a new strategy is
needed. First, we want to quantify similarity in different ways.
Second, for binary data Is; = ss;, meaning that they carry exactly
the same information, and storing both vectors is unnecessary,
independently of the chosen metric.

The BF;, on the other hand, is represented with a four-
component structure:

BF; = [N, Is;,c;;mols] (5)

N; and Is; have the same meaning as in the CF;, and as we will
show below, they are what is needed to calculate the radius/
diameter of the clusters and perform the clustering. However,
in order to add extra functionality, we decided to include two
other elements in the cluster representation, mols; and ¢;. First,
mols; is a list containing the indices of the molecules in the j™
cluster. Keeping track of the cluster assignments makes it
possible to save the state of the clustering, while we expect to
read new data. This is particularly attractive when all the
molecules are not available at the same time, be it a matter of
minutes hours (e.g., after iterations of a generative pipeline) or
even months/years (e.g., while expanding a library like
ChEMBL" or ZINC*®). In these cases, a BitBIRCH instance could
be saved to disk, giving the possibility to update the clustering
whenever needed.

The other new inclusion in the BF; is the cluster centroid, ¢;.
Since cluster membership is determined by comparing the new
molecules being inserted in the tree with the cluster centroids,
having the latter pre-calculated is more efficient than having to
calculate them on-demand. Moreover, since we do not need the
ss;j, we can store the ¢; at no extra memory cost, compared to the
CF;. The centroid can be easily calculated from N; and Is; if we
remember that, by definition, the center of a cluster is the point
that, on average, is the closest to all the elements in the set. For
instance, from the Tanimoto formula (eqn (1)), we see that for
every bit position, we should maximize the number of on-on
coincidences, while minimizing the number of on-off
mismatches. Thus, from the Is; we can determine ; as:

J’_

(6)

Z|&
| —

where x is the floor function.

All that is left now is showing that N; and Is; are enough to
calculate the diameter and radius of the cluster. The diameter of
a cluster, D;, is defined as the average of all the pairwise inter-
point separations:

D= S o T 0

v=1luu>v

The key insight is that we can use the recently introduced
instant similarity (iSIM)*® to calculate the instant Tanimoto
value of the set, iT(x"), which is the average of the Tanimoto
values over the cluster. In short, each element of Is; contains

1044 | Digital Discovery, 2025, 4, 1042-1051

View Article Online

Paper

information about the number of on bits in a column, so

Nj

Z xU-k) .

£ r corresponds to all the possible on-on matches,
2

00 ($2 (60
while (NJ-—Zxr’)(Zx,‘) is the number of on-off
=1 k=1

mismatches in the 7 column, respectively. We can then write:

N,
q x’(//”)
, 2
iT(X") = -
J
q (%) A/ N
S (v (S0
r=1 = 5 k=1 k=1
(8)
D; =1 — iT(x?))

A similar argument can be made for the radius of the cluster,
R;, defined as the average separation between all the points in
the cluster and its centroid:

N

B= 5 3 {1-T(7))

7=

(10)

However, we can use iSIM to rewrite this as (see Section S1 of
the ESIT for a detailed derivation):

- {(m DIT(X0 o)) -

2

(v - m(w)} o

In other words, D; and R; can be calculated with just the
number of elements and linear sum of a cluster thanks to iSIM.
In the remaining of this contribution, we will discuss BitBIRCH
based on R;, since this is the closest to the sphere-exclusion
algorithm. Also, for simplicity, instead of referring to a radial
threshold, we will be referring to a similarity threshold, calcu-
lated as 1 — R;. It is worth noting that while we will mainly focus
on the Tanimoto index, the ESIT shows that BitBIRCH can also
be used with other popular similarity indices like Sokal-Mich-
ener and Russel-Rao (see Section S7t). While the overall
behaviour of these indices is quite consistent, Tanimoto is both
the most well-behaved and robust for the range of similarity
thresholds considered. Likewise, even though the results in this
paper correspond to 2048 bits RDKit fingerprints, in the ESIT we
discuss the performance of BitBIRCH with other fingerprint
types.

As shown in Fig. 1, BitBIRCH retains the attractive O(N)
scaling of BIRCH, due to the combination of the BF and tree
structure, in stark contrast with the already-mentioned O(N%)
time (also shown in Fig. 1) and memory requirements of the
Taylor-Butina algorithm. The Taylor-Butina implementation in
RDKit" took more than 8 hours to cluster 450 000 molecules
(each with 2048 features) in the University of Florida's

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

—--- Taylor-Butina
! —— BitBirch

30000
25000 h
_. 20000 /

[}
E 15000 /

T
~

10000 /

5000 3

0 2 a 6 8 10
Number of molecules (/ 10°)

Fig. 1 Computing time needed to cluster subsets of the Pubchem
library up to one million molecules with the Taylor—Butina (RDKit
implementation) and BitBIRCH algorithms.

HiPerGator cluster, and we were unable to allocate enough
memory to cluster more than 500000 molecules, since it
required more than 4 TB of RAM. On the other hand, BitBIRCH
was able to cluster 450 000 molecules in 2.2 minutes, and easily
handled one million molecules in ~5 minutes.

Despite the great difference in computing time, BitBIRCH
and Taylor-Butina are in close agreement over the global
structure of the data. Thus, the valuable insights and intuition
built upon the sphere-exclusion method are also available
through the BitBIRCH approach, but at a much lower compu-
tational cost. In Fig. 2 we show how the number of clusters
found by each method follows the same trends over diverse
conditions. We considered clusters that had more than
a minimum number of elements (min_size =1, 2, 3, 5, and 10),
in order focus on denser subsets. While the general agreement
in the number of clusters is very good for all the considered
libraries (see also ESI, Section S3f), Taylor-Butina and Bit-
BIRCH are particularly close when more singleton-like clusters
are removed (min_size = 10).

This global similarity is also present at the local level, if we
compare set representatives from the top 10 most populated
clusters found by both algorithms. Fig. 3 presents a heat-map
with the Tanimoto comparisons between the medoids found
by Taylor-Butina and BitBIRCH (for details on how to find the
medoids, check the ESI, Section S17). Overall, there is a close
relation between the “core” molecules identified by these
methods, especially for the denser clusters. As discussed in the
ESLT this trend persists for the other ChEMBL subsets consid-
ered in this work. Moreover, in the ESI{ we also discuss other
tests showing the agreement between these two methods,
including the Jaccard-Tanimoto set comparison between the
most populated clusters, and the analysis of these trends over
multiple coincidence thresholds.

Clustering performance

Having established that the BitBIRCH and Taylor-Butina algo-
rithms offer similar views on the nature of the data, we now

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Min Size: 1

._-’—_-H
~ 7
”

100+

50 , - == : Taylor-Butina
-

= BitBirch

T T T T
Min Size: 2

-’ Ny
60 ’/,—Q— [N

-2,
40 ’f

20 7

T T T T
Min Size: 3

40+ _— e P N i em
//
-
”~

20+

Min Size: 5

Number of Clusters

30+

204 277 T T AN
A S

10 ,/’

Min Size: 10

20+

154 ,

10 ~

Y N

Lk =N

T T
0.3 0.4 0.5 0.6 0.7 0.8

Similarity Threshold

Fig. 2 Comparison of numbers of clusters for the ChEMBL 262_Ki*®
library with more than min_size (=1, 2, 3, 5, 10) elements found by the
Taylor—Butina (dashed blue line) and BitBIRCH (continuous orange
line) algorithms for different similarity thresholds.

Medoid Comparison

-1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3

987 6543210

012 345¢6 7 8 9

Fig. 3 Comparison of the medoids’ similarity of the top 10 most
populated clusters in the ChEMBL 262_Ki*® library found by the Tay-
lor—Butina and BitBIRCH algorithms (similarity threshold = 0.65,
min_size = 10).

Digital Discovery, 2025, 4,1042-1051 | 1045

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

compare the quality of the resulting clusterings. We used three
main internal cluster validation measures:* the Calinski-Har-
abasz (CHI),*® Davies-Bouldin (DBI),** and Dunn (DI)** indices.
The CHI depends on the ratio of between- and within-cluster
dispersions, with bigger values indicating a better clustering.*
This index can be re-formulated with Tanimoto as a similarity
measure:

o SN0 TE)
(Nc —1) % g’: (1- T, XU.‘,))}z

=1 v=1

CHI =

(12)

where N is the total number of molecules, N¢ is the number of
clusters, and c is the centroid of all the data. It is important to
note that, with the help of iSIM, CHI can be estimated in O(N).

DBI values are usually easier to interpret, since they are
bounded in the [0, 1] interval, with lower values corresponding
to tighter and more separated clusters.> However, calculating
this index demands computing all the pairwise similarities
between the cluster representatives. This is problematic, since
for most practical values of the similarity threshold the number
of clusters is proportional to the number of molecules (N¢ ~
O(N)), or in other words, the DBI calculation will roughly scale
as O(N®). Even if we include the DBI analysis as a way to
benchmark the performance of BitBIRCH, this index is not
a viable option for ultra-large libraries; calculating it is more
demanding than actually performing the clustering. The DI also
suffers from this problem, since it demands calculating the
separation between all pairs of clusters. Still, we report DI values
for all the 30 ChEMBL subsets here and in the ESI,{ keeping in
mind that higher DI values indicate more well-separated clus-
ters (more details about the expressions used to calculate the
DBI and DI are included in the ESI, Section S4+).

Fig. 4 shows the mentioned quality clustering metrics for the
ChEMBL 233 library. The CHI values in Fig. 4A indicate that
BitBIRCH outperforms Taylor-Butina for lower similarity
thresholds (<0.6), with both methods giving clusters of the same
quality until slightly over the 0.7 threshold, a range that covers
most practical applications. This observation is supported when
a Wilcoxon signed-rank test is done, the CHIs for the thirty
ChEMBL libraries are significantly higher for BitBIRCH at low
thresholds (p < 0.05) and there is no statistically significant
difference at thresholds in the [0.5, 0.7] range, depending on the
minimum size of the considered clusters (see Figs. S4.31 and
S4.32 in the ESIt). The shaded areas in Fig. 4A-C indicate the
standard deviation of the corresponding index values calculated
after removing clusters with more than 1, 2, 3, 5, and 10
molecules. Interestingly, the BitBIRCH results are consistently
more robust to the removal of outliers and singleton-like clus-
ters than those of Taylor-Butina, which is once again more
prevalent for looser thresholds. The DBI analysis (Fig. 4B) is
similar to the CHI, now with a region of BitBIRCH that gives
markedly better results until a 0.65 threshold, and then essen-
tially equivalent results to Taylor-Butina around the 0.75
region. This observation for ChEMBL_233 also applies to all the
30 studied libraries, with Wilcoxon tests showing that there is

1046 | Digital Discovery, 2025, 4, 1042-1051

View Article Online

Paper
A
— = Taylor-Butina
x 2000 BitBirch
3
&
N 1500 I
[}
2 1
© I
] [
T 1000+ ‘
<
o]
£ 5004 \
© \ -
(8] Y ——-—
FE TSt A S, - -
od—J
T 1 T 1
0.3 0.4 0.5 0.6 0.7 0.8
Similarity Threshold
B
——- Taylor-Butina
0.12 BitBirch
3
< 0.104
£
£ 0.08
3
3
2 0.06 -
8 :
% 0.04 —n-aa N -
3 P .
0.02 No=7
i -
0.00 —————— >
1 T T I
0.3 0.4 0.5 0.6 0.7 0.8
Similarity Threshold
C
— =+ Taylor-Butina
1.29 BitBirch
1.0
X
g 0.8+ \
= |
£ 0.6 |
a \
0.4+ ‘Il'\',\‘
[f s —\\ N
0.2+ 'l ‘I\/ ——x_‘__v’;
0.0 —
T T T T
0.3 0.4 0.5 0.6 0.7 0.8

Similarity Threshold

Fig. 4 Comparison of Taylor—Butina (blue dashed line) and BitBIRCH
(orange continuous line) clustering results for the ChEMBL 233_Ki°
library. Dark lines and shaded regions indicate the average and stan-
dard deviation over min_size = 1, 2, 3, 5, 10 values, respectively. (A)
Calinski—Harabasz, (B) Davies—Bouldin, and (C) Dunn indices.

no statistical difference at threshold values in [0.5, 0.7], while at
low thresholds, the DBI score is significantly lower for BitBIRCH
(see Section S4 in the ESIf). The DI results are even more
promising (Fig. 4C), with BitBIRCH consistently outperforming
Taylor-Butina almost up to a 0.8 threshold. Overall, the DI is
statistically higher for BitBIRCH in the [0.3, 0.8] range (ESI,
Section S47). It is reassuring to see that these different metrics
agree on the relative performance of both algorithms, with the
CHI and DI plots, in particular, presenting very similar features.
Essentially, for the range of similarity thresholds that are
usually explored in drug design® and ML applications, Bit-
BIRCH performs better or, at worst, equal to Taylor-Butina.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
Threshold: 0.35 Threshold: 0.5
5.0 D
o < T
e Y 14730 »
0.0 =
b ® { 2
15415 0.875
-5.0 ‘ - Oq. ‘ Y 17197
8:] Puior, 0.850
-10.0 Y 4 3236 2783
0.825
-15.0
0.800 3
2
Threshold: 0.65 Threshold: 0.8 0.775 _g,
o
5.0 " 0.750
g ¥ zni
2 S LY
Q0 . 0.725
0.0 269 e ¢ e sS40
' @ 8749 0¥ 0.700
-5.01 o
. ° 28, e ~lo.675
-10.0 & 4 Q ¢ °
& (S
-15.0
-10.0 0.0 10.0 20.0 30.0 -10.0 0.0 10.0 20.0 30.0

Fig. 5 Projection into the first two principal components of the Bit-
BIRCH clustering of the ChEMBL33 natural products library with
similarity thresholds = 0.35, 0.5, 0.65, 0.8. Colors indicate the iT values
for the clusters, and the populations of the five largest clusters are
explicitly indicated.

As a final test on the potential variability of BitBIRCH, we
studied how the distribution of the clusters in chemical space
changes under different conditions (for this, we used a PCA
projection into the first two principal components to conve-
niently visualize the cluster results). For the natural products of
the ChEMBL33 (ref. 47) library (Fig. 5) we observe that from
a relatively loose threshold (0.35) to a much stricter one (0.8),
the relative positions of the most populated clusters remain
sensibly constant. This is especially clear for the 0.5-0.8 range,
where not only the position of the clusters, but also the average
similarities of the cluster members (calculated with iSIM, see
color scale in Fig. 5) is largely preserved. This indicates that
BitBIRCH results are quite robust to changes in the similarity
threshold. At least at a general level, we do not have to carefully
fine-tune this parameter, especially within the [0.5, 0.8] interval.

Tackling ultra-large libraries

As shown above, the standard BitBIRCH implementation can
easily handle millions of molecules, but now we explore
iterative/parallel scheme to tackle much larger sets.

This parallel method is inspired by the (optional) refinement
step at the end of traditional BIRCH implementations® and
clustering ensembles.® The basic idea is that the cluster
centroids could be used as representatives of their corre-
sponding sets. Centroids are used as input in a second clus-
tering step. So, the BitBIRCH-parallel recipe is quite simple: (1)
separate the data into non-overlapping splits (we usually
consider 10 splits, as discussed below); (2) use BitBIRCH to
cluster each of these splits; (3) collect the cluster centroids and
cluster them with BitBIRCH. This parallel/iterative approach is
an approximation to just clustering all the data in one go, but
the question remains: how much does the quality of the clus-
tering suffer after this iterative procedure?

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

A

190 BitBirch
~ BitBirch-parallel

o 80 ! “

2 i I

3 604 }\ | | ' \

o 1 1 P

5 it/ |

g 401 | i ! LY A /\. |

E i/ NN N AN

2y WWIN v N

V A\ B e W
Py _/** -
oA
S N TV T R
B
BitBirch
~ . BitBirch-parallel

» 4000+

H 5

E 3000 - "

2 '

©

£ 2000 I, {

¥ [

£ |

,—U, 1000 4 ' ‘ /L\

A A1) .
0 \-/___/ l._ll \‘\.Jh'\/v\v—//\' —
LI IR I
C
| BitBirch
0.12 ,,‘ — - BitBirch-parallel

s 0.10 ! \

H h

£ 0.081] i

3 | 3

3 1

3 0.06 I \

3 AU AN

1AM N /L A N
0.02 Y ! [N\ TR\
0.00 N ' g

T I

D

BitBirch
1 1 } ~— . BitBirch-parallel
0.8 ” ?1
0.7 “] J “

x I\ i

fosl VSl M i 3

Eos- \\ / \ H\ f \‘\-/ \ / !

a i { ! U i ’\’ \,_/\ -~ ! —
oef i |y YW Y
0.3 l“l
0.2+

R ZITTIEERVIAARARRRSSELR RS RSN
Fig. 6 Comparison of the performance of the original (continuous
orange line) and parallel (dashed green line) BitBIRCH algorithms (with

10 initial splits) over the 30 ChEMBL subsets. (A) Number of clusters; (B)
Calinski—Harabasz, (C) Davies—Bouldin, and (D) Dunn indices.

Digital Discovery, 2025, 4,1042-1051 | 1047

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

First, Fig. 6A shows that for the 30 ChEMBL subsets
considered here, the final number of clusters found by the
standard and the parallel BitBIRCH methods (with 10 initial
splits) is quite consistent, which reflects the ability of the
simpler method to capture the same global structure as the
exact BitBIRCH. In the ESIT we also present a detailed
comparison between the local structure of the clusters found by
these algorithms (ESI, Section S5). The CHI (Fig. 6B) and DBI
(Fig. 6C) analysis reveal a promising pattern: in general, both
methods have very similar performance, with the parallel
approach being even slightly favoured in some cases, as re-
ported in other ensemble-like approaches.*>*® Even more reas-
suring, according to the DI (Fig. 6D), in most cases BitBIRCH-
parallel finds better-separated and more compact clusters.
The statistical analysis supports these observations, with the
corresponding CHI and DBI values being statistically equivalent
(p = 0.16 and p = 0.45, respectively), while the parallel DIs are
significantly higher than BitBIRCH (p < 0.05) in the respective
Wilcoxon's tests (details on ESI, S57).

Since by all the considered metrics the iterative/parallel
approximation does not diminish the quality of the final
results, we chose it to analyse a library with one billion molecules.
As noted above, 4 TB were insufficient to cluster 450 000 mole-
cules with Taylor-Butina. But even ignoring the memory issues,
the trend in Fig. 1 (O(Taylor-Butina) = 2 x 10™’N?) suggests that
it will take ~6342 years to cluster one billion molecules. Using the
BitBIRCH algorithm without any modifications (O(BitBIRCH) =
2.94 x 10~ *N) this estimate improves to only 3.4 days, which is

le-5 le-9
1.2 6
£
1.0 gt
a
2
08 RILTY M A
z 1 2 3 a
] 1e6
§0.6
aQ
0.4
0.2
0.0
o 1 2 3 4
Cluster populations le6
A > N
S

Fig. 7

View Article Online

Paper

already a practical time, but we wanted to test how much one
could improve upon this result with the parallel BitBIRCH
implementation. The one billion molecules were selected from
the ZINC22 (ref. 48) library and clustered using the parallel
strategy using 1000 splits (1 000 000 molecules each). While the
average time to cluster a split was 4.34 min, to compute the total
time we will consider the slowest one, 18.76 min, since it is the
limiting step before clustering the centroids. On average, each
split clustering yielded 26 653 centroids (lowest: 5430; highest: 84
649). Then, the final clustering took 242 min between the
centroid aggregation and clustering, resulting in a total of 2 081
662 clusters with more than 10 molecules. The total time to
obtain the final clustering assignations of the billion molecules
was 4.35 hours; a much more attractive time than the unman-
ageable Taylor-Butina estimate, and even the days required for
this task using the unmodified BitBIRCH.

In Fig. 7A we present a summary of the cluster population
distribution for the 10000 largest clusters, indicating a strong
preference for smaller “pockets” of molecules. The distribution of
the larger clusters (Fig. 7B) shows a relatively uneven location of
the more populated centers (darker and bigger circles in Fig. 7B),
which dominate the boundaries of the two-dimensional PCA
projection. The asymmetric distribution of the denser clusters is
also showcased by the “voids” observed in the central region of
this chemical sub-space. In Fig. 7C, we show the structures of the
medoids (most similar molecules to the rest of the molecules in
the set) of each of the top five most populated clusters.

B
8.0 - "Ts_
6.0 : 1le6
4.0 4
2.0 3
(%]
g
0.0)
2.0l
809 1
-4.0
-6.01

5.0 0.0 5.0 10.0

(A) Kernel density estimation of the populations of the top 10 000 most populated clusters from 1 billion molecules of ZINC22. The

zoomed image has the details of the density estimation for the clusters with >1 000 000 molecules. (B) Projection into the first two principal
components of the 378 clusters with at least one million molecules. Circle color and size correspond to the number of molecules in each cluster.
The populations of the top five largest clusters are explicitly indicated. (C) Medoid molecules of the top five largest clusters (sorted from left to

right with decreasing cluster population).

1048 | Digital Discovery, 2025, 4, 1042-1051

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Materials and methods

The timing comparisons between Taylor-Butina and BitBirch
were done on the first 1 million molecules from the PubChem
2005 library. For clustering performance calculations, 30
ChEMBL target-oriented subsets curated by van Tilborg et al
were used (details on ESI, Section S21).%” For the PCA clustering
visualization changes with similarity threshold, the natural
products from ChEMBL33 (ref. 47) (n = 64 087) were used. For
the billion molecules clustering, random tranches from the
ZINC22 2D** database (https:/cartblanche.docking.org/
tranches/2d) were taken until 1 billion was reached (see ESI,
Section S7t). In all cases, 2048-bit RDKit" fingerprints were
generated from SMILES, corrupted SMILES were discarded
from the databases. The statistical comparison between the
clustering performance metrics for the methods was done
using SciPy's®® Wilcoxon test,” alternative hypothesis
evaluated depended on the case. All the calculations (except
the statistical analysis and plotting) were run in University of
Florida's HiperGator supercomputer. The BitBIRCH code is
available at: https://github.com/mqcomplab/bitbirch.

Conclusions

We have developed an alternative to the BIRCH and Taylor-
Butina algorithms, BitBIRCH, capable of handling binary data
with the similarity metrics that are used in drug design and ML
applications targeting small molecules. Key components of
BitBIRCH include the tree structure derived from the BIRCH
method, as well as the ability to use the BF to encode the
cluster's information. The tree is critical to ensure the O(N) time
scaling, by reducing the total number of comparisons required
to allocate each new molecule to their corresponding cluster.
The BF, on the other hand, is what allows to reduce the memory
usage, by providing a convenient proxy to the cluster's proper-
ties required to assign new molecules or create new sub-
divisions. This is possible thanks to the iSIM formalism since
having the chance to calculate the average of the pairwise
Tanimoto comparisons is what opens the door to the cluster's
radius and diameter. As noted before, while we focused on
Tanimoto similarity, iSIM can be used to calculate the average
pairwise with other similarity indices; BitBIRCH can trivially
incorporate other criteria, like Russel-Rao and Sokal-Michener.
Likewise, this methodology is applicable to any type of
fingerprints.

The comparison of BitBIRCH with the RDKit implementa-
tion of Taylor-Butina showcases the differences in efficiency
between these methods. We saw that 4 TB of memory were
insufficient for Taylor-Butina to cluster more than 450000
molecules, while BitBIRCH was able to easily handle millions.

Moreover, RDKit took more than 8 hours to cluster those 450
000 molecules, with BitBIRCH requiring ~2.2 minutes to
complete the same task. If we follow the trends in Fig. 1, we see
that for 1500000 molecules, BitBIRCH is >1000 times faster
than Taylor-Butina. Compare this to other linear clustering
algorithms, like linclust, that only got to a 1000x speedup over
their previous alternatives for billions of points, thus

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

showcasing how much faster BitBIRCH is compared to Taylor-
Butina. One of the key characteristics of BitBIRCH is that the
increase in time and memory efficiency do not diminish the
clustering quality compared to the O(N?) alternatives. First, we
saw that BitBIRCH and Taylor-Butina partition the chemical
space in similar ways (total number of clusters, etc.). Moreover,
a more detailed analysis over 30 subsets of the ChEMBL library
showed that BitBIRCH outperforms Taylor-Butina for lower
similarity thresholds according to the CHI and DBI metrics,
with both methods being statistically indistinguishable in the
[0.5, 0.7] range. The DI, on the other hand, favors BitBIRCH up
to a 0.8 threshold. So, for all the clustering metrics considered,
BitBIRCH performs better or, at worst, with the same quality as
Taylor-Butina. BitBIRCH also proved to be more robust to
changes in the computational conditions (similarity threshold,
minimum number of molecules in a cluster).

Finally, we explored alternatives to tackle billion-sized
libraries in even more efficient ways. The fingerprint folding
approach compromised the clustering results, with even one-
fold, leading to worse DI values than the original BitBIRCH
method. We found a more promising route with the parallel/
iterative clustering strategy, it separates the data into different
splits, which are then clustered and whose resulting centroids
are then clustered again. This led to performances remarkably
close to the unmodified BitBIRCH algorithm, while consider-
ably boosting the efficiency of the method. We tested this with 1
billion molecules from the ZINC22 library, which we were able
to cluster in 4.35 hours (in stark contrast with the estimated
6342 years it would take the RDKit Taylor-Butina implementa-
tion to complete this task).

Data availability

The software used in the paper can be found in: https://
github.com/mqcomplab/bitbirch (Dor: 10.5281/
zenodo.14977624). Benchmark data can be found in: https://
github.com/molML/MoleculeACE/tree/main/MoleculeACE/
Data/benchmark_data.

Author contributions

Kenneth Lopez Pérez: code optimization, manuscript, and data
analysis. Vicky Jung: code optimization, conceptualization, and
data analysis. Lexin Chen: manuscript, data analysis. Kate
Huddleston: manuscript, and code optimization. Ramon Alain
Miranda-Quintana: conceptualization, main code contributor,
code optimization, manuscript, data analysis, and funding
acquisition.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

KLP, LC, KH, and RAMQ thank the National Institute of General
Medical Sciences of the National Institutes of Health for

Digital Discovery, 2025, 4,1042-1051 | 1049

https://cartblanche.docking.org/tranches/2d
https://cartblanche.docking.org/tranches/2d
https://github.com/mqcomplab/bitbirch
https://github.com/mqcomplab/bitbirch
https://github.com/mqcomplab/bitbirch
https://doi.org/10.5281/zenodo.14977624
https://doi.org/10.5281/zenodo.14977624
https://github.com/molML/MoleculeACE/tree/main/MoleculeACE/Data/benchmark_data
https://github.com/molML/MoleculeACE/tree/main/MoleculeACE/Data/benchmark_data
https://github.com/molML/MoleculeACE/tree/main/MoleculeACE/Data/benchmark_data
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

support under award number R35GM150620. VJ thanks the UF
Al Scholars Program for a fellowship.

References

1 A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, L. Abualigah,
J. O. Agushaka, C. I. Eke and A. A. Akinyelu, Eng. Appl
Artif. Intell., 2022, 110, 104743.

2 G.]J. Oyewole and G. A. Thopil, Artif. Intell. Rev., 2023, 56,
6439-6475.

3 A. K. Jain, M. N. Murty and P.]J. Flynn, ACM Comput. Surv.,
1999, 31, 264-323.

4 L. Cheng, N. B. Kovachki, M. Welborn and T. F. Miller, J.
Chem. Theory Comput., 2019, 15, 6668-6677.

5 B. Zhang, in Third IEEE International Conference on Data
Mining, IEEE Comput. Soc, 2003, pp. 451-458.

6 D. Domingo-Fernandez, Y. Gadiya, S. Mubeen, D. Healey,
B. H. Norman and V. Colluru, J. Cheminf., 2023, 15, 107.

7 H. Hadipour, C. Liu, R. Davis, S. T. Cardona and P. Hu, BMC
Bioinf., 2022, 23, 132.

8 J. T. Leonard and K. Roy, QSAR Comb. Sci., 2006, 25, 235-251.

9 H. Eckert and J. Bajorath, Drug Discovery Today, 2007, 12,
225-233.

10 M. A. Johnson and G. M. Maggiora, Concepts and applications
of molecular similarity, Wiley-Interscience, 1st edn, 1990.

11 Y. C. Martin, J. L. Kofron and L. M. Traphagen, J. Med. Chem.,
2002, 45, 4350-4358.

12 P. Beroza, J. J. Crawford, O. Ganichkin, L. Gendelev,
S. F. Harris, R. Klein, A. Miu, S. Steinbacher, F.-M. Klingler
and C. Lemmen, Nat. Commun., 2022, 13, 6447.

13 D. Bajusz, A. Racz and K. Héberger, in Comprehensive
Medicinal Chemistry II, Elsevier, 2017, vol. 3.

14 K.-Z. Myint, L. Wang, Q. Tong and X.-Q. Xie, Mol. Pharm.,
2012, 9, 2912-2923.

15 G. B. McGaughey, R. P. Sheridan, C. I. Bayly, J. C. Culberson,
C. Kreatsoulas, S. Lindsley, V. Maiorov, J.-F. Truchon and
W. D. Cornell, J. Chem. Inf. Model., 2007, 47, 1504-1519.

16 R. D. Brown and Y. C. Martin, J. Chem. Inf. Comput. Sci., 1997,
37, 1-9.

17 J. L. Durant, B. A. Leland, D. R. Henry and J. G. Nourse, J.
Chem. Inf. Comput. Sci., 2002, 42, 1273-1280.

18 D. Rogers and M. Hahn, J. Chem. Inf. Model., 2010, 50, 742-754.

19 G. Landrum and J. Penzotti, 2018, preprint, http://
www.rdkit.org/.

20 A. Capecchi, D. Probst and J.-L. Reymond, J. Cheminf., 2020,
12, 43.

21 D. J. Rogers and T. T. Tanimoto, Science, 1960, 132, 1115-
1118.

22 P. Jaccard, New Phytol., 1912, 11, 37-50.

23 B. Zhang, M. Vogt, G. M. Maggiora and]. Bajorath, J.
Comput.-Aided Mol. Des., 2015, 29, 937-950.

24 D. C. Anastasiu and G. Karypis, Int. J. Data Sci. Anal., 2017, 4,
153-172.

25 D. Bajusz, A. Racz and K. Héberger, J. Cheminf., 2015, 7, 20.

26 R. Todeschini, V. Consonni, H. Xiang,]. Holliday,
M. Buscema and P. Willett, J. Chem. Inf. Model., 2012, 52,
2884-2901.

1050 | Digital Discovery, 2025, 4, 1042-1051

View Article Online

Paper

27 D. Butina, J. Chem. Inf. Comput. Sci., 1999, 39, 747-750.

28 P. Thiel, L. Sach-Peltason, C. Ottmann and O. Kohlbacher, J.
Chem. Inf. Model., 2014, 54, 2395-2401.

29 E. Liu, Z. Z. Zhang, X. Cheng, X. Liu and L. Cheng, BMC Med.
Genomics, 2020, 13, 50.

30 S. Gan, D. A. Cosgrove, E. J. Gardiner and V. J. Gillet, J. Chem.
Inf. Model., 2014, 54, 3302-3319.

31 A. Bocker, S. Derksen, E. Schmidt, A. Teckentrup and
G. Schneider, J. Chem. Inf. Model., 2005, 45, 807-815.

32 B. S. S. Sowjanya Lakshmi and R. K. V. P, in Soft Computing
and Signal Processing, 2023, pp. 127-137.

33 A. Vathy-Fogarassy, A. Kiss and]J. Abonyi, in Applications of
Fuzzy Sets Theory, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007, pp. 195-202.

34 M. G. Malhat, H. M. Mousa and A. B. El-Sisi, in 2014 9th
International Conference on Informatics and Systems, IEEE,
2014, pp. DEKM-61-DEKM-66.

35 R. Taylor, J. Chem. Inf. Comput. Sci, 1995, 35, 59-67.

36 S. Hernandez-Hernandez and P. J. Ballester, Biomolecules,
2023, 13, 498.

37 T. Zhang, R. Ramakrishnan and M. Livny, ACM SIGMOD
Record, 1996, vol. 25, pp. 103-114.

38 K. E. Kirchoff, J. Wellnitz, J. E. Hochuli, T. Maxfield,
K. 1. Popov, S. Gomez and A. Tropsha, in Advances in
Information Retrieval, 2024, pp. 34-49.

39 R. A. Miranda-Quintana, D. Bajusz, A. Racz and K. Héberger,
J. Cheminf., 2021, 13, 32.

40 R. A. Miranda-Quintana, A. Racz, D. Bajusz and K. Héberger,
J. Cheminf., 2021, 13, 33.

41 E. A. Flores-Padilla, K. E. Juarez-Mercado,]J. J. Naveja,
T. D. Kim, R. Alain Miranda-Quintana and
J. L. Medina-Franco, Mol. Inf., 2022, 41, 2100285.

42 K. Lopez-Pérez, E. Lopez-Lopez, J. L. Medina-Franco and
R. A. Miranda-Quintana, Molecules, 2023, 28, 6333.

43 T. B. Dunn, E. Lopez-Lopez, T. D. Kim, J. L. Medina-Franco
and R. A. Miranda-Quintana, Mol Inf, 2023, 42(7),
€2300056.

44 L. Chang, A. Perez and R. A. Miranda-Quintana, Phys. Chem.
Chem. Phys., 2022, 24, 444-451.

45 A. Racz, L. M. Mihalovits, D. Bajusz, K. Héberger and
R. A. Miranda-Quintana, J. Chem. Inf. Model., 2022, 62,
3415-3425.

46 K. Lopez-Pérez, T. D. Kim and R. A. Miranda-Quintana,
Digital Discovery, 2024, 3, 1160-1171.

47 A. Gaulton, L.]. Bellis, A. P. Bento, J. Chambers, M. Davies,
A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-
Lazikani and J. P. Overington, Nucleic Acids Res., 2012, 40,
D1100-D1107.

48 B. I. Tingle, K. G. Tang, M. Castanon, J. J. Gutierrez,
M. Khurelbaatar, C. Dandarchuluun, Y. S. Moroz and
J. J. Irwin, J. Chem. Inf. Model., 2023, 63, 1166-1176.

49 O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez and
I. Perona, Pattern Recognit., 2013, 46, 243-256.

50 C. T. Harabasz and M. Karonski, in Communications in
Statistics, 1974, vol. 3, pp. 1-27.

51 D. L. Davies and D. W. Bouldin, IEEE Trans. Pattern Anal.
Mach. Intell., 1979, PAMI-1, 224-227.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://www.rdkit.org/
http://www.rdkit.org/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

Open Access Article. Published on 13 March 2025. Downloaded on 11/18/2025 3:56:24 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

52 J. C. Dunn, J. Cybern., 1973, 3, 32-57.

53 G. Zahoranszky-K6éhalmi, C. G. Bologa and T. 1. Oprea, J.
Cheminf., 2016, 8, 16.

54 A. Strehl and J. Ghosh, J. Mach. Learn. Res., 2002, 3, 583-617.

55 J. Wu, H. Liu, H. Xiong, J. Cao and J. Chen, IEEE Trans.
Knowl. Data Eng., 2015, 27, 155-169.

56 N. Nguyen and R. Caruana, in Seventh IEEE International
Conference on Data Mining (ICDM 2007), IEEE, 2007, pp.
607-612.

57 D. van Tilborg, A. Alenicheva and F. Grisoni, J. Chem. Inf.
Model., 2022, 62, 5938-5951.

58 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R.]J. Nelson,
E. Jones, R. Kern, E. Larson, C.]J. Carey, I. Polat, Y. Feng,
E. W. Moore,]J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van
Mulbregt, A. Vijaykumar, A. Pietro Bardelli, A. Rothberg,
A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem,

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

C. N. Woods, C. Fulton, C. Masson, C. Higgstrom,
C. Fitzgerald, D. A. Nicholson, D. R. Hagen,
D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva,
F. Lenders, F. Wilhelm, G. Young, G. A. Price, G. L. Ingold,
G. E. Allen, G. R. Lee, H. Audren, 1. Probst, J. P. Dietrich,
J. Silterra, J. T. Webber, J. Slavi¢, J. Nothman, J. Buchner,
J. Kulick, J. L. Schonberger, J. V. de Miranda Cardoso,
J. Reimer, J. Harrington, J. L. C. Rodriguez, J. Nunez-
Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville,
M. Kimmerer, M. Bolingbroke, M. Tartre, M. Pak,
N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk,
P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer,
S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More,
T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura,
T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss,
U. Upadhyay, Y. O. Halchenko and Y. Vazquez-Baeza, Nat.
Methods, 2020, 17, 261-272

59 D. Rey and M. Neuhduser, in International Encyclopedia of
Statistical Science, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2011, pp. 1658-1659.

Digital Discovery, 2025, 4, 1042-1051 | 1051

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00030k

	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k

	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k
	BitBIRCH: efficient clustering of large molecular librariesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00030k

