
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 6
:2

6:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Active and transf
Physical Sciences Division, Pacic Northw

99354, USA. E-mail: sarah.allec@pnnl.gov;

† Electronic supplementary infor
DOI:https://doi.org/10.1039/d5dd00027k

Cite this: Digital Discovery, 2025, 4,
1284

Received 20th January 2025
Accepted 7th April 2025

DOI: 10.1039/d5dd00027k

rsc.li/digitaldiscovery

1284 | Digital Discovery, 2025, 4, 128
er learning with partially Bayesian
neural networks for materials and chemicals†

Sarah I. Allec and Maxim Ziatdinov *

Active learning, an iterative process of selecting the most informative data points for exploration, is crucial

for efficient characterization of materials and chemicals property space. Neural networks excel at predicting

these properties but lack the uncertainty quantification needed for active learning-driven exploration. Fully

Bayesian neural networks, in which weights are treated as probability distributions inferred via advanced

Markov Chain Monte Carlo methods, offer robust uncertainty quantification but at high computational

cost. Here, we show that partially Bayesian neural networks (PBNNs), where only selected layers have

probabilistic weights while others remain deterministic, can achieve accuracy and uncertainty estimates

on active learning tasks comparable to fully Bayesian networks at lower computational cost.

Furthermore, by initializing prior distributions with weights pre-trained on theoretical calculations, we

demonstrate that PBNNs can effectively leverage computational predictions to accelerate active learning

of experimental data. We validate these approaches on both molecular property prediction and materials

science tasks, establishing PBNNs as a practical tool for active learning with limited, complex datasets.
1 Introduction

Active learning (AL)1,2 optimizes exploration of large parameter
spaces by strategically selecting which experiments or simula-
tions to conduct, reducing resource consumption and poten-
tially accelerating scientic discovery.3–8 A key component of
this approach is a surrogate machine learning (ML) model,
which approximates an unknown functional relationship
between structure or process parameters and target properties.
At each step, the model uses the information gathered from
previous measurements to update its ‘understanding’ of these
relationships and identify the next combinations of parameters
likely to yield valuable information. The success of this
approach critically depends on reliable uncertainty quantica-
tion (UQ) in the underlying ML models.

The development of effective ML models for active learning
builds upon broader advances in machine learning across
materials and chemical sciences, tackling problems including
phase stability,9–11 thermal conductivity,12–15 glass transition
temperatures,16–20 dielectric properties,21–24 and more.25–28

However, traditional ML models oen lack inherent robust UQ,
requiring additional post-hoc UQ methods such as the
computation of jackknife variances for random forest29 or
temperature scaling for neural networks.30 These challenges
oen limit their application in AL workows. Moreover, many of
est National Laboratory, Richland, WA
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them are trained on computational data, such as density func-
tional theory calculations,31–33 and generalization to experi-
mental workows in physical labs, where data are oen sparse,
noisy, and costly to acquire, is oen non-trivial and requires
predictions with reliable coverage probabilities.

Gaussian Process (GP)34–36 is an ML approach that provides
mathematically-grounded UQ and has become a popular choice
for scientic applications, including AL frameworks.8,37

However, GPs struggle with high-dimensional data, disconti-
nuities, and non-stationarities, which are common in physical
science problems. Deep kernel learning (DKL)38–40 attempts
addressing these issues by combining neural network repre-
sentation learning with GP-based UQ. While DKL has shown
promise in chemistry andmaterials science,41–43 it is still limited
by GP scalability in feature space, potential mode collapse, and
conicting optimization dynamics between its GP and neural
network components.44 These limitations highlight the need for
further advancement of methods to support AL in non-trivial
materials design and discovery tasks.

Bayesian neural networks (BNNs), where all network weights
are treated as probability distributions rather than scalar
values,45,46 offer a promising approach that combines powerful
representation learning capabilities with reliable UQ. By
maintaining a distribution over network parameters rather than
point estimates, BNNs naturally account for model uncertainty,
and are particularly effective for smaller and noisier datasets.
However, reliable Bayesian inference requires computationally
intensive sampling methods, making fully Bayesian neural
networks prohibitively expensive for many practical
applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00027k&domain=pdf&date_stamp=2025-05-09
http://orcid.org/0000-0002-1101-3160
http://orcid.org/0000-0003-2570-4592
https://doi.org/10.1039/d5dd00027k
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00027k
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004005


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 6
:2

6:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
In this work, we explore partially Bayesian neural networks
(PBNNs) for active learning of molecular and materials prop-
erties. We show that by making strategic choices about which
layers are treated probabilistically we can achieve performance
on active learning tasks comparable to fully Bayesian neural
networks at signicantly reduced computational cost. Further-
more, we demonstrate how PBNNs can be enhanced through
transfer learning by initializing their prior distributions from
weights pre-trained on computational data. We validate these
approaches on several benchmark datasets, demonstrating the
practical potential of PBNNs for materials andmolecular design
with limited, complex data.
2 Methods
2.1 Bayesian neural networks

In conventional, non-Bayesian NNs, network weights q are
optimized to minimize a specied loss function, resulting in
a deterministic, single-point prediction for each new input. Due
to their architectural exibility they can be powerful function
approximators, but are known to suffer from overtting on
small or noisy datasets and overcondence on out-of-
distribution inputs.47–49 In contrast, in BNNs the weights q are
treated as random variables with a prior distribution p(q). This
not only helps reduce overtting, but also provides robust
prediction uncertainties. Given a dataset D ¼ fxi; yigni¼1, a BNN
is dened by its probabilistic model:

Weights : q � pðqÞ ðtypically N ð0; 1ÞÞ (1)

Noise: s ∼ p(s) (typically half-normal(0,1)) (2)
Fig. 1 (a) Schematic illustration of Partially Bayesian Neural Network (P
porating stochastic weight averaging to enhance robustness against noisy
by selecting a subset of layers and using the corresponding pre-trained
remaining weights frozen. HMC/NUTS sampling is then applied to derive
made by combining both the probabilistic and deterministic component
probabilistic and deterministic processing stages.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Likelihood : yijxi; q; s � N
�
gðxi; qÞ; s2

�
(3)

where g(xi; q) represents the neural network function mapping
inputs to outputs using weights q. While we focus on normal
likelihoods here for regression tasks, the framework naturally
extends to other distributions (e.g., Bernoulli for classication,
Poisson for count data) depending on the problem domain. The
posterior predictive distribution for new input x* is then given
by

pðyjx*; DÞ ¼
ð
q;s

pðyjx*; q; sÞpðq; sjDÞdqds (4)

This predictive distribution can be interpreted as an innite
ensemble of networks, with each network's contribution to the
overall prediction weighted by the posterior probability of its
weights given the training data. Unfortunately, the posterior
pðq; sjDÞ in eqn (4) is typically intractable. It is therefore
common to use Markov Chain Monte Carlo (MCMC)50 or vari-
ational inference51 techniques to approximate the posterior.
The advanced MCMC methods, such as Hamiltonian Monte
Carlo (HMC),52 generally provide higher accuracy than varia-
tional methods for complex posterior distributions.53 Here, we
employ the No-U-Turn Sampler (NUTS) extension of the HMC,
which efficiently explores the posterior distribution pðq; sjDÞ of
neural network parameters, especially in high-dimensional
spaces, without requiring signicant manual tuning.54 The
predictive mean (mpost) and predictive variance (Upost) at new
data points are then given by:

mpost ¼ 1

N

XN
i¼1

gðx*; qiÞ (5)
BNN) operation. First, we train a deterministic neural network, incor-
training objectives. Second, the probabilistic component is introduced
weights to initialize prior distributions for this subset, while keeping all
posterior distributions for the selected subset. Finally, predictions are
s. (b) Schematic illustration of flow through a PBNN model alternating

Digital Discovery, 2025, 4, 1284–1297 | 1285
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Fig. 2 (a) Schematic representation of the partially Bayesian MLP employed in this study. Themodel consists of five layers: four utilize non-linear
activation functions, such as the sigmoid linear unit, while the final (output) layer contains a single neuron without a non-linear activation, as is
typical for regression tasks. Circles filled with red denote stochastic layers, while orange filled circles represent deterministic layers. Note that the
single output neuron is always made probabilistic, as it often improves training stability. (b) Code snippet illustrating a single train-predict step
with PBNN (0, 4).

‡ https://github.com/ziatdinovmax/NeuroBayes
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Upost ¼ 1

N

XN
i¼1

�
y*i � mpost

�2
(6)

y*i � N
�
gðx*; qiÞ; si

2
�

(7)

where y*i is a single sample from the model posterior at new
input x*, {qi,si}

N
i=1 are samples from the MCMC chain approxi-

mating pðq; sjDÞ, and N is the total number of MCMC samples.
Note that Upost naturally combines both epistemic uncertainty
(from the variation in network predictions across different
weight samples qi) and aleatoric uncertainty (from the noise
terms si), providing a comprehensive measure of predictive
uncertainty.55

2.1.1 Partially Bayesian neural networks. Even with
sampling methods, full BNNs can be computationally expensive
for reasonably-sized datasets, in terms of number of samples or
feature dimensions.56–59 Variational inference, a common
approximation method for BNNs, aims to alleviate these costs
but oen struggles with limited expressivity,60 underestimation
of uncertainty,61 and sensitivity to initialization and hyper-
parameters,62 which degrades its performance on real-world
tasks. To leverage the representational power and computa-
tional efficiency of deterministic NNs and the advantages of
BNNs, we explore partially Bayesian neural networks (PBNNs),
where only a selected number of layers are probabilistic and all
other layers are deterministic. Building upon existing research
that proposed usage of selectively stochastic layers,63,64 our work
specically investigates the potential of PBNNs in active and
transfer learning contexts, with a focus on molecular and
materials science datasets.

The PBNNs are trained in two stages. First, it trains a deter-
ministic neural network, incorporating stochastic weight aver-
aging (SWA)65 at the end of the training trajectory to enhance
robustness against noisy training objectives. Second, the prob-
abilistic component is introduced by selecting a subset of layers
and using the corresponding pre-trained weights to initialize
prior distributions for this subset, while keeping all remaining
weights frozen. HMC/NUTS sampling is then applied to derive
posterior distributions for the selected subset. Finally,
1286 | Digital Discovery, 2025, 4, 1284–1297
predictions are made by combining both the probabilistic and
deterministic components. See Algorithm 1 and Fig. 1 for more
details. In certain scenarios, such as autonomous experiments,
the entire training process needs to be performed in an end-to-
end manner. In these cases, it is crucial to avoid overtting in
the deterministic component, as there will be no human over-
sight to evaluate its results before transitioning to the proba-
bilistic part. To address this, we incorporate a MAP prior,
modeled as a Gaussian penalty, into the loss function during
deterministic training. All the PBNNs were implemented via
a NeuroBayes package‡ developed by the authors.

In this work, we have investigated PBNNs of multilayer per-
ceptron (MLP) architecture consisting of ve layers: four utilize
non-linear activation functions, such as the sigmoid linear unit,
while the nal (output) layer contains a single neuron without
a non-linear activation, as is typical for regression tasks. As
there are multiple ways to select probabilistic layers for the
PBNNs, we have evaluated the effects of setting different
combinations of probabilistic layers as shown in Fig. 2.
2.2 Active learning

In AL, the algorithm iteratively identies points from a pool of
unobserved data, within a pre-dened parameter space
Xdomain4ℝd, that are expected to improve the model's perfor-
mance in reaching some objective. Starting with an initial,
usually small, training dataset D ¼ fðxi; yiÞgNi¼1, an initial PBNN
is trained and predictions are made on all x*˛Xdomain. The
predictions that maximize a suitably selected acquisition
function are then selected for measurement via an experiment,
simulation, or human labeling. For the sake of benchmarking,
we have chosen an acquisition function that simply maximizes
the predictive uncertainty, i.e., xnext)arg maxx*˛Xdomain

Uðx*Þ,
and only select a single xnext at each iteration. Note that here we
naturally balance exploration between regions of model uncer-
tainty and inherent complexity, as high aleatoric uncertainty
oen indicates areas requiring additional samples to better
estimate noise distributions and capture underlying patterns.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Datasets for active learning

Name Target property Nfeatures Nsamples Reference

FreeSolv Hydration free energy 9 642 70
ESOL Aqueous solubility 9 1128 71
Steel fatigue (NIMS) Fatigue strength 25 437 72
Conductivity (HTEM) Electrical conductivity 12 1184 73

Table 2 Datasets for transfer learning

Name Target property Nfeatures Nsamples Reference

Noisy-FreeSolv Hydration free energy 9 642 70
Bandgap Bandgap energy 132 1000 74 and 75
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For further details regarding the AL algorithm, see Algorithm 2.
Usually, this process is repeated until a desired goal is reached
or an experimental budget is exhausted; here, we perform 200
exploration steps for all datasets. Lastly, we have selected initial
training datasets by randomly sampling subsets of the total
datasets containing 5% of the total number of data points.
While this procedure results in differently sized initial training
datasets, the trends observed are consistent across all datasets
and corresponding sizes.

2.2.1 Active learning metrics. To assess the performance of
active learning, we computed several key metrics aer each
active learning iteration. Our evaluation encompasses both
prediction accuracy and uncertainty quantication. For each AL
experiment, we have performed ve runs with different random
seeds to assess the robustness of our results. In each of the plots
showing an AL metric as a function of AL step, a solid or dashed
line denotes the mean of the metric across the ve seeds, and
the shaded region shows ±1 standard deviation over the seeds,
centered at the mean.

Prediction accuracy was evaluated using the standard root
mean square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i

ðyi � miÞ2

M

vuuut
; (8)

where M is the size of the test set.
To assess the quality of the predictive uncertainties, we used

two metrics, the negative log predictive density (NLPD) and the
condence interval coverage probability, which we refer to as
coverage from this point forward. NLPD is given by the
following equation:

NLPD ¼ � 1

M

XM
i¼1

"
� 1

2
logð2pUiÞ � ðyi � miÞ2

2Ui

#
(9)

NLPD assesses how well a model's predictive distributions
align with observed data. A lower NLPD indicates that themodel
assigns higher probability density to true outcomes while
maintaining well-calibrated uncertainty estimates. This metric
is valuable for evaluating probabilistic models as it penalizes
1288 | Digital Discovery, 2025, 4, 1284–1297
both overcondent incorrect predictions and undercondent
correct ones.

Coverage is given by

Coverage ¼ 1

M

XM
i

1yi˛CIðxiÞ; (10)

where CI(xi) is the condence interval of test point xi. Coverage
measures the empirical reliability of a model's uncertainty
estimates by calculating the proportion of true values that fall
within the predicted condence intervals, i.e., how oen the
true y lies in the ML prediction interval given by the predictive
mean mpred and uncertainty Upred.66,67 In this work, all coverage
values are computed for 95% condence intervals. Coverages
below 95% indicate overcondent predictions (intervals too
narrow) and coverages above 95% indicate more conservative
condence intervals (intervals too wide), with a coverage value
of 95% being ideal. In practice, given the uneven costs of errors,
models that produce a slightly conservative coverage are typi-
cally favored over those yielding overcondent assessments.

2.2.2 Datasets. To assess the performance of PBNNs for AL
on a variety of diverse datasets, we have selected two molecular
and two materials datasets for benchmarking, and one molec-
ular and one materials dataset containing both simulation and
experimental data to investigate transfer learning (TL) from
computed to experimental properties. Details, such as the
dataset sizes and relevant references, regarding these datasets
are provided in Tables 1 and 2. The FreeSolv, ESOL, and Steel
fatigue (NIMS) datasets were used as published, while the
Conductivity (HTEM) and Bandgap datasets are subsets of the
published databases. Specically, the Conductivity (HTEM)
dataset utilized here is restricted to oxides containing Ni, Co,
and Zn which have electrical conductivity values, and the
Bandgap dataset is a random sample of 1000 non-metals from
the intersection of the Materials Project bandgap dataset and
the Matbench experimental bandgap dataset. We also used
a noisy version of FreeSolv (Noisy-FreeSolv) for TL where
experimental target values were corrupted by a zero-centered
Gaussian noise with a standard deviation of one.

As far as the input features are concerned, we used standard
RDKit68 physicochemical descriptors for the molecular datasets.
For the steel fatigue dataset, the input features were chemical
compositions, upstream processing details, and heat treatment
conditions. For the electrical conductivity data, the input
features were formed from oxide concentrations, deposition
conditions, and processing parameters, such as power settings
and gas ow rate. The input features for the Bandgap dataset
were derived using the Magpie featurizer, which computes
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Active learning results for 1D toy dataset with non-stationary features. Evolution of predictions and uncertainty estimates across active
learning steps for (a) full BNN model, (b) model with probabilistic first hidden and output layers, PBNN(0,4), and (c) model with probabilistic last
hidden and output layers, PBNN(3,4). Blue lines show predictive mean, pink shading represents uncertainty estimates, and black dashed lines
indicate ground truth. Black dots mark noisy observations. Panel (d) compares performance metrics (RMSE, NLPD, and coverage probability) as
a function of active learning exploration steps.
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statistical descriptors from elemental properties and composi-
tion fractions.69
3 Results and discussion
3.1 Active learning on toy dataset

Before assessing the effectiveness of PBNNs for AL on the
materials and molecular datasets, we rst analyze their effec-
tiveness on a toy dataset. In particular, we have generated non-
stationary data with abrupt changes in frequency and ampli-
tude, a use case where full BNNs consistently outperform GPs.76

We denote PBNN congurations as PBNN (i, 4), where i indi-
cates which hidden layer is probabilistic (counting from 0), and
4 denotes the output layer that is always treated as probabilistic.
For example, PBNN (0, 4) has probabilistic rst hidden and
output layers, while PBNN (3, 4) has probabilistic last hidden
and output layers. To ensure fair comparison, all hidden layers
have equal width. The output layer consists of a single neuron,
so making it probabilistic adds minimal computational over-
head while helping with training stability.

Fig. 3 shows the evolution of predictions and uncertainty
estimates across active learning steps for full BNN (a), PBNN
(0,4) (b), and PBNN (3,4) (c). PBNN (0,4) exhibits behavior
remarkably similar to full BNN, both in terms of predictive
mean and uncertainty estimates (shown as pink shading), while
requiring fewer probabilistic layers. In contrast, PBNN (3,4)
struggles to provide reliable uncertainty estimates, particularly
© 2025 The Author(s). Published by the Royal Society of Chemistry
in regions with strong oscillatory behavior. This is reected in
the performance metrics (d), where PBNN (0,4) closely tracks
full BNN's performance while PBNN (3,4) shows consistently
higher RMSE and NLPD values, along with coverage probability
further from the ideal value of 0.95.
3.2 Active learning on molecular datasets

We now investigate the effectiveness of different PBNNs for AL
on the standardmolecular benchmark datasets. Fig. 4(a) and (b)
show RMSE, NLPD, and coverage probability as a function of AL
exploration step for ESOL and FreeSolv, respectively. We see
that the accuracy and quality of the uncertainties improve with
AL for all PBNNs, as demonstrated by (i) decreasing RMSE and
NLPD and (ii) coverage approaching 0.95 for all models. Across
all metrics for both datasets, making earlier layers probabilistic
proves more effective, with PBNN(0,4) approaching the accuracy
of a full BNN. Furthermore, PBNN(0,4) exhibits a relatively
stable decrease in NLPD and coverage approaching 0.95
throughout the AL process, similar to full BNN. In contrast,
congurations where the probabilistic layer is moved away from
the rst hidden layer, PBNN(1,4), (2,4), and (3,4), show strong
oscillatory behavior in NLPD and coverage metrics, suggesting
that uncertainty propagation becomes unstable when probabi-
listic layers are placed in later hidden layers. This shows that, at
least within the standard MLP architecture employed here,
capturing uncertainty in the rst feature transformation layer,
combined with a probabilistic output layer, is more effective,
Digital Discovery, 2025, 4, 1284–1297 | 1289
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Fig. 4 Comparison of Partially Bayesian Neural Networks (PBNNs) and fully Bayesian neural network (full BNN) onmolecular property prediction
tasks. (a–c) Aqueous solubility prediction (ESOL database) and (d–f) hydration free energy prediction (FreeSolv database). Each PBNN config-
uration PBNN (i, 4) has two probabilistic layers: one at position i (counting from 0) and one at the output. Shaded areas represent a standard
deviation across five different random seeds.
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both in terms of performance and reliability. In addition, it
decreased the overall computational time by nearly a factor of
four. Notably, with only a fraction of points explored, AL with
PBNN achieves accuracy either comparable to (ESOL) or better
than (FreeSolv) that obtained using standard 80 : 20 or 90 : 10
train-test splits with standard deterministic ML models.77
3.3 Active learning on materials datasets

Next, we follow a similar analysis for the two materials datasets,
steel fatigue (NIMS) and conductivity (HTEM), as shown in Fig. 5.
We observe overall similar trends to the molecular datasets
(decreasing RMSE and NLPD and coverage approaching 0.95),
although we see a much stronger difference between the different
PBNNs in the uncertainty metrics, with smaller difference in
RMSE across different selections of probabilistic layers. We also
do not observe the clean monotonic trends that we observed with
the molecular datasets for NLPD and coverage on the steel fatigue
(NIMS) dataset. This could be due to a variety of factors, but we
suspect that this is largely due to differences in the types of input
features. While the molecular datasets utilized SMILES-derived
descriptors as their input features, the materials datasets con-
tained experimental parameters as their input features, which
may not be as predictive of the target properties as the structural
1290 | Digital Discovery, 2025, 4, 1284–1297
SMILES-based descriptors. There could also be a difference in
experimental noise between the molecular and materials data-
sets, as it is well known that values of the materials target prop-
erties, fatigue strength and electrical conductivity, are sensitive to
experimental variations in their measurement, whereas
measurements of hydration free energy and aqueous solubility
are relatively standardized.

Despite these domain-specic variations, the results across
both molecular and materials domains support the emerging
general principle that making the rst hidden and the output
layers probabilistic is more effective than doing so for inter-
mediate or nal layers. We would also like to emphasize that we
used the same MLP architecture and training parameters (SGD
learning rate and iterations for the deterministic component,
warmup steps and samples for NUTS in the probabilistic
component) across all four datasets. This demonstrates that
PBNNs can be relatively robust to hyperparameter selection,
a valuable characteristic for practical applications as it mini-
mizes the need for extensive dataset-specic tuning.
3.4 Convergence diagnostics

We next discuss convergence diagnostics for PBNN models
during active learning. A popular choice for convergence
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Comparison of Partially Bayesian Neural Networks (PBNNs) and fully Bayesian neural network (full BNN) on materials property prediction
tasks. (a–c) Fatigue strength prediction (NIMS database) and (d–f) electrical conductivity prediction (HTEM database). Each PBNN configuration
PBNN (i, 4) has two probabilistic layers: one at position i (counting from 0) and one at the output. Shaded areas represent a standard deviation
across five different random seeds.
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diagnostics in Bayesian inference is the Gelman–Rubin statistic
(‘R-hat’), which provides a measure of convergence for each
model parameter.78 However, for Bayesian neural networks,
where the parameter space is high-dimensional, examining
individual parameter convergence becomes impractical.
Instead, we analyzed the distribution of R-hat values across all
parameters and found that for the majority of weights (95–99%,
depending on dataset), these values lie within acceptable ranges
between 1.0 and 1.1.79 While layer-wise or module-wise
convergence analysis is also possible for complex architec-
tures, we opted for global parameter statistics due to the rela-
tively simple network structure in this study. See Appendix 1 for
more details.†

We note that in active learning-based autonomous science
tasks, reliable convergence diagnostics play an important role
in ensuring the autonomous system performance. The R-hat
statistic can therefore serve as an automated quality check,
triggering specic actions when convergence issues are detec-
ted: for example, if a high proportion (>10%) of parameters
display R-hat values outside the acceptable range, the system
can employ various convergence improvement heuristics. These
include increasing the number of warm-up states, trying
different parameter initialization schemes, or adjusting prior
distributions. If issues persist aer these interventions, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
system can ag the experiment for human review, ensuring
reliability of the autonomous decision-making process.
3.5 Transfer learning

Transfer learning (TL) is a machine learning method commonly
used to improve model performance and/or accelerate training
by leveraging knowledge from a related task. TL is particularly
valuable when data is limited and difficult to acquire, as is oen
the case in experimental materials science and chemistry. For
deterministic NNs, TL is performed by initializing the network
parameters with those of a pre-trained network. Most oen the
target NN's parameters are still optimized for the task at-hand
via backpropagation, which is referred to as ne-tuning.

In the context of BNNs, transfer learning can be done
through a selection of prior distributions over weights. First, let
us revisit how the initial prior distributions are commonly
selected. Ideally, the goal of priors in the Bayesian framework is
to have a principled way to incorporate domain knowledge. In
practice, however, we simply set priors of BNNs to zero-centered
normal distributions. This approach provides good regulariza-
tion andmeaningful uncertainty estimates in predictions, but it
doesn't incorporate any actual prior domain knowledge. We
argue that we can use the weights of a deterministic model
Digital Discovery, 2025, 4, 1284–1297 | 1291
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Fig. 6 (a) Schematic workflow of transfer learning in active learning: a deterministic model is first trained on historical or computational data, and
its parameters are used to initialize and inform priors in the subsequent active learning process. (b) Example predictions comparing BNNs with
pre-trained and standard priors.
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trained in a computational (“digital twin”) space to initialize
these prior distributions by setting their means to the corre-
sponding pre-trained weights, thereby transferring domain
knowledge to a (P)BNN operating in the real world. We can
choose to do it for the entire model or only for some parts
(layers) of it. We can also specify a “degree of trust” in the theory
by selecting appropriate standard deviations for these distri-
butions: wider distributions indicate less condence in the
1292 | Digital Discovery, 2025, 4, 1284–1297
computational model, while narrower ones encode stronger
belief in the underlying theory.

Here, we examine how this simulation-to-experiment trans-
fer learning affects AL with (P)BNNs. The process involves rst
training a deterministic NN on simulation data, then using its
weights to inform the (P)BNN surrogate model that guides
active learning on experimental data. A schematic showing this
joint TL-AL process is shown in Fig. 6(a). We rst study the
effectiveness of TL via PBNNs using 1D toy data, where we have
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Transfer learning with pre-trained PBNNs applied to noisy FreeSolv dataset. (a) RMSE, NLPD, and coverage probability for different prior
widths (s). (b) Comparing the performance of pre-trained priors (s = 1.0) against standard priors. Shaded areas represent a standard deviation
across five different random seeds.
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generated “theoretical” and “experimental” datasets, emulating
phase transitions, with the latter introducing an abrupt change
in behavior not captured by the theoretical model (Fig. 6(b)).
This is a rather common scenario in scientic modeling where
theoretical models reect the overall trend but fail to capture
certain experimental phenomena. Such discrepancies are
frequently encountered when theoretical models rely on
simplifying assumptions and fail to account for complex phys-
ical mechanisms. The middle and bottom panels in Fig. 6(b)
compare two approaches to addressing this challenge using full
BNNs. Using pre-trained priors, informed by the theoretical
model, allows the BNN to maintain good predictions in regions
where the theory works well while adapting to experimental
evidence where it doesn't. In contrast, standard uninformative
priors fail to capture a second phase transition and lead to
overly conservative uncertainty estimates.

We now move to the molecular and materials datasets. We
start with the Noisy-FreeSolv dataset. Here the deterministic
neural network is pre-trained on computational data from
molecular dynamics simulations, whereas experimental data is
augmented with synthetic noise to create a more challenging
test case for our models. For this study, we made the last two
hidden layers and the output layer probabilistic, with priors
initialized at values of weights from the corresponding pre-
trained deterministic neural network. Fig. 7 shows the
© 2025 The Author(s). Published by the Royal Society of Chemistry
performance of PBNN with theory-informed priors for different
prior widths (s). While all prior widths demonstrate good
performance, wider priors (s = 0.5, 1.0) outperform narrower
priors s = 0.1 across all metrics. This can be explained by the
fact that with small s values, the prior (informed by the theo-
retical model) dominates the likelihood in shaping the poste-
rior, failing to account for discrepancy between experiment and
theory, whereas with larger values, the likelihood (based on
experimental data) starts exerting greater inuence. Overall, an
ideal value would balance leveraging theoretical knowledge and
adapting to experimental observations for a given set of theo-
retical and experimental data. Comparing pre-trained and
standard priors at s = 1.0, we observe that theory-informed
priors lead to substantially better performance across all
metrics. The improvement is particularly pronounced in NLPD
and coverage, where standard priors show high uncertainty and
unstable behavior throughout the active learning process.
Finally, we analyze bandgaps of non-metals, where priors are
pre-trained on density functional theory (DFT) calculations.
Similar to the results observed for Noisy FreeSolv, the results
shown in Fig. 8 demonstrate that among different prior widths,
there is a clear trade-off: the tight prior (s = 0.1) shows stable
but limited improvement, suggesting it constrains the model
too closely to DFT predictions, while wider priors (s = 0.5 and s
= 1.0) show initial oscillations but ultimately achieve better
Digital Discovery, 2025, 4, 1284–1297 | 1293
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Fig. 8 Transfer learning with pre-trained PBNNs applied to bandgaps dataset. (a–c) RMSE, NLPD, and coverage probability for different prior
widths (s). (d–f) Comparing the performance of pre-trained priors (s = 1.0) against standard priors. Shaded areas represent a standard deviation
across five different random seeds.
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RMSE through greater adaptation to experimental data. This
suggests that one can in principle apply dynamic adjustment:
impose a strong belief in the theoretical model initially, and
then, as more data becomes available, gradually relax it,
allowing the data to speak for itself. Comparing pre-trained and
standard priors at s = 1.0, we observe similar trends to the
FreeSolv dataset. The advantage of pre-trained priors is partic-
ularly pronounced in the early stages of active learning, where
in the rst 50 steps they achieve signicantly lower RMSE and
better calibrated uncertainties compared to standard priors,
indicating more efficient use of limited experimental data.
While both approaches eventually converge to similar RMSE
values, the benets of pre-trained priors persist in uncertainty
quantication throughout the entire process, maintaining
substantially better coverage probability.
4 Conclusion

In this work, we explored the capabilities of partially Bayesian
neural networks (PBNNs) in active learning tasks. Within the
MLP architectures deployed here, we found that the choice of
which layers are made probabilistic signicantly impacts
performance, with early layers providing better and more stable
uncertainty estimates – a nding that held consistently across
studied molecular and materials datasets. Notably, PBNNs with
1294 | Digital Discovery, 2025, 4, 1284–1297
probabilistic rst layer achieved performance comparable to
fully Bayesian networks while requiring substantially fewer
computational resources.

We further enhanced PBNN performance through transfer
learning by initializing priors using theoretical models, which
proved particularly benecial in the early stages of active
learning. Our analysis revealed an important trade-off in prior
width selection: tight priors ensure stability but may constrain
the model too closely to theoretical predictions, while wider
priors enable better adaptation to experimental data. Across
both studied systems, theory-informed priors led to better
calibrated uncertainties and more efficient data utilization.

Overall, this work demonstrates the feasibility of PBNNs for
materials science and chemistry, particularly in the context of
AL for limited, complex datasets. In the future, we plan to
explore the effectiveness of PBNNs across a wider range of
architectures, including Graph Neural Networks and Trans-
formers. There may also be interesting connections between our
ndings about which layers to make probabilistic and emerging
research on neural network interpretability, particularly studies
that identify specic neurons responsible for distinct behaviors
in large language models. Just as certain neurons in LLMs have
been found to encode specic linguistic features or semantic
concepts, understanding which neurons are most critical for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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uncertainty quantication could inform more targeted and
efficient PBNN architectures.
Data availability
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active_learning_scripts.
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