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Active learning, an iterative process of selecting the most informative data points for exploration, is crucial
for efficient characterization of materials and chemicals property space. Neural networks excel at predicting
these properties but lack the uncertainty quantification needed for active learning-driven exploration. Fully
Bayesian neural networks, in which weights are treated as probability distributions inferred via advanced
Markov Chain Monte Carlo methods, offer robust uncertainty quantification but at high computational
cost. Here, we show that partially Bayesian neural networks (PBNNs), where only selected layers have
probabilistic weights while others remain deterministic, can achieve accuracy and uncertainty estimates

on active learning tasks comparable to fully Bayesian networks at lower computational cost.
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demonstrate that PBNNs can effectively leverage computational predictions to accelerate active learning
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1 Introduction

Active learning (AL)"* optimizes exploration of large parameter
spaces by strategically selecting which experiments or simula-
tions to conduct, reducing resource consumption and poten-
tially accelerating scientific discovery.>® A key component of
this approach is a surrogate machine learning (ML) model,
which approximates an unknown functional relationship
between structure or process parameters and target properties.
At each step, the model uses the information gathered from
previous measurements to update its ‘understanding’ of these
relationships and identify the next combinations of parameters
likely to yield valuable information. The success of this
approach critically depends on reliable uncertainty quantifica-
tion (UQ) in the underlying ML models.

The development of effective ML models for active learning
builds upon broader advances in machine learning across
materials and chemical sciences, tackling problems including
phase stability,”"* thermal conductivity,"*** glass transition
temperatures,'®?® dielectric properties,**** and more.>>?*
However, traditional ML models often lack inherent robust UQ,
requiring additional post-hoc UQ methods such as the
computation of jackknife variances for random forest* or
temperature scaling for neural networks.>® These challenges
often limit their application in AL workflows. Moreover, many of
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science tasks, establishing PBNNs as a practical tool for active learning with limited, complex datasets.

them are trained on computational data, such as density func-
tional theory calculations,** and generalization to experi-
mental workflows in physical labs, where data are often sparse,
noisy, and costly to acquire, is often non-trivial and requires
predictions with reliable coverage probabilities.

Gaussian Process (GP)**** is an ML approach that provides
mathematically-grounded UQ and has become a popular choice
for scientific applications, including AL frameworks.>*”
However, GPs struggle with high-dimensional data, disconti-
nuities, and non-stationarities, which are common in physical
science problems. Deep kernel learning (DKL) attempts
addressing these issues by combining neural network repre-
sentation learning with GP-based UQ. While DKL has shown
promise in chemistry and materials science,*** it is still limited
by GP scalability in feature space, potential mode collapse, and

38-40

conflicting optimization dynamics between its GP and neural
network components.** These limitations highlight the need for
further advancement of methods to support AL in non-trivial
materials design and discovery tasks.

Bayesian neural networks (BNNs), where all network weights
are treated as probability distributions rather than scalar
values,**¢ offer a promising approach that combines powerful
representation learning capabilities with reliable UQ. By
maintaining a distribution over network parameters rather than
point estimates, BNNs naturally account for model uncertainty,
and are particularly effective for smaller and noisier datasets.
However, reliable Bayesian inference requires computationally
intensive sampling methods, making fully Bayesian neural
networks prohibitively expensive for many practical
applications.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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In this work, we explore partially Bayesian neural networks
(PBNNs) for active learning of molecular and materials prop-
erties. We show that by making strategic choices about which
layers are treated probabilistically we can achieve performance
on active learning tasks comparable to fully Bayesian neural
networks at significantly reduced computational cost. Further-
more, we demonstrate how PBNNs can be enhanced through
transfer learning by initializing their prior distributions from
weights pre-trained on computational data. We validate these
approaches on several benchmark datasets, demonstrating the
practical potential of PBNNs for materials and molecular design
with limited, complex data.

2 Methods

2.1 Bayesian neural networks

In conventional, non-Bayesian NNs, network weights ¢ are
optimized to minimize a specified loss function, resulting in
a deterministic, single-point prediction for each new input. Due
to their architectural flexibility they can be powerful function
approximators, but are known to suffer from overfitting on
small or noisy datasets and overconfidence on out-of-
distribution inputs.*”~* In contrast, in BNNs the weights ¢ are
treated as random variables with a prior distribution p(#). This
not only helps reduce overfitting, but also provides robust
prediction uncertainties. Given a dataset D = {x;,y;};_,, a BNN
is defined by its probabilistic model:
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Likelihood : yi|x;, 0, o NN(g(x,-; 9)7‘72) (3)

where g(x; 6) represents the neural network function mapping
inputs to outputs using weights . While we focus on normal
likelihoods here for regression tasks, the framework naturally
extends to other distributions (e.g., Bernoulli for classification,
Poisson for count data) depending on the problem domain. The
posterior predictive distribution for new input x* is then given
by

pOlx*, D) = [ p(Ix*, 6, 0)p(60, o|D)dbde (4)

This predictive distribution can be interpreted as an infinite
ensemble of networks, with each network's contribution to the
overall prediction weighted by the posterior probability of its
weights given the training data. Unfortunately, the posterior
p(0,0/D) in eqn (4) is typically intractable. It is therefore
common to use Markov Chain Monte Carlo (MCMC)* or vari-
ational inference® techniques to approximate the posterior.
The advanced MCMC methods, such as Hamiltonian Monte
Carlo (HMC),* generally provide higher accuracy than varia-
tional methods for complex posterior distributions.> Here, we
employ the No-U-Turn Sampler (NUTS) extension of the HMC,
which efficiently explores the posterior distribution p(6, o|D) of
neural network parameters, especially in high-dimensional
spaces, without requiring significant manual tuning.** The
predictive mean (uP°*") and predictive variance (UP°*") at new
data points are then given by:

Weights : 6 ~ p(6) (typically N'(0,1)) (1
N
1
ost __ *.
Ut = N E g(x*6;) (5)
Noise: g ~ p(o) (typically half-normal(0,1)) (2) i=1
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(a) Schematic illustration of Partially Bayesian Neural Network (PBNN) operation. First, we train a deterministic neural network, incor-

porating stochastic weight averaging to enhance robustness against noisy training objectives. Second, the probabilistic component is introduced
by selecting a subset of layers and using the corresponding pre-trained weights to initialize prior distributions for this subset, while keeping all
remaining weights frozen. HMC/NUTS sampling is then applied to derive posterior distributions for the selected subset. Finally, predictions are
made by combining both the probabilistic and deterministic components. (b) Schematic illustration of flow through a PBNN model alternating
probabilistic and deterministic processing stages.
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1 import neurobayes as nb
2
3 # Define NN architecture
4 architecture = nb.FlaxMLP(hidden_dims=[8, 8, 8, 8], target_dim=1)
5
6 # Initialize Partial BNN model
7 model = nb.PartialBNN(
8 architecture,
9 probabilistic_layer_names=['Dense@', ‘Dense4']

0 )

12 # Train using currently available data
13 model.fit(X_measured, y_measured)

15 # Predict on new/unmeasured inputs
16 predictive_mean, predictive_uncertainty = model.predict(X_unmeasured)

(a) Schematic representation of the partially Bayesian MLP employed in this study. The model consists of five layers: four utilize non-linear

activation functions, such as the sigmoid linear unit, while the final (output) layer contains a single neuron without a non-linear activation, as is
typical for regression tasks. Circles filled with red denote stochastic layers, while orange filled circles represent deterministic layers. Note that the
single output neuron is always made probabilistic, as it often improves training stability. (b) Code snippet illustrating a single train-predict step

with PBNN (0, 4).

1SN, .
Urost — N Z (y’ _ ,upost)z (6)

i=1

J’; ~./\/'(g(x*; 0:‘)an2) (7)

where y: is a single sample from the model posterior at new
input x*, {0;,0,}%_, are samples from the MCMC chain approxi-
mating p(6,g|D), and N is the total number of MCMC samples.
Note that UP°*" naturally combines both epistemic uncertainty
(from the variation in network predictions across different
weight samples 6;) and aleatoric uncertainty (from the noise
terms o;), providing a comprehensive measure of predictive
uncertainty.>

2.1.1 Partially Bayesian neural networks. Even with
sampling methods, full BNNs can be computationally expensive
for reasonably-sized datasets, in terms of number of samples or
feature dimensions.’*>® Variational inference, a common
approximation method for BNNs, aims to alleviate these costs
but often struggles with limited expressivity,* underestimation
of uncertainty,” and sensitivity to initialization and hyper-
parameters,®> which degrades its performance on real-world
tasks. To leverage the representational power and computa-
tional efficiency of deterministic NNs and the advantages of
BNNs, we explore partially Bayesian neural networks (PBNNs),
where only a selected number of layers are probabilistic and all
other layers are deterministic. Building upon existing research
that proposed usage of selectively stochastic layers,*** our work
specifically investigates the potential of PBNNs in active and
transfer learning contexts, with a focus on molecular and
materials science datasets.

The PBNN s are trained in two stages. First, it trains a deter-
ministic neural network, incorporating stochastic weight aver-
aging (SWA)® at the end of the training trajectory to enhance
robustness against noisy training objectives. Second, the prob-
abilistic component is introduced by selecting a subset of layers
and using the corresponding pre-trained weights to initialize
prior distributions for this subset, while keeping all remaining
weights frozen. HMC/NUTS sampling is then applied to derive
posterior distributions for the selected subset. Finally,
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predictions are made by combining both the probabilistic and
deterministic components. See Algorithm 1 and Fig. 1 for more
details. In certain scenarios, such as autonomous experiments,
the entire training process needs to be performed in an end-to-
end manner. In these cases, it is crucial to avoid overfitting in
the deterministic component, as there will be no human over-
sight to evaluate its results before transitioning to the proba-
bilistic part. To address this, we incorporate a MAP prior,
modeled as a Gaussian penalty, into the loss function during
deterministic training. All the PBNNs were implemented via
a NeuroBayes package] developed by the authors.

In this work, we have investigated PBNNs of multilayer per-
ceptron (MLP) architecture consisting of five layers: four utilize
non-linear activation functions, such as the sigmoid linear unit,
while the final (output) layer contains a single neuron without
a non-linear activation, as is typical for regression tasks. As
there are multiple ways to select probabilistic layers for the
PBNNs, we have evaluated the effects of setting different
combinations of probabilistic layers as shown in Fig. 2.

2.2 Active learning

In AL, the algorithm iteratively identifies points from a pool of
unobserved data, within a pre-defined parameter space
Xdomain SRY, that are expected to improve the model's perfor-
mance in reaching some objective. Starting with an initial,
usually small, training dataset D = {(x;,;)}} ,, an initial PBNN
is trained and predictions are made on all x*€ Xgomain. The
predictions that maximize a suitably selected acquisition
function are then selected for measurement via an experiment,
simulation, or human labeling. For the sake of benchmarking,
we have chosen an acquisition function that simply maximizes
the predictive uncertainty, i.e., Xnex <—arg maxy.y, . U(x*),
and only select a single x,,.x at each iteration. Note that here we
naturally balance exploration between regions of model uncer-
tainty and inherent complexity, as high aleatoric uncertainty
often indicates areas requiring additional samples to better
estimate noise distributions and capture underlying patterns.

} https://github.com/ziatdinovmax/NeuroBayes

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Al

gorithm 1 Partially Bayesian Neural Network Training

Require:

Input data X € R™*?, targets y € R™

Deterministic neural network architecture gy

Set of probabilistic layers £

Optional: Custom SWA collection protocol v

Optional: Custom prior width 7 for probabilistic weights

1 Deterministic training hyperparameters follow typical deep learning practices
I Probabilistic training parameters follow standard Bayesian inference practices

. Initialize network parameters 6
Initialize empty weights collection W = {}
for epoche =1to E do
7e, collect = (e, E)
Update 0 using SGD: 0 + 6 — 1,V L(0)
if collect then
Add current weights to collection: W = W U {6}
end if
end for
Compute averaged weights 04.; = ﬁ Y oew?
: // Run HMC/NUTS sampler for posterior inference
: for each layer [ in network do
if [ is probabilistic then
Set prior p(el) = N(Hdet,l, 7')

Sample weights 6; ~ p(6;)
else
Set weights 6; = Oges 1
end if
: end for

: Calculate network output 41 = go(X)

: Sample observation noise o ~ p(o)

: Score observations y ~ N (p1, 02)

: return Posterior samples of probabilistic weights and noise parameter

Al

gorithm 2 Active Learning

Require:

R AN U Sl > e

Parameter space Xgomain < R?
Number of initial measurements N
PBNN model architecture and parameters
Stopping criterion
: Conduct N random measurements to create initial dataset D = {(z;, y;)} ¥,
: Train the PBNN on D using Algorithm 1
repeat
Compute PBNN’s predictive uncertainty U (x*) for each £* € Xgomain
Tnext 4= ATE MAXz* € Xgoman U ()
Perform measurement at ey to obtain Yyex;
Update D by adding (Znext; Ynext)
Re-train the PBNN on updated D using Algorithm 1
until Stopping criterion is met

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Datasets for active learning

Name Target property Nreatures Nsamples Reference
FreeSolv Hydration free energy 9 642 70

ESOL Aqueous solubility 9 1128 71

Steel fatigue (NIMS) Fatigue strength 25 437 72
Conductivity (HTEM) Electrical conductivity 12 1184 73

Table 2 Datasets for transfer learning

Name Target property Nfcatures Nsamples Reference
Noisy-FreeSolv  Hydration free energy 9 642 70
Bandgap Bandgap energy 132 1000 74 and 75

For further details regarding the AL algorithm, see Algorithm 2.
Usually, this process is repeated until a desired goal is reached
or an experimental budget is exhausted; here, we perform 200
exploration steps for all datasets. Lastly, we have selected initial
training datasets by randomly sampling subsets of the total
datasets containing 5% of the total number of data points.
While this procedure results in differently sized initial training
datasets, the trends observed are consistent across all datasets
and corresponding sizes.

2.2.1 Active learning metrics. To assess the performance of
active learning, we computed several key metrics after each
active learning iteration. Our evaluation encompasses both
prediction accuracy and uncertainty quantification. For each AL
experiment, we have performed five runs with different random
seeds to assess the robustness of our results. In each of the plots
showing an AL metric as a function of AL step, a solid or dashed
line denotes the mean of the metric across the five seeds, and
the shaded region shows +1 standard deviation over the seeds,
centered at the mean.

Prediction accuracy was evaluated using the standard root
mean square error (RMSE):

(8)

where M is the size of the test set.

To assess the quality of the predictive uncertainties, we used
two metrics, the negative log predictive density (NLPD) and the
confidence interval coverage probability, which we refer to as
coverage from this point forward. NLPD is given by the
following equation:

2
Wi =) (9)

_ 1 1 (J’i
NLPD = —— " — 5 log(2mU;) — 3T,

M ¢

i=1

NLPD assesses how well a model's predictive distributions
align with observed data. A lower NLPD indicates that the model
assigns higher probability density to true outcomes while
maintaining well-calibrated uncertainty estimates. This metric
is valuable for evaluating probabilistic models as it penalizes

1288 | Digital Discovery, 2025, 4, 1284-1297

both overconfident incorrect predictions and underconfident
correct ones.

Coverage is given by

| M
Coverage = i Z Lccion), (10)
i

where CI(x;) is the confidence interval of test point x;. Coverage
measures the empirical reliability of a model's uncertainty
estimates by calculating the proportion of true values that fall
within the predicted confidence intervals, i.e., how often the
true y lies in the ML prediction interval given by the predictive
mean fipreq and uncertainty Upreq.**®” In this work, all coverage
values are computed for 95% confidence intervals. Coverages
below 95% indicate overconfident predictions (intervals too
narrow) and coverages above 95% indicate more conservative
confidence intervals (intervals too wide), with a coverage value
of 95% being ideal. In practice, given the uneven costs of errors,
models that produce a slightly conservative coverage are typi-
cally favored over those yielding overconfident assessments.

2.2.2 Datasets. To assess the performance of PBNNs for AL
on a variety of diverse datasets, we have selected two molecular
and two materials datasets for benchmarking, and one molec-
ular and one materials dataset containing both simulation and
experimental data to investigate transfer learning (TL) from
computed to experimental properties. Details, such as the
dataset sizes and relevant references, regarding these datasets
are provided in Tables 1 and 2. The FreeSolv, ESOL, and Steel
fatigue (NIMS) datasets were used as published, while the
Conductivity (HTEM) and Bandgap datasets are subsets of the
published databases. Specifically, the Conductivity (HTEM)
dataset utilized here is restricted to oxides containing Ni, Co,
and Zn which have electrical conductivity values, and the
Bandgap dataset is a random sample of 1000 non-metals from
the intersection of the Materials Project bandgap dataset and
the Matbench experimental bandgap dataset. We also used
a noisy version of FreeSolv (Noisy-FreeSolv) for TL where
experimental target values were corrupted by a zero-centered
Gaussian noise with a standard deviation of one.

As far as the input features are concerned, we used standard
RDKit®* physicochemical descriptors for the molecular datasets.
For the steel fatigue dataset, the input features were chemical
compositions, upstream processing details, and heat treatment
conditions. For the electrical conductivity data, the input
features were formed from oxide concentrations, deposition
conditions, and processing parameters, such as power settings
and gas flow rate. The input features for the Bandgap dataset
were derived using the Magpie featurizer, which computes

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00027k

Open Access Article. Published on 09 April 2025. Downloaded on 1/16/2026 6:26:21 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

FullBNN

PBNN (0, 4)

PBNN (3, 4)

View Article Online

Digital Discovery

Active learning Metrics

RMSE over Time

Step 30

—=— PBNN (0, 4)
—=— PBNN (3,4)
=== Full BNN

Root Mean Square Error

20
Active Learning Steps

NLPD over Time

—e— PBNN (0, 4)
—e— PBNN (3,4)

A
Wx/\ !

Negative Log Predictive Density

0
Active Learning Steps

Coverage over Time

TN

Coverage Probability

—— PBNN (0, 4)
—+— PBNN (3, 4)
=== Full BNN

—— Ideal coverage

% 4 2 6 1 a1 & 3 5 0 B 20 5 32
x Active Learning Steps

Fig. 3 Active learning results for 1D toy dataset with non-stationary features. Evolution of predictions and uncertainty estimates across active
learning steps for (a) full BNN model, (b) model with probabilistic first hidden and output layers, PBNN(0,4), and (c) model with probabilistic last
hidden and output layers, PBNN(3,4). Blue lines show predictive mean, pink shading represents uncertainty estimates, and black dashed lines
indicate ground truth. Black dots mark noisy observations. Panel (d) compares performance metrics (RMSE, NLPD, and coverage probability) as

a function of active learning exploration steps.

statistical descriptors from elemental properties and composi-
tion fractions.®’

3 Results and discussion
3.1 Active learning on toy dataset

Before assessing the effectiveness of PBNNs for AL on the
materials and molecular datasets, we first analyze their effec-
tiveness on a toy dataset. In particular, we have generated non-
stationary data with abrupt changes in frequency and ampli-
tude, a use case where full BNNs consistently outperform GPs.”®
We denote PBNN configurations as PBNN (i, 4), where i indi-
cates which hidden layer is probabilistic (counting from 0), and
4 denotes the output layer that is always treated as probabilistic.
For example, PBNN (0, 4) has probabilistic first hidden and
output layers, while PBNN (3, 4) has probabilistic last hidden
and output layers. To ensure fair comparison, all hidden layers
have equal width. The output layer consists of a single neuron,
so making it probabilistic adds minimal computational over-
head while helping with training stability.

Fig. 3 shows the evolution of predictions and uncertainty
estimates across active learning steps for full BNN (a), PBNN
(0,4) (b), and PBNN (3,4) (c). PBNN (0,4) exhibits behavior
remarkably similar to full BNN, both in terms of predictive
mean and uncertainty estimates (shown as pink shading), while
requiring fewer probabilistic layers. In contrast, PBNN (3,4)
struggles to provide reliable uncertainty estimates, particularly

© 2025 The Author(s). Published by the Royal Society of Chemistry

in regions with strong oscillatory behavior. This is reflected in
the performance metrics (d), where PBNN (0,4) closely tracks
full BNN's performance while PBNN (3,4) shows consistently
higher RMSE and NLPD values, along with coverage probability
further from the ideal value of 0.95.

3.2 Active learning on molecular datasets

We now investigate the effectiveness of different PBNNs for AL
on the standard molecular benchmark datasets. Fig. 4(a) and (b)
show RMSE, NLPD, and coverage probability as a function of AL
exploration step for ESOL and FreeSolv, respectively. We see
that the accuracy and quality of the uncertainties improve with
AL for all PBNNSs, as demonstrated by (i) decreasing RMSE and
NLPD and (ii) coverage approaching 0.95 for all models. Across
all metrics for both datasets, making earlier layers probabilistic
proves more effective, with PBNN(0,4) approaching the accuracy
of a full BNN. Furthermore, PBNN(0,4) exhibits a relatively
stable decrease in NLPD and coverage approaching 0.95
throughout the AL process, similar to full BNN. In contrast,
configurations where the probabilistic layer is moved away from
the first hidden layer, PBNN(1,4), (2,4), and (3,4), show strong
oscillatory behavior in NLPD and coverage metrics, suggesting
that uncertainty propagation becomes unstable when probabi-
listic layers are placed in later hidden layers. This shows that, at
least within the standard MLP architecture employed here,
capturing uncertainty in the first feature transformation layer,
combined with a probabilistic output layer, is more effective,

Digital Discovery, 2025, 4,1284-1297 | 1289
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Fig.4 Comparison of Partially Bayesian Neural Networks (PBNNs) and fully Bayesian neural network (full BNN) on molecular property prediction
tasks. (a—c) Aqueous solubility prediction (ESOL database) and (d—f) hydration free energy prediction (FreeSolv database). Each PBNN config-
uration PBNN (i, 4) has two probabilistic layers: one at position i (counting from 0) and one at the output. Shaded areas represent a standard

deviation across five different random seeds.

both in terms of performance and reliability. In addition, it
decreased the overall computational time by nearly a factor of
four. Notably, with only a fraction of points explored, AL with
PBNN achieves accuracy either comparable to (ESOL) or better
than (FreeSolv) that obtained using standard 80:20 or 90:10
train-test splits with standard deterministic ML models.””

3.3 Active learning on materials datasets

Next, we follow a similar analysis for the two materials datasets,
steel fatigue (NIMS) and conductivity (HTEM), as shown in Fig. 5.
We observe overall similar trends to the molecular datasets
(decreasing RMSE and NLPD and coverage approaching 0.95),
although we see a much stronger difference between the different
PBNNs in the uncertainty metrics, with smaller difference in
RMSE across different selections of probabilistic layers. We also
do not observe the clean monotonic trends that we observed with
the molecular datasets for NLPD and coverage on the steel fatigue
(NIMS) dataset. This could be due to a variety of factors, but we
suspect that this is largely due to differences in the types of input
features. While the molecular datasets utilized SMILES-derived
descriptors as their input features, the materials datasets con-
tained experimental parameters as their input features, which
may not be as predictive of the target properties as the structural

1290 | Digital Discovery, 2025, 4, 1284-1297

SMILES-based descriptors. There could also be a difference in
experimental noise between the molecular and materials data-
sets, as it is well known that values of the materials target prop-
erties, fatigue strength and electrical conductivity, are sensitive to
experimental variations in their measurement, whereas
measurements of hydration free energy and aqueous solubility
are relatively standardized.

Despite these domain-specific variations, the results across
both molecular and materials domains support the emerging
general principle that making the first hidden and the output
layers probabilistic is more effective than doing so for inter-
mediate or final layers. We would also like to emphasize that we
used the same MLP architecture and training parameters (SGD
learning rate and iterations for the deterministic component,
warmup steps and samples for NUTS in the probabilistic
component) across all four datasets. This demonstrates that
PBNNs can be relatively robust to hyperparameter selection,
a valuable characteristic for practical applications as it mini-
mizes the need for extensive dataset-specific tuning.

3.4 Convergence diagnostics

We next discuss convergence diagnostics for PBNN models
during active learning. A popular choice for convergence

© 2025 The Author(s). Published by the Royal Society of Chemistry
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diagnostics in Bayesian inference is the Gelman-Rubin statistic
(‘R-hat’), which provides a measure of convergence for each
model parameter.”® However, for Bayesian neural networks,
where the parameter space is high-dimensional, examining
individual parameter convergence becomes impractical.
Instead, we analyzed the distribution of R-hat values across all
parameters and found that for the majority of weights (95-99%,
depending on dataset), these values lie within acceptable ranges
between 1.0 and 1.1.”° While layer-wise or module-wise
convergence analysis is also possible for complex architec-
tures, we opted for global parameter statistics due to the rela-
tively simple network structure in this study. See Appendix 1 for
more details.

We note that in active learning-based autonomous science
tasks, reliable convergence diagnostics play an important role
in ensuring the autonomous system performance. The R-hat
statistic can therefore serve as an automated quality check,
triggering specific actions when convergence issues are detec-
ted: for example, if a high proportion (>10%) of parameters
display R-hat values outside the acceptable range, the system
can employ various convergence improvement heuristics. These
include increasing the number of warm-up states, trying
different parameter initialization schemes, or adjusting prior
distributions. If issues persist after these interventions, the

© 2025 The Author(s). Published by the Royal Society of Chemistry

system can flag the experiment for human review, ensuring
reliability of the autonomous decision-making process.

3.5 Transfer learning

Transfer learning (TL) is a machine learning method commonly
used to improve model performance and/or accelerate training
by leveraging knowledge from a related task. TL is particularly
valuable when data is limited and difficult to acquire, as is often
the case in experimental materials science and chemistry. For
deterministic NNs, TL is performed by initializing the network
parameters with those of a pre-trained network. Most often the
target NN's parameters are still optimized for the task at-hand
via backpropagation, which is referred to as fine-tuning.

In the context of BNNSs, transfer learning can be done
through a selection of prior distributions over weights. First, let
us revisit how the initial prior distributions are commonly
selected. Ideally, the goal of priors in the Bayesian framework is
to have a principled way to incorporate domain knowledge. In
practice, however, we simply set priors of BNNs to zero-centered
normal distributions. This approach provides good regulariza-
tion and meaningful uncertainty estimates in predictions, but it
doesn't incorporate any actual prior domain knowledge. We
argue that we can use the weights of a deterministic model

Digital Discovery, 2025, 4,1284-1297 | 1291
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trained in a computational (“digital twin”) space to initialize
these prior distributions by setting their means to the corre-
sponding pre-trained weights, thereby transferring domain
knowledge to a (P)BNN operating in the real world. We can
choose to do it for the entire model or only for some parts
(layers) of it. We can also specify a “degree of trust” in the theory
by selecting appropriate standard deviations for these distri-
butions: wider distributions indicate less confidence in the

1292 | Digital Discovery, 2025, 4, 1284-1297

computational model, while narrower ones encode stronger
belief in the underlying theory.

Here, we examine how this simulation-to-experiment trans-
fer learning affects AL with (P)BNNs. The process involves first
training a deterministic NN on simulation data, then using its
weights to inform the (P)BNN surrogate model that guides
active learning on experimental data. A schematic showing this
joint TL-AL process is shown in Fig. 6(a). We first study the
effectiveness of TL via PBNNs using 1D toy data, where we have

© 2025 The Author(s). Published by the Royal Society of Chemistry
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generated “theoretical” and “experimental” datasets, emulating
phase transitions, with the latter introducing an abrupt change
in behavior not captured by the theoretical model (Fig. 6(b)).
This is a rather common scenario in scientific modeling where
theoretical models reflect the overall trend but fail to capture
certain experimental phenomena. Such discrepancies are
frequently encountered when theoretical models rely on
simplifying assumptions and fail to account for complex phys-
ical mechanisms. The middle and bottom panels in Fig. 6(b)
compare two approaches to addressing this challenge using full
BNNs. Using pre-trained priors, informed by the theoretical
model, allows the BNN to maintain good predictions in regions
where the theory works well while adapting to experimental
evidence where it doesn't. In contrast, standard uninformative
priors fail to capture a second phase transition and lead to
overly conservative uncertainty estimates.

We now move to the molecular and materials datasets. We
start with the Noisy-FreeSolv dataset. Here the deterministic
neural network is pre-trained on computational data from
molecular dynamics simulations, whereas experimental data is
augmented with synthetic noise to create a more challenging
test case for our models. For this study, we made the last two
hidden layers and the output layer probabilistic, with priors
initialized at values of weights from the corresponding pre-
trained deterministic neural network. Fig. 7 shows the

© 2025 The Author(s). Published by the Royal Society of Chemistry

performance of PBNN with theory-informed priors for different
prior widths (r). While all prior widths demonstrate good
performance, wider priors (tr = 0.5, 1.0) outperform narrower
priors t = 0.1 across all metrics. This can be explained by the
fact that with small 7 values, the prior (informed by the theo-
retical model) dominates the likelihood in shaping the poste-
rior, failing to account for discrepancy between experiment and
theory, whereas with larger values, the likelihood (based on
experimental data) starts exerting greater influence. Overall, an
ideal value would balance leveraging theoretical knowledge and
adapting to experimental observations for a given set of theo-
retical and experimental data. Comparing pre-trained and
standard priors at © = 1.0, we observe that theory-informed
priors lead to substantially better performance across all
metrics. The improvement is particularly pronounced in NLPD
and coverage, where standard priors show high uncertainty and
unstable behavior throughout the active learning process.
Finally, we analyze bandgaps of non-metals, where priors are
pre-trained on density functional theory (DFT) calculations.
Similar to the results observed for Noisy FreeSolv, the results
shown in Fig. 8 demonstrate that among different prior widths,
there is a clear trade-off: the tight prior (r = 0.1) shows stable
but limited improvement, suggesting it constrains the model
too closely to DFT predictions, while wider priors (r = 0.5 and ¢
= 1.0) show initial oscillations but ultimately achieve better
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RMSE through greater adaptation to experimental data. This
suggests that one can in principle apply dynamic adjustment:
impose a strong belief in the theoretical model initially, and
then, as more data becomes available, gradually relax it,
allowing the data to speak for itself. Comparing pre-trained and
standard priors at = 1.0, we observe similar trends to the
FreeSolv dataset. The advantage of pre-trained priors is partic-
ularly pronounced in the early stages of active learning, where
in the first 50 steps they achieve significantly lower RMSE and
better calibrated uncertainties compared to standard priors,
indicating more efficient use of limited experimental data.
While both approaches eventually converge to similar RMSE
values, the benefits of pre-trained priors persist in uncertainty
quantification throughout the entire process, maintaining
substantially better coverage probability.

4 Conclusion

In this work, we explored the capabilities of partially Bayesian
neural networks (PBNNs) in active learning tasks. Within the
MLP architectures deployed here, we found that the choice of
which layers are made probabilistic significantly impacts
performance, with early layers providing better and more stable
uncertainty estimates — a finding that held consistently across
studied molecular and materials datasets. Notably, PBNNs with

1294 | Digital Discovery, 2025, 4, 1284-1297

probabilistic first layer achieved performance comparable to
fully Bayesian networks while requiring substantially fewer
computational resources.

We further enhanced PBNN performance through transfer
learning by initializing priors using theoretical models, which
proved particularly beneficial in the early stages of active
learning. Our analysis revealed an important trade-off in prior
width selection: tight priors ensure stability but may constrain
the model too closely to theoretical predictions, while wider
priors enable better adaptation to experimental data. Across
both studied systems, theory-informed priors led to better
calibrated uncertainties and more efficient data utilization.

Overall, this work demonstrates the feasibility of PBNNs for
materials science and chemistry, particularly in the context of
AL for limited, complex datasets. In the future, we plan to
explore the effectiveness of PBNNs across a wider range of
architectures, including Graph Neural Networks and Trans-
formers. There may also be interesting connections between our
findings about which layers to make probabilistic and emerging
research on neural network interpretability, particularly studies
that identify specific neurons responsible for distinct behaviors
in large language models. Just as certain neurons in LLMs have
been found to encode specific linguistic features or semantic
concepts, understanding which neurons are most critical for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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uncertainty quantification could inform more targeted and
efficient PBNN architectures.
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