
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/1
8/

20
25

 2
:4

9:
51

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Unveiling CO2 re
TU Braunschweig, Institute of Physical and T

Braunschweig, Germany. E-mail: j.proppe@

† Electronic supplementary informatio
benchmarks for computational meth
reactants and pre-reaction complexes, i
information on the training and validat
tested model parameters, results for the
electrophiles E1, E2, and E3, additional
the electrophilicity of carbon dioxide,
structures, interactive notebook for (r
https://git.rz.tu-bs.de/proppe-group/co2_e
https://doi.org/10.1039/d5dd00020c

Cite this: Digital Discovery, 2025, 4,
868

Received 17th January 2025
Accepted 17th February 2025

DOI: 10.1039/d5dd00020c

rsc.li/digitaldiscovery

868 | Digital Discovery, 2025, 4, 868
activity with data-driven methods†

Maike Eckhoff, Kerstin L. Bublitz and Jonny Proppe *

Carbon dioxide is a versatile C1 building block in organic synthesis. Understanding its reactivity is crucial for

predicting reaction outcomes and identifying suitable substrates for the creation of value-added chemicals

and drugs. A recent study [Li et al., J. Am. Chem. Soc., 2020, 142, 8383] estimated the reactivity of CO2 in the

form of Mayr's electrophilicity parameter E on the basis of a single carboxylation reaction. The disagreement

between experiment (E=−16.3) and computation (E=−11.4) corresponds to a deviation of up to ten orders

of magnitude in bimolecular rate constants of carboxylation reactions according to the Mayr–Patz

equation, log k = sN(E + N). Here, we introduce a data-driven approach incorporating supervised

learning, quantum chemistry, and uncertainty quantification to resolve this discrepancy. The dataset used

for reducing the uncertainty in E(CO2) represents 15 carboxylation reactions in DMSO. However,

experimental data is only available for one of these reactions. To ensure reliable predictions, we selected

a training set composed of this and 19 additional reactions comprising heteroallenes other than CO2 for

which experimental data is available. With the new data-driven protocol, we can narrow down the

electrophilicity of carbon dioxide to E(CO2) = −14.6(5) with 95% confidence, and suggest an

electrophile-specific sensitivity parameter sE(CO2) = 0.81(6), resulting in an extended reactivity equation,

log k = sEsN(E + N) [Mayr, Tetrahedron, 2015, 71, 5095].
1 Introduction

Carbon dioxide, as an abundant waste product, is a desirable C1
building block in organic synthesis.1–5 There are two chemical
recycling paths for CO2 with different foci, the energy pathway
and the functionalisation pathway. The former represents the
reduction of CO2 up to methane and enables energy storage and
conversion to potential fuel substitutes.6

Functionalisation through carboxylation and further deri-
vatisation, on the other hand, creates value-added chemicals
and is the pathway relevant to this study. For instance,
carboxylic acids transformed into esters and amides are key
components in pharmaceuticals, particularly in prodrugs,
which can be activated through biotransformation into active
drugs.7 Furthermore, CO2 can be xated into carbamates, which
serve as key building blocks not only in pharmaceuticals but
also in agricultural chemicals.8
heoretical Chemistry, Gauss Str 17, 38106
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Given the environmental impact of CO2 as a greenhouse gas
in the Earth's atmosphere, the topic of CO2-binding has become
increasingly important. In this context, carbamates again play
a crucial role. Successful direct CO2-binding from the air as
carbamates as well as by metal–organic frameworks has already
been demonstrated.9–12

Carboxylation reactions initiated by C–H activation are
particularly relevant due to their high step and atom economy
as well as versatility in constructing complex molecules from
simple precursors.13,14 There are various strategies for C–H
functionalisation with CO2, including catalysis by transition
metal complexes or enzymes and mediation by Lewis acids or
Brønsted bases.14

A frequent and prominent approach in C–H carboxylation is
transition metal catalysis, where the nucleophile is activated for
a subsequent reaction with CO2. Metal-N-heterocyclic carbene
complexes, e.g. with Cu(I) and Au(I), have proven to be
successful catalysts for carboxylation reactions with aromatic
heterocycles.15,16 1,2,3-Triazol-5-ylidene copper complexes were
also shown to catalyse these reactions effectively.17

Of particular interest are base-mediated carboxylations as
these can be carried out under mild and transition-metal-free
conditions and are therefore more environmentally friendly
and potentially more economical.18 Reactions promoted by
Cs2CO3 have been reported for electron-decient aromatic
heterocycles by Vechorkin et al.19 Fenner and Ackermann
showed that these reactions are possible under even milder
conditions with KOt-Bu. The resulting highly nucleophilic
carbanion enables the subsequent CO2 insertion step at low to
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00020c&domain=pdf&date_stamp=2025-03-08
http://orcid.org/0000-0002-9829-3715
http://orcid.org/0009-0007-0157-323X
http://orcid.org/0000-0002-5232-036X
https://git.rz.tu-bs.de/proppe-group/co2_electrophilicity
https://doi.org/10.1039/d5dd00020c
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00020c
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004003


Fig. 1 Carbanions (15 in total) considered in this study for reactions
with CO2 in DMSO, including identifiers and reactivity parameters (N,
sN).
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moderate temperatures and atmospheric pressure of CO2.20

Felten et al. also pursued a base-mediated approach in their
work on the carboxylation of azoles activated and stabilised by
silyl triate reagents.21

Due to their highly nucleophilic nature, N-heterocyclic car-
benes (NHCs) have come into focus for CO2 xation in orga-
nocatalysis.5,22 Several examples showing the ability of NHCs to
bind CO2 have been reported.23–25

While highly reactive nucleophiles offer signicant advan-
tages in carboxylation reactions, they also present notable
drawbacks related to selectivity, stability, handling, and envi-
ronmental impact. Understanding the reactivity of CO2 is
crucial for optimising reaction conditions and developing
tailored nucleophiles that are milder but still reactive enough to
form products with CO2, thereby expanding the scope of CO2-
based syntheses towards late-stage functionalisation. Unveiling
the reactivity of CO2 therefore is key to creating value-added
chemicals and drugs in a more sustainable and controlled
manner.

One way to characterise the reactivity of CO2 is Mayr's elec-
trophilicity parameter E, which can be determined by calibra-
tion against a series of reference nucleophiles according to the
Mayr–Patz equation,26–28

log k = sN(E + N) (1)

Here, k is the bimolecular rate constant of the transformative
nucleophile–electrophile encounter at 20 °C, and N and sN
represent solvent-dependent parameters for nucleophilicity and
nucleophile-specic sensitivity, respectively. (Note that the
logarithm of k is reported as a dimensionless number. As long
as it is ensured that the reactivity parameters strictly correspond
to a specic set of units—here, [k] = M

−1 s−1—this expression is
unambiguous).

A recent study by Mayr, Oal, and co-workers suggests two
distinct values for E of carbon dioxide (experiment, E = −16.3;
computation, E = −11.4), which encompass the values for
benzaldehyde and fairly strong Michael acceptors.29 This gap
represents a deviation of about ve orders of magnitude in
bimolecular rate constants of carboxylation reactions if sN is close
to one, a discrepancy that is clearly too pronounced to enable
reasonable estimates of the rate and selectivity of carboxylation
reactions. Both E(CO2)-values were derived from a single identical
reaction, i.e. the carboxylation of the indenide anion,

EðCO2Þ ¼ log kðCO2 þ indenideÞ
sNðindenideÞ �NðindenideÞ (2)

Hence, no error compensation by calibrating E(CO2) against
several nucleophiles was possible. (Note that the Gibbs free
energy of activation obtained from IEFPCM(DMSO)/B3LYP-D3/
6-311+G(d,p) calculations, which corresponds to E =−14.0, was
subjected to a statistical correction to align it with the results
obtained for heteroallenes other than CO2; see Table 4 and Fig.
13 in Li et al.29)

Nicoletti et al.30 calculated E(CO2) for four additional reac-
tions by using adopted versions of eqn (2), suggesting a range of
lower reactivity (−18.7 < E(CO2) <−15.3). No calibration of Ewas
© 2025 The Author(s). Published by the Royal Society of Chemistry
applied. Instead, every nucleophile was linked to an individual
value of E for carbon dioxide, an issue to be avoided in the
construction of a global reactivity scale. An alternative approach
was taken by Liu et al.,31 who created a machine-learning-based
web prediction tool trained on experimental E parameters from
Mayr's Database of Reactivity Parameters,32,33 placing the elec-
trophilicity value of CO2 at E = −15.02 without providing
a species-specic error estimate. Another web prediction tool
based on methyl anion affinities (correlated to E) and methyl
cation affinities (correlated to N) created by Ree et al. includes
error estimates for specic electrophilic and nucleophilic
sites.34,35 A direct estimation of Mayr's reactivity parameters,
however, is not possible with this tool.

The goal of this work is to reduce the aforementioned uncer-
tainty in CO2 reactivity by narrowing down the range of E(CO2).
For this purpose, we investigate reactions of CO2 with 15 carb-
anions (Fig. 1) in DMSO by means of quantum chemical calcu-
lations involving transition state searches to obtain estimates of
log k. These carbanions have been selected from Mayr's database
and span a wide nucleophilicity range. However, for only one of
these reactions (CO2 + indenide anion N01) experimental data is
available. To assess the validity of different quantum chemical
methods, we benchmark calculated rate constants against
experimental reference values for this and six similar reactions
involving the chemically related heteroallene carbon disulphide.29

To improve the quality of calculated rate constants, we train
amultivariate linear (ML)model on these seven and 13 additional
heteroallene–carbanion reactions for which experimental data is
available (also fromLi et al.29). Finally, by combining least-squares
optimisation with Bayesian bootstrapping,36,37 we quantify E by
calibration against ML-derived log k values.

2 Methods
2.1 Quantum chemical protocol

We took the experimental protocol applied by Li et al.29 into
account, which is adapted from work by Fenner and
Digital Discovery, 2025, 4, 868–878 | 869
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Table 1 Computational settings selected for Gibbs free energy
calculations and their abbreviations used in this work. All energy
calculations are based on B3LYP-D3(BJ)/def2-SVPD-optimised
structures

Abbreviation Computational setting for the energy

B3LYP B3LYP-D3(BJ)/def2-TZVPD/SMD(DMSO)
DLPNO-B2PLYP DLPNO-B2PLYP-D3(BJ)/def2-TZVPD/SMD(DMSO)
DLPNO-CCSD(T) DLPNO-CCSD(T)/CBS/SMD(DMSO)
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Ackermann.20 The reaction is transition-metal-free and carried
out under mild conditions, namely at 20 °C and atmospheric
pressure. Aer deprotonation of a carbon-centred nucleophile
with KOt-Bu, the carbanion formed reacts with CO2, which was
previously dissolved in DMSO.

2.1.1 Conformational search and structure optimisation.
CREST (version 2.12)38,39 was employed to nd all conformers of
each molecule (CO2, nucleophile, nucleophile–CO2 transition
state) using GFN2-xTB.40 Full structure optimisations were then
carried out on every conformer with Gaussian (version 16,
revision C01)41 using the hybrid exchange–correlation func-
tional B3LYP,42,43 D3-type dispersion corrections with Becke–
Johnson damping44,45 (D3(BJ)), and the def2-SVPD basis set.46–48

The latter was generated with the Basis Set Exchange program49

and added manually for the Gaussian calculations. The diffuse
basis functions contained in the basis set (therefore the
terminal character “D”) are essential to properly model the
electronic structure of the carbanionic site. Preliminary tests
motivating the choice of basis set are given in Section S1.† For
verifying converged structures, harmonic frequency calcula-
tions were performed for all species with the same settings.
Goodvibes50 was employed to apply the quasi-harmonic
correction to the vibrational entropy51 computed by Gaussian.
The procedure outlined here was also applied to van-der-Waals
pre-reaction complexes, which are neglected in this study as
they were found to be generally less stable than the corre-
sponding isolated reactants (see Section S2† for more details).

2.1.2 Transition state search. To obtain reasonable starting
structures for transition state optimisations, restricted
Gaussian scans were performed based on the optimised CO2–

nucleophile adducts. The dissociation of the CO2–carbanion
coordinate was scanned in 999 steps with a stepsize of 0.001.
Two different types of algorithms implemented in Gaussian
were employed for the transition state search: the QST3 algo-
rithm52 and the Berny algorithm without eigenvector
following.53 Aer successful optimisation of the transition state,
a constrained CREST calculation was applied while keeping the
CO2–carbanion distance xed to obtain a conformer ensemble
of the transition state. The distance was set to the length of the
distance in the already found transition state. For verifying
converged transition state optimisations, intrinsic reaction
paths were calculated and the presence of a single imaginary
mode was checked.

2.1.3 Implicit solvation modelling. Single-point calcula-
tions including implicit solvation (SMD model54) for DMSO
were executed. B3LYP-D3(BJ) was employed together with the
def2-TZVPD basis set46–48 as tests have shown an energetic
improvement over def2-SVPD for the specic case studied here
(details in Section S1†). Finally, the lowest-energy conformer
was determined for each species and transition state. These
lowest-energy conformers were used to calculate Gibbs free
energies of activation and rate constants. An overview of
conformer ensemble statistics is given in Section S3.†

2.1.4 Towards higher accuracy: DLPNO-based electronic-
energy corrections. Additional single-point calculations were
carried out with ORCA (version 5.0.3)55,56 for a subset of reactions
to improve upon the electronic energy without changing the
870 | Digital Discovery, 2025, 4, 868–878
structure of the species. The rst additional method involves the
hybrid functional B2PLYP57 in combination with the DLPNO
approximation for MP2,58 the def2-TZVPD basis set and D3(BJ)
dispersion corrections. The second additional method involves
DLPNO-CCSD(T)59,60 calculations in combination with the aug-cc-
pVnZ basis sets (n= T,Q)61,62 and aug-cc-pVmZ auxiliary basis sets
(m= Q, 5).63,64 The DLPNO-CCSD(T) energies were extrapolated to
the complete-basis-set (CBS) limit with the extrapolation scheme
developed by Halkier et al.65,66 The Hartree–Fock (HF) and corre-
lation (corr) parts of the electronic energy were separately
extrapolated according to the following scheme,

ECBS
el z

E
HF=QZ

el expf1:63Xg � E
HF=TZ
el fexp 1:63ðX � 1Þg

expf1:63Xg � expf1:63ðX � 1Þg

þE
corr=QZ

el X 3 � E
corr=TZ
el ðX � 1Þ3

X 3 � ðX � 1Þ3 : (3)

In the aforementioned expression, X is the cardinal number of
the larger basis set (here, X = 4). In Table 1, abbreviations are
introduced for the different computational settings applied in
this work.
2.2 Data-driven protocol

All data analysis tools presented in this section can be accessed
through the project-related GitLab repository.67

2.2.1 Multivariate linear (ML) model. Aer standardising
the data, Bayesian Multivariate Linear (ML) regression with
Automatic Relevance Determination (ARD)68 was performed (cf.
eqn (7)) using Scikit-learn 1.5.1.69 Default parameters for ARD
regression were applied, except for the following, which were set
to specied values: = 10−6, = 0.003, =

0.27, and = 3.0. These parameters were rened
through an extensive grid search, with success determined by
the highest cross-validation score. To validate the resulting
model, a leave-one-out approach was employed: with n = 20
reactions in the dataset, n − 1 data points were used to train n
models. The le-out reaction was used for evaluating the
model's performance.

2.2.2 Calibration of E and (sE). We considered two cali-
bration problems. In the rst problem, log k = sN(E + N) and
only E is determined. In the second problem, log k = sEsN(E + N)
and both E and sE are determined. The least-squares method
was applied to calibrate these electrophile-specic parameters
against n reactions for which experimental rate constants are
available,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Carbanions involved in reactions with E1 (CS2) in DMSO,
including identifiers and reactivity parameters (N, sN), for which
experimental log k values were determined.29

Table 2 RMSE and maximum absolute error (max. AE) in DG‡
sol (kcal

mol−1) and log k for different quantum chemical approximations
applied to reactions of E1 (CS2) with six carbanions in DMSO in
comparison to experimental data. Statistics including the reaction of
CO2 with the indenide anion N01 in DMSO are given in parentheses.
See also Table S10

B3LYP DLPNO-B2PLYP DLPNO-CCSD(T)

RMSE DG‡
sol 2.44 (2.26) 2.60 (2.47) 2.22 (2.47)

max. AE DG‡
sol 3.25 3.71 4.12

RMSE log k 1.82 (1.68) 1.94 (1.84) 1.65 (1.84)
max. AE log k 2.42 2.77 3.07
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Eopt; soptE ¼ argmin
E;sE

Xn

i¼1

�
log kexp;i � log kML;iðE; sEÞ

�2
(4)

Optimisation of these nonlinear calibration problems was
performed using the basin-hopping method70 implemented in
SciPy 1.10.1.71

2.2.3 Uncertainty quantication of E (and sE). To obtain
distributions of E (and sE) from which uncertainties can be
derived, we applied Bayesian bootstrapping36,37 to the least-
squares calibration problem. From the dataset at hand, B new
datasets, so-called bootstrap samples, were generated. Each
sample was labeled by an index b, and for each of these samples
the calibration equation was formulated,

Eopt;ðbÞ; sE
opt;ðbÞ ¼ arg min

E;sE

Xn

i¼1

pi
ðbÞ�log kexp;i � log kML;iðE; sEÞ

�2

(5)

The weight pi
(b) can take any value between zero and one under

the constraint that
Pn

i¼1
piðbÞ ¼ 1. Since every bootstrap sample is

represented by a unique set of weights, the optimal reactivity
parameters were slightly different for each set, hence the
designations Eopt,(b) and sE

opt,(b).
We chose B = 1000 for this study. The optimal values for E

and sE were estimated as medians (50th percentiles) of their
respective B bootstrapped values. To estimate the probability P
that E or sE are located within a certain range of values, we
calculated both the [(1− P)/2]th and the [(1 + P)/2]th percentiles,
which dene the lower and upper bounds of the corresponding
condence interval. For instance, for a 95% condence interval,
P = 0.95, [(1 − P)/2] = 0.025, and [(1 + P)/2] = 0.975.
3 Results and discussion
3.1 Assessment of quantum chemical methods

Prior to determining the electrophilicity of CO2, we benchmarked
different electronic-structure methods of varying sophistication
(based on B3LYP, DLPNO-B2PLYP, DLPNO-CCSD(T); see Section
2.1.4 and Table 1) against the experimental rate constants listed
in Table S10.† Since there is only a single experimental rate
constant available for the reaction of CO2 with a nucleophile (N01)
from Mayr's database, we included six additional experimental
rate constants for reactions of the chemically related carbon
disulphide (E1)29 with carbanions (N01, N07, N16, N17, N18, N19;
see Fig. 2) in DMSO.

In Table 2, the root mean square error (RMSE) and maximum
absolute error (max. AE) are shown for the Gibbs free activation
energy DG‡

sol and log k in comparison to the experimental results.
All values correspond to a temperature of 20 °C. The RMSE values
are smallest for DLPNO-CCSD(T). However, the max. AE is largest
for DLPNO-CCSD(T) but smallest for B3LYP. When including the
reaction of CO2 withN01, both RMSE andmax. AE are smallest for
B3LYP. Since all results in Table 2 are based on B3LYP-optimised
structures, the assumption that the reactants and the transition
states are structurally similar across the different electronic-
© 2025 The Author(s). Published by the Royal Society of Chemistry
structure methods could be critical for explaining the increasing
max. AE in DLPNO-B2PLYP and DLPNO-CCSD(T) in comparison
to B3LYP.

As the average error in log k is comparable among the
different electronic-structure approximations, B3LYP appears to
be a reasonable choice given its relatively low computational
cost. However, the scatter of residuals (log kexp − log kB3LYP) is
too high for a proper quantication of electrophilicity, and the
limited number of reaction data is insufficient to apply statis-
tical corrections.

To enhance our analysis, we included 15 additional experi-
mental rate constants for reactions carried out in DMSO involving
other heteroallenes (Fig. 3a) and carbanions (Fig. 3b).29 For these
additional heteroallene–carbanion reactions, we followed the
same computational protocol as before (see Section 2.1) but
omitted further DLPNO-B2PLYP and DLPNO-CCSD(T) calcula-
tions. The reactions E4-N07 and E4-N20 were excluded due to the
excessive size of their transition state conformer ensembles (see
Section S3†), leading to 20 modelled reactions in total (Table 3).
Table 4 shows the updated RMSE and max. AE for the Gibbs free
activation energy DG‡

sol and log k in comparison to the experi-
mental results for this set of reactions. Both RMSE and max. AE
decrease compared to the previous values (Table 2). However, the
log k values from our DFT calculations still do not align well with
the experimental results. To improve the accuracy of log k
predictions and, hence, ensure a reliable quantication of the
electrophilicity of CO2, we next investigated how statistical
corrections can be incorporated into the workow.
3.2 Improving upon quantum chemical log k values

To approximate log kexp of heteroallene–carbanion reactions
over a wide range of reactivity, suitable parameters must be
Digital Discovery, 2025, 4, 868–878 | 871
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Fig. 3 Dataset of (a) electrophiles and (b) nucleophiles involved in
reactions with available experimental rate constants measured in
DMSO,29 including identifiers and reactivity parameters (E, N, sN).

Table 3 Gibbs free energy of activation DG‡
sol and rate constants

derived from quantum chemical calculations (log kQC) compared to
their experimental values29 (log kexp) for each nucleophile–electro-
phile reaction of the ML training set. Reference IDs29 are listed in Table
S5

Elec. Nuc. DG‡
sol [kcal mol−1] log kQC log kexp

29

E1 N01 10.25 5.14 4.99
N07 10.32 5.09 3.25
N16 12.28 3.63 1.34
N17 12.81 3.24 1.00
N18 14.41 2.04 −0.38
N19 14.50 1.98 1.42

E2 N03 17.36 −0.16 0.06
N10 18.23 −0.80 1.43
N17 15.29 1.38 0.31
N21 18.40 −0.93 −0.19
N24 12.77 3.26 1.72

E3 N03 14.68 1.84 1.96
N10 15.17 1.48 3.09
N20 12.54 3.44 2.43
N21 14.78 1.77 0.88
N22 15.20 1.45 0.39

E4 N03 19.11 −0.62 −1.46
N17 16.20 0.71 −0.55
N23 14.07 2.30 2.23

CO2 N01 10.20 5.18 5.32

Table 4 RMSE and maximum absolute error (max. AE) in DG‡
sol (kcal

mol−1) and rate constants (log kQC) obtained from quantum chemical
calculations for 19 reactions of heteroallenes with carbanions in DMSO
in comparison to experimental data. Statistics including the reaction of
CO2 with the indenide anion N01 in DMSO are given in parentheses.
See also Table 3

DG‡
sol log kQC

RMSE 1.87 (1.82) 1.39 (1.36)
max. AE 3.25 2.42

Table 5 Coefficients w0 to w3 of the final ML model shown in eqn (7).
The coefficients are dimensionless as we used standardized values

Coefficient Term Value

w0 — +1.5042
w1 TSnuc −0.4399
w2 melec −0.8825
w3 N +1.1256

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/1
8/

20
25

 2
:4

9:
51

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
identied. Different sets of parameters were tested for this
purpose: (a) individual contributions to the Gibbs free activa-
tion energy DG‡

sol (details in Section 2 of ref. 72), (b) molecular
descriptors from conceptual DFT based on recent studies,73–76

and (c) Mayr's nucleophile-specic reactivity parameters sN and
872 | Digital Discovery, 2025, 4, 868–878
N. Section S4† provides a summary of all tested parameters,
which are also listed in Table S7†, together with detailed
information on their selection (see also Table S6†) and leave-
one-out validations (Fig. S2–S22†).

Bayesian regression with Automatic Relevance Determina-
tion (ARD)68 was performed aer preprocessing the data (see
Section 2.2.1 for more details). In total, 20 models were trained
per examined combination of parameters, excluding each
reaction once from the training dataset. With this leave-one-out
approach, we attempted to mitigate the effect of overtting in
order to reliably assess log k predictions for CO2–nucleophile
reactions not included in the training set.

The best working combination of parameters includes, from
group (a), the temperature-scaled entropy of the nucleophile,
TSnuc, from group (b), the electronic chemical potential77,78 of
the electrophile, dened as

melec ¼
3HOMO
elec þ 3LUMO

elec

2
(6)

and, from group (c), Mayr's nucleophilicity N. The nal ML
model equation is given by

log kML: = w0 + w1TSnuc + w2melec + w3N z log kexp (7)

In Table 5, the model coefficients w0 to w3 are listed for the
nal multivariate linear (ML) model including all 20 reference
reactions. RMSE and max. AE of the corresponding log kML

values (Table 6) are about four times smaller compared to those
obtained from Gibbs free energies of activation (log kQC). This
nding indicates that a statistical model combining quantum
chemical (TSnuc and melec) and empirical (N) information
systematically outperforms DFT-based thermochemistry. In
fact, not a single parameter combination from group (a) alone
could achieve an accuracy similar to that of the best combina-
tion shown in eqn (7).
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 RMSE and maximum absolute error (max. AE) in calculated
rate constants (log k) for 19 reactions of non-CO2 heteroallenes with
carbanions in DMSO (Table 3) in comparison to experimental data.
Statistics for the ML model refer to leave-one-out errors

log kQC log kML

RMSE 1.39 0.35
max. AE 2.42 0.58
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Fig. 4 shows a leave-one-out plot of the log kQC values
(unlled circles) and the log kML values (lled circles) versus
their experimental analogues for the 20 reference reactions. The
prediction of the reaction le out of training in this case, CO2–

N01, is shown in red. Results for the 19 other leave-one-out
models and the nal ML model are provided in Section S4.†

To examine whether this approach is transferable to reac-
tions of CO2 with nucleophiles not included in the training of
the ML model, we simulated analogous scenarios, two for each
of the other heteroallenes E1–E3, respectively. In each of the six
simulations, the ML model was retrained using data from only
one reaction of the selected heteroallene with a nucleophile that
is also involved in at least one other reaction (see Section S5†).
(In the original ML model, CO2 is the heteroallene for which
experimental data with only one nucleophile, N01, is available,
which is also present in a reaction with E1). In all cases, the
agreement between experimental and ML-predicted log k values
for reactions with the underrepresented heteroallene is high,
although several nucleophiles are excluded from the respective
model trainings. These results indicate that the ML model is
transferable to reactions with other heteroallenes as well as
other carbanions, an essential prerequisite for predicting the
kinetics of yet-unobserved carboxylation reactions.

In addition to delivering more accurate results, the ML
model provides computational cost advantages over conven-
tional quantum chemical calculations. The most signicant
computational time is required for the transition state search in
the latter case. The proposed ML model effectively circumvents
this time-intensive process.
Fig. 4 Rate constants (log k) from quantum chemical (QC) calcula-
tions (unfilled circles) and those obtained from multivariate linear (ML)
regression (filled circles) versus their experimental analogues for the
heteroallene–carbanion reactions listed in Table 3. The reaction
shown in red has been left out for training and is predicted by the ML
model.

© 2025 The Author(s). Published by the Royal Society of Chemistry
3.3 Determination of E(E1): experiment vs. computation

To validate the ML model, we assess the reproducibility of E of
E1 (CS2), whose experimental value is reliably known (E =

−17.7). For this purpose, we compare the calibration of E
against log kexp (Fig. 5a and Table 7) with that against log kML

(Fig. 5b and Table 7). The sampled distributions of experi-
mental and ML-derived E values obtained from Bayesian boot-
strapping36,37 are strongly overlapping (Fig. 5c), and the ML-
predicted value (E = −17.6) is very close to its experimental
reference, especially when taking into account that the resulting
deviation in log k is much smaller than the uncertainty in log k
introduced by the Mayr–Patz approach.36

The close agreement is not particularly surprising as the
corresponding reactions are part of the training set for the ML
model (eqn (7)). The same holds for the calibration of E of E2
and E3, the results of which are provided in Section S5.†
However, we obtain similar results (Tables S11–S13†) when the
ML-predictions of the six data-sparse simulations mentioned in
the previous section are employed, where only one of the
experimentally investigated reactions is part of the training
procedure.

3.4 Determination of E(CO2)

To quantify the electrophilicity parameter E for carbon dioxide,
we applied the same calibration procedure as in the previous
section. Due to the availability of only one experimental data
point, we calibrated E(CO2) against log kML (Table S14†) pre-
dicted for 15 carboxylation reactions with different carbanions
(Fig. 1 and Table S9†) in DMSO; see Fig. 6-1a.

The resulting distribution of E(CO2) (Fig. 6-1b and Table 8)
has a median of E = −15.45 and a two-sided 95% condence
interval of −16.00 < E < −14.97. This median along with its
condence interval lies between the two values determined by
Li et al.29 (experiment, E = −16.3; computation, E = −11.4),
which are both based on a single reaction (with the indenide
anion N01). In direct comparison to the single experimental
reference, the reactivity of CO2 increases from −16.3 to −15.5.

However, as evident in Fig. 6-1a, a noticeable systematic
deviation exists in the ML data (lled circles). At lower N values,
the data points are positioned above the median, while as N
increases, the data points generally lie below the median line. A
possibility to examine the underlying data for signs of auto-
correlation, which may indicate systematic errors, is the Dur-
bin–Watson test, a statistical test used to assess the
independence of residuals, zij, in regression analysis,79,80

d ¼
P�

Dzij
�2

P
zij2

(8)

with 0 < d < 4 and no autocorrelation present when d = 2. The
test result, d = 0.47, conrms the observation of systematic
deviations in the data.

One assumption in the Mayr–Patz equation (eqn (1)) is that
the electrophile-specic sensitivity parameter sE equals one.81

Mayr and coworkers have demonstrated that this assumption is
valid for many different electrophiles,27,81 including the heter-
oallenes E1–E4.29 In the linear visualisation of the Mayr–Patz
Digital Discovery, 2025, 4, 868–878 | 873
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Fig. 5 Calibration of E against (a) experimental rate constants and (b)
rate constants obtained from the ML model (filled circles) for six
reactions of carbanions with E1 (CS2) in DMSO based on bootstrapped
least-squares optimisation with respect to the Mayr–Patz equation
(MPE, eqn (1)). The quantum chemical (QC) data is shown in unfilled
circles for comparison. (c) Bootstrapped distributions of E(E1) based on
experimental (grey) and ML (blue) data.

Table 7 Mayr's electrophilicity E for E1 (CS2) and performance
statistics (RMSE, R2) derived from the calibration results shown in Fig. 5.
The results are based on experimental values, ML values, and QC
values for comparison. See Table S11 for more details

Exp. ML QC

Elower −18.12 −18.01 −16.16
E −17.71 −17.60 −15.39
Eupper −17.25 −17.26 −14.64
u95 (E) 0.87 0.75 1.51
RMSE (log k) 0.40 0.37 0.72
R2 (log k) 0.95 0.93 0.68

874 | Digital Discovery, 2025, 4, 868–878
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relationship, the slope of the plot of log k/sN versus N equals sE.
We were curious to see if a more general equation for nucleo-
phile–electrophile reactions that contains sE as a free
parameter,

log k = sEsN(E + N) (9)

yields a more accurate prediction of E and decreases the strong
autocorrelation observed for sE = 1.

Fig. 6-2a shows a signicant improvement when applying the
generalised equation over theMayr–Patz equation, evidenced by
an increase/decrease in R2 (from 0.89 to 0.97)/RMSE (from 0.72
to 0.40) and a signicant reduction in autocorrelation (d =

1.22). Regarding the high calibration accuracy, it is worth
mentioning that only four nucleophiles (N01, N03, N07, N10)
were included in both the MLmodel as well as CO2 dataset. This
result suggests that sE should be explicitly considered as
a parameter in the quantication of E for CO2.

The resulting distribution of E(CO2) (Fig. 6-2b and Table 8) has
a median of E = −14.62 and a two-sided 95% condence interval
of−15.05 < E <−14.18. For sE(CO2), the resulting distribution has
a median of sE = 0.81 and a two-sided 95% condence interval of
0.73 < sE < 0.87. These distributions allow us to estimate reaction-
specic uncertainty in log k (Section S6†), which we provide in
Table S16†. With a condence of 95%, the uncertainty in rate
constants of carboxylation reactions equals about one order of
magnitude. It increases slightly towards both ends of the nucle-
ophilicity range under consideration.

Building on this set of nucleophiles, we nd evidence that sE
takes values signicantly smaller than one (0.7–0.8, see Table
S20†) also for heteroallenes E1–E3, indicating a more general
trend. A distinctive aspect is that heteroallenes are linear in their
ground state but adopt an increasingly bent structure along the
reaction coordinate. This change can affect the relative stabili-
sation of transition states and products, both intrinsically and
through solvent interactions, thereby potentially altering the
sensitivity of the activation energy to changes in the reaction
energy. This sensitivity coefficient, better known as the Brønsted
coefficient, has been shown to be proportional to the sN param-
eter in the Mayr–Patz framework.82 Assuming an analogous
relationship for the sE parameter, the pronounced structural
change in heteroallenes during nucleophilic attack may explain
the deviation from the typical case where sE = 1. The directional
nature of nucleophilic attack on CO2 may further contribute to
this effect. Given the complexity of these inuences, a detailed
quantitative analysis would be required to draw rm conclusions.
For now, we focus on the narrowness of the condence intervals
for E and sE, which allows us to explore the application scope of
CO2 (and potentially other heteroallenes).

3.5 Identifying suitable substrates for CO2

Applying the extended Mayr–Patz equation (eqn (9)), kinetically
suitable nucleophiles for reactions with CO2 can be identied.
As a rule of thumb, electrophile–nucleophile reactions can be
observed at room temperature (20 °C) if log k > −6.81 The
diffusion limit is reached at log k z 8, where the validity of the
Mayr–Patz equation breaks.28To illustrate the reaction scope of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) Calibration of E against rate constants obtained from the MLmodel for 15 reactions of CO2 with carbanions in DMSOwith respect to (1)
the Mayr–Patz equation (MPE, fixed slope, eqn (1)) and (2) the more general equation of reactivity (GE, relaxed slope, eqn (9)). (b) Corresponding
bootstrapped distributions of E(CO2).

Table 8 Mayr's electrophilicity E and sE for CO2 and performance
statistics (RMSE, R2) derived from the calibration results shown in Fig. 6.
See Table S15 for more details

MPE (eqn (1)) GE (eqn (9))

Elower −16.00 −15.05
E −15.45 −14.62
Eupper −14.97 −14.18
u95 (E) 1.03 0.87
sE,lower — 0.73
sE 1.00 0.81
sE,upper — 0.87
u95 (sE) — 0.13
RMSE (log k) 0.72 0.40
R2 (log k) 0.89 0.97
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CO2, we establish a “CO2 reactivity cone”, which is dened by
two axes, N and 1/sN (Fig. 7). Every nucleophile with known
reactivity parameters can thus be assigned a specic position in
the cone plot and falls either into the cone (reaction scope) or
outside of it (unobservable or diffusion-controlled reactions).
Within this cone, 229 carbon-centred nucleophiles from Mayr's
database32 have been included, emphasising some examples
with low nucleophilicity values, highlighted in red. These
nucleophiles are relatively mild but, according to the extended
Mayr–Patz equation, reactive enough to form products with
CO2. For instance, certain cyclic a-diazo carbonyl compounds
and heteroarenes (measured in DCM) fall into this category.
© 2025 The Author(s). Published by the Royal Society of Chemistry
With a xed sE parameter, the cone would be narrower, shiing
many of these “mild” compounds outside the cone. In this light,
it is an encouraging result that sE < 1, as it widens the substrate
scope of carboxylation reactions.

By utilising available web prediction tools for fast predic-
tions of N,31,34,35 nucleophiles not yet included in Mayr's data-
base can be accessed. However, it is important to consider the
uncertainty estimates provided by these tools.

Through various approaches for the activation of nucleo-
philes mentioned earlier,2,4,14 such as binding to a transition
metal, but also by activating CO2 in a Lewis–acidic medium,
weaker nucleophiles can become sufficiently reactive, which
signicantly increases the number of suitable reaction partners
for carboxylation reactions further. In case of CO2 activation,
the boundaries of the cone would shi, whereas nucleophile
activation shis substrates into and out of the cone.

4 Conclusions and outlook

We developed a computational pipeline integrating supervised
learning, quantum chemistry, and uncertainty quantication to
quantify the reactivity of heteroallenes (X = C]Y), most notably
carbon dioxide (CO2), in the form of Mayr's electrophilicity
parameter E. Benchmarking revealed that conventional quantum
chemical calculations combined with standard thermochemistry
and canonical transition state theory fail to reproduce experi-
mental rate constants of nucleophilic attack by carbanions at
heteroallenes.
Digital Discovery, 2025, 4, 868–878 | 875
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Fig. 7 Reactivity cone for reactions of nucleophiles with CO2 according to the general Mayr–Patz equation (eqn (9)). Reactivity parameters for
CO2 are set to sE = 0.81 and E(CO2) = −14.6. Here, all carbon-centered nucleophiles of Mayr's database falling into the cone are shown.
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To resolve this issue, we developed and trained a multivar-
iate linear (ML) model on experimental data for 20 hetero-
allene–carbanion reactions to improve the accuracy of
computed rate constants by one order of magnitude compared
to the ab initio protocol. Both quantum chemical and empirical
reactivity information serves as input to the ML model.

ML-predicted rate constants for 15 CO2–carbanion reactions
were subjected to nonlinear least-squares optimisation
combined with Bayesian bootstrapping to quantify E for carbon
dioxide, E(CO2) = −14.6(5), with 95% condence. In contrast to
other heteroallenes, it was necessary to relax the otherwise xed
electrophile-specic parameter sE (default value of 1), which is
also done to describe electrophiles undergoing sN2 reactions.81

Here, sE(CO2) = 0.81(6). A positive implication of an sE param-
eter smaller than one is that it expands the substrate scope
towards less reactive nucleophiles.

Through these insights, we have gained a rened under-
standing of the characteristics of CO2, which helps to better exploit
its potential in synthetic and related applications. For example,
nucleophiles located within the “CO2 reactivity cone” developed in
this study (Fig. 7) are generally kinetically suitable for undergoing
reactions with CO2 without additional support by transition metal
catalysts, Lewis acids, or other activating media. To broaden the
scope of application beyond nucleophiles that have been already
characterised experimentally, web prediction tools of chemical
reactivity can be utilised.31,34 Identifying new nucleophiles that can
successfully undergo carboxylation creates opportunities for
designing novel prodrugs or carbamates, thereby enhancing
pharmaceutical development or CO2-binding strategies.

These applications underscore the need to bridge predic-
tions with experimental validation to ensure their practical
relevance. Despite the evidence provided by our computational
876 | Digital Discovery, 2025, 4, 868–878
method, further experiments are unavoidable to truly unveil the
reactivity and full potential of CO2, as well as to clarify the
origins of the electrophile-specic parameter sE.
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M. Ephritikhine and T. Cantat, Angew. Chem., 2012, 124,
191–194.

7 H. Maag, Prodrugs, Springer, New York (NY), United States,
2007, vol. 5, pp. 703–729.

8 L. Wang, C. Qi, W. Xiong and H. Jiang, Chin. J. Catal., 2022,
43, 1598–1617.

9 A. Demessence, D. M. D'Alessandro, M. L. Foo and J. R. Long,
J. Am. Chem. Soc., 2009, 131, 8784–8786.

10 A. C. Forse and P. J. Milner, Chem. Sci., 2021, 12, 508–516.
11 D.-H. Nam, O. Shekhah, G. Lee, A. Mallick, H. Jiang, F. Li,

B. Chen, J. Wicks, M. Eddaoudi and E. H. Sargent, J. Am.
Chem. Soc., 2020, 142, 21513–21521.

12 I. Sullivan, A. Goryachev, I. A. Digdaya, X. Li, H. A. Atwater,
D. A. Vermaas and C. Xiang, Nat. Catal., 2021, 4, 952–958.

13 J. Hong, M. Li, J. Zhang, B. Sun and F. Mo, ChemSusChem,
2019, 12, 6–39.

14 J. Luo and I. Larrosa, ChemSusChem, 2017, 10, 3317–3332.
15 I. I. F. Boogaerts and S. P. Nolan, J. Am. Chem. Soc., 2010, 132,

8858–8859.
16 I. I. F. Boogaerts, G. C. Fortman, M. R. L. Furst, C. S. J. Cazin

and S. P. Nolan, Angew. Chem., Int. Ed., 2010, 49, 8674–8677.
17 H. Inomata, K. Ogata, S.-I. Fukuzawa and Z. Hou, Org. Lett.,

2012, 14, 3986–3989.
18 Y. Luo and W. Huang, Org. Biomol. Chem., 2023, 21, 8628–

8641.
19 O. Vechorkin, N. Hirt and X. Hu, Org. Lett., 2010, 12, 3567–

3569.
20 S. Fenner and L. Ackermann, Green Chem., 2016, 18, 3804–

3807.
21 S. Felten, C. Q. He, M. Weisel, M. Shevlin and M. H. Emmert,

J. Am. Chem. Soc., 2022, 144, 23115–23126.
22 S. Naumann, Chem. Commun., 2019, 55, 11658–11670.
23 B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif and

J. Louie, J. Org. Chem., 2009, 74, 7935–7942.
24 L. Yang and H. Wang, ChemSusChem, 2014, 7, 962–998.
25 A. Katharina Reitz, Q. Sun, R. Wilhelm and D. Kuckling, J.

Polym. Sci., Part A: Polym. Chem., 2017, 55, 820–829.
26 H. Mayr and M. Patz, Angew. Chem., Int. Ed., 1994, 33, 938–

957.
© 2025 The Author(s). Published by the Royal Society of Chemistry
27 H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker,
B. Kempf, R. Loos, A. R. Oal, G. Remennikov and
H. Schimmel, J. Am. Chem. Soc., 2001, 123, 9500–9512.

28 J. Ammer, C. Nolte and H. Mayr, J. Am. Chem. Soc., 2012, 134,
13902–13911.

29 Z. Li, R. J. Mayer, A. R. Oal and H. Mayr, J. Am. Chem. Soc.,
2020, 142, 8383–8402.

30 C. Nicoletti, M. Orlandi, L. Dell'Amico and A. Sartorel,
Sustain. Energy Fuels, 2024, 8, 5050–5057.

31 Y. Liu, Q. Yang, J. Cheng, L. Zhang, S. Luo and J.-P. Cheng,
ChemPhysChem, 2023, e202300162.

32 H. Mayr and A. R. Oal, Mayr's Database of Reactivity
Parameters, https://www.cup.lmu.de/oc/mayr/
reaktionsdatenbank2/, last accessed on 07 November 2024.

33 H. Mayr and A. R. Oal, SAR QSAR Environ. Res., 2015, 26,
619–646.

34 N. Ree, A. H. Göller and J. H. Jensen, Digit. Discov., 2024, 3,
347–354.
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