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optimization with unknown
feasibility constraints for scientific
experimentation†

Riley J. Hickman, *abc Gary Tom, abc Yunheng Zou,bc Matteo Aldeghi ‡abc

and Alán Aspuru-Guzik *abcdefg

Model-based optimization strategies, such as Bayesian optimization (BO), have been deployed across the

natural sciences in design and discovery campaigns due to their sample efficiency and flexibility. The

combination of such strategies with automated laboratory equipment and/or high-performance

computing in a suggest-make-measure closed-loop constitutes a self-driving laboratory (SDL), which

has been endorsed as a next-generation technology for autonomous scientific experimentation. Despite

the promise of early SDL prototypes, a lack of flexible experiment planning algorithms prevents certain

prevalent optimization problem types from being addressed. For instance, many experiment planning

algorithms are unable to intelligently deal with failed measurements resulting from a priori unknown

constraints on the parameter space. Such constraint functions are pervasive in chemistry and materials

science research, stemming from unexpected equipment failures, failed/abandoned syntheses, or

unstable molecules or materials. In Anubis, we provide a comprehensive discussion and benchmark of

BO strategies to handle a priori unknown constraints, characterized by learning the constraint function

on-the-fly using a variational Gaussian process classifier and combining its predictions with the typical

BO regression surrogate to parameterize feasibility-aware acquisition functions. These acquisition

functions balance sampling parameter space regions deemed to be promising in terms of optimization

objectives with avoidance of regions predicted to be infeasible. In addition to benchmarking feasibility-

aware acquisition functions on analytic optimization benchmark surfaces, we conduct two realistic

optimization benchmarks derived from previously reported studies: inverse design of hybrid organic–

inorganic halide perovskite materials with unknown stability constraints, and the design of BCR-Abl

kinase inhibitors with unknown synthetic accessibility constraints. We deliver intuitive recommendations

to readers on which strategies work best for various scenarios. Our results show that feasibility-aware

strategies with balanced risk, on average, outperform commonly adopted naive strategies, producing

more valid experiments and finding the optima at least as fast. In tasks with smaller regions of

infeasibility, we find that näıve strategies can perform competitively. Overall, this work contributes to

advancing the practicality and efficiency of autonomous experimentation in SDLs. All strategies

introduced in this work are implemented as part of the open-source Atlas Python library.
1. Introduction

Progress in the areas of chemistry andmaterials science is oen
contingent on the targeted design of new molecules, materials
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and manufacturing processes that supersede their predecessors
with respect to some measurable property. As a fundamental
aspect in numerical science, it is not surprising that many
design/discovery challenges in these areas can be cast as opti-
mization problems. Solutions to such optimization problems
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are determined by systematic variation of input parameters
from an allowed set with the goal of maximizing or minimizing
a property or set of properties.

In experimental science research, so-called “black-box”
optimization problems are of particular interest, given that
the objective functions thereof typically have a priori unknown
structures and must be sequentially determined using
measurements. Other characteristics of experimental optimi-
zations include noise in both input parameters and property
measurements and relatively low parameter and objective
dimensionality (<20 and <10 in most cases, respectively).
Model-based optimization strategies, such as Bayesian opti-
mization (BO)1–3 are particularly well-suited for such tasks.4–10

The combination of model-based optimization with auto-
mated laboratory equipment results in self-driving laborato-
ries (SDLs),11–20 which are rapidly experiencing adoption
across the natural sciences. Prototypes of SDLs have targeted
organic synthesis and process optimization,5,21–30

nanomaterials,31–36 and light-harvesting materials37–41 to name
a few.42–45

Despite the already apparent aptitude for SDLs to accelerate
scientic research, their practical application is limited by the
lack of exible soware and algorithms tailored to the specic
requirements of experimental science. One pervasive example is
the inability of many BO algorithms to handle parameter space
constraints. Although types of constrained optimization prob-
lems are diverse,46 we focus the discussion in this work on two
types.

Known constraints are those known to the researcher
a priori to commencing an experimental campaign. They can
be interdependent, non-linear, and result in non-compact
optimization domains. Our group's previous work focused on
extensions to BO strategies such that they would avoid
sampling constrained regions.47 Another type of known
constraint problems may arise when the optimization domain
contains degenerate solutions (e.g. with respect to scaling,
composition or permutation of input parameters). Baird et al.
recently described the relationship between search space
reducibility and BO performance for an application in solid
rocket fuel packing.48

Contrastingly, unknown constraints are those constraints on
the optimization domain which are a priori unknown, and,
much like the objective function, must be resolved on-the-y by
sequential measurement. As the types of optimization
constraints encountered are diverse, in this work we chose to
focus specically on nonquantiable, unrelaxable, simulation,
hidden constraints, according to the taxonomy by Digabel and
Wild.46

� Non-quantiable: for a nonquantiable constraint, the
researcher is returned only binary information about whether
the constraint has been satised or violated. This is contrasted
with quantiable constraints, where some auxiliary information
is available about the proximity of the experiment to the
feasible/infeasible boundary.

� Unrelaxable: an unrelaxable constraint must be satised
for an objective function measurement to be obtained. In other
© 2025 The Author(s). Published by the Royal Society of Chemistry
words, we consider cases where no objective information is
returned for an experiment that violates the constraint.

� Simulation: a simulation constraint is one in which a costly
procedure is involved in evaluating the constraint for a set of
parameters. We note that a simulation, as dened by Digabel
and Wild, refers to the constraint in the cost of making
a measurement, rather than a computational or numerical
process. Although infeasible experiments may overall be
cheaper to evaluate than feasible ones, we assume some non-
negligible effort that one would prefer to avoid, if possible.
For example, in a molecular design task in which evaluation of
the objective function (e.g. a bioassay) follows the synthesis of
a drug molecule, the a priori unknown synthetic feasibility
constraint function is evaluated directly aer the attempted
synthesis.

� Hidden: hidden constraints are those which are not
explicitly known to the researcher, as opposed to known
constraints, which are explicitly dened during formulation of
the optimization problem.

Unknown constraints frequently complicate optimization
problems across the natural sciences. In many molecular
design tasks, candidates are selected from a virtual library of
molecules which are assumed to be synthetically accessible.
Selection is followed by a synthesize-measure procedure, in
which an attempt is made to synthesize the molecule, and if
successful, its objective is determined. The synthesis step in
this procedure could fail for several reasons (e.g. insufficient
yield to conduct the property measurement, insufficient
stability of the product, etc.). Although several approaches for
computational prediction of the organic reaction outcome
have been described,49–51 these tools are typically regarded as
coarse-grained proxies for synthetic accessibility. Therefore,
synthetic accessibility of molecular candidates is oen an
unknown constraint which is ideally inferred on-the-y for
a novel design campaign.

Experimental failures are not unique to organic synthesis.
A target compound may form but exhibit undesirable prop-
erties that prevent characterization, such as excessive fragility
or insufficient photoluminescence for spectroscopic anal-
ysis.45 Wakabayashi et al. studied molecular beam epitaxy of
SrRuO3, a widely used metallic electrode in oxide electronics,
in which experimental failures occur when the SrRuO3 phase
did not form, preventing measurement of the resistivity
objective.52 Even in computational chemistry, unknown
constraints can arise. For example, a simulation might fail to
converge due to unforeseen limitations in the chosen
parameters, preventing the calculation of the desired prop-
erty.53 Furthermore, limitations in instrument sensitivity or
resolution can preclude accurate measurements, effectively
acting as an unknown constraint on the observable
properties.

While several approaches have been suggested for BO with
unknown constraints,54–61 relatively little effort has been dedi-
cated to evaluating the suitability of these strategies on repre-
sentative optimization problems in the experimental sciences.
Furthermore, we have found that a comprehensive optimization
benchmark of all relevant strategies is missing. Finally, we
Digital Discovery, 2025, 4, 2104–2122 | 2105
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Fig. 1 Concept figure of an optimization problem with unknown constraints. The left-most subplot shows the contour plot of the objective
function, f(x), with the global optimum marked with a pink star. The center subplot shows the binary constraint function, c(x). The right-most
subplot shows the functions f(x) and c(x) overlaid on the same plot, with feasible (infeasible) measurement instances marked with blue (red)
crosses.
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found that many popular BO packages do not consider
unknown constraints altogether, or implement only the
simplest approaches for dealing with them. Our goal for this
work is to provide practitioners of autonomous science driven
by BO comprehensive insight into which strategies for dealing
with unknown constraints work best in various scenarios. To
this end, we implement and test several different approaches
for dealing with unknown constraints in our research group's
open-source BO Python package, Atlas.62,63

The remainder of this work is organized as follows.
Section 2 formally introduces optimization with unknown
constraints and compares and contrasts our problem to
related work. Section 3 describes our approaches to learning
the constraint function, our feasibility-aware acquisition
functions, as well as limitations of our approach. Section 4.1
presents a detailed comparison of optimization performance
of each approach on synthetic benchmark surfaces. Finally,
Sections 4.2 and 4.3 detail two world applications: the inverse
design of hybrid organic–inorganic halide perovskite mate-
rials with stability constraints, and the discovery of BCR-Abl
kinase inhibitors with synthetic accessibility constraints.
2. Problem formalism and related
work
2.1. Optimization problem formalism

An optimization problem consists of traversing a parameter
space or domain X to identify the parameters x* that corre-
spond to the most desirable outcome for an objective f(x). For
a minimization problem, the solution is those parameters that
minimize the objective function,

x* ¼ arg min
x˛X

f ðxÞ (1)
2106 | Digital Discovery, 2025, 4, 2104–2122
In a BO setting, the objective function f($) is considered to be
an expensive-to-evaluate black-box function, and its measure-
ments are usually corrupted by using some noise 3, i.e. y = f(x) +
3, although we do not consider noisy measurements in this
work.

In constrained optimization, one is interested in solutions
within a feasible subset of the optimization domain, C3X ,
which is unknown (Fig. 1). The evaluation of a constraint
function, c($), determines which parameters x are within C and
which are not. The solution to this constrained optimization
problem may now be written as

x* ¼ arg min
x˛X

f ðxÞ;

s:t: cðxÞ1feasible;

or as

x* ¼ arg min
x˛X

f ðxÞ

In this work, we are exclusively concerned with cases where
c(x) is a priori unknown, incurs a non-negligible cost for its
determination (i.e. is still expensive to evaluate), cannot be
relaxed, cannot be decoupled from evaluation of f($), and returns
binary information about the constraint. Let constraint function
evaluations ~y = c(x) return 0 if x˛C and 1 if x;C, i.e. ~y ˛ {0,1}.

During such a constrained optimization campaign, the
experiment planner collects both datasets of continuous-valued
objective function measurements Df

K ¼ fðxi; yiÞgi¼1
K�L, and of

binary-valued constraint measurements Dc
K ¼ fðxi;~yiÞgi¼1

K .
Here, we denote the total number of transpiredmeasurements K,
and the number of infeasible measurements L. Note that, for
parameters x, the constraint function is evaluated each time,
while the objective function measurement only occurs if c(x)= 0.

We want to identify BO strategies which efficiently optimize
the objective function f, while preferably also limiting the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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number of infeasible measurements L. To do so, a compound
acquisition function is used, which we term the feasibility-
aware acquisition function, acðx; Mf ;McÞ, which depends on
the predictions of two surrogate models: (i) a regression surro-
gate,Mf , t to the objective functionmeasurements inDf

K , and
(ii) a classication surrogate, Mc, which is t to the constraint
function measurements in Dc

K . ac combines these predictions
in one of several ways to balance adherence to sampling in
parameter space regions believed to have promising objective
values with avoidance of regions believed to be infeasible.
Feasibility-aware acquisition functions are described in Section
3.2. Algorithm 1 shows pseudocode for BO subject to unknown
constraints. Note that, while a scalar-valued objective is used for
illustrative purposes here, onemay easily extend this framework
to the multi-objective setting by using, for example, an
achievement scalarizing function.

2.2. Related work

We begin the discussion of related work with problem types
that are similar in spirit to our unknown constraint optimi-
zation problem denition, but outside the scope of this work.
Safe BO is a closely related topic where candidate parameters
must exceed some safety threshold to be recommended for
measurement. Here, all points in the optimization campaign
must be in the “safe” region, i.e. must never violate the
constraint function, corresponding to maximal risk aver-
sion.64 Safe BO is useful for applications such as optimization
of medical treatment while maintaining patient well-being, or
© 2025 The Author(s). Published by the Royal Society of Chemistry
robotic control while avoiding catastrophic damage to the
system. In this work, we do not explicitly study this case, and
assume constraint violations are inconvenient rather than
catastrophic. Another related problem type is BO with missing
measurements,65 where missing values in training data are
imputed via sampling from a learned probability distribution.

Computer and machine learning scientists have studied BO
with unknown constraints stretching back more than
a decade.54,56–61 Gramacy and Lee were among the rst to do so,
employing Bayesian learning strategies to estimate both the
objective and constraint function.54 The integrated expected
conditional improvement (IECI) acquisition function was
introduced which enabled incorporation of partial information
from constraint violations into the optimization procedure,
a variant constrained problem which we do not address in this
work. Gelbart et al.59 introduced the feasibility-weighted acqui-
sition function (FWA approach described in Section 3.2) but for
scenarios where the f(x) and c(x) can be decoupled and evalu-
ated independently. Snoek et al.55 described a similar approach
but for scenarios where the two functions are innately coupled,
where constraint violations come from e.g. a crashed objective
simulation. More recently, Antonio et al.61 presented SVM-CBO,
which uses a consecutive two-stage approach for optimization
with unknown constraints: (i) a support vector machine (SVM)
is used to estimate the constraint boundary using measure-
ments of c(x) exclusively, and (ii) BO is used to optimize f(x)
using the SVM estimate of c(x) as a known constraint. This
method lays the foundation for our FCA approach (described in
Section 3.2), with a few key differences: (i) we use a variational
GP classier to estimate c(x) as opposed to an SVM, and (ii) our
evaluations of c(x) and f(x) are not separated into two distinct
stages. Instead, a fresh known constraint function is inferred by
our classier at each iteration in light of the most recent c(x)
evaluations.

Researchers in the chemistry and materials science sectors
have started to focus on BO problems that feature unknown
constraints.66 Wakabayashi et al. investigated molecular beam
epitaxy of SrRuO3, a widely used metallic electrode in oxide
electronics. Experimental failures are dened as experimental
parameter settings for which the SrRuO3 phase did not form,
preventing measurement of the resistivity objective.52 The
authors consider two approaches to deal with the experimental
failures: the so called “oor-padding trick”, in which the
infeasible measurement's objectives are replaced by the worst
objective value observed so far (näıve-replace approach
described in Section 3.2), as well as an approach in which the
feasibility-aware acquisition function is a product of the ex-
pected improvement criterion and the probability that
a parameter space point is feasible as learned by a binary
classier (FWA approach described in Section 3.2). In work
concurrent with ours, Khatamsaz and coworkers presented an
approach for multi-objective design of multi-principal element
alloys for potential use in next-generation gas turbine blades.67

The approach is based on the author's previous work,68 in
which a novel Bayesian classication method embedded in
a multi-delity learning framework was introduced. This
allowed the authors to effectively fuse together multiple
Digital Discovery, 2025, 4, 2104–2122 | 2107
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Fig. 2 Visualization of hybrid feasibility-aware acquisition function strategies, FWA, FCA and FIA. Each of the four columns considers the 2-
dimensional Dejong analytic function with differing unknown constraint functions. The rows, from top to bottom, present the following: (i) the
overlaid objective and constraint functions with observations (blue feasible and red infeasible); (ii) contour plot of the regression surrogatemodel,
M fðxÞ; (iii) contour plot of the classification surrogate model, M cðxÞ; (iv) the UCB acquisition function without contribution from M c; (v) FWA
function; (vi) FCA function with t = 0.5. Blacked-out regions represent P(feasiblejx) # t; (vii) FIA function with t = 1.0. In rows (iv)–(vii), the pink
triangle indicates the maximum of the acquisition function, i.e. the next parameter point to be measured.
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information sources, including the constraint boundaries, into
a single experiment planning algorithm which was employed
to efficiently optimize DFT-derived ductility indicators across
a refractory Multi-Principal-Element Alloy (MPEA) space.
2108 | Digital Discovery, 2025, 4, 2104–2122
3. Methods
3.1. Learning the constraint function

Our approach involves training two surrogate models: a regres-
sion model to approximate the objective function, f(x), and
a binary classication model to approximate the constraint
© 2025 The Author(s). Published by the Royal Society of Chemistry
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function, c(x). In this section, we briey describe our binary
classication model.

3.1.1. Gaussian processes. As part of Atlas, Anubis employs
Gaussian Process (GP) surrogate models. GP is a non-
parametric Bayesian approach to function learning.69 It
denes a distribution over functions such that any nite
collection of function values has a joint multivariate Gaussian
distribution. A GP is specied by a mean function, m($), and
covariance function, or kernel, k($, $). We can write this as

f ðxÞ � GP
�
mðxÞ; k

�
x; x

0
��

: (2)

This formulation allows for closed-form expressions for
the mean and variance of the predicted function value at any
given input. For regression tasks, this provides a natural
framework for predicting the objective function with
uncertainties.

While GPs are readily applied to regression, classication
requires a modication. Anubis uses a separate GP for classi-
fying feasibility constraints. Unlike the regression case, exact
inference for classication with GPs is intractable. To address
this, the GP classier as implemented in Atlas uses variational
inference and inducing points to approximate the posterior
distribution.

3.1.2. Variational Gaussian process classier. The classi-
cation GP models the feasibility constraints given a dataset
Dc

L ¼ fðxi;~yiÞgi¼1
L, where ~yi ˛ {0,1} represents the feasibility

label (0 for infeasible and 1 for feasible) at input xi. We denote
the vector of feasibility measurements as ~y = [~y1,., ~yL]

T and the
input matrix as X = [x1,., xL]

T. The key modication for clas-
sication involves squashing the latent function values, f =

[f(x1),., f(xL)]
T, of the GP through a sigmoid inverse-link func-

tion, fðxÞ ¼ Ð x
�N N ðaj0; 1Þda, which maps the real-valued

outputs of the GP to the probability interval [0, 1]. This trans-
formed output is then used to dene a Bernoulli likelihood
function for the observed feasibility labels. The joint distribu-
tion of the feasibility measurements and the latent function
values is given by

pð ~y; f jXÞ ¼
YL
i¼1

Bð ~yijfðfiÞÞpðf jXÞ; (3)

where Bð~yi
��fðfiÞÞ ¼ fðfiÞ~yið1� fðfiÞÞ1�~yi is the Bernoulli likeli-

hood, and pðf jXÞ ¼ N ðf j0;KÞ is the prior distribution over the
latent function values, with K being the covariance matrix
computed using the kernel function k($, $) evaluated at the
input points X.The goal of the classication GP is to infer the
posterior distribution over the latent function values, p( f j~y,X),
which represents our updated belief about the function aer
observing the feasibility data. The integral required to
normalize the posterior cannot be computed in closed form

pðf j~y;XÞ ¼ pð~y; f jXÞÐ
pð~y; f jXÞdf (4)

Because of this intractability, Atlas utilizes variational infer-
ence, a technique where we approximate the true posterior with
© 2025 The Author(s). Published by the Royal Society of Chemistry
a simpler, tractable distribution. We introduce a variational
distribution q(f) and aim to minimize the Kullback–Leibler (KL)
divergence between this variational distribution and the true
posterior.

Atlas' classier adopts an inducing point approach, in which
the latent variables are augmented with additional input
(output) data, known as inducing inputs (points). Our strategy
closely follows the one detailed in Hensman et al.,70 where
a bound on the marginal likelihood for classication problems
is derived. This bound is optimized by adjusting the hyper-
parameters of the GP kernel, parameters of the multivariate
normal variational distribution, and the inducing inputs/points
simultaneously using stochastic gradient descent. The reader is
referred to previous work for additional details.70–73 GP classi-
cation is implemented using the GPyTorch library,74 and has
the added benet of scaling more favorably with jDc

nj than
exact GP inference.
3.2. Feasibility-aware acquisition functions

Here, we discuss each of the feasibility-aware acquisition
functions, ac(x), considered in this work. These can be
further broken down into two main kinds. First, baseline
strategies we call näıve, which commonly involve no classi-
cation surrogate Mc. Secondly, strategies we call hybrid
surrogate, which involve training a classication surrogate
and combining its predictions in some way with those of the
regression surrogate (Fig. 2). We note that the objective
values are standardized by using the mean and standard
deviation of the available training set at each iteration of the
optimization.

3.2.1. Näıve strategies. � Näıve-replace: replace each
infeasible measurement with the worst objective function value
observed thus far, i.e. for a minimization problem, infeasible
measurement ~y)max

y˛Df
K
fyigi¼1

K�L. This baseline strategy has

previously been referred to as the oor padding trick.52

� Näıve-ignore: the FIA hybrid surrogate strategy is used with
t = 1000. This will fully bias the acquisition function toward
a(x), effectively disregarding the contribution of the classica-
tion surrogate.

� Näıve-surrogate: replace each infeasible measurement with
the mean prediction of the current regression surrogate model
at that point, i.e. for the regression surrogate model Mf ,
infeasible measurement ~y)mðMfðxÞÞ.

3.2.2. Hybrid surrogate strategies. � Feasibility-weighted
acquisition (FWA):54,59 this strategy uses the product of the
regression acquisition function (the one dened only by the
predictive mean and variance of the regression surrogate), a(x),
and the conditional probability that x is feasible, P(feasiblejx),
as inferred by the classication surrogate

ac(x) = a(x) × P(feasiblejx). (5)

� Feasibility-constrained acquisition (FCA):61 this strategy
introduces a constraint on the optimization of the regression
acquisition function a(x) such that only those parameter
Digital Discovery, 2025, 4, 2104–2122 | 2109
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points x with P(feasiblejx) above some threshold t are
considered for selection. Optimization of ac(x) is therefore
a constrained optimization problem itself, albeit with known
constraints6

acðxÞ ¼ aðxÞ
s:t: PðfeasiblejxÞ. t; t˛½0; 1Þ: (6)

The parameter t should serve as an indication of the user-
preferred risk level when it comes to selecting potentially
infeasible experiments. For the FCA function, smaller t indi-
cates more risk, and larger t indicates less risk. In our experi-
ments, we choose to use t = 0.2, 0.5, 0.8. The reader is referred
to ESI Section S1A(2)† for further discussion about the con-
strained acquisition optimization subroutine in Atlas.

� Feasibility-interpolated acquisition (FIA): this strategy
interpolates between a(x) and P(feasiblejx) using the following
expression

ac(x) = (1 − ct) × a(x) + ct × P(feasiblejx). (7)

c = L/K is the ratio of infeasible measurements to total
measurements, and t˛ℝþ is a user-specied hyperparameter
which controls risk when it comes to selecting infeasible
measurements. Here, smaller values of t de-emphasize the
second term and thus indicate more risk, while larger values do
the opposite and represent less risk. In our tests, t = {0.5, 1, 2}
are chosen.

We also tested alternatives of the FWA and FIA functions in
which the P(feasiblejx) term is replaced by a minimum ltered
version, r(x), given as

r(x) = min[0.5, P(feasiblejx)]. (8)

This modication allows us to only bias the search away
from areas which the classier believes are infeasible. In other
words, all parameter space regions with P(feasiblejx) $ 0.5 are
treated as equally promising in the eyes of the classication
surrogate. Empirically, we have found this approach to be an
effective safeguard against becoming trapped in regions of X
that have P(feasiblejx) z 1. The reader is referred to ESI
Section S1A(3)† for the results of these comparative experi-
ments. For the duration of this work, the FIA and FWA
acquisitions use the minimum ltered variant, unless other-
wise specied.
3.3. Usage through the Atlas library

The Atlas library houses all strategies discussed in Section 3.2
for facile use in “ask-tell” SDL optimization campaigns. Here,
we provide a minimal-code demonstration in which Atlas'

is used to minimize the 2d Branin-Hoo surface in
the presence of unknown constraints employing the FIA func-
tion with t = 1. The user must supply two arguments to the
constructor of , the rst being the type of feasibility-
aware acquisition strategy ( ), and the second
being its parameterization ( ). The Olympus75,76

library's object is used to store the optimization
trajectory and meta-information.
2110 | Digital Discovery, 2025, 4, 2104–2122
3.4. Assessing optimization performance

Constrained optimization performance is assessed using two
types of metrics. The rst is a usual optimization performance
metric, such as regret, cumulative regret or dominated hyper-
volume. The second concerns the fraction of total measurements
made by a strategy that is infeasible. Both metrics are considered
so as to not ignore the potential tradeoff between optimization
performance and avoidance of infeasible measurements.
Considering a SDL application where too many infeasible
measurements result in a broken or disabled experimental setup
necessitating a costly maintenance procedure to bring it back
online, a researcher may elect to use a strategy which sacrices
some optimization performance for a reduced number of infea-
sible recommendations. However, extreme avoidance of infea-
sible measurements, despite lowering the number of infeasible
suggestions, may result in poor convergence to optima, especially
those that are in close proximity to infeasible regions.

For experiments with continuous parameters and a single
objective, we use the metrics known as regret and cumulative
regret. The instantaneous regret aer k iterations, rk, is the
distance between the best objective function value found and
the global optimum,

rk= jf(x*) − f(xk
+)j. (9)

xk
+ are the parameters associated with the best objective value

inDf
k aer k iterations, sometimes referred to as the incumbent

point, i.e. for a minimization problem xkþ ¼ arg min
x˛Dk

f ðxÞ. x* are

the parameters associated with the global optimum of the
function. The cumulative regret, C is the sum of all regret values

aer some optimization budget b has transpired, Cb ¼
Xb
k¼1

rk.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Sample efficient optimizers should have a lower cumulative regret
value. For categorical parameter experiments with single objec-
tives, we measure the number of measurements needed for
a strategy to identify the best candidate in the Cartesian product
space.

4. Results and discussion
4.1. Analytical benchmarks

Eight analytical surfaces (four with continuous parameters and
four with categorical parameters) are used to test our constrained
optimization strategies. Specically, constrained analogues of
continuous functions Branin, Dejong, StyblinskiTang and Hyper-
Ellipsoid as well as the categorical functions Slope, Dejong, Camel
and Michalewicz are used.77 We add custom constraint functions
to each function, which are described in detail in previous work.6

All analytic surfaces are implemented in the Olympus
package.75,76 All categorical surfaces have 21 options per dimen-
sion, for a design space with a cardinality of 442.

The results of the discrete, ordered benchmarks are shown in
Fig. S4† and numerical values are given in Table S2.† The results
of categorical, unordered results are shown in Fig. S5.† The results
of the continuous benchmarks are shown in Fig. 3 and numerical
performance metrics are tabulated in Table 1. The budget b= 100
and each strategy is run 100 independently seeded times. The
rank regret metric is the average cumulative regret rank for that
strategy over 100 runs (± standard error of the mean). A rank of 1
is the best and a rank of 11 is the worst performing strategy for
a single run. Note that the rank statistics do not quantify the
improvement in optimization across the models, which is instead
observed in the regret traces in Fig. 3. Major takeaways from the
analytical benchmark results are itemized below.

� For fully-continuous functions, Atlas uses a constrained
gradient-based acquisition optimization strategy based on the
SLSQP algorithm.78,79 For highly constrained problems, we
observe that SLSQP undergoes serious convergence issues,
signicantly increasing the per-iteration runtime of Atlas. The
Atlas' genetic acquisition function optimizer is much faster and
does not sacrice performance compared to SLSQP (compara-
tive tests detailed in ESI Section S.1A(2)†). Thus, we use the
genetic acquisition optimizer for all tests in this work.

�When used in a feasibility-aware framework, we observe that
the upper condence bound acquisition function performs as
well as or better than the expected improvement (EI) criterion.
Comparative benchmarks are detailed in ESI section S.1A(1).†
We therefore use the UCB acquisition exclusively in this work.

� The näıve-ignore function completely disregards the
contribution of the feasibility classier in eqn (7). As such, for
continuous cases it gets stuck in infeasible regions and
repeatedly suggests the same parameters, as constraint viola-
tions have no effect on the acquisition function. Although a self-
avoidance procedure could remedy this limitation,§ we do not
study this further and discourage users from choosing näıve-
ignore for continuous parameter applications. For fully
§ Gryffin77 contains a density-based penalization on acquisition function values,
encouraging diversity in recommended parameters.

© 2025 The Author(s). Published by the Royal Society of Chemistry
discrete/categorical problems, on the other hand, avoidance of
duplicate parameters is implicit in Atlas, and näıve-ignore does
not suffer from the same limitation.

� For continuous problems, the näıve-replace or oor
padding strategy is effective in avoiding constraint violations
(lowest % infeasible measurements in 3/4 cases studied).
However, it is perhaps too biased toward this aspect, and opti-
mization performance is sacriced. This is especially recogniz-
able when the optimum of the problem is close to an infeasible
region, where this strategy tends to induce a (oen large)
penalty on a(x) that spills over into the optimal region.

� In general, as the feasibility-aware acquisition risk aversion
hyperparameter, t, is varied, the expected propensity for the FCA
and FIA functions to violate the constraint is observed (perhaps
more pronounced in the FCA case). Indeed, it is apparent that
a trade-off in t is required for good optimization performance
and to keep the constraint violation rate low. In fact, strategies
with moderate risk aversion, such as FCA-0.5 and FIA-1, are
among the best overall performers across the continuous
benchmarks, and are recommended for use as “jack-of-all-
trades” feasibility-aware acquisitions.
4.2. Inverse design of stable hybrid organic–inorganic halide
perovskite materials

Perovskite solar cells are a class of light-harvesting materials
which are typically characterized by inorganic lead halide
matrices with inorganic or organic ions.80–82 Via the optimiza-
tion of thin-lm manufacturing and device architectures,
perovskite materials have achieved revolutionary cell efficien-
cies in a matter of several years.83,84 Hybrid organic–inorganic
perovskites (HOIPs), perhaps most notably methylammonium
lead iodide (MAPbI3),85 constitute a class of perovskite
absorbers which are easy/cheap to manufacture and highly
efficient. However, toxicity and stability issues continue to
inhibit the large-scale adoption of HOIPs in commercially viable
photovoltaics.86,87

With the goal of identifying thermodynamically stable per-
osvskites that preserve the band gaps and charge transport
properties of MAPbI3, Körbel et al. reported a large-scale
computational screening of HOIP candidate materials,
accessed by chemical substitution of the form A+B2+X3−
(Fig. 4a).88 The goal of the screening was threefold: (i) discover
thermodynamically stable compounds with respect to the
convex hull of stability, (ii) preserve small effective masses
(inversely proportional to the mobilities of charge carriers), and
(iii) preserve optimal band gaps for photovoltaics.

The accessible parameter domain consisted of varying
options for the A+, B2+ and X3− components of the HOIP, where
A is a molecular cation (11 options), B is a divalent metal (29
options), and X is a halogen (4 options). Together, a total of 1276
initial compositions were considered. Körbel et al. successively
subjected the compositions to increasingly stringent stability
lters via high-throughput computation, until only 111 stable
candidates remained, for which the band gap, Eg, and effective
mass, m*, were nally calculated.88
Digital Discovery, 2025, 4, 2104–2122 | 2111
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Fig. 3 Constrained optimization benchmarks on 2d analytical functions with continuous parameters. The upper row shows contour plots of the
functions, with constrained regions shaded. Gray crosses show feasible measurements, while white crosses show infeasible measurements, and
pink stars show the location of the unconstrained global optima. The second row shows regret traces averaged over 100 independent runs,
proceeding for 100 evaluations each. The bottom row shows, as box-and-whisker plots, distributions of the percentage of infeasible
measurements selected by each strategy.

Table 1 Numerical benchmark results of feasibility-aware acquisition strategies on continuous 2d constrained surfaces. The rank regret metric is
the average cumulative regret rank for that strategy over 100 iterations (± standard error on themean). A rank of 1 is the best and a rank of 11 is the
worst performing strategy. The % infeas metric is the percentage of all measurements that are infeasible. All strategies are independently run 100
times. The best performing strategies for each application and performance metric are bolded. Statistical hypothesis testing is conducted using
Welch's t-test

Strategy

BraninConstr DejongConstr StyblinskiTangConstr HyperEllipsoidConstr

Regret rank (Y) % Infeas (Y) Regret rank (Y) % Infeas (Y) Regret rank (Y) % Infeas (Y) Regret rank (Y) % Infeas (Y)

Random 9.15 � 0.18 27.7 � 0.5 8.20 � 0.14 45.2 � 0.5 8.75 � 0.14 55.7 � 0.5 8.45 � 0.19 45.4 � 0.6
Näıve-replace 6.12 � 0.29 3.2 � 0.1 6.90 � 0.31 8.3 � 0.2 5.86 � 0.27 6.6 � 0.2 7.51 � 0.31 8.7 � 0.3
Näıve-ignore 9.10 � 0.25 83.1 � 2.5 9.74 � 0.16 93.3 � 0.2 9.21 � 0.20 94.0 � 0.2 6.62 � 0.34 63.3 � 4.3
Näıve-surrogate 8.72 � 0.32 81.6 � 2.8 9.54 � 0.15 93.3 � 0.2 9.47 � 0.16 94.0 � 0.2 7.36 � 0.34 65.7 � 4.2
FWA 4.64 � 0.22 11.0 � 0.9 4.29 � 0.22 49.7 � 0.2 4.43 � 0.28 15.4 � 1.2 4.20 � 0.27 6.2 � 0.3
FCA-0.2 6.44 � 0.26 24.5 � 1.7 6.65 � 0.16 83.6 � 0.3 6.63 � 0.23 50.0 � 2.5 4.89 � 0.27 8.9 � 0.8
FCA-0.5 4.31 � 0.21 9.4 � 0.7 4.06 � 0.26 49.6 � 0.3 4.37 � 0.24 13.8 � 1.0 5.04 � 0.29 8.6 � 0.9
FCA-0.8 3.52 � 0.25 7.9 � 0.5 4.93 � 0.37 16.0 � 0.4 4.34 � 0.30 9.9 � 0.7 5.04 � 0.35 7.3 � 0.7
FIA-0.5 4.29 � 0.23 14.0 � 1.0 3.66 � 0.19 49.6 � 0.3 4.60 � 0.29 16.5 � 1.3 7.89 � 0.14 13.8 � 1.1
FIA-1 4.80 � 0.23 13.7 � 1.0 4.07 � 0.21 50.7 � 0.2 4.12 � 0.25 15.0 � 1.1 4.51 � 0.27 6.2 � 0.4
FIA-2 4.91 � 0.25 20.9 � 1.7 3.96 � 0.21 53.6 � 0.3 4.22 � 0.24 15.5 � 1.2 4.49 � 0.24 6.0 � 0.3

2112 | Digital Discovery, 2025, 4, 2104–2122 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Constrained design of HOIP application. (a) HOIP design space featuring 11 molecular cations, 29 divalent metals, and 4 halogens (11× 29
× 4 = 1276 total options). (b) Results of the constrained optimization experiments. Bar charts show the number of evaluations and infeasible
measurements queried by each strategy before identifying a satisfactory material. Here, a satisfactory HOIP is one with 0.75 # Eg # 1.75 eV and
m* # 4. There are 7 such materials in the dataset from Körbel et al.88
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Thus, the unknown constraint in this experiment is the
combined stability lter, with c(x) = 0 for stable compositions
and c(x) = 1 otherwise. We frame the problem as a multi-
objective optimization with two objectives. The Chimera scala-
rizing function89 is used to compute a scalar-valued merit from
the pairs of objectives. Specically, we choose to minimize Eg of
the materials such that it is within the range 1.25 ± 0.5 eV
(relevant range for photovoltaics), and to minimize m* to at
most a value of 4. Out of the 111 candidates which passed the
stability lter, only 7 simultaneously satisfy both objectives, i.e.
have 0.75 eV # Eg # 1.75 eV and m* # 4 (∼6.3% of the feasible
space, or ∼0.5% of the initial space).
© 2025 The Author(s). Published by the Royal Society of Chemistry
The results of our constrained optimization experiments are
shown in Fig. 4b and tabulated in Table 2. Two metrics of
performance the number of experiments needed to nd a single
HOIP that satises both objectives, and the number of infea-
sible measurements encountered along the way are analysed.
Atlas optimizers use geometric and electronic descriptors of the
HOIP components to help guide the search (descriptor details
are given in ESI Section S.1D†). Each optimization run is
terminated aer it identies a single HOIP satisfying both
objectives, and each strategy is run 100 independent times.

On average, we observed that the FIA-2 and FCA-0.5 func-
tions explore the smallest fraction of the parameter space before
identifying a satisfactory material, at 3.9± 0.3% and 4.1± 0.9%,
Digital Discovery, 2025, 4, 2104–2122 | 2113
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Table 2 Numerical results of experiments on real-world applications. For the HOIP and drug design (single obj) applications, % explored is the
percentage of the optimization domain (± standard error) needed for each strategy to identify the single best candidate choice. For the drug
design (multi-obj) application, % explored is the percentage of the optimization domain needed to identify all Pareto optimal candidates. For all
applications, % infeas is the percentage of all measurements that are infeasible. The best performing strategies for each application and
performance metric are bolded. Statistical hypothesis testing is conducted using Welch's t-test

Strategy

HOIP Drug design (single obj) Drug design (multi-obj)

% Explored (Y) % Infeas (Y) % Explored (Y) % Infeas (Y) % Explored (Y) % Infeas (Y)

Random 13.6 � 0.8 89.7 � 0.6 50.4 � 1.6 26.7 � 0.6 95.4 � 0.7 21.2 � 0.0
Näıve-replace 4.2 � 0.2 80.4 � 1.5 11.9 � 1.2 25.4 � 1.5 54.2 � 0.8 13.8 � 0.2
Näıve-ignore 8.9 � 1.2 86.9 � 1.1 7.6 � 0.5 32.8 � 2.5 50.8 � 0.6 30.4 � 0.3
Näıve-surrogate 5.8 � 0.4 83.7 � 1.3 12.8 � 0.9 28.8 � 1.3 54.2 � 0.8 13.8 � 0.2
FWA 5.0 � 0.3 85.4 � 0.9 8.0 � 0.5 27.6 � 1.6 49.8 � 0.8 28.6 � 0.5
FCA-0.2 5.7 � 0.5 83.9 � 1.2 8.3 � 0.5 28.7 � 1.6 49.2 � 0.8 25.2 � 0.3
FCA-0.5 4.1 � 0.9 74.8 � 4.0 10.9 � 0.9 27.8 � 1.5 58.7 � 3.1 16.2 � 0.3
FCA-0.8 5.8 � 0.5 78.5 � 1.2 16.2 � 1.5 19.9 � 1.1 77.4 � 1.9 11.5 � 0.2
FIA-0.5 4.7 � 0.3 77.3 � 1.2 11.2 � 0.7 28.5 � 1.4 60.9 � 1.8 14.1 � 0.3
FIA-1 4.9 � 0.4 76.1 � 1.1 10.6 � 0.5 32.5 � 1.5 52.8 � 1.8 17.1 � 0.4
FIA-2 3.9 � 0.3 78.3 � 1.1 10.3 � 0.6 27.7 � 1.4 53.7 � 1.6 20.4 � 0.4
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respectively. The FCA-0.5 also measures the smallest percentage
of infeasible measurements during its campaigns, at 74.8 ±

4.0%. While measuring 3/4 infeasible measurements is indeed
a high constraint violation rate, we expect random sampling to
measure unstable HOIPs at a rate of roughly 92%. Also note-
worthy is that the näıve-ignore strategy, which turns off the
feasibility classier contribution in eqn (7), measures unstable
HOIPs at a rate of almost 87%. Therefore, by using our GP
feasibility classier and an appropriate feasibility-aware acqui-
sition function (such as FCA-0.5) we are able to reduce the rate
at which the constraint function is violated by about 14%
compared to the baseline. This translates to ∼180 failed
experiments, on average, that have been avoided through the
use of FCA-0.5.
4.3. (Poly)pharmacological design of BCR-Abl fusion protein
inhibitors

Desai et al.90 reported a ow technology platform which they
apply to the discovery of novel Abl kinase inhibitors, for which
the ow system enables synthesis, purication and analysis via
a bioassay. The authors conduct a search for kinase inhibitors
by combining 10 templates with 27 hinge binding aromatic
alkynes to span a space of 270 molecules, joined via a Sonoga-
shira coupling reaction (Fig. 5a).

Aer the experiment, the authors had subjected only 96/270
possible inhibitors to synthesis and bioassay. Of these, 71 were
synthetically successful and had IC50 measurements. Formally,
we have datasets Df;exp

K ¼ fxi; yigi¼1
K�L and

Dc;exp
K ¼ fxi;~yigi¼1

K , where K = 96 and L = 96 − 71 = 25. The
subscript exp is used to indicate that these data come directly
from the experiment.

Supervised learning is used to extend Df;exp
K and Dc;exp

K

datasets to cover all 270 possible inhibitors in order to provide
measurements for the full Cartesian product space. We rst
train a classier on Dc;exp

K which makes synthesizability
2114 | Digital Discovery, 2025, 4, 2104–2122
predictions for the remaining 174 candidates. This procedure
produces a hybrid dataset Df;hyb

K (containing both experi-
mental and virtual/predicted synthetic feasibilities) which is
ultimately used as the a priori unknown constraint oracle in our
optimization experiments. Next, a regressor is trained onDf;exp

K

and predicts the IC50 values for the structures deemed synthe-
sizeable by our classier. The NGBoost algorithm is used for
both classication and regression.91 The method is a probabi-
listic boosted decision tree model, and is quite robust in the
low-data regime. We also wanted to ensure that the extrapola-
tion did not create an objective function with a similar func-
tional form as GPs, since both the objective and feasibility
surrogates in Anubis are also GPs. Hence, we have opted to use
NGBoost in the dataset extrapolation to avoid any undue
advantage to the BO surrogates. Additional details on this
procedure, along with the cross-validated performance of our
supervised learning models, can be found in ESI Section S.1C.†

We acknowledge that the extension of the HOIP dataset may
propagate biases present in the original experimental data.
While this augmented dataset (now 270 points) is not intended
to be universally representative, its internal consistency ensures
a fair comparison of model performance for the related chem-
ical space, as all evaluated models are subject to the same
potential biases. The objective of our optimization experiments
is to minimize the IC50 value across the space of possible
inhibitors, subject to unknown synthesizeability constraints.
The results of the experiments are shown in Fig. 5b and tabu-
lated in Table 2. Once again, we examine the percentage of the
parameter domain traversed in order to nd the inhibitor with
the smallest IC50 in the dataset, and the percentage of infeasible
measurements incurred along the way. Template and alkyne
structures are represented to the optimizer using hand-selected
physicochemical descriptors accessed via the Mordred Python
library.92 Additional details on descriptor generation can be
found in ESI Section S.1C(4).†
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Overview and results of the Abl kinase inhibitor discovery application. (a) Reaction scheme for preparation of Abl kinase inhibitors via
a Songashira coupling reaction between 10 DFG binding templates and 27 aromatic alkynes, producing 270 possible inhibitor molecules. Also
shown is a depiction of the closed-loop platform used to iteratively prepare and test inhibitors. (b) Box-and-whisker plots show the number of
IC50 measurements needed by 2 distinct surrogate models with varying feasibility-aware acquisition strategies to identify the inhibitor molecule
with the smallest IC50 value. The horizontal dotted traces represent the mean ± standard error for random sampling. (c) Box-and-whisker plots
show the number of infeasible (i.e., non-synthesizable) inhibitors queried by each strategy before identifying the inhibitor with the largest IC50

value.
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For this application, we observe that the näıve-ignore, FWA,
and FCA-0.2 strategies need to traverse the smallest fraction of
the parameter space until identication of the inhibitor with
the minimum IC50, at 7.6 ± 0.5%, 8.0 ± 0.5%, and 8.3 ± 0.5%,
respectively. Compared with the HOIP application in the
previous subsection, which features 92% infeasible options,
© 2025 The Author(s). Published by the Royal Society of Chemistry
this application features only 21% infeasible options. This
difference is reected in the best performing strategies for this
application. It appears that for categorical applications char-
acterized by a small infeasible fraction, it behooves one to use
strategies which are less risk-averse when it comes to violating
the constraint function. In fact, näıve-ignore is among the most
Digital Discovery, 2025, 4, 2104–2122 | 2115
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efficient search strategies, and completely turns off the feasi-
bility classier contribution in eqn (7). However, a more risk-
averse strategy, such as FCA-0.8, measures infeasible points at
a markedly lower rate (19.9 ± 1.1) but does so at the cost of
roughly double the amount of evaluations needed to nd the
optimum. Researchers should thus exercise balance between
optimization performance and constraint violation risk aver-
sion in their selection of feasibility aware acquisition functions.

We also conduct an experiment which extends the BCR-Abl
protein inhibitor design application to the multi-objective
optimization setting. Here, we task Atlas with identifying
inhibitors with a polypharmacologial effect, in other words,
identifying a single drug molecule that is able to act on multiple
targets or disease pathways. The well-studied tyrosine kinase
inhibitor Imatinib was originally designed as a selective inhib-
itor for the BCR-Abl fusion protein to treat chronic myeloid
lukemia,93,94 but was later shown to inhibit non-oncogenic C-Abl
kinase in normal cells. Indeed, it is Imatinib's poly-
pharmacological prole that has been suggested to form the
basis of its therapeutic activity. Protein kinase inhibitors that
exhibit polypharmacology thus can have improved efficacy and
the potential to treat multiple types of cancer, but may come
with the added risk of serious side effects.95 We create two
additional virtual objectives by extrapolating the IC50 of the
inhibitors reported by Desai et al. for two additional tyrosine
kinase receptors: the platelet-derived growth factor receptor
(PDGF) and stem cell growth factor (KIT). Datasets of IC50 values
for tyrosine kinase inhibitor drugs against both KIT and PDGF
were procured from BindingDB.96–99 We train message-passing
neural networks (MPNNs) on each dataset using the Chem-
prop framework,100–102 which achieve satisfactory performance
(test set Pearson coefficients$0.88). The trained MPNN models
then predict values for the Desai et al. inhibitors, which are used
as lookup table objectives in our multi-objective optimization
experiments. Additional details on the construction of the
multi-objective problem can be found in ESI Sections S.1C(2)
and (3).† These tests use the same synthesizability constraint
function as do the previous single objective experiments. Multi-
objective optimization strategies seek to maximize the domi-
nated hypervolume of the objective space by using the hyper-
volume indicator as a scalarizing function.103–106 In other words,
strategies seek to simultaneously minimize the IC50 values for
all three receptors. The results of these experiments are tabu-
lated in Table 2. Numerical values report the percentage of the
parameter space measured for strategies to identify the entire
Pareto set, i.e. the set of inhibitors for which improvement of
one receptor's IC50 value is not possible without simultaneously
deteriorating another's value. In this dataset, the Pareto set
consists of 13 inhibitors.

The results for the multi-objective analogue of the kinase
inhibitor design problem illustrate a similar picture to its single
objective counterpart and reinforce our ndings. Strategies
characterized by a higher degree of constraint violation risk
tend to fully resolve the Pareto front aer evaluation of about
half of the parameter space. Comparatively, we expect to explore
about 95% of the space using random sampling before this
condition is met. Again, the FCA-0.8 strategy, which induces
2116 | Digital Discovery, 2025, 4, 2104–2122
a high degree of risk aversion violates the synthesizability
constraint function at a rate of only 11.5± 0.2%, the lowest such
rate among tested strategies.
5. Choosing feasibility-aware
acquisition functions

In this section, we outline the best practices for choosing
a feasibility-aware acquisition function for a new optimization
problem. The constrained fraction of the optimization domain
appears to greatly inuence the optimal choice. Unfortunately,
this value is a priori unknown for a new problem, and can only
be estimated using historical measurement data, instrument
limitation information, or expert knowledge. When beginning
a new SDL application, we encourage researchers to bootstrap
an estimate of the constrained fraction to inform their selection
of a feasibility-aware acquisition function. For certain experi-
ments, researchers may have domain knowledge built upon
years of experience that is hard to formalize or quantify. Ulti-
mately, the selection of the feasibility-aware optimization
strategy should be guided by any known prior information
about the setup, such as the difficulty of the experiment and the
cost or risk associated with infeasible suggestions. We detail
some considerations below.

We observed that for highly constrained problems, e.g., the
design of HOIPs, the most effective strategies were risk-averse,
such as FCA-0.8. Contrastively, for slightly constrained prob-
lems, e.g. the design of BCR-Abl inhibitors, we observed that
less risk-averse strategies tended to locate promising objectives
most efficiently, such as näıve-ignore and FCA-0.2. However,
these strategies were not among the most effective approaches
to avoid constraint violations.

For a new SDL application, we recommend that researchers
tailor their choice of feasibility-aware acquisition functions to
the specic characteristics of their scientic problem and
laboratory. Most importantly, researchers should rst deduce
how “inconvenient” constraint violations will be. The least
inconvenient violations could be almost indistinguishable from
objective measurements in terms of spent resources, time or
risk. The most inconvenient violations might involve a signi-
cant resource, time or risk penalty, due to necessary instrument
repair or recalibration or even the preparation of dangerous
substances. When constraint violation inconvenience is low,
researchers are free to simply choose the optimization strategy
expected to perform best. For moderate inconvenience, we
recommend a strategy which balances risk-aversion and opti-
mization performance, such as FCA-0.5 or FIA-1. For highly
inconvenient constraint violations, we recommend choosing
the FCA function with t set close to 0.8.
6. Conclusion

In summary, Anubis presents a comprehensive discussion and
benchmark of Bayesian optimization strategies to deal with the
presence of a priori unknown parameter space constraints,
a critical aspect of self-driving laboratory research. We discuss
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and benchmark several existing approaches and provide novel
techniques in this regard, manifested as feasibility aware
acquisition functions which balance sampling of promising
parameters with avoidance of parameters predicted to be
infeasible. A variational Gaussian process classier is used to
efficiently learn the constraint function on-the-y. All
feasibility-aware acquisition functions are implemented in the
Atlas BO library for facile use by the community in their self-
driving laboratories. Extensive benchmarks are reported for
both analytic optimization functions and on two real-world
chemical design/discovery applications.

We discuss the best practices for choosing feasibility-aware
acquisition functions in the context of SDL applications, and
encourage researchers to strongly consider constraint violation
inconvenience within their SDL setup before choosing a strategy.
Our results suggest that feasibility-aware approaches provide
advantages when infeasible regions are non-trivial. As these
regions shrink, their performance remains on par with that of
näıve strategies. This shows that balanced, feasibility-aware
strategies are good general-purpose choices for SDL applica-
tions where feasibility constraints are initially unknown and can
potentially result in more costly experiments. Future work can
further benchmark and study the relationship between the
infeasibility region and the optimization performance. We note
that the associated overhead of using feasibility-aware models is
not considered in this work, which would typically be out-
weighed by SDL experimental costs. However, for other BO
applications, additional studies on the computational cost of the
Anubis strategies are needed. Furthermore, a promising avenue,
aligning with active learning principles,107,108 would be the
development of acquisition functions that explicitly seek to
gather information about the constraint function c(x). Such
strategies would aim to reduce uncertainty in the feasibility
boundary itself, which could be benecial when evaluating c(x),
is separate from the target f(x) and is particularly expensive. This
work lays the foundation for future studies on Bayesian optimi-
zation in the presence of a priori unknown constraints and
increases the practicality of available optimization soware for
autonomous science applications.

Data availability

Atlas is available open-source on GitHub at https://github.com/
aspuru-guzik-group/atlas under an MIT license. Atlas
was used for this study, which is available at https://doi.org/
10.5281/zenodo.14623245. Users are also encouraged to check
the package's documentation and tutorial notebook. The data
and scripts used to run the experiments and produce the
plots in this paper are also available on GitHub at https://
github.com/aspuru-guzik-group/atlas-unknown-constraints.
The dataset, code, and result les of this repository are available
at https://doi.org/10.5281/zenodo.15557966.
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