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limitations in computational materials research infrastructure. Key features include the support for multiple

electronic structure packages and interoperability between them, along with generalizable workflows that

can be written in an abstract form irrespective of the DFT package or machine learning force field used

within them. Our hope is that atomate2's improved usability and extensibility can reduce technical

barriers for high-throughput research workflows and facilitate the rapid adoption of emerging methods

in computational material science.
1 Introduction

Over the past decade, high-throughput (HT) density functional
theory (DFT) calculations have become increasingly popular to
the point where they now represent a standard tool within
computational materials science. Such calculations serve
multiple roles: they enable the screening of materials with
specic targeted properties for materials discovery campaigns,
enable the development of general-purpose databases of
materials properties, and provide foundational data for training
machine learning models.

Deploying HT calculations in a generic manner requires
a robust soware infrastructure. In response to this need,
a variety of soware frameworks, including AFLOW,1 AiiDA,2–5

Atomic Simulation Environment (ASE6), pyiron,7 qmpy,8 and our
previously developed atomate,9 have been developed. Such
frameworks have not only made it possible to run DFT calcu-
lations at an unprecedented scale, but have also as a side effect
made such calculations much more accessible to a larger
audience. This is because full automation necessitates the
development of automatic parameter decisions, automatic error
detection and recovery, and automated execution on heteroge-
neous computing resources. Such advancements have ulti-
mately resulted in more user-friendly programming interfaces
to complex materials calculation procedures.

In this manuscript, we introduce atomate2, an evolution of
our earlier work with atomate. atomate2 is designed to enhance
the programmability of computational workows, offer greater
exibility with respect to different simulationmodels (including
those based on MLIPs), support various workow execution
engines, and accommodate a broader spectrum of materials
properties with less re-coding. atomate2 represents a compre-
hensive overhaul of atomate, building on its predecessor's
successful application in numerous materials design projects
and its integral role in the Materials Project (MP)10 database. In
the following sections we detail the enhancements and capa-
bilities of atomate2, emphasizing its improved usability and
exibility, which we anticipate will signicantly benet the next
wave of HT DFT calculations.

2 Atomate2 design philosophy and
overview

atomate2 has been designed with the following principles in
mind: standardization of inputs and outputs, interoperability
between computational methods, and composability of work-
ows. These goals were informed based on the development
and extended usage of the original atomate. Previously, there
was not a consistent approach to modify the key parameters of
the Royal Society of Chemistry
workows such as inputs and calculation settings. This meant
changing default parameters was oen an involved process that
required the user to inspect the source code for each workow
they intended to run. In atomate2, consistency is enforced by
design. For example, all workows that run using the Vienna ab
initio Simulation Package (VASP)11–14 have the same base set of
common options. Changing calculation parameters such as the
exchange-correlation functional, modifying the approach used
to execute VASP, or writing additional les to the calculation
directory, can all be achieved in the samemanner irrespective of
the specic workow being performed. This standardization
enables workows to be modied more easily and leads to
a more streamlined user experience.

There exists a wide range of DFT packages, each with their
own strengths and set of unique features. The atomate package
was centered around the use of VASP for periodic systems and
Q-Chem15 for molecular systems. In atomate2, we have
expanded support to a wider array of computational methods
including FHI-aims,16 ABINIT,17–20 and CP2K,21,22 in addition to
many state-of-the-art machine learning interatomic potentials
(MLIPs). Throughout this paper these methods and codes are
termed Calculators. A key challenge is to enable heterogeneous
workows where different parts of a workow are performed
using different computational methods. Such workows are
necessary to take advantage of the range of features imple-
mented in different DFT packages. For example, hybrid DFT
calculations in CP2K can be signicantly accelerated by the
auxiliary density matrix method (ADMM), but this imple-
mentation is currently limited to the use of a single k-point in
reciprocal space. atomate2 enables chaining an initial fast
hybrid relaxation using CP2K with a slower second relaxation
using VASP with denser k-point sampling for improved accu-
racy. Together this simulation procedure can signicantly
accelerate the computation of complex structures and is a key
feature of the heterogeneous defect calculation workow in
atomate2. Achieving interoperability between multiple DFT
packages and MLIPs is facilitated by the standardization of
workow inputs and outputs through use of a common appli-
cation programming interface (API).

Together, standardization and interoperability enable com-
posable workows. This is a unique feature of atomate2
whereby the substituent parts of a workow can be seamlessly
substituted without impacting the overall workow execution.
This has been facilitated through the use of the jobow23

workow engine explicitly designed to support “nested” work-
ows. One example of composability is given by generalizable
workows. For example, the calculation of elastic constants
requires obtaining the energy and stress of a series of strained
cells before the results are compiled and elastic properties
Digital Discovery, 2025, 4, 1944–1973 | 1945
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Fig. 1 High-level architecture flowchart of the atomate2 framework.
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extracted. In atomate2, the elastic constant workow is dened
in an abstract form, where the various parts of the workow are
linked together independent of the computational method used
to obtain energies and stresses. The implementation of the
workow for a specic Calculator is as simple as dening the
method for a static calculation using that Calculator. The rest of
the workow remains unchanged. Another aspect of compos-
ability is the ability to modify workows in non-trivial ways. For
example, the default workow for point defect in atomate2 is
designed to use a single calculation to relax the defect geometry.
This calculation can easily be replaced by a sub-workow that
rst runs CP2K and then runs VASP as described in the previous
paragraph. Again, the workow denition remains unchanged
and is agnostic to the specic sequence of steps, provided the
nal calculation yields a relaxed structure and the associated
energy.

Another aspect of composability is dened by workow
optimization. For example, the FHI-AIMS calculator facilitates
the creation of automatic convergence workows, atomate2
contains a code-agnostic job that performs a series of consec-
utive code runs with changing inputs, until the absolute
difference between the selected result values in two subsequent
runs becomes smaller than a predened value. This job has
been used to achieve the k-point convergence of energy in static
point calculations, as well as the band gap value convergence
within the GW framework with respect to the number of
frequency points, basis set size, and k-point grid used for the
self-energy calculation.

Beyond these considerations, atomate2 aims to address
several challenges faced by users of the original atomate code.
Workows are written using the jobow library rather than the
FireWorks code, which provides a streamlined experience for
complex workows with modular components. atomate2
broadens the range of databases available for storing large les
and objects, including MongoDB (primary document store),
Amazon S3, and Azure Blobs, along with simple conguration
options for selecting the storage location of specic objects. A
high-level summary of the differences between atomate2 and
the original atomate is provided in Table 1.

The computational efficiency and scalability of atomate2 are
comparable to those of the original atomate and other modern
high-throughput frameworks. In atomate2, as in the original
atomate, the heavy-liing is done by the underlying electronic
structure codes (e.g., VASP), so the workow layer adds minimal
runtime overhead. Like other frameworks (e.g., AiiDA or pyiron),
atomate2 can fully leverage large-scale computing resources
Table 1 Overview of key software differences between atomate and ato

Code
Workow
engine

Workow
executor Datab

atomate FireWorks FireWorks Mong
atomate2 jobow jobow, FireWorks, jobow-remote Mong

Azure

a A full list of calculators supported by atomate2 is provided in Table 2.

1946 | Digital Discovery, 2025, 4, 1944–1973
through its workow execution framework (FireWorks), so it is
capable of orchestrating thousands of calculations in parallel
with similar efficiency and scalability.

It must be noted that atomate2 differs from ASE in many
ways. The writing of input les and parsing of output les is
handled primarily by pymatgen (not ASE) in atomate2, speci-
cally for VASP, FHI-aims, ABINIT, CP2K, and LOBSTER. The
“orchestration” of a single electronic structure task is executed
using bespoke code in atomate2, and involves writing input
les, running the external code, and then parsing the results of
the calculation into a remote database. For VASP and Q-Chem,
additional calls to the custodian python package allow for
handling issues that may arise during the calculation. Thus,
atomate2 is a framework for these various pieces which can be
used to dene complex computational workows in high
throughput.

By contrast, ASE is currently used as a backend only for tight-
binding Hamiltonian and machine learning forceeld calcula-
tions in atomate2. However, its optimization classes are exten-
sible to any ASE calculator, allowing for a high degree of user
customization. Again, the actual task orchestration, which
involves parsing calculation results into structured, JSON-
format output and inserting them into a remote database, is
handled by atomate2.

A clear example of this distinction is the MPMorph workow,
which can optionally use a machine learning forceeld to drive
its adaptive equation of state tting of a non-crystalline mate-
rial. If such a forceeld is used, then ASE is called to perform
NVT molecular dynamics at a given volume. However, the
determination of which volumes to use, how the range of tted
volumes should be adjusted dynamically, and the parsing and
tting of molecular dynamics runs is all handled by atomate2.
mate2

ase
Dynamic
workows

Generalisable
workows Calculators

oDB 3 7 VASP, Q-Chem
oDB, Amazon S3,
Blob, File Storage

3 3 Manya

© 2025 The Author(s). Published by the Royal Society of Chemistry
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A high-level owchart that unies the overall atomate2
architecture into a single diagram can be found in Fig. 1. This
owchart maps the end-to-end data ow. The user structural
inputs (via pymatgen/Materials Project) feed into the jobow
“Workow” layer, which decomposes the task into individual
jobs dispatched through FireWorks (locally or on supercom-
puters) with custodian handling error checking and recovery.
Upon job completion, raw outputs are parsed by pymatgen and
emmet and optionally post-processed by tools such as phonopy,
Pheasy, hiPhive, or AMSET before being archived in the user-
specied backend (MongoDB, Amazon S3, Azure Blob, JSON,
etc.). By making the full process explicit, this diagram provides
context for each of the detailed workow diagrams presented
later in the paper.
3 Calculators

All the supported calculators are mentioned in Table 2.
3.1 Atomic simulation environment

ASE is a widely used python package that permits the easy setup
of atomistic simulations. ASE simulations are driven by
a Calculator class that, given a set of atoms and their positions
in 3D space, returns energies and possibly interatomic forces
and stresses. This permits structural and molecular relaxation,
molecular dynamics (MD), and transition state nding. Abstract
ASE workows for geometry optimization and MD have already
been added to atomate2; transition state nding via nudged
elastic band (NEB)24 is currently being added. We use “abstract”
here to mean that the workows require the user to dene
which ASE-calculator drives the workow. As examples of how
to do this, atomate2 includes concrete implementations of
abstract ASE workows using the Lennard-Jones 6-12 (ref. 25)
and GFNn-xTB tight-binding Hamiltonian.26–28 Note that while
ASE is not a Calculator itself, it interfaces with many electronic
structure codes, including some directly supported by
atomate2.

To take advantage of the rich library of atomistic simulations
supported by ASE, atomate2 implements a generic AseMaker
class in atomate2 which allows users to dene ASE-dependent
jobs via a Calculator attribute and a run_ase method. This
Maker supports both periodic and non-periodic structures as
Table 2 Calculators supported by atomate2

Calculators Periodic system Non-periodic system

ASE 3 3

FHI-AIMS 3 3

OpenMM 3 3

ABINIT 3 —
CP2K 3 —
JDFTx 3 —
MLIPsa 3 —
VASP 3 —
Q-Chem — 3

a MLIPs include: CHGNet, M3GNet, MACE, GAP, NEP and NequIP.

© 2025 The Author(s). Published by the Royal Society of Chemistry
input. The Calculator attribute can be any ASE-compliant
Calculator. The run_ase method denes what operations are
performed on the input atomic conguration, for example,
structural or molecular relaxations via the AseRelaxMaker class,
or MD via the AseMDMaker class. As these classes are easily
adapted to a given use case, no workows are currently imple-
mented in the ASE library.

Outputs from ASE are stored in structured documents: the
AseStructureTaskDoc for periodic systems and the AseMolecu-
leTaskDoc for non-periodic systems. Both document classes
inherit from existing document schemas in emmet-core. By
default, trajectories (more generally, data for each ionic step)
are stored in the user's “large-object” database (such as Mon-
goDB's GridFS) if established.
3.2 FHI-aims

FHI-aims16 is a community driven, all-electron electronic
structure code based on numeric atom-centered orbitals. It
supports DFT with a wide range of exchange-correlation func-
tionals, correlated methods beyond DFT (e.g. RPA and MBPT),
and wave-function based correlation methods (e.g. MP2 and
CC), as well as ab initio MD. It enables rst-principles simula-
tions with very high numerical accuracy for production calcu-
lations, with excellent scalability up to very large system sizes
(tens of thousands of atoms) and up to very large, massively
parallel supercomputers. While FHI-aims can treat isolated
molecules, clusters, surfaces, and solids on the same footing, it
only has atomate2 support for periodic workows so far. The
rest of the section describes the implementation details for the
base FHI-aims calculations, and highlights technical details for
some workows.

Currently, the FHI-aims interface to atomate2 can perform
both single point and geometry optimization calculations, as
well as more complicated workows. It is also integrated into
the phonon, elastic constants, equation of state, magnetic
ordering (via Mulliken analysis), anharmonicity quantication,
and MD workows of atomate2. All of these provides a template
for integrating FHI-aims into other common workows such as
the anharmonic and quasiharmonic phonons. For applications
where symmetry is important, this can be activated by using the
rlsy_rene_structure keyword in FHI-aims. However, this
should not be used when performing calculations on displaced
geometries.

All keywords needed to run the calculations are passed to
atomate2 through the user_parameters argument and kpt_set-
tings, which are python dictionaries. The default relaxation
method used is the trust radius method (TRM) with a maximum
allowed force of 1 meV Å−1. When running multiple related
(same material or molecule) calculations, the atomate2 inter-
face allows for both parallel and serial execution of this job via
the run_aims and run_aims_socket functions, respectively. The
advantage of using the run_aims_socket function is that it uses
the i-PI interface29 in FHI-aims and the ASE SocketIOCalculator
to initialize the electron density to the converged value from the
previous calculation when possible, reducing the total number
of SCF iterations by a factor of two.
Digital Discovery, 2025, 4, 1944–1973 | 1947
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FHI-aims can run the GW calculation in a single shot,
without having to restart the calculation aer completing an
SCF cycle. Such a run will consist of an SCF part, during which
the ground-state electronic density is obtained, and a post-SCF
part when the GW self-energy is evaluated. However, the two
parts can also be separated using FHI-aims restart capabilities.
The GW workow for FHI-aims, implemented in the atomate2
package, dumps the resulting SCF eigenfunctions and reads
them at the beginning of the GW run. It helps in several ways by:
(1) making calculations more computationally efficient, (2)
achieving consistency in the results, and (3) allowing more
exible exploration of the parameters space.
3.3 ABINIT

ABINIT is an open-source rst-principles soware implementing
a diverse range of formalisms such as DFT, density-functional
perturbation theory (DFPT), many-body perturbation theory
(GW approximation and Bethe–Salpeter equation), and dynam-
ical mean-eld theory among others. Since it relies on plane
waves to represent the wavefunctions, periodic boundary condi-
tions are imposed. ABINIT is thus particularly suited to deal with
periodic structures, although this limitation can be circum-
vented by embedding non-periodic systems in the appropriate
supercell. Both norm-conserving pseudopotentials and the
projector-augmented wave method are supported. Numerous
quantities can be calculated including electronic, vibrational,
optical, magnetic, mechanical, and thermodynamic properties.

At present, standard DFT tasks, that is, structural relaxation
(atoms and/or cells), SCF- and NSCF-calculation (uniform or
bandstructure) as well as many-body perturbation theory
(MBPT) calculations such as quasiparticle energies within the
GW approximation and dielectric function calculation by
solving the Bethe–Salpeter equation, are interfaced within
atomate2. The plan is to port the previously developed abiows
package, which was among others used to calculate 1521
semiconductors in the harmonic approximation in collabora-
tion with the MP,30 to atomate2. In this regard, the abiows
DFPT workow for calculating the static second-harmonic
generation tensor31 (and the static dielectric tensor) has been
implemented in atomate2 and is under review.

The global machinery heavily relies on functionalities
provided by abipy such as the automatic input generation and
outputs processing.20 Following the philosophy of atomate2,
each Maker or calculation type (inheriting from BaseAbinit-
Maker) has its own AbinitInputGenerator, which in turn calls
a specic abipy factory function to generate the proper Abini-
tInput. Once a job is completed, the parsing capabilities of
abipy are fully leveraged to retrieve relevant outputs. Indeed,
abipy provides a specic parser class for each le, whether text
or netcdf. The available methods of those parsers allow to
construct an AbinitTaskDoc following the same schema as for
the other codes with common basic elds such as out-
put.energy, output.bandgap or output.forces. In addition, it is
possible to directly store relevant les such as the DDB or netcdf
ones into a FileStore partition of the interactingMongoDB. They
can then be retrieved at will for further manipulation with abipy
1948 | Digital Discovery, 2025, 4, 1944–1973
such as automatic plots generation of bandstructure, density of
state, or spectra. When possible, basic gures are already saved
to allow a quick inspection. By default, the ABINIT workows
will look for pseudopotentials from the Pseudodojo32 in the
default folder (/.abinit/pseudos). It is thus necessary to down-
load them using the abipy abips.py command. The –help option
lists the valid subcommands such as avail, list, and install.
Although difficult, it is possible to use custom pseudopoten-
tials. Active developments are focusing on improving this
aspect.

3.4 CP2K

CP2K is an open-source soware package for performing
atomistic simulations including electronic structure calcula-
tions using DFT and (post) Hartree–Fock (HF) methods as well
as MD simulations using classical force elds. CP2K uses
analytic Gaussian-type orbitals to form a local basis set, which
can be used to simulate both periodic and non-periodic
systems. Additional unique features include the auxiliary
density matrix method (ADMM) for accelerating hybrid DFT
calculations, the Gaussian and Augmented Plane Waves
(GAPW)method for scalable all-electron calculations, and linear
scaling DFT methods. Basic DFT tasks with CP2K21,22 have been
interfaced with atomate2 using jobow.

3.5 JDFTx

JDFTx33 is an open-source plane-wave DFT code that supports
grand canonical DFT (GC-DFT) and implements advanced
implicit solvent models. GC-DFT and JDFTx are particularly
useful for studying solvated interfaces that are relevant in
electrochemical applications. DFT and GC-DFT structure opti-
mization jobs with and without solvent are supported in
atomate2. Default solvation and DFT parameters are set in
accordance with the BEAST Database,34 a database of electro-
catalysis GC-DFT data hosted by the National Renewable Energy
Laboratory.

JDFTx uses the GC-SCF and AuxH electronic algorithms,
which outperform outer-loop grand canonical electronic algo-
rithms found in other codes.35 Advanced solvation models are
available including the non-linear non-local SaLSA implicit
solvent model as well as CANDLE, a linear implicit solvent
model with asymmetric charge response.36,37 JDFTx can also be
integrated directly into excited state calculations in Berke-
leyGW,38 although atomate2 support for GW workows with
JDFTx is not expected soon. JDFTx output and input les are
parsed with code in pymatgen.io.jdx. JDFTx log les, eigen-
value and bandProjection les are currently supported by the
parsers.

3.6 Force elds

MLIPs have become increasingly useful to computational mate-
rials scientists. At the time of writing, several modernMLIPs have
atomate2 interfaces including MACE-MP-0,39 CHGNet,40

M3GNet,41 NEP,42–44 NequIP,45 SevenNet,46 and GAP.47,48 MLIPs
are currently accessible in atomate2 via ASE Calculators and the
infrastructure of the Section 3.1. Thesemodels can be used either
© 2025 The Author(s). Published by the Royal Society of Chemistry
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directly as Calculators or can be incorporated into hybrid work-
ows that use the MLIPs to pre-relax a structure and then feed it
into a DFT relaxation in VASP. This MLIP pre-relaxation can be
implemented within several other DFT-based workows to
reduce computational cost.

Moreover, fully MLIP-based workows have been imple-
mented as well. Specically, one can use any of the supported
MLIPs to calculate the elastic constant tensor or harmonic
phonons of a material as recently demonstrated with MACE-
MP-0. Other applications of the force eld Calculators and
workows include ref. 49. Substituting DFT-based Calculators
with MLIPs allows faster and cheaper runs, and makes atom-
ate2 an ideal tool for easily reproducible benchmarking against
DFT calculations. More details on the respective implementa-
tions can be found in the corresponding workow sections
below. Additionally, MLIP molecular dynamics (MLMD) calcu-
lations have been incorporated for the micro-, grand-, and
canonical ensembles, with more complex workows using
MLMD to, e.g., rapidly equilibrate amorphous structures.
Virtually all workows which do not require electronic proper-
ties can be adapted to MLIPs, such as quasi-/harmonic phonon
calculations and equation of state properties.
3.7 VASP

VASP is a licensed, pseudopotential, plane-wave electronic
structure code. While VASP primarily performs non-dynamical
and ab initio MD (AIMD) DFT calculations, it is also capable
of performing many-body perturbation theory (MBPT) calcula-
tions via the random phase approximation, GW approximation,
and Bethe–Salpeter equation (BSE). VASP primarily uses
projector augmented wave (PAW) pseudopotentials,50 but can
also use ultraso pseudopotentials, both of which are in
a proprietary format.

VASP is the main code used by the Materials Project to
generate structural, electronic, and thermodynamic materials
data, and thus has a wide breadth of workow coverage. Within
atomate2, VASP-based tasks and workows include: geometry
optimization, single-point calculations, AIMD, equation of
state, band structure scans, phonon dispersion, amorphous
solid equilibration, etc. Transition state workows based on
nudged elastic band (NEB)24 and ApproxNEB51 are currently
being added for VASP.

The VASP Calculators in atomate2 rely on pymatgen52 to
dene input sets (minimally, the INCAR, POSCAR, and POTCAR
les) which are dened in the pymatgen.io.vasp.sets library.
The output of a VASP calculation is parsed by emmet53 into its
TaskDoc schema. This schema is sufficiently exible to incor-
porate key electronic structure information from non-
dynamical DFT, AIMD, and MBPT calculations. By default,
jobs are run with the custodian package54 to monitor for VASP
and computational resource errors and possibly correct these
on the y.

In atomate2, VASP input les are represented as JSONable
objects via the VaspInputGenerator class. This class lightly wraps
pymatgen's VaspInputSet class with appropriate defaults set for
high-throughput calculations.52 These sets essentially determine
© 2025 The Author(s). Published by the Royal Society of Chemistry
which kind of calculation is run, for example: geometry optimi-
zation, static single-point energy calculation, band structure
calculation, or AIMD. A single VASP calculation is represented as
a jobow Maker object, which can then be chained together to
form workows (jobow Flow objects). At present, nearly all
legacy atomate VASP jobs and workows have been ported to
atomate2 and many new workows have been added.
3.8 Q-Chem

Q-Chem is a comprehensive ab initio electronic structure so-
ware package designed to handlemolecular systems. It offers an
extensive array of computational methods to enable the calcu-
lation of ground and excited states with speed and accuracy.
Among its capabilities, Q-Chem supports density functional
theory (DFT) with a wide variety of basis sets and functionals,
wavefunction-based methods like coupled cluster (CCD, CCSD)
calculations, and perturbation techniques such as MP2. Addi-
tionally, it accommodates Time-Dependent DFT (TDDFT), DSCF
methods, and specialized techniques such as restricted and
complete active space (RAS and CAS) approaches. These
advanced functionalities are invaluable for examining excited
states and calculating spectroscopic properties, such as core
ionization energies.

The atomate2 Q-Chem integration supports several funda-
mental tasks, including geometry optimization, single-point
energy calculations, and frequency analysis. More sophisti-
cated tasks, like potential energy surface (PES) scans and tran-
sition state optimizations, are also available. The interface with
pymatgen facilitates these tasks through the InputGenerator
and InputSet architecture. This design allows users to encap-
sulate all calculation settings into a QCInputGenerator class,
which, when provided with a molecule from the pymatgen
library, produces a complete set of Q-Chem inputs specic to
that molecule.

The infrastructure is highly customizable, making it
amenable for advanced users to implement new jobs and
workows. The Maker class in the jobow library forms the
backbone for constructing and managing these computational
jobs. A key component, the BaseQCMaker, utilizes the QCIn-
putGenerator to yield a QCInputSet from a given pymatgen
molecule while supporting additional parameters for job
execution, error-handling, and result documentation. Q-Chem
calculators within atomate2 automatically archive inputs and
outputs using a structured schema known as a Task Document,
dened in the emmet.core.qc_tasks TaskDoc class. This
schema ensures standardized data processing by storing
specic results (e.g., nal energy) in predened attributes
(TaskDoc.output.nal_energy). The TaskDoc is easily serialized
for integration into a results database (e.g.MongoDB) or storage
as a local JSON le, ready for automated handling by tools such
as the Builder classes in Emmet.
4 Workflows

The workows included in atomate2 are based on robust,
published methodologies, many of which have been rigorously
Digital Discovery, 2025, 4, 1944–1973 | 1949
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Table 3 Workflows and their corresponding supported Calculators. The MLIP column represents all models currently supported by atomate2
including CHGNet, M3GNet, MACE, GAP, and NequIP. B indicates supporting this workflow-engine combination is on atomate2's near-term
development roadmap. O is used for combos that are not currently planned but are considered a small implementation effort that could be
added by adapting similar existing Makers

Workow System

Supported calculators

ASE FHI-AIMS ABINIT CP2K JDFTx MLIPs VASP OpenMM Q-Chem

Geometry optimization Both 3 3 3 3 3 3 3 3 3

Static Both 3 3 3 3 3 3 3 3 3

Dielectric Periodic — — — — — — 3 — —
Polarization Periodic — — — — — — 3 — —
Electronic band structure Periodic — 3 3 3 — — 3 — —
Bond analysis workow with LOBSTER Periodic — — O — — — 3 — —
Excited states (GW-BSE) Periodic O 3 3 3 — — 3 — —
Ab initio molecular dynamics Periodic 3 O — — — — 3 — —
Force eld molecular dynamics Periodic 3 3 — — — 3 3 — —
Elastic constants Periodic O 3 O O — 3 3 — —
Harmonic phonons Periodic O 3 O O — 3 3 — —
Equation of state Periodic O 3 O O — 3 3 — —
Electron–phonon Periodic — — — — — — 3 — —
Grüneisen Periodic — O — — — 3 3 — —
Matpes Periodic — — — — — — 3 — —
Quasiharmonic approximation for
phonons

Periodic — O — — — 3 3 — —

Anharmonic phonons Periodic O B O O — 3 3 — —
MPMorph Periodic O O O O — 3 3 — —
Magnetic ordering Periodic O 3 O O — — 3 — —
Adsorption Periodic O O O O B O 3 — —
Point defect Periodic O B — — — — 3 — —
Anharmonicity quantication Periodic O 3 O O — O O — —
Electrode discovery Periodic O — — — — — 3 — —
Ferroelectric Periodic O — — — — — 3 — —
Materials project Periodic — — — — — — 3 — —
Amset Periodic — — — — — — 3 — —
Frequency atterning optimizer
workow

Molecular — — — — — — — — 3

Classical molecular dynamics workow Molecular 3 — — — — — — 3 —

Fig. 2 Schematic of template abstract workflow including color
legend.
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validated through convergence testing and experimental
benchmarking. For workow-specic validation details, we
refer the reader to the original publications listed in the docu-
mentation corresponding to each workow. It is also important
to note that the accuracy of properties computed using atom-
ate2 workows ultimately depends on the underlying calculator
(e.g., DFT engine or MLIP). While atomate2 provides robust and
reproducible workow logic, benchmarking of individual codes
is performed independently and documented in separate
publications.55–57 Users are encouraged to refer to these studies
when evaluating results produced by new or alternative
calculators.

A list of all the supported workows are listed in Table 3.
Each workow covers the methodology, usage notes, and any
existing use cases/papers using the workow, and has a work-
ow diagram covering all the steps. A template workow
diagram, providing a legend to enable their interpretation is
shown in Fig. 2.

4.1 Periodic systems

4.1.1 Geometry optimization and static. As a starting point,
atomate2 offers several essential DFT jobs, including structural
1950 | Digital Discovery, 2025, 4, 1944–1973
optimization and single-point (static) calculations. The crystal-
line structure can be provided in various formats supported by
pymatgen, including Crystallographic Information File (CIF),
POSCAR, and other commonly used structure le formats.
Conveniently, pymatgen offers the get_structure_by_mater-
ial_id() function, which allows users to query a structure from
the Materials Project database using its corresponding mp_id.
For structural optimization, both HSE06 (ref. 58) and PBE59
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Schematic of electronic bandstructure workflow.
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regular relaxation and tight relaxation jobs are available. Addi-
tionally, atomate2 includes a powerups function, allowing users
to customize their input settings. For example, functions like
update_user_incar_settings, update_user_kpoints_settings,
and update_user_potcar_settings enable tailored congura-
tions for DFT calculations. Similarly, for static calculations
aimed at evaluating the total energy of compounds and gener-
ating the CHGCAR le for subsequent band structure calcula-
tions, atomate2 provides support for both conventional
functionals and hybrid functionals. The subsequent sections
delve into more advanced workows, most of which incorporate
structure relaxation and static calculations as integral compo-
nents of their process.

4.1.2 Dielectric and polarization workow. atomate2 also
supports other fundamental calculations including dielectric60

and polarization jobs. It should be noted that a pre-relaxed
structure is required as input for both calculations. This is to
avoid imaginary modes. These calculations are currently avail-
able for VASP and the workow is summarized in Fig. 3. The
corresponding workows in atomate have been widely
employed, including the generation of over 7000 dielectric
tensors in the Materials Project database. This dataset is one of
the core components of the MatBench61 benchmarking suite for
comparing ML models on materials science tasks and has been
used to develop equivariant graph neural networks such as
AnisoNet62 for predicting the full dielectric tensors of crystalline
systems.

4.1.3 Electronic bandstructure workow. A fundamental
and widely utilized application of DFT is the calculation of
electronic band structures and density of states (DOS) to char-
acterize the electronic properties of materials. To obtain the
electronic band structure and density of states (DOS) in atom-
ate2, the workow (Fig. 4) begins with a precise structural
relaxation, followed by a static calculation to generate the
CHGCAR le required for subsequent steps. Next, non-self-
consistent static calculations are performed using either k-
points along a high-symmetry path or a uniform k-point mesh.

4.1.4 Bonding analysis workow with LOBSTER. Bonding
analysis helps to understand the interactions between constit-
uent atoms in materials. Theoretical frameworks for bonding
analysis usually rely on density-based or quantum-chemical
orbital-based approaches. One of the commonly used density-
Fig. 3 Schematics of dielectric and polarization workflows.

© 2025 The Author(s). Published by the Royal Society of Chemistry
based approaches is the Bader63 analysis. Orbital-based
approaches typically rely on the Mulliken64 population anal-
ysis, from which one can further derive the Crystal Orbital
Overlap Populations (COOP),65 the Crystal Orbital Hamilton
Populations (COHP),66 and the Crystal Orbital Bond Index
(COBI).67 The Local-Orbital Basis Suite Towards Electronic-
Structure Reconstruction (LOBSTER)68–70 soware package can
perform quantum-chemical orbital-based bonding analysis and
can recover COOP, COHP, and COBI populations by projecting
plane-wave-based wave functions from modern density func-
tional theory computations onto atomic orbitals.

The workow (Fig. 5) involves the following steps: (1) struc-
tural optimization, (2) calculating the number of bands based
on available projection basis functions, (3) writing static
calculation inputs with the number of bands set equal to as
evaluated in step 2, (4) performing a static self-consistent,
plane-wave based DFT calculation with symmetry, (5) perform-
ing a static non-self-consistent plane-wave based DFT run with
symmetry switched off to compute the wave function, (6)
generating a set of LOBSTER computations based on different
combinations of available atomic orbital basis functions for
projection of the wavefunctions, (7) running LOBSTER compu-
tations and analyzing outputs automatically with LobsterPy for
each of the LOBSTER runs, (8) deleting the wavefunction les
from the static calculation and LOBSTER runs directories.

This workow originates from a previously implemented
workow in atomate.71 The latter was used to produce a data-
base for about 1500 semiconductors and insulators.72 The key
methodological difference in the previous implementation and
workow in atomate2 is that the wave function is now
computed in a two-step procedure including a self-consistent
Digital Discovery, 2025, 4, 1944–1973 | 1951
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Fig. 5 Schematic of bonding analysis workflow.
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DFT run with symmetry and a non-self consistent DFT run
without symmetry to speed up the computation. In addition,
now an analysis of the outputs via the LobsterPy71,73 package is
performed. Important to less experienced users of HT soware,
the atomate2 framework enables efficient workow execution
on one computing node with a simple submission script and
only a minimal setup. Only the installation of atomate2 and the
conguration of the run commands for VASP and LOBSTER are
required. This signicantly lowers the barrier to workow usage
in contrast to atomate. Structural optimization and static DFT
runs are performed in this workow using VASP. The automatic
analysis via LobsterPy is performed for symmetrically inequi-
valent sites in the structure for cation–anion and all bonds. This
analysis involves identifying the most relevant bonds along with
coordination environments based on Integrated Crystal Orbital
Hamilton Populations (ICOHPs), numerical evaluation of
bonding-antibonding contributions, corresponding Crystal
Orbital Hamilton Populations (COHP) plots, a JSON summary,
and text description of the bonding analysis. More details about
our automatic bonding analysis implementation can be found
in the publications associated with LobsterPy71,73 and its
tutorials.

4.1.5 Excited states workow. DFT, being an exact theory
for ground state properties, oen works well to compute
structural properties but doesn't provide accurate excited state
properties such as band gaps. A more rigorous framework for
the description of excited states is provided by MBPT74,75 based
on Green's functions and the concept of quasiparticles. The
quasiparticle energies are the energies for adding or subtracting
an electron from a many-electron system. Using the same
Green's function-based MBPT framework, neutral excitations,
which can be directly compared to experimental optical
absorption spectra, can also be calculated from the solution of
the Bethe–Salpeter equation (BSE).76,77 The BSE represents one
of the most accurate yet computationally tractable approaches
for the ab initio study of neutral excitations in crystalline
systems by including the attractive interaction between elec-
trons and holes (excitonic effects) using two-particle Green's
function thus going beyond the single-particle picture of DFT
within random-phase approximation (RPA).
1952 | Digital Discovery, 2025, 4, 1944–1973
The GW and BSE workows implemented in atomate2 are
built for automating these multistep and interdependent
calculations. For example, the calculation of quasiparticle
energies using Abinit involves a four-step calculation. First, one
performs a standard DFT (SCF) calculation to obtain self-
consistent charge density which is then used to perform an
exact diagonalization calculation (NSCF) to generate a large
number of unoccupied bands required for the actual GW
calculation. Once these bands are generated the inverse
dielectric matrix is computed (SCR) and used to obtain the
quasiparticle corrections to the DFT eigenvalues (SIGMA).
Similarly, the BSE calculation involves obtaining the inverse
dielectric matrix and quasiparticle corrections to compute the
frequency-dependent macroscopic dielectric function (3(u)).
Workows such as G0W0Maker and BSEFlowMaker perform
such standard calculations with a given crystal structure and
input parameter set. In addition, multiple workows have been
developed to check the convergence of desired output results
with any particular input parameter. For example, GWConver-
genceMaker implements the convergence test of the calculated
quasiparticle gap with respect to parameters such as the
number of unoccupied bands or the number of plane waves.
The BSEConvergenceMaker checks the convergence of the
frequency-dependent dielectric function calculated using BSE
with the number of k-points. Due to the enormous computa-
tional cost of these calculations, a BSEmdfMaker has been
developed that performs the BSE calculation with a model
dielectric function. One can also use a scissor shi to simulate
the quasiparticle correction and skip the SCR and SIGMA jobs
mentioned earlier.

The implementation of the GW workow for FHI-aims is
simpler, as FHI-aims allows the user to run a SCF calculation
and all the post-SCF steps in one run. However, if one wants to
study the convergence of the quasiparticle energies on the
parameters dening the GW calculation, such as the number of
frequency points used to expand the elements of self-energy on
the imaginary frequency axis, or the type of its analytical
continuation on the real frequency axis,78 they can effectively re-
use the results of the SCF part of the calculation by restarting
the calculations from the converged charge density. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
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functionality is implemented in GWMaker for FHI-aims.
GWConvergenceMaker, allowing the study of the convergence
of GW results with respect to calculation parameters, is also
implemented similarly to the ABINIT workows.

In addition to the GW workow for FHI-aims, atomate2 also
implements the workow to compute G0W0 quasiparticles with
VASP in the MVLGWBandStructureMaker class. It conducts
G0W0 calculations compatible with the parameters dened by
MVLGWSet in pymatgen. First, a static DFT calculation is per-
formed using the MVLStaticMaker by default, which can be
customized with a user-dened static maker. Next, a non-self-
consistent calculation is carried out with the MVLNonSCF-
Maker, starting from the CHGCAR produced in the static
calculation. Finally, the MVLGWMaker class builds the dielec-
tric matrix, performs the G0W0 calculations, and obtains the
quasiparticle energies.

4.1.6 Ab initio and forceeld molecular dynamics work-
ows. Molecular dynamics (MD) simulations are important for
sampling atomistic congurations of systems at nite temper-
ature and pressure, and have been widely used for calculating
the thermodynamic responses and properties of materials such
as heat capacity, viscosity, and thermal conductivity. Ab initio
MD (AIMD) generally refers to the use of electronic structure
methods (typically DFT) to dynamically update the positions of
atoms in a system,79 whereas forceeld MD refers to anymethod
that uses a model for interatomic forces to drive the simulation.
We will further distinguish classical MD, where the functional
form of a forceeld is constructed and tted by hand, and
machine-learned MD, where the forceeld is represented by
a trained ML model.

AIMD workows are available for VASP via MDMaker, which
allows easy selection of common options like the temperature
and the ensemble (NVE,NVT,NpT), with suitable default choices
for the thermostat and/or barostat. It is also possible to run
AIMD using the ASE calculator interfaces to electronic structure
codes, such as Q-Chem, SIESTA, Quantum Espresso, VASP, and
others. One could use the AseMaker class in atomate2 to
communicate with electronic structure codes and use their
native AIMD implementations. Alternatively, one could use the
AseMDMaker to take energies, forces, and stresses from
a single-point electronic structure calculation, and perform
AIMD using ensembles dened internally in ASE.
Fig. 6 Schematic of multi-step molecular dynamics (MD) workflow.

© 2025 The Author(s). Published by the Royal Society of Chemistry
One of themain challenges inMD simulations is the number
of ionic steps that should be performed to extract reliable
information from the post-processing of the data. A total
simulation time of a few ps or a few tens of ps is usually
required, with a time-step in the order of the fs. Considering
that simulation boxes oen include up to hundreds of atoms,
this can be particularly challenging for AIMD, where the total
simulation time can easily exceed the maximum time per job
allowed by computing centers. To address this issue, a multi-
step MD workow (MultiMDMaker) has been implemented.
This permits splitting the total simulation time in a custom-
izable number of chunks so that each separate MD calculation
can nish within the allotted time. A nal job is added to
summarize the output and provide references to the different
output chunks so that the total trajectory can easily be recon-
structed. In addition, the nal document can be used as
a starting point for a new MultiMDMaker workow, enabling
the user to concatenate multiple such workows. This workow
is illustrated in Fig. 6.

The same MultiMDMaker workow can also be used to
concatenate trajectories with different thermo- and barostat
proles, a feature that is not currently implemented in VASP.
For example, the workow can dene an initial chunk with
a ramp-up of the temperature, followed by additional steps at
constant temperature.

MLMD is made possible by the MD ensembles (NVE, NVT,
and NpT), thermostats, and barostats dened in the ASE python
package. It is also possible to use the native MLIP functionality
of VASP to perform MD with the previously-mentioned atom-
ate2.vasp.MDMaker class. To make the ASE interface forward-
looking, an AseMDMaker template has been dened, which
denes the ensemble and various computational parameters for
a generic ASE Calculator object. The AseMDMaker supports
both periodic and non-periodic systems. To perform MLMD,
users can access pre-dened CHGNet, GAP, M3GNet, MACE-
MP-0, and Nequip MD workows, or they can load any force-
eld ASE Calculator by specifying the package to import. Both
temperature and pressure scheduling features have been added
for force eld MDMakers. If arrays of temperature and pressure
are input, the temperature and pressure will be linearly inter-
polated across simulation steps, allowing users to customize
MD simulations with, e.g., temperature ramp, annealing, or
Digital Discovery, 2025, 4, 1944–1973 | 1953
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cyclic expansion–compression loading. The highly modular
nature of the MLIP MD workows makes them amenable to
inclusion in complex workows, such as the MPMorph work-
ows80,81 used to simulate quenched amorphous structures.
This enables the rapid generation of amorphous structures at
a much lower cost than DFT and is being actively explored as an
application of MLMD.

Last, classical MD is a popular technique for investigating
electrolytes, polymers, proteins, and a wide variety of other
systems, particularly when bond breaking and formation is not
of interest. This module shown in Fig. 7 includes (1) an exten-
sible MD engine-agnostic schema and setup tools built on the
open force eld ecosystem and (2) MD workows for energy
minimization, NpT, NVT, and annealing. Together, these allow
facile system construction, atom typing, execution, and analysis.
Representing the intermediate state of a classical MD simulation
is challenging. While the intermediate representation between
stages of a periodic DFT simulation can include just the
elements, Cartesian coordinates, and box vectors, classical MD
systems must also include the force eld. This is particularly
challenging because all MD engines represent force elds
differently. Rather than implement our own representation, the
workow uses the openff.interchange.Interchange object, which
catalogs the necessary system properties and interoperates
between several MD engines. Alongside this, the workow tracks
convenient metadata not critical to the simulation, like molecule
names and partial charge methods. For system setup, a gen-
erate_interchange job in atomate2.classical_md.base has been
implemented, which processes a simple input dictionary into
a task document. Though the task document is designed to be
easily used by multiple MD codes, the existing workows are in
OpenMM. OpenMM workows are built around the Base-
OpenMMMaker, which includes shared logic to create a Open-
MM.Simulation, attach OpenMM.Reporters, and output a task
document. Jobs subclass BaseOpenMMMaker and implement
a unique run_openmm method, which evolves the system as
needed. Several Makers are implemented: NVTMaker,
NPTMaker, TempChangeMaker, and EnergyMinimization-
Maker. A common challenge inHTMDworkows is the selection
of equilibration timescales a priori.82,83 To this end, the Dynam-
icOpenMMFlowMaker is implemented to enable continuous
execution of any BaseOpenMMMaker subclass in discrete stages
while monitoring physical observables (e.g., potential energy,
Fig. 7 Schematic of classical MD workflow.

1954 | Digital Discovery, 2025, 4, 1944–1973
density, etc.) until custom convergence criteria are met. Unlike
other codes supported by atomate2, OpenMM is run through
a python API and has no notion of input les. Instead of building
and writing input sets, the workow implements simulation
logic directly in python.

4.1.7 Elastic constant workow. The elastic tensor is
a fundamental material property that describes the mechanical
response of a material to small external loads, offering
a complete description of the material's behavior under such
conditions. A variety of mechanical, thermal, and acoustic
properties can be directly derived from the elastic tensor.
Computationally, there exist twomajor methods to calculate the
elastic tensor using rst-principles calculations. The rst is the
energy–strain approach, which relates the elastic tensor to the
second derivative of the total energy with respect to strain. The
second is the stress–strain approach, where the elastic tensor C
is obtained by leveraging the linear relationship between stress
s and strain 3, that is, s= C3. The present workow implements
the stress–strain approach; a detailed explanation of this
approach can be found in ref. 84.

The elastic workow takes an atomic structure as input and
produces the elastic tensor as output. This is accomplished
through a series of steps detailed below. First, as two optional
steps, the input structure can be further optimized and con-
verted to a conventional cell.85 Using a conventional cell can
help reduce numerical errors, particularly for crystals whose
primitive cell can be highly skewed, such as monoclinic and
triclinic systems. Next, the structure is strained along the six
independent strain directions (xx, yy, zz, yz, xz, and xy), with
multiple strain magnitudes applied in each direction to deform
the structure. To further optimize the process, optionally, the
set of strained structures can be reduced by symmetry, which
involves checking if a strained structure is equivalent to another
using the space group symmetry operations of the original
structure. This can signicantly reduce the number of struc-
tures to be calculated, particularly for high-symmetry structures
like cubic systems. Next, a Calculator is employed to compute
the stress tensor for each strained structure, and any atomate2
Calculator that supports stress tensors, as mentioned in the
Calculators section, can be used for this computation. Finally,
the sets of strains and stresses are used to t the elastic tensor
using the strain–stress relationship, as implemented in
pymatgen.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The output is a fourth-rank elastic tensor corresponding to
the input structure, with different crystal systems possessing
different numbers of independent components according to the
symmetry in the crystal. Many other isotropic and anisotropic
elastic properties can be directly derived from the elastic tensor,
such as Young's modulus, shear modulus, bulk modulus,
Poisson's ratio, linear compressibility, and sound velocity.
Numerical values of these derived properties can be obtained
via, e.g. pymatgen, and visual exploration is made possible via
packages like elate.86

The present workow is a direct adaptation of the original
elastic workow in the atomate package. Aside from default
settings such as DFT pseudopotentials and energy cutoffs, the
main difference is that this workow includes the option to
further optimize the input structure. The original elastic work-
ow has been widely employed to calculate the elastic tensor of
materials.84,87,88 Notably, the elastic tensor data provided in the
MP database are computed using this workow. These data are
driving the development of modern machine-learning models
for predicting the elastic properties of materials. For instance,
derived mechanical properties such as bulk modulus and shear
modulus serve as key benchmarking properties in the Mat-
Bench suite.61 Furthermore, the data have been utilized to
develop equivariant graph neural networks such as MatTen88 for
predicting the full elastic tensors of all crystal systems.

4.1.8 Harmonic phonons workow with phonopy. Lattice
dynamics govern thermal conductivity, phonon transport, heat
capacity, and other mechanical, optical, and electrical properties.
High-accuracy phonon dispersion relations are essential for
understanding these relationships. The nite displacement
approach is one of the most widely used methods to obtain
phonon dispersions, mostly because it is applicable to any
atomistic force Calculator. Density functional perturbation
theory, in contrast, needs to be derived and implemented for each
DFT functional. The nite displacement-based computation is
time-consuming as it requires the calculation (and collection) of
all interatomic forces for a large number of supercells.

Using phonopy89,90 as the underlying framework, the atom-
ate2 implementation of harmonic phonon workow requires
forces that can be computed from DFT calculations (VASP or
FHI-aims), but also from (universal) MLIPs (e.g., M3GNet,
CHGNet, MACE-MP-0, NEP, NequIP). phonopy handles the
creation of supercells with single displacements and subse-
quent calculation of the dynamical matrix. Based on DFT
calculations, the non-analytical term correction91 (NAC) can be
included in the workow to account for polarisation effects on
the force constants near G in non-metallic systems. This can be
combined with both DFT or MLIP Calculators. Unfortunately,
current MLIPs model atomic structure only and have no notion
of electronic degrees of freedom. As such, they cannot be used
to perform the non-analytical term correction at the moment.
Additionally, the FHI-aims interface does not currently support
these corrections, but will in the near future.

The workow can be described as follows: in the rst
(optional) step, the structure is fully optimized with a strict force
convergence. This is essential to ensure that the forces from the
displaced supercells do not contain any spurious noise from
© 2025 The Author(s). Published by the Royal Society of Chemistry
residual forces. Next, the supercell transformation is deter-
mined based on the minimum length of each lattice vector. The
supercell is generated such that it is as cubic as possible, to
ensure that the forces converge better with the supercell size.
Supercells with displacements are created by phonopy based on
the unit cell symmetry (the number of displacements is deter-
mined dynamically) and jobs for the computation of the forces
created. In the last step, these forces are used by phonopy to
compute the force constants and subsequent band structure
and density of state plots. Fig. 8 shows a workow diagram. In
addition to the phonon dispersion, the workow also outputs
the phonon density of states and thermodynamic properties
such as the heat capacity and free energy.

Similar workows have been implemented in other frame-
works. One noteworthy example is the implementation in
AiiDA, which can utilise force calculations from a variety of DFT
codes (VASP, Quantum ESPRESSO,92,93 FHI-aims, etc.). Other
implementations are available in the pyiron framework and
with the FHI-vibes package.94 All of these implementations rely
on phonopy for the calculation of the dynamical matrix.

Our implementation of the harmonic phonon workow has
been used in recent studies onMLIPs.39,95 Instead of a DFT code,
a universal MLIP was employed to calculate the forces for the
displaced supercells. The studies serve as a benchmark for the
accuracy of MLIPs and show that the workow can create
phonon dispersions from any force Calculator implemented in
atomate2. The workow has been extended to run at different
cell volumes so that the thermal expansion and the Grüneisen
parameter can be calculated (see below).

4.1.9 Equation of state workow. The zero-temperature
limit of a solid's equation of state (EOS) is a frequently-used
tool to study its cohesion and response to compressive and
expansive strain. The solid-state EOS typically relates the energy
E of a solid to its volume V, or to its pressure p. Both formula-
tions are in essence equivalent because the rst law of ther-
modynamics indicates that p = –(dE/dV)S (at constant entropy
S). Various theoretical models for a “universal” EOS have been
developed. Their construction and utility as applied to sp-
bonded solids is discussed in ref. 96, and are applied HT to
diversematerials in ref. 97. These theoretical models enable one
to extrapolate the energy and volume relation beyond those
computed directly and extract information such as the solid-
state cohesive energy, equilibrium volume, and bulk modulus.

To generate an EOS, one performs a set of xed-volume
relaxations of a crystal at different volumes. By relaxing the
atomic positions within a cell of xed volume, one is typically
better able to t the resultant energies to a model EOS. The base
implementation in atomate2 is abstract: the CommonEosMaker
class denes only a workow for computing a set of energies for
an input crystal at different volumes (by default, six volumes
within a range of ±5% of the input structure volume). Option-
ally, the user can relax the structure closer to its equilibrium
volume before performing the EOS-specic calculations. The
workow is illustrated in Fig. 9.

Concrete implementations of the EOS workow exist for
VASP, including MP-compliant parameters, FHI-AIMS, and
MLIPs. In the MLIP implementation ForceFieldEosMaker,
Digital Discovery, 2025, 4, 1944–1973 | 1955
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Fig. 8 Schematic of harmonic phonon workflow.

Fig. 9 Schematic of equation of state (EOS) workflow.
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a convenience method called from_force_eld_name allows
one to generate an EOS workow solely from the name of an
atomate2-supported MLIP and input structure. By default, the
EOS data is then t to a handful of theoretical models from
authors including Murnaghan,98 Birch,99 Poirier and Tar-
antola,100 or Vinet and coworkers.101 The extrapolated EOS
parameters (minimum energy, equilibrium volume, bulk
modulus, etc.) are stored in a dictionary for each model EOS
alongside the original energy and volume data for later analysis.

4.1.10 Quasi-harmonic approximation workow. To calcu-
late the thermal expansion of compounds at nite tempera-
tures, atomate2 has an implementation of the quasi-harmonic
approximation (QHA) workow,102 integrating both phonon and
equation-of-state (EOS) workows. The current QHA workow
Fig. 10 Schematic of quasi-harmonic approximation (QHA) workflow.

1956 | Digital Discovery, 2025, 4, 1944–1973
relies on phonopy to compute thermal properties, i.e., free
energy, for determining the unique minimum value of Gibbs
free energy by varying volume. The workow (Fig. 10) starts with
the equation of state workow to apply linear strain to the
structure and relax the structure under the constraint of
constant volume. Subsequently, the harmonic phonon work-
ow based on the nite displacement method is applied to each
scaled structure. Based on the temperature (T) dependent free
energies F(V, T) computed at the different volumes V we can
evaluate the inuence of anharmonicity based on the volume
expansion on the thermal properties.

To obtain the free energies, we sum the total DFT energy
E0(V) to the vibrational part of the free energy Fvib(V; T) at
different volumes, V, according to
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00019j


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 1
2:

55
:3

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
F(V, T) = E0(V) + Fvib(V; T). (1)

The current implementation does not consider contribu-
tions to the free energy beyond harmonic vibrations and
therefore might not be suitable for metals or alloys where
electronic or congurational entropy can be non-negligible. Our
goal is to incorporate these impacts in future versions. The
Gibbs free energy as a function of pressure p and temperature T
is obtained as

Gðp; TÞ ¼ FðV ; TÞ þ pV ¼ FðV ; TÞ �
�
vF

vV

�
T

V ; (2)

where the pressure is replaced by �
�
vF
vV

�
T
. This equation can be

evaluated with the help of an equation of state t of F(V) at xed
temperature, similar to the EOS workow (Section 4.1.9).
Currently, implementations forMLIPs and VASP are available, with
the goal to expand support to other calculators in the near future.

4.1.11 Mode Grüneisen parameter workow. The mode
Grüneisen parameter (MGP) is a key metric for quantifying the
anharmonicity of specic vibrational modes in a crystal. It plays
a crucial role in determining lattice thermal conductivity,
driving thermal expansion, and enabling phase transitions.
atomate2 includes an implementation of the mode Grüneisen
parameter workow, which exclusively relies on the changes in
phonon frequencies at different volumes for a given compound.

The MGP workow begins with an initial structural relaxa-
tion, followed by two additional relaxations conducted at
slightly expanded and slightly compressed volumes (Fig. 11).
Subsequently, phonon computations are performed for all three
structures using phonopy. With the phonon frequencies of the
three structures at hand, the mode Grüneisen parameter gqn at
the wave vector q and band n is dened as

gqn ¼ � V

uqn

vuqn

vV
(3)

¼ � V

2
�
uqn

�2
�
eqn

����vDðqÞ
vV

����eqn
�
; (4)
Fig. 11 Schematic of mode Grüneisen workflow.

© 2025 The Author(s). Published by the Royal Society of Chemistry
where V is the primitive-cell volume, u is the phonon frequency,
D is the dynamical matrix, and e is the eigenvector. The above
equation can be approximated using the nite difference
method. In our workow, phonopy is used to compute the
mode-dependent Grüneisen parameters on a regular mesh and
along a high-symmetry path. The average Grüneisen parameters
are obtained following ref. 103 as

g ¼
ffiffiffiffiffi
g2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
q

P
n

gqn
2Cqn

P
q

P
qn

Cqn

vuuuut ; (5)

where C refers to the mode-specic heat capacity.
4.1.12 Electron phonon band-gap renormalization work-

ow. The electron–phonon interaction (EPI) is a fundamental
determinant of the optical properties of solids. It contributes to
the temperature dependence and quantum zero-point renorm-
alization (ZPR) of critical point energies. atomate2 provides
a workow for electron–phonon bandgap renormalization,
following the methodology of Zacharias and Giustino104 (ZG)
and as implemented in VASP.

The workow begins with a structural relaxation using tight
convergence criteria to eliminate the presence of imaginary
phonon modes (Fig. 12). A large supercell (>15 Å) is constructed
to provide sufficient convergence of the renormalised proper-
ties. Next, the phonon frequencies and eigenvectors are ob-
tained using DFPT. Subsequently, the ZG special displacement
approach is employed to construct displaced supercells that
yield accurate thermal averages of the mean squared atomic
displacements.104 We note, an alternative approach is to employ
Monte-Carlo sampling of displacements,105 however the ZG
method enables convergence of properties in a one-shot
approach. The displaced supercells are constructed using the
implementation available in VASP, with one supercell generated
for each temperature of interest. For each structure, a uniform
band structure calculation is conducted, comprising a static
calculation followed by a uniform non-self-consistent eld
(NSCF) calculation. Meanwhile, a corresponding band structure
calculation is performed on the equilibrium supercell to serve
Digital Discovery, 2025, 4, 1944–1973 | 1957
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Fig. 12 Schematic of electron–phonon band gap renormalization workflow.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 1
2:

55
:3

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
as a reference for calculating the renormalized band gap.
Finally, the renormalized band gap at each temperate is ob-
tained by comparing the band gap of the equilibrium structure
with the averaged band gap calculated from the temperature-
dependent displaced structures.

4.1.13 Anharmonic phonons workow with hiPhive/
Pheasy. Lattice dynamics is a critical eld in materials science,
describing key thermal properties such as the thermal expan-
sion coefficient, lattice thermal conductivity, and phase stability
at various temperatures. Historically, computing these proper-
ties accurately and efficiently in a HT mode has been chal-
lenging, and a streamlined workow for LD would signicantly
advance materials engineering and contribute to computational
materials databases. AIMD is one of the more accurate ways to
model lattice dynamics, however, it is time-consuming and
cost-ineffective. An alternate approach employs perturbation
theory and interatomic force constants (IFCs). These are
dened by the Taylor expansion of the total energy with respect
to atomic displacements.

Second-order IFCs, which dene phonons, can be calculated
through DFPT, nite-displacements, or the random-
displacement method. These calculations allow for the deriva-
tion of macroscopic thermal properties at the harmonic level
(see Section 4.1.8). Anharmonic IFCs, which are crucial for
properties like thermal expansion and lattice thermal conduc-
tivity, are more difficult to compute due to combinatorial
explosion of terms. Even at the third-order level, high compute
efficiency is necessary to achieve wide-scale deployment to
small and large systems. Recent advancements in sampling
IFCs from high-information-density congurations have made
the calculation of anharmonic IFCsmore feasible. Tools such as
CSLD,106,107 ALAMODE,108 hiPhive109,110 and Pheasy111 enable the
tting of IFCs to any desired order with few training samples
and have paved the way for HT computing of thermal
properties.

Our anharmonic phonon workow112 automatically calcu-
lates interatomic force constants up to 4th order from perturbed
training supercells, and uses them to obtain lattice thermal
1958 | Digital Discovery, 2025, 4, 1944–1973
conductivity, coefficient of thermal expansion, and vibrational
free energy and entropy. The workow starts with a primitive
structure and adjustable parameters such as the force eld
Calculator, hiPhive/Pheasy tting options, and temperatures of
interest (Fig. 13). The optimum supercell size is obtained
following the same process as the harmonic phonon workow.
A series of random perturbations are performed and the ener-
gies and forces obtained using a static calculation. This dataset
is subsequently used for tting force constants using hiPhive or
Pheasy. Harmonic phonon properties are calculated using
phonopy, while lattice thermal conductivity is obtained using
FourPhonon113 and phono3py.89,114 There is also the option to
renormalization the phonon band structure using techniques
from thermodynamic integration. The workow is dynamic: for
example, if the tting RMSE exceeds a certain threshold, the
workow will automatically add a new displacement calculation
to increase the training set size, ensuring the accuracy and
reliability of the results.

The atomate counterpart of the same workow has been
utilized for calculating lattice dynamical properties from rst
principles, as detailed in ref. 112. This paper demonstrates the
application of the workow in calculating interatomic force
constants, lattice thermal conductivity, thermal expansion, and
vibrational free energies. Deployment of either workow at
a large scale would facilitate materials discovery efforts towards
functionalities including thermoelectrics, contact materials,
ferroelectrics, aerospace components, as well as general phase
diagram construction.

4.1.14 MPMorph workow.While determining the ground-
state crystal structure of ordered materials is relatively
straightforward, determining the equilibrium structure of
disordered materials is challenging. Disordered materials
include glasses, amorphous materials, and alloys, and may
exhibit different structural motifs at different temperatures and
physical conditions. Typically, onemust performNpT-ensemble
MD to equilibrate disordered materials. However, NpT-MD is
quite expensive, making it less appealing for HT applications
such as amorphous material dataset generation.115
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Schematic of anharmonic phonon workflow.
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The MPMorph workow80,81 circumvents NpT equilibration
by recursively tting a set of NVT-MD runs to an equation of
state (EOS). Aer performing the minimum number of xed-
volume calculations needed to t a standard EOS, the code
ts an EOS and determines if the extrapolated equilibrium
volume V0 lies within the range of volumes already computed. If
V0 lies outside this range, the workow rescales the volume to V0
and repeats the tting and analysis steps until V0 is in range. As
a fail-safe, the workow terminates if an in-range V0 cannot be
determined aer a set number of steps. A nal NVT “production
run” is then performed at volume V0 with a quench temperature
schedule to move the atoms into their lower-temperature
disordered conguration. A few different options for the
quench temperature schedule are available: a “slow” quench,
which ramps down the temperature in NVT, and a “fast”
quench, which performs a T= 0 DFT relaxation of the structure.

The current MPMorph workows, visualized in Fig. 14, have
been generalized to a code-agnostic framework that only
requires the user to dene MD jobs for the various stages of the
Fig. 14 Schematic of MPMorph workflow.

© 2025 The Author(s). Published by the Royal Society of Chemistry
run (initial equilibration, and production). Code-specic
implementations for VASP and MLIPs are currently available.

4.1.15 Magnetic ordering workow.Magnetic materials are
of great interest due to their technological applications (e.g.,
magnetic refrigeration, data storage, spintronic devices) and
role/relationship in complex physical properties (e.g., super-
conductivity, multiferroics, etc). However, due to the combina-
torial complexity of identifying the ground-state conguration
in the magnitude and direction of magnetic spins in a lattice,
magnetic orderings are oen overlooked in HT DFT studies.
Unfortunately, this can sometimes lead to signicant impacts
on both the calculated ground-state energy and properties of
the material (e.g., bandgap), especially for transition metal
oxides and other commonly studied materials.116

Collinear magnetic spin congurations (i.e., up and down
spins) can be modeled through conventional DFT codes, such
as VASP. Previously, Horton et al.117 established a scheme for
enumerating the likely collinear magnetic orderings for a given
input structure, and, using relaxation and static energy
Digital Discovery, 2025, 4, 1944–1973 | 1959
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Fig. 15 Schematic of collinear magnetic ordering workflow.
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calculations performed with VASP, identifying the ground-state
collinear magnetic ordering for a given structure. This meth-
odology was implemented as an atomate workow and has been
adapted for atomate2. Unlike its implementation in atomate, it
is now written as a common workow, allowing it to be easily
adapted to other DFT codes.

Fig. 15 shows a schematic for the collinear magnetic
ordering workow, implemented in atomate2 as Magnet-
icOrderingsMaker. The workow consists of three overarching
jobs: (1) magnetic ordering enumeration, (2) relaxation and
energy calculations with DFT, and (3) post-processing to deter-
mine the ground-state ordering.

4.1.16 Adsorption workow. Investigating surface adsorp-
tion is a crucial process in understanding electrode behavior
and heterogeneous catalysis. Surface adsorption is a complex
process involving molecules attaching to a material's top layer,
encompassing both physical and chemical reactions. DFT
calculations can be utilized in examining preferred surface
facets, along with adsorption thermodynamics and kinetics.
Due to the complexity of the adsorption process, special atten-
tion must be paid to the relaxation of potential adsorption sites.

Montoya and Persson118 previously established a streamlined
workow for modeling surface adsorption in atomate. The
Fig. 16 Schematic of adsorption workflow.

1960 | Digital Discovery, 2025, 4, 1944–1973
workow involves constructing distinct adsorbate congura-
tions for arbitrary surface terminations to efficiently handle the
extensive DFT calculations. The workow in atomate2 retains
the core structure of the original workow while integrating
jobow for enhanced automation. This revised workow
supports the automated generation of symmetrically distinct
adsorption sites, calculating the enthalpy energies for adsorbed
surface congurations and the reference states, as well as
returning the optimized structures and their adsorption
energies.

The workow starts from the relaxation of a bulk structure
and target molecule (Fig. 16), followed by a static calculation to
obtain a reference energy for the molecule. In the second step,
the workow then performs the surface adsorption site
searching to generate surface-adsorbate congurations based
on the Miller index. The workow includes default parameters
for the thickness of the slab and vacuum, the length and width
of the surface, and the surface miller index. For each potential
adsorption site, the workow performs a relaxation followed by
a static to obtain the energy. A slab without any adsorbate is
generated for the reference state of the surface. Finally, the
adsorption energy for surface-adsorbate congurations is
calculated by subtracting the enthalpy from the two reference
© 2025 The Author(s). Published by the Royal Society of Chemistry
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energies of molecules and slab. The outputs of the workow
include the relaxed surface-adsorbate congurations and ener-
gies, sorted by ascending adsorption energy. It is possible that
during the relaxation calculation, a reaction occurs that
decomposes the original molecule structure. At present, the
workow does not include additional analysis to determine
whether this has occurred and further validation of adsorption
congurations is recommended, especially for complex
molecules.

4.1.17 Point defect workow. The physical properties of
semiconductor and optoelectronics materials are oen domi-
nated by the presence of point defects in the material.119,120

Simulating point defects in an HT manner presents some
fundamental challenges that are difficult to overcome and is an
active area of research.121–123 Defect calculations are typically
more computationally expensive due to the need to use large
supercells to describe point defects in a dilute limit, as super-
cells that are too small can suffer from inadequate descriptions
of the atomic relaxation around the defect site(s) and their
impact on the host electronic structure. Second, simulating
charged point defects using a periodic basis set will introduce
spurious interactions between the defect and its periodic
images, and nite-size corrections are needed to account for
this effect.124,125 Furthermore, if one is interested in more
quantitatively calculating the electronic and optical behavior of
defects, more expensive methods like hybrid functionals (e.g.
HSE06 (ref. 58)) that can describe charge localization better
than conventional workhorse exchange-correlation functionals
like PBE or SCAN are required to accurately capture the elec-
tronic structure of the defect,126 leading to even higher
computational costs. Additionally, since many defects exhibit
nontrivial spin congurations, there is usually no guarantee
that the ground-state electronic conguration is achieved, and
multiple calculations with different initial conditions might be
required.

Addressing all of these challenges simultaneously is not
feasible given current computational approaches and resources.
As such, we have focused on developing a exible workow with
two requirements in mind:
Fig. 17 Schematic of point defect workflow.

© 2025 The Author(s). Published by the Royal Society of Chemistry
(1) The workow must be modular and allow the user to use
any combination of structure and electronic optimizer to obtain
the ground energy of a charge defect supercell.

(2) Since we cannot guarantee that the ground-state elec-
tronic conguration is achieved, we must design some system
to aggregate the results of multiple defect calculations.

This allows the user to perform defect simulations in an HT
manner to obtain an initial database of defect properties but
also allows users to update the atomic and electronic optimi-
zation if lower-energy congurations are found. The compos-
able nature of our workows and the variety of DFT and MLIPs
Calculators supported by atomate2 allows us to thoroughly
address (1). Addressing (2) is more challenging, since there is no
one-to-one correspondence between the isolated defect you are
trying to simulate and the defect supercell used to perform the
calculation. There are multiple valid choices for the defect
supercell, but they all represent the same isolated defect. To
address (2), a structure-based defect object dened using only
the unit cell of the host material has been developed, providing
a supercell-independent representation of the defect.127 This
defect object is used as the primary input of the workow and is
also stored alongside each charged-defect supercell calculation
to facilitate aggregation of the results from multiple runs of the
same defect charge state.

The defect workow (Fig. 17) requires the users to rst dene
a supercell relaxation workow which will take an automatically
generated defect supercell and a charge state as input and
return the relaxed atomic structure and total energy. By default,
these supercell cell relaxations will be composed of a less
expensive structure optimization step with a PBE functional,
followed by a high-quality HSE06 static calculation. We note
that care must be taken with this approach, as local minima for
more symmetric and charge-delocalized states favored by PBE
may not be able to be overcome by HSE06 calculations initial-
ized with such congurations, which also motivates the need
for accessible databasing in (2) for enabling extensible potential
energy surface sampling. The full defect workow will take
a defect object as an input and automatically generate the initial
defect supercell and determine the possible charge states from
Digital Discovery, 2025, 4, 1944–1973 | 1961
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formal oxidation states of the species involved in the creating
the defect. The supercell relaxation & static workow will be
performed for each charge state and a post-processing step will
be called to apply the nite-size corrections and populate,
tabulate the energies and other metadata for constructing
persistent defect databases.

4.1.18 Anharmonicity quantication workow. While the
harmonic model provides a good approximation to the vibra-
tional frequencies and modes of a material, it is incapable of
predicting properties that arise from purely anharmonic effects
such as thermal conductivity or the lattice expansion coeffi-
cient.128 There are multiple approaches to include these effects,
ranging from third-order perturbative approaches to fully
anharmonic molecular dynamics trajectories, with varying
degrees of accuracy and computational cost. Quantifying the
level of anharmonicity in a material is therefore necessary to
ensure efficient calculations of these materials properties.

The anharmonicity quantication workow uses the output
of the harmonic phonon workow (Section 4.1.8) as a starting
point to calculate the anharmonicity metric sA rst introduced
by Knoop and coworkers.128 sA estimates the anharmonicity of
a material at a temperature, T, by taking the ratio between the
root mean square error of the forces calculated by the harmonic
model and the standard deviation of the actual forces in
a thermodynamic ensemble average, assuming the mean force
is zero. It is dened as

sAðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
I ;a

�

FI ;a � Fha

I ;a

�2
�

ðTÞP
I ;a

�
FI ;a

2


ðTÞ

vuuuuut ; (6)

where FI,a is the a component of the DFT-calculated forces for
the Ith atom, FhaI,a is the same force estimated by the harmonic
model, and h$i(T) represents a thermodynamic ensemble
average at T. This metric is widely used in the community, and
has been demonstrated to be correlated to properties such as
the lattice thermal conductivity.128

The workow to calculate sA is shown in Fig. 18. The rst
step is to calculate the harmonic force constants using phonopy
and the workow shown in Fig. 8. From here a set of thermally
displaced structures are generated by either by harmonic
sampling or via a one-shot approximation.94,128 The one-shot
Fig. 18 Schematic of anharmonicity quantification workflow.

1962 | Digital Discovery, 2025, 4, 1944–1973
approach approximates the complete thermodynamic
ensemble as a single structure, where all atoms are displaced to
the classical, harmonic turning points for each vibrational
mode.105 All generated structures have the same supercell size
as the harmonic phonon workow for consistent results. Next,
the forces for each structure are evaluated using the same
methodology as the harmonic phonon maker. The sample
generation and force evaluations can also be combined with
a single molecular dynamics job, but this has not yet been
implemented. The calculated forces and displacements are
then used to calculate sA for the full structure using eqn (6). The
force components can also be masked onto individual element
types, lattice sites, or vibrational modes to generate an element-,
site-, or mode-resolved sA vector, respectively.

4.1.19 Electrode discovery workow. Since solid-state
batteries can utilize cathode materials that do not contain
lithium in the as-synthesized state, the exploration of materials
systems through iterative insertion of ions into an atomic
structure is an important step in identifying new materials for
energy storage applications. Effective intercalation electrodes
require “topotactic” ion incorporation where working ions (WIs)
are integrated into the atomic structure without major pertur-
bations to the host lattice. Recent studies129,130 have demon-
strated that analysis of the electronic charge density can reliably
predict symmetry-distinct ion insertion sites in the atomic
structure which are reliable initial guesses for the ion insertion
position. The ion insertion workow takes advantage of the
dynamic workow generation capabilities of jobow to itera-
tively add WIs into an atomic structure based on candidate ion
insertion sites identied from the electronic charge density. The
output can be aggregated to provide estimates on the voltage
prole of the electrode material, which is a key metric for
electrochemical performance. Since the workow only requires
standard outputs from any DFT simulation engine, it supports
any DFT simulation engine that can compute and store the
electronic charge density.

The electrode workow (Fig. 19) is composed of a series of
repeatable ion-insertion steps that produce the most energeti-
cally favorable new structure containing one additional WI.
Each ion-insertion step begins with an atomic structure that is
topotactically matched to the host lattice or the host lattice
itself. The workow rstly performs a static DFT calculation to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 19 Schematic of electrode insertion workflow.
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obtain the electronic charge density. From the electronic charge
density, the workow identies symmetry-distinct ion insertion
sites and ranks them based on the integrated charge density in
a small sphere around the insertion site. For a subset of sites
with the least integrated charge density, the workow performs
a DFT structure optimization calculation to obtain the relaxed
atomic structure and total energy. Finally, it aggregates these
results and lters them to nd the lowest energy structure that
is topotactically matched to the host lattice, resulting in the
input structure for the next ion-insertion step.

The starting structure and the WI species are the only
required inputs to the workow, however, the behavior of the
workow is exible and can be controlled by additional
parameters. The maximum number of insertion steps and the
maximum number of distinct sites to consider at each step can
be specied by the user. If not specied, the workow will
continue to insert WIs until none of the new structures are
topotactically matched to the host lattice. We note that charge
balance could also be used to dene maximum insertion,
however this functionality has not yet been implemented in the
workow. The nal output is a voltage prole of the material in
question. However, when the workow is applied to a large
number of structures and chemical compositions, this workow
serves as a systematic way to explore lower symmetry congu-
ration spaces. In these cases, the insertion workow is used to
populate a database with a new structure, and relegate the
aggregation of topotactically matched structures and the
computation of the voltage prole to a separate post-processing
step.

4.1.20 Ferroelectric workow. Ferroelectrics are insulating
materials with a nonzero electric polarization switchable by an
applied electric eld. Ferroelectric materials have been exten-
sively studied using DFT and the modern theory of polariza-
tion.131 In this framework, the electronic polarization of
a periodic crystal is computed from the Kohn–Sham wave-
functions as a Berry phase. This polarization is a multivalued
quantity, dened only modulo a quantum of polarization. The
quantum of polarization is an integer multiple of a lattice
© 2025 The Author(s). Published by the Royal Society of Chemistry
vector, multiplied by the ratio of charge and unit cell volume. In
short, the polarization is a lattice.132 In practice, only polariza-
tion differences are experimentally relevant, and the sponta-
neous polarization of a crystal is dened as a change in
polarization relative to a nonpolar structure. Therefore, in
computing the difference in polarization between two struc-
tures, one must select polarizations that are on consistent
lattice points, sometimes called branches. A standard approach
is to compute the polarization of the polar structure, and
a nonpolar reference structure from which it is continuously
deformable, as well as several linearly-interpolated structures
between polar and nonpolar structures. Then, the polarization
values from each of these calculations can be adjusted so that
they are consistent and belong to the same smooth branch.
Upon identication of this common branch, the polarization
difference, or spontaneous polarization, is then computed by
simply subtracting the polar and nonpolar polarizations. The
spontaneous polarization calculated in this way is directly
comparable to experiments.132

The present workow implements this procedure. The
workow inputs are the polar structure of interest and
a nonpolar reference structure that is in the same low-symmetry
setting of the polar one. In addition, the atoms in both struc-
tures have to be in the same order so that the intermediate
structures between the nonpolar and polar endpoints can be
generated using a linear interpolation. The workow begins by
calculating the polarization of the polar and nonpolar struc-
tures (Fig. 20). This includes an optional relaxation followed by
a static calculation before the dipole moment is obtained using
the Berry phase approach.132 In the next stage, the polarization
of a number of structures linearly-interpolated between the
polar and nonpolar structures are obtained following the same
process. Finally, the output of all calculations is collected and
the polarization is computed by nding the common branch.
Other outputs include the electronic and ionic contribution to
the polarization and the quantum of polarization. The workow
is in principle general and any ab initio DFT code can be used,
however at present only VASP implementation exists. The
Digital Discovery, 2025, 4, 1944–1973 | 1963

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00019j


Fig. 20 Schematic of ferroelectric workflow.
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workow was originally developed in atomate by Smidt et al.133

and extensively used to build two databases of candidate
ferroelectrics.133,134

We note that determining an appropriate nonpolar reference
structure for a given polar structure can be obtained by using
the PSEUDO tool135 in the Bilbao Crystallographic Server (BCS),
as recently done to build the ferroelectrics database in ref. 134.
Alternatively, if a nonpolar reference is already known, it can be
transformed into the polar setting by using the Structure Rela-
tions tool in BCS, as was done to build the ferroelectrics data-
base in ref. 133.

4.1.21 Materials Project workow. The bedrock of the MP
database is an extensive library of about 150 000 DFT-relaxed
structures with corresponding thermodynamic and electronic
properties. To generate these structures, two sets of workows
were developed in atomate to relax an input structure and
obtain its total energy: one for PBE and PBE+U59 and one for
r2SCAN.136 The PBE/+U workow has been used since the
inception of MP, whereas the r2SCAN workow was more
recently introduced137 and used to study the properties of about
33 000 materials in MP.

These workows have been rewritten in atomate2 with minor
modications to improve their robustness. In both cases, the
atomate2 workows consist of two sequential relaxations fol-
lowed by a static total energy (single-point) calculation. This is
due to a quirk of VASP, wherein electronic properties, such as the
density of states, are not physically meaningful aer a relaxation,
as they are averaged over previous ionic congurations, and do
not correspond to the nal relaxed structure. To both speed the
workow and potentially stabilize complex calculations, the wave
function from a given step is used to initialize the subsequent
calculation in the workow. Note that neither atomate ow used
this initialization scheme, and that the atomate r2SCAN ow did
not perform a nal static calculation.

In the PBE/+U workow, two relaxations with PBE/+U are
performed followed by a PBE static. When amaterial containing
Co, Cr, Fe, Mn, Mo, Ni, V, or W and either O or F is studied,
PBE+U is automatically used; otherwise PBE without a +U is
used.10,138 In the r2SCAN workow, consistent with ref. 137,
a coarser PBEsol relaxation (at a larger force convergence
1964 | Digital Discovery, 2025, 4, 1944–1973
tolerance) is followed by a ner r2SCAN relaxation (at a smaller
force convergence tolerance), followed by an r2SCAN static at its
self-consistent relaxed geometry. Thus the outputs of the ows
are a structure corresponding to an energy, eigenvalue spec-
trum, and density of states. This information is then used to
build material entries within MP, which include also formation
enthalpy (relative to a set of elemental reference congurations)
and thus convex hull distance.

The MP input sets are also used to dene workows for
determining equations of state (EOS), and other ows. Such
a workow also exists in atomate, and was used in ref. 97.
However, the computational demands of this workow are
quite high. For compatibility with ref. 97, a set of “legacy” EOS
MP-compatible ows exist in atomate2, along with a set of PBE/
+U and r2SCAN EOS ows which are more tractable in HT, and
have recently been used to generate numerous equations of
state to aid in benchmarking computational parameters used
by the Materials Project.139

4.1.22 MatPES workow. The Materials Project potential
energy surface (MatPES) workow (Fig. 21) is designed to strike
a good balance between low computational cost and generating
high-quality energy, force and stress labels for training foun-
dational MLIPs. It is solely intended to run static calculations at
both PBE and r2SCAN level of theory where the PBE wave-
function is used as the initial guess to facilitate SCF conver-
gence of the subsequent r2SCAN static, signicantly reducing
the number of electronic steps needed at the more expensive
meta-GGA level. This workow structure also permits multi-
delity or difference learning between different levels of DFT
approximations. The consistent generation of training data
across two levels of theory enables systematic comparison of
Fig. 21 Schematic of MatPES workflow.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 22 Schematic of the MOF workflow.
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MLIP accuracy with respect to their training data and to
experiment. Its development involved carefully tuning VASP
convergence settings across chemical systems to ensure high-
quality training labels and, most importantly forces.

To date, datasets of Oð105Þ MatPES calculations have been
generated and used to train and/or netune foundational
MLIPs including CHGNet and M3GNet. An initial release of
a MatPES-compliant dataset through the Materials Project is
forthcoming.

4.1.23 Electronic transport workow with AMSET. The
electronic transport properties of solids determines their use in
technological applications, including photovoltaics, thermo-
electrics, and power electronics. A wide range of approaches
have been developed to model band-like transport in semi-
conductors, with the linearized Boltzmann transport equation
(BTE) being the most commonly used.140 Here, a key computa-
tional challenge is to accurately obtain the lifetime of charge
carriers (electrons or holes) under a range of perturbations
(phonons, impurities, grain boundaries, etc.). For electron–
phonon scattering, the most reliable approach is density-
functional perturbation theory oen combined with Wannier
or Fourier interpolation of matrix elements onto dense k- and q-
point meshes.141 Unfortunately, this approach incurs a high
computational cost which limits its use to relatively small
systems or those with high degrees of symmetry. An alternative
approach, termed AMSET,142 employs semi-empirical models
for the scattering matrix elements based on rst-principles
inputs. AMSET includes contributions from deformation
potential, ionized impurity, piezoelectric, and polar optical
phonon scattering. The method provides band and k-point
resolved insights into the scattering physics of materials. A
benchmark on ∼20 compounds revealed an accuracy within
20% of DFPT at three orders of magnitude less computational
expense.142

The AMSET workow in atomate2 automates the calculation
of all materials properties required to obtain electronic trans-
port. The main inputs are a structure and the temperature and
doping concentrations of interest. The workow begins with an
initial structural relaxation with tight convergence settings to
avoid the presence of imaginary modes. The elastic tensor,
dielectric tensor, piezoelectric tensor, and band structure are
obtained using the workows described above. Deformation
potentials are calculated by applying a series of strains to the
unit cell, followed by static calculations, and the comparison of
the band energies to a reference unperturbed static. The wave-
function coefficients are extracted from a dense band structure
calculation, while an averaged polar optical phonon frequency
is obtained from the G-point DFPT calculation used to obtain
the ionic dielectric constant. As with all BTE implementations,
the resulting transport properties are highly sensitive to the
density of the k- and q-point sampling used to integrate the
matrix elements. The workow includes automated conver-
gence checking to sequentially increase the interpolated mesh
density until transport properties converge. Two versions of the
workow are provided, one based on GGA inputs and another
more accurate but more expensive version using HSE06. The
main outputs of the workow include the temperature-
© 2025 The Author(s). Published by the Royal Society of Chemistry
dependent electronic mobility, conductivity, Seebeck coeffi-
cient and electronic contribution to the thermal conductivity.
An early version of the workow was used to obtain the trans-
port properties of 23 000 materials using machine learned
materials inputs.143

4.1.24 Metal–organic framework workow. Metal–organic
frameworks (MOFs)144 are nanoporous materials composed of
metal nodes linked by organic linkers. Although MOFs have
emerged as leading candidates for applications such as water
harvesting, CO2 capture, hydrogen storage, and chemical
sensing, its community still lacks automated workows for
high-throughput computations.

In the initial stage of the MOF workow (Fig. 22), a MOF
structure is processed using Zeo++.145 The inputs include
a crystal structure, a sorbate molecule, and the number of
processors for parallelization. Zeo++ extracts various pore
characteristics viaMonte Carlo sampling (e.g., the pore limiting
diameter and accessible pore volume), applicable more gener-
ally to crystalline porous materials (e.g., MOF, zeolites). The
workow enables users to specify ltering criteria for which
a structure is considered porous or meets a given porosity
threshold. For example, a candidate structure might be
required to (i) exhibit a pore limiting diameter greater than
a predetermined value for the given sorbate molecule and (ii)
possess a probe-occupiable accessible volume fraction
exceeding a set percentage threshold.

For structures far from equilibrium, those passing the initial
Zeo++ screening are then subjected to coarse geometry opti-
mization using methods such as MLIPs and semi-empirical
DFT. Following this, the workow permits the user to reapply
Zeo++, using similar or novel criteria, for further ltering. The
MOF candidates emerging from these steps are then rened
using higher-level quantum mechanical computations, analo-
gous to those employed in the MatPES workow. Where an
initial structural relaxation is conducted with PBE-D4, the
converged wavefunctions obtained at this stage are used to
initialize an r2SCAN-D4 relaxation. These wavefunctions are
then further employed to compute an r2SCAN-D4 single-point
calculation at the optimized geometry, yielding well-converged
properties such as the phonon and bulk modulus.

Furthermore, an additional module can be plug in using
MOFid146 that aims to extract individual building block of the
MOF (e.g., organic linkers and metal nodes). This functionality
Digital Discovery, 2025, 4, 1944–1973 | 1965
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Fig. 23 Schematic of frequency flattening optimizer workflow.
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may be employed either for post-analysis or as an additional
ltering step based on user-dened rules.
4.2 Molecular systems

4.2.1 Frequency attening optimizer workow. Quasi-
Newton methods like L-BFGS are the most commonly used
iterative optimization methods for geometric optimization in
DFT due to their superlinear convergence. Quasi-Newton
methods usually approximate the Hessian with a sequence of
gradients and steps. This is performed to avoid the computa-
tional burden of calculating the exact Hessian at each step,
which is the expensive part in most cases. Since the Hessian is
approximate, the converged stationary point might be a higher-
order saddle point instead of a global minimum on the PES. To
guarantee the convergence to global minima on the PES, the
frequency attening optimizer (FFOpt) workow performs
a sequence of geometry optimizations followed by frequency
calculations until we reach a global minimum (Fig. 23). Since
a higher-order saddle point on the PES is usually characterized
by at least one imaginary vibrational mode, examining the
output of the frequency calculation provides a straightforward
means of assessing whether or not the saddle point geometry is
a true minimum on the PES. If it is not, the saddle point
geometry is perturbed along the direction of the imaginary
vibrational frequency mode, and the optimization is restarted.
This process is repeated until all the vibrational frequencies are
positive. The workow allows one negative vibrational
frequency of less than 15 cm−1 in order to account for numer-
ical noise in the frequency calculation.
5 Conclusions and future work

The atomate2 soware package incorporates several new
features that broaden its capabilities and simplify its use. From
a fundamental standpoint, workows are now built on top of
the newly created jobow library which makes it easier to reuse
workow components and also simplies data passing between
jobs and input/output operations. While not emphasized in the
current work, the jobow library also makes it possible to
employ different workow execution engines, including
1966 | Digital Discovery, 2025, 4, 1944–1973
FireWorks and jobow-remote, to distribute jobs over
computing resources. This change makes it easier to circum-
vent some issues faced by users of FireWorks, including diffi-
culty running with certain network rewall congurations as
detailed in the original FireWorks paper.

The fundamental improvements introduced in atomate2
have facilitated the expansion of the soware's scope to
encompass a broader array of calculators, including machine-
learning based calculators, and to include a larger set of work-
ows. The framework also allows for workows that employ
a mix of different calculators, which may become more
commonplace in the future as MLIPs are used prior to accurate
physics-based simulations. A combination of DFT and MLIP
calculators within a single workow has already been used to
automatically train MLIPs through random structure
searches.147 We expect that the capabilities of atomate2 will
continue to improve over time. Such potential improvements
could simply be the expansion of Calculators and workows, or
may additionally include usability improvements such as
calculation dashboards and materials design and submission
frameworks. atomate2 is designed to support such community
extensions through the python namespace mechanism. As the
user community for atomistic and electronic structure calcula-
tions grows and calculation methods continue to evolve, so-
ware tools must also adapt to meet the changing needs of this
community. The improvements implemented in atomate2
represent a path forward to adapting to and accommodating
these changes.

By default, atomate2 retains all inputs and outputs of each
calculation (unless the user chooses to delete them), thereby
preserving complete data provenance. Additionally, because
atomate2 currently uses the FireWorks engine to execute
workows, it automatically inherits FireWorks' comprehensive
workow tracking capabilities. All relevant metadata such as job
states (waiting, running, completed), timestamps for each state
change, and execution details (compute host, return codes, etc.),
are recorded in a database. This approach ensures that results
remain reproducible and that users can verify whether a given
calculation has been run before. Moreover, the underlying
workow engine provides advanced control features (e.g.,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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automatic error handling, reruns, and duplicate workow
detection) to prevent redundant computations. In summary,
atomate2 offers full workow provenance tracking and
management functionality on par with other state-of-the-art
frameworks.

To further support users at all levels, atomate2 provides
a suite of educational materials ranging from interactive tuto-
rials and comprehensive documentation to workshop resources
and community forums that guide both newcomers and expe-
rienced researchers alike. The support resources include:

� Interactive tutorials: a growing collection of hands-on
examples is available in the official tutorials repository. These
walkthroughs cover fundamental workows, advanced features,
and practical tips, helping users grasp essential concepts step
by step. https://github.com/materialsproject/atomate2/tree/
main/tutorials.

� Comprehensive documentation: the primary documenta-
tion portal, serves as a centralized resource for best practices,
API references, conguration details, and troubleshooting
guidance. Its modular structure allows users to dive into topics
of interest at their own pace. https://materialsproject.github.io/
atomate2/.

� Workshop resources: for those seeking more intensive
training, materials from the recent CECAM workshop provide
in-depth presentations, interactive demos, and hands-on exer-
cises that illustrate real-world scenarios. The workshop page on
the CECAM site offers a detailed overview of session topics and
supplementary materials. https://www.cecam.org/workshop-
details/automated-ab-initio-workows-with-jobow-and-
atomate2-1276.

https://lhumos.org/collection/0/
680bb4d7e4b0f0d2028027ce.

https://lhumos.org/collection/0/
680bb4d3e4b0f0d2028027c9.

https://lhumos.org/collection/0/
680bb4d0e4b0f0d2028027c5.

https://lhumos.org/collection/0/
680bb4c7e4b0f0d2028027c1.

� Community support: new users and veteran practitioners
alike can seek help through GitHub issues, and the MatSci
public forum, where an active community of developers and
collaborators regularly share insights, answer questions, and
foster ongoing improvements to atomate2. These combined
resources ensure that anyone from newcomers building their
rst automated ab initio workow to advanced users exploring
complex, customized jobs can efficiently get started and receive
the support they need to succeed with atomate2.

https://matsci.org/c/atomate/atomat2/55.
https://github.com/materialsproject/atomate2.

Data availability

The code for atomate2 can be found at https://github.com/
materialsproject/atomate2 and the documentation for it can
be found at https://materialsproject.github.io/atomate2/. The
version of the code employed for this study is version 0.0.21.
The Zenodo DOI corresponding to the code is https://doi.org/
© 2025 The Author(s). Published by the Royal Society of Chemistry
10.5281/zenodo.10677080. The CECAM workshop resources
can be found on https://www.cecam.org/workshop-details/
automated-ab-initio-workows-with-jobow-and-atomate2-
1276, https://lhumos.org/collection/0/
680bb4d7e4b0f0d2028027ce, https://lhumos.org/collection/0/
680bb4d3e4b0f0d2028027c9, https://lhumos.org/collection/0/
680bb4d0e4b0f0d2028027c5, https://lhumos.org/collection/0/
680bb4c7e4b0f0d2028027c1. The community support for
atomate2 can obtained at https://matsci.org/c/atomate/
atomat2/55 and via the Issues section of the atomate2 GitHub
repository. There is no separate dataset to declare.
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28 H. Neugebauer, B. Bädorf, S. Ehlert, A. Hansen and
S. Grimme, High-throughput screening of spin states for
transition metal complexes with spin-polarized extended
tight-binding methods, J. Comput. Chem., 2023, 44(27),
2120–2129.
© 2025 The Author(s). Published by the Royal Society of Chemistry
29 V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman,
T. Spura, et al., i-PI 2.0: a universal force engine for
advanced molecular simulations, Comput. Phys. Commun.,
2019, 236, 214–223.

30 G. Petretto, X. Gonze, G. Hautier and G. M. Rignanese,
Convergence and pitfalls of density functional
perturbation theory phonons calculations from a high-
throughput perspective, Comput. Mater. Sci., 2018, 144,
331–337, DOI: 10.1016/j.commatsci.2017.12.040.

31 V. Trinquet, F. Naccarato, G. Brunin, G. Petretto, L. Wirtz,
G. Hautier, et al., Second-harmonic generation tensors
from high-throughput density-functional perturbation
theory, Sci. Data, 2024, 11(757), 1–10.

32 M. J. van Setten, M. Giantomassi, E. Bousquet,
M. J. Verstraete, D. R. Hamann, X. Gonze, et al., The
PseudoDojo: training and grading a 85 element optimized
norm-conserving pseudopotential table, Comput. Phys.
Commun., 2018, 226, 39–54.

33 R. Sundararaman, K. Letchworth-Weaver, K. A. Schwarz,
D. Gunceler, Y. Ozhabes and T. A. Arias, JDFTx: soware
for joint density-functional theory, SowareX, 2017, 6,
278–284.

34 C. Tezak, J. Clary, S. Gerits, J. Quinton, B. Rich,
N. Singstock, et al., BEAST DB: Grand-Canonical Database
of Electrocatalyst Properties, J. Phys. Chem. C, 2024,
128(47), 20165–20176, DOI: 10.1021/acs.jpcc.4c06826.

35 R. Sundararaman, W. A. Goddard and T. A. Arias, Grand
canonical electronic density-functional theory: algorithms
and applications to electrochemistry, J. Chem. Phys., 2017,
146(11), 114104, DOI: 10.1063/1.4978411.

36 R. Sundararaman, K. A. Schwarz, K. Letchworth-Weaver and
T. A. Arias, Spicing up continuum solvation models with
SaLSA: the spherically averaged liquid susceptibility
ansatz, J. Chem. Phys., 2015, 142(5), 054102, DOI: 10.1063/
1.4906828.

37 R. Sundararaman and W. A. Goddard III, The charge-
asymmetric nonlocally determined local-electric
(CANDLE) solvation model, J. Chem. Phys., 2015, 142(6),
064107, DOI: 10.1063/1.4907731.

38 J. M. Clary, M. Del Ben, R. Sundararaman and D. Vigil-
Fowler, Impact of solvation on the GW quasiparticle
spectra of molecules, J. Appl. Phys., 2023, 134(8), 085001,
DOI: 10.1063/5.0160173.

39 I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács,
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