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anic synthesis for redox flow
batteries via flexible batch Bayesian optimization

Clara Tamura, a Heather Job, b Henry Chang, a Wei Wang, bc

Yangang Liang *bc and Shijing Sun*a

Traditional trial-and-error methods for materials discovery are inefficient to meet the urgent demands

posed by the rapid progression of climate change. This urgency has driven the increasing interest in

integrating robotics and machine learning into materials research to accelerate experimental learning.

However, idealized decision-making frameworks to achieve maximum sampling efficiency are not always

compatible with high-throughput experimental workflows inside a laboratory. For multi-step chemical

processes, differences in hardware capacities can complicate the digital framework by introducing

constraints on the maximum number of samples in each step of the experiment, hence causing varying

batch sizes in variable selection within the same batch. Therefore, designing flexible sampling algorithms

is necessary to accommodate the multi-step synthesis with practical constraints unique to each high-

throughput workflow. In this work, we designed and employed three strategies on a high-throughput

robotic platform to optimize the sulfonation reaction of redox-active molecules used in flow batteries.

Our strategies adapt to the multi-step experimental workflow, where their formulation and heating steps

are separate, causing varying batch size requirements. By strategically sampling using clustering and

mixed-variable batch Bayesian optimization, we were able to iteratively identify optimal conditions that

maximize the yields. Our work presents a flexible approach that allows tailoring the machine learning

decision-making to suit the practical constraints in individual high-throughput experimental platforms,

followed by performing resource-efficient yield optimization using available open-source Python libraries.
Introduction

Materials exploration for energy storage systems plays a critical
role in advancing toward a carbon-free power grid.1 Although
solar and wind power are pivotal for decarbonization, their
status as intermittent energy sources necessitates using large
and robust storage solutions to ensure grid stability.2 Redox
ow batteries (RFBs) have demonstrated great potential for grid
storage due to their high energy density properties and lower
costs compared to their inorganic counterparts.2 In particular,
aqueous RFBs provide a sustainable and safe solution for large-
scale energy storage. However, their progress has been hindered
by the scarcity of organic compounds that combine high solu-
bility in water with reversible redox behavior within the water
stability window.3,4 Feng et al. achieved a notable breakthrough
recently by applying molecular engineering to modify 9-
uorenone, an inexpensive redox-active molecule.4 Through the
introduction of sulfonate (–SO3

−) groups, the solubility of
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uorenone derivatives was signicantly improved in aqueous
electrolytes, enabling efficient and stable two-electron redox
reactions without the need for catalysts. Moving forward,
developing milder conditions for sulfonation reactions that
minimize or eliminate the need for excessive fuming sulfuric
acid is of great interest. Such advancements are critical to
overcoming the scalability challenges of uorenone-based
aqueous RFBs, enabling their broader adoption for large-scale
energy storage applications.3–9

Effectively screening and identifying optimal synthesis
conditions across high-dimensional design spaces has long
been a fundamental challenge in chemical science. Traditional
human-centric approaches to exploring large chemical spaces
are hindered by the limited number of samples that can be
prepared manually in a single round, impeding the iterative
processes of condition optimization and introducing batch-to-
batch variations due to non-standardized sample handling.10

Recent advancements in robotics and machine learning (ML)
have begun to address these challenges through the develop-
ment of self-driving labs (SDLs).11–19 In SDLs, high-throughput
experimentation (HTE) platforms are oen employed to
conduct chemical synthesis and characterization without
human intervention.14,17,20 These systems are capable of
handling multiple samples in parallel with high reproducibility,
Digital Discovery, 2025, 4, 2737–2751 | 2737
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signicantly accelerating the research timelines. For example,
Liang et al. demonstrated the use of the high-throughput
system to create large-scale high-quality solubility databases
of redox-active materials for RFBs.11

It is worth noting that brute-force screening using HTEs
alone oen leads to excessive raw material consumption and
prolonged experiment times, making it incompatible with
sustainable research practices. A critical aspect of self-driving
laboratories is therefore the development of decision-making
methods, increasingly powered by machine learning (ML), to
enable smart automation that aimed to achieve efficient
learning with minimal experiments.10 In the past decade,
Bayesian Optimization (BO), an active learning method, has
gained signicant traction in AI-guided chemical experiments
due to its efficiency and versatility for noise-heavy
experiments.21–25 BO iteratively updates a stochastic surrogate
model, such as Gaussian Process (GP) regression, and employs
analytical acquisition functions to determine the next set of
experimental parameters. Among BO approaches, Batch BO
(BBO) is particularly well-suited for HTE systems, as it can
suggest multiple per round of experimentation.26

Despite several recent studies successfully employing BBO to
guide chemical synthesis,14,17,20 a critical yet overlooked issue is
the disconnect between hardware constraints and algorithm
design. Inside a chemistry laboratory, synthesis typically
involves multi-step processes requiring more than one piece of
equipment. For instance, a liquid handling robot can prepare
a 96-well plate each round, but all at a single, xed temperature
on a conventional lab bench. Existing BBO algorithms and
soware packages typically operate under idealized assump-
tions, enforcing a xed batch size per sampling round across all
dimensions of interest, ignoring the complexity in reality, such
as the number of compositions that can be explored per round
is limited by the number of available wells, while temperature
constraints depend on the number of heaters. Current
approaches fail to account for the practical limitations imposed
by hardware capabilities. As a result, these algorithms oen
struggle to adapt to real-world laboratory setups, leading to
inadequate, if not wasteful, experimental plans where the
algorithm recommendations exceed physical capabilities in the
system or operate with a suboptimal allocation of hardware
resources. To bridge this gap, resource-aware experimental
design methods are urgently needed for autonomous sampling
on high-throughput platforms.

In this study, we developed three exible BBO frameworks to
address sampling challenges in high-dimensional design
spaces where some dimensions are subject to different batch
size constraints. Our objective was to optimize the sulfonation
reaction to enhance the solubility of uorenone-based aqueous
RFBs using an HTE platform. By iteratively varying the
concentrations of the sulfonating agent and uorene analyte,
reaction time, and temperature, we identied 11 conditions
achieving high reaction yields (yield > 90% under mild condi-
tions of <170 °C), to mitigate the hazards associated with
fuming sulfuric acid. To accommodate different batch size
requirements between compositions and temperature
sampling, each framework employed a two-stage BO approach
2738 | Digital Discovery, 2025, 4, 2737–2751
within a four-dimensional (4D) design space, utilizing strategies
of (1) post-BO clustering, (2) post-BO temperature redistribu-
tion, and (3) temperature pre-selection, respectively. The
frameworks successfully identied optimal synthesis condi-
tions and were evaluated based on their optimization efficiency
and predictive accuracy. We introduce exible decision-making
frameworks to bridge the gap between idealized optimization
strategies and practical sampling constraints, which we hope to
shed light on sustainable autonomous chemical research.

Results and discussion
High-throughput experimentation platform

The explored chemical space of the sulfonation reaction
consists of two formulation parameters and two process
parameters spanning four dimensions. The variables of interest
are reaction time (min), reaction temperatures (°C), sulfuric
acid (%), and the concentration of uorenone analyte (mg
ml−1). For simplicity, we refer to these variables as time,
temperature, sulfonating agent, and analyte, respectively,
throughout the paper. The sampling boundaries are as follows:
time (30.0–600 min), temperature (20.0–170.0 °C), sulfonating
agent (75.0–100.0%), and analyte (33.0–100 mg mL−1). These
boundaries of the search space were selected based on prior
literature (see more details in the section “Chemical Insight” in
SI). State-of-the-art synthesis involves sulfonation using fuming
sulfuric acid, which oen leads to a release of sulfur trioxide
fumes at high synthetic temperatures, posing challenges in
reactivity control and energy efficiency.4 In this paper, we
address these issues by optimizing reaction conditions under
mild temperature ranges, aiming to reduce excessive fuming,
enhance energy efficiency, andmaintain high reaction yield and
product quality.

Fig. 1 illustrates the digital and experimental workow for
the conducted experiment. The HTE synthesis system is
equipped with liquid handlers for formulation, robotics arms
for sample transfers, and three heating blocks for temperature
control. Each heating block can accommodate up to 48 samples
per plate. Assuming three replicates per condition and three
controls, the total number of unique conditions we are able to
generate per batch is 15 conditions with 45 specimens, hence
we designed the experimental workow for 15 conditions per
batch. For initializing the optimization process, the rst round
of conditions was generated using four-dimensional (4D) Latin
Hypercube Sampling (LHS),27 where 15 unique sets of condi-
tions were generated. Since the synthesis hardware only has
three heating blocks, the capacity is limited to three tempera-
ture values, and therefore, we need tomodify the LHS-generated
conditions. The LHS-generated temperatures were clustered to
determine three temperatures, where the centroids of the
clusters were determined. LHS is a form of conned random
sampling designed to span the parameter space with a degree of
symmetry; hence, the temperatures in Round 1 were evenly
spaced. The original temperatures from the initial LHS were
reassigned with the newly found centroid temperatures by
proximity. Aer all 45 specimens were synthesized, they were
transported to a high-performance liquid chromatography
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Illustration of the closed-loop experimental workflow with the digital and physical framework. First, a set of conditions is sent to a multi-
process synthesis robotic platform. Synthesized samples are transferred to a characterization station for data collection and analysis to extract
the desired reaction outcome. The results from the characterization are used to create a Gaussian Process Regression surrogate model, and
a multi-step BO is conducted as the decision-making step to generate the next set of suggested conditions for sampling. This iteration of
generated conditions and collecting the reaction outcome is continued until the desired target is reached.
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(HPLC) system for automatic characterization, as shown in
Fig. 1.
Decision-making models

Aer the rst round of HPLC data was collected, feature
extraction for each HPLC was conducted to determine the
percent yield of the product. The desired features from the areas
of interest are the peaks corresponding to product, reactant,
acid, and byproducts. The percent product yield was calculated
using the areas determined under each peak. These yields are
the outputs of interest for training the model. To prepare the
data, the mean and variance of the three repeated specimens
per condition were calculated and implemented to train the
surrogate GP model. The output is the mean values, and the
variance is the noise. The optimization goal for our algorithms
is to nd conditions with the highest product yield. Conse-
quently, all our algorithms are designed for single-task BO. For
benchmarking purposes, we used the same acquisition func-
tions across all models (see Methods: digital).

A key challenge in our application is that temperature is
constrained to three values per batch due to hardware limita-
tions, while for the rest of the three dimensions of analyte,
sulfonating agent, and reaction time, 15 values can be sampled
per variable per batch. Automated HPLC characterization was
only conducted aer the completion of both formulation and
© 2025 The Author(s). Published by the Royal Society of Chemistry
heating. When designing the sampling strategy for our BBO
framework, the question we are trying to answer is: How do we
handle varying batch sizes within a single round of sampling?

Model A: post-BO clustering. In the rst round of sampling,
discrepancies in variable sizes were addressed by reassigning
the LHS-generated temperatures with the proximal centroids of
the clustered temperatures. This same clustering approach in
Round 1 can also be applied to conditions sampled from a 4D
BBO with a xed batch size. In Model A, a GP surrogate model
was trained on the rst round of data collection, and a 4D BBO
of batch size 15 was performed to identify the next 15 optimal
conditions. The generated conditions were then clustered into
three temperature groups, and the centroids of the clustered
groups replaced the BBO-suggested temperatures (Fig. 2: Model
A). These ML-suggested conditions were then sent to the high-
throughput experimentation platform for data collection.

Model B: redistribution of chosen temperatures. For this
approach, we compare the effects of post-BO and pre-BO clus-
tering to determine which method is suitable for condition
generation. While Model A resolves the hardware issue for
varying batch size, reassigning temperatures post-BO sampling
raises concerns about whether conditions are optimally
selected. By replacing the BO-suggested temperatures with
clustering centroids, we overlooked the possibility that the
variables sampled from the other three dimensions of
sulfonating agent, time, and analyte in the generated sets are no
Digital Discovery, 2025, 4, 2737–2751 | 2739
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Fig. 2 Illustration of sampling strategies for round one conditions and the subsequent rounds. Three sampling strategies labeled Model A, Model
B, and Model C show the multi-step process that was applied for the respective strategies in the subsequent rounds. Round one: (1) n = 15
conditions were generated using four-dimensional (4D) latin hypercube sampling, (2) generated conditions are clustered into three temperature
groups, (3) shape of suggested conditions. Model A: (1) 4D batch BayesianOptimization (BBO) with a Gaussian Process (GP) surrogatemodel with
batch size= 15, (2) generated conditions are clustered by temperature (T). Model B: (1) 4D BBOwith a GP Surrogatewith batch size 15 to generate
a full set of conditions, (2) generated conditions are clustered by T (same process as Model A), (3) conditions for×1,×2,×3 are regenerated using
mixed-variable BO of batch size 15 with temperatures from the cluster. Model C: (1) 4D BBO with a GP Surrogate with batch size = 3, (2)
conditions for ×1, ×2, ×3 are regenerated using mixed-variable BO of batch size 15 with temperatures chosen from previous BO.
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longer optimal at the newly assigned temperatures. This
potentially could affect the exploration and the resulting opti-
mization. This realization prompted us to develop a second
approach that regenerates the other variables, assuming pre-
selected temperatures. Aer reviewing various approaches to
BO, we found mixed-variable BO as a possible method for
generating sampling conditions given prior temperatures.28,29

Mixed-variable BO is an algorithm that allows a mixture of
continuous and categorical inputs, making it well-suited for
real-world engineering problems where not all variables are
continuous.28 Hence, by discretizing the temperature variable,
mixed-variable BO effectively convolves the temperature cate-
gories with the remaining continuous variables. The same
temperatures from Model A were used for constructive
comparison to determine whether this approach optimizes the
system effectively.

Model C: temperature pre-selection. A challenge with mixed-
variable BO in our application is that temperature is, in practice,
a continuous variable, not discrete. Mixed-variable BO assumes
that categorical variables remain xed from their initialization,
thus creating a mismatch between how temperature is selected
and updated each round. Keeping the same constrained
temperatures each round would limit the exploration of the
2740 | Digital Discovery, 2025, 4, 2737–2751
chemical space, which negatively impacts our efficiency in
nding the optimal conditions in the entire design space.
Ideally, we wanted a BO method that could update the category
at each iteration; however, current mixed-variable BO models
assume pre-selected categories, so categories remain constant
in subsequent rounds of sampling. To address this issue, we
adopted a sequential BO approach that uses two BO steps in the
framework, which would enable temperature categories to
update aer each iteration. The Model C BBO framework
consists of two BBOs of batch sizes 3 and 15 that rst choose 3
temperatures, then redistribute the temperatures using mixed
variable BBO. We performed a 4D BBO with a batch size of 3 to
select the temperatures. Then, the chosen temperatures were
incorporated into a mixed variable BO of batch size 15, so that
the other variables have been optimized based on the 3
temperature inputs. This approach preserves BO's exibility in
exploring the chemical space and utilizes the same condition
regeneration strategy as Model B.
Model summary and experimental results

Two rounds of data collection following each subsequent
sampling strategy were conducted, resulting in 45 iteratively
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00017c


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 2
:1

4:
42

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
sampled conditions in each surrogate model training. Since the
BBO approach was used, the Gaussian process regression
models were updated aer each round of data collection,
instead of aer each individual data point collection. All the
models combined, we collected 105 unique synthesis condi-
tions and generated 315 specimens across three rounds of data
collection. For a visual representation of the entire space for
each model and each round, a four-dimensional (4D) repre-
sentation was constructed using 3D surface plots with slices
along the z-axis (Fig. 3a, 4a and 5a). These plots visualize the
optimization process and outcomes across different rounds and
show how the model navigates the 4D input space of time,
temperature, sulfonating agent, and analyte to predict the
product yield. The three continuous variables, time, sulfonating
agent, and analyte, are represented by the 2D surface plots
where the x-axis and y-axis are time and sulfonating agent, and
each slice is the analyte. The fourth dimension, temperature, is
represented as a constant across the entire GP model. To visu-
alize the effects of temperature, we spanned the temperature by
plotting each 3D surface slice at min, max, mean, and inter-
quartile ranges (SI Fig. S9–S11). All axes are from 0 to 1 as all
variables have been normalized. All models show a consistent
trend where temperatures at the upper quartile are optimal for
high product yield. Additionally, the optimal regions are
observed at the upper corners, but do not increase linearly,
indicating that the optimizations are effective for this chemical
space. The progression of the exploitation of the space provides
insight into the differences between the sampling strategies. As
observed in Model A, the subsequent rounds have light areas
that are narrowed aer every iteration, which suggests that the
algorithm successfully exploits to locate high-yield regions. On
the other hand, Model C appears to explore the space more
broadly, as each successive round shows minimal change,
suggesting a slower learning rate. The differences in learning
rate are further supported by the model uncertainty gures,
which are located in the SI (Fig. S9–S11). Fig. S9 displaying
Model A's uncertainty shows that the highest uncertainty in the
subsequent rounds is located at the temperature boundaries.
The uncertainty for Model B is similar to that of Model A but
exhibits more exploration, indicated by the lower uncertainties
at the boundaries. Model C has the lowest uncertainty among
the other models, and the uncertainty decreases in subsequent
rounds, suggesting that Model C exhibits high exploration and
a slow learning rate. Panels b of Fig. 3–5 display the 2D contour
plots of the posterior mean and histograms of one of the slices
in the nal round (Round 3), showing all variable pairs with
xed constants set at the upper quartile values. They depict the
most distinct regions of high yield and visualize the impact to
the variable pairs on the product yield. The histograms show the
distribution of selected parameters per variable, visualizing the
differences in condition selection. We observe that for the same
chemical space, the resulting nal round posteriors from each
model show different contours. Generally, there seems to be an
agreement for locations of high yield, evidenced by the overlap
in the high-yield region. However, Model A has clear, narrow
regions compared to Models B and C, which indicate stronger
exploitation. These observations from the contour plots and
© 2025 The Author(s). Published by the Royal Society of Chemistry
histograms reveal the differences in sampling strategies, as the
shape of the contours reects variations in the selected
conditions.
Optimization methods comparison

We structured the optimization experiments to compare two
key aspects of the sampling process in our exible BBO frame-
work development: (1) the effects of pre- and post-clustering in
BBO, and (2) the impact of different temperature selection
methods. To evaluate the effectiveness of the three optimization
methods, bar graphs showing the number of samples greater
than 90%, 70%, and 50% yield were constructed. Additionally,
we displayed the raw data from all three models against each
parameter with the 90% and 50% yield threshold lines to
visualize the impact of individual parameters on the outcome.

Pre- and post-clustered temperature. Models A and B deter-
mine three temperature levels by clustering temperatures
generated from 4D BBO. Since the methods of selecting
temperatures are the same, we used the same temperatures for
both models. The key difference between the models is that
conditions in the other three dimensions of the sulfonating
agent, analyte, and time in Model B are regenerated to optimize
at the given temperatures, whereas Model A modies only the
temperatures. The result of the effects is apparent in the
histograms of the inputs seen in Fig. 3b and 4b. While both
models use the same temperature levels, the distribution of all
the inputs is different. Notably, Model A tends to sample longer
reaction times, temperature splits between the mid and high
ranges, and analyte around the median value. On the other
hand, Model B appears to demonstrate exploration as the
distribution of the histograms for each variable is spread out,
while Model A conditions tend to be skewed.

Referring to the bar graph in Fig. 6a, we observe the cumu-
lative count of conditions yielding products greater than 50%,
70%, and 90%. These results highlight the model's ability to
locate conditions of high yield. Both models identify conditions
with high yield across all rounds, but Model A consistently nds
more conditions with high yield. Overall, out of the 45 sampled
conditions per model, Model A identied 7 conditions (15.6% of
samples in A), while Model B identied 4 conditions above the
90% threshold (8.88% of samples in B). For the >50% threshold,
Model A identies 19 conditions, accounting for 42.2% of the
space, while Model B identies 14 conditions covering 31.1%.

Clustered and BO-generated temperature selection. The
comparison of Model B and C focuses on the strategies for
temperature selection. Both models use mixed-variable BO to
regenerate conditions using predetermined temperatures. The
key difference is in the temperature selection strategy, where
one employs clustering and the other employs a BBO of batch
size 3. As observed in the posterior contours from Fig. 5(a and
b), Model C identies a broader range of high-yield regions
compared to the other twomodels. Additionally, the uncertainty
gures for Model C are much lower than the other two models
with a maximum uncertainty at round 2 being 0.04 (Fig. S11).
This suggests that Model C has more exploration. When looking
at the performance of identifying high-yielding conditions
Digital Discovery, 2025, 4, 2737–2751 | 2741
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Fig. 3 Model A: T-clustering, (a) four-dimensional (4D) visualization of posterior means for each round (x-axis: time, y-axis: sulfonating agent, z-
slices: analyte, constants: temperature. All axes are normalized and plotted between 0 and 1) (b) two-dimensional posteriors mean contours
selected from the final rounds plotted against every input pair (hidden variables are constant at the upper quartile value (0.75). All axes are
normalized and plotted between 0 and 1).

2742 | Digital Discovery, 2025, 4, 2737–2751 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Model B: T-redistribution, (a) four-dimensional (4D) visualization of posterior means for each round (x-axis: time, y-axis: sulfonating
agent, z-slices: analyte, constants: temperature. All axes are normalized and plotted between 0 and 1) (b) two-dimensional posteriors mean
contours selected from the final rounds plotted against every input pair (hidden variables are constant at the upper quartile value (0.75). All axes
are normalized and plotted between 0 and 1).

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 2737–2751 | 2743
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Fig. 5 Model C: T-preselection, (a) four-dimensional (4D) visualization of posterior means for each round (x-axis: time, y-axis: sulfonating agent,
z-slices: analyte, constants: temperature. All axes are normalized and plotted between 0 and 1) (b) two-dimensional posteriors mean contours
selected from the final rounds plotted against every input pair (hidden variables are constant at the upper quartile value (0.75). All axes are
normalized and plotted between 0 and 1).

2744 | Digital Discovery, 2025, 4, 2737–2751 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Visualization of overall results for comparison. (a) Bar graph counting samples that yielded greater than 50%, 70% and 90% yield, (b) SHAP
analysis for Gaussian Process Regression with full dataset, Fig. 4c–f plots the data of all threemodels and yields greater than 90% are markedwith
a red cross: (c) reaction time vs. product-yield of all collected samples, (d) temperature vs. product-yield of all collected samples, (e) sulfonating-
agent vs. product-yield of all collected samples, (f) analyte vs. product-yield of all collected samples.
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shown in Fig. 6a, Model C struggles to identify high-yielding
conditions, evidenced by the low count of high-yielding
samples compared to other models. Additionally, we can see
that the second sampling round was unsuccessful in nding
any conditions greater than 90% yield. Overall, the model
identied 10 conditions greater than 50% yield (22.2% of
samples in C) and 4 conditions greater than 90% yield (8.8% of
samples in C). The lack of exploitation is further conrmed by
the GP model's posterior visualizations (Fig. 5a), showing
minimal renement of high-yield regions between each round.
In contrast, Models A and B display clearer narrowing onto
high-yield regions. Our results suggest that clustering is more
effective for temperature selection in this chemical space. On
the other hand, the two-stage BBO approach, where mixed-
variable BBO is used for resampling, proved less efficient, as
Model A overperformed relative to Model B during our
campaign of optimizing synthesis conditions of redox-ow
molecules.
Selected synthesis conditions

Beyond evaluating the performance of the three exible BBO
models, the scientic goal of this study was to identify an
optimal synthesis condition with milder reaction conditions yet
producing a high product yield. We are interested in the
conditions that generate the highest yield yet minimize the
input conditions. However, since we conducted a single
© 2025 The Author(s). Published by the Royal Society of Chemistry
objective BBO for each model, we cannot conclude whether the
conditions found from this BBO optimization are the optimal
conditions minimized. Nevertheless, the high-yield conditions
generated from this experiment can give us insight into prob-
able conditions for future work.

A summary of all conditions yielding over 90% product yield
is provided in Table 1, which highlights the high-performing
outcomes. We observe that there is a slight trade-off between
time and temperature, where lower temperatures require longer
reaction times and vice versa. We also observe that the highest
yields were achieved by conditions with the highest tempera-
tures. Generally, there appear to be three distinct groups of
conditions. One is characterized by high temperatures, short
reaction times, high concentrations of sulfonating agents, and
large amounts of analyte, and the other is characterized by
longer reaction times, lower temperatures, lower concentra-
tions of sulfonating agents, and higher amounts of analyte. The
third grouping exists at lower temperatures, shorter reaction
times, and high concentrations of the sulfonating agent, along
with low amounts of the analyte. This indicates that there are
several local maxima that result in a high yield of product.
Referencing the plots of the output yield vs. the individual input
variables, we can identify the most inuential factor affecting
the reaction output for chemical insight. Additionally, Fig. 6b
presents a SHAP analysis performed on the Gaussian Process
model trained with all 105 samples, which provides insight into
Digital Discovery, 2025, 4, 2737–2751 | 2745
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Table 1 All synthesized conditions that yielded greater than 90%
product

Model
Time
(min)

Temp
(°C)

Sulf
(%)

Anly
(mg mL−1)

Yield
(%)

ABC 353 145 94 66 97
ABC 391 145 97 35 97
A 545 133 96 82 95
A 556 133 89 46 91
A 561 133 87 67 91
A 569 137 99 65 97
A 600 137 93 56 94
B 206 133 95 49 91
B 372 133 96 41 92
C 350 139 97 68 98
C 430 139 95 87 95
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the variable inuence on the model and chemical space. SHAP
(SHapley Additive exPlanations) is a technique used to quantify
the contribution of each input variable to the model's predic-
tions and provide insights into the relative importance and
inuence the input features have on the output. Using these two
panels from Fig. 6 to rank the variables by inuence, we can see
that temperature has the greatest impact, followed by
sulfonating agent, reaction time, and analyte. Fig. 6e shows
a clear high-yield operating range, where temperatures above
130 °C are essential for generating conditions exceeding 90%,
suggesting that lower temperatures fail to activate the substrate
efficiently. Referencing Table 1, we can see that the lowest
temperature producing high-yield was 133 °C. The sulfonating
agent is the second inuential variable among the reaction
conditions, with an effective concentration range above 87%.
Narrowing these search bounds for temperature and
sulfonating agents could accelerate optimization. Reaction time
ranks third in impact on the reaction outcome. Based on Fig. 4c,
the optimal operating ranges for reaction time are between 200
and 600 minutes, providing insight into the trade-off between
reactivity and throughput. The shortest reaction time identied
in this experiment was 206 minutes, which achieved 91% yield.
Finally, the analyte had the least impact on the reaction
outcome. Its range spans the dened boundaries without
signicantly inuencing the yield, indicating that it is not
a critical variable for optimization. These ndings demonstrate
that temperature and sulfonating agent concentration are the
most inuential factors, whereas analyte concentration plays
a minor role. The minor role that the analyte plays in the
reaction outcome suggests that its primary function is in mass
balance rather than mechanistic control, allowing for exibility
in batch sizing during scale-up. A particularly signicant
nding is that using 90% vs. 99% sulfonic acid results in no
signicant decrease in product yield, which is a crucial insight
for scaled-up manufacturing, as it suggests that slight dilution
does not impair the reaction outcomes. Achieving high yields
with regular sulfuric acid at moderate temperatures and
reduced reaction times is particularly promising for scalability
and process efficiency. Overall, the results align with
2746 | Digital Discovery, 2025, 4, 2737–2751
expectations while offering some unexpected simplications
and efficiencies, reinforcing the utility of the multi-step BO
method.
Surrogate model evaluation

As an active learning method, BO follows an iterative learning
process, where our understanding of the design space improves
as more data is collected. With an increasing number of data
points, the surrogate models gradually capture the ground truth
with reduced uncertainty. The uncertainty from the models
seen in Fig. S9–S11 provides insight into the condence of the
prediction, as the GP models give the variance of the posterior
that quanties the uncertainty associated with the projections.

As one method of evaluation, we compare the GP surrogate
models trained on data collected using each sampling strategy
against a GP model built using the combined dataset from all
strategies (A, B, and C models). This comparison allows us to
evaluate the effectiveness of each model in capturing the
underlying design space. Fig. 7 shows the parity plots
comparing the actual experimental outputs to the predicted
posterior mean evaluated by each model. For each parity plot,
the root mean square errors (RMSE) are determined. The Model
ABC shown in Fig. 7a is trained with the full set of data (105
samples) and serves as a baseline for how well the total space is
explored from this campaign. The resulting RMSE value for the
full model is 0.10, which suggests that the predictions are very
close to the actual experimental yields. The partial set of data
shows that the models tend to under-predict the yields. This
prediction variability is potentially due to the noise between the
repeated specimens. The parity plots shown in Fig. 7b, c, and
d are constructed by training the models with their corre-
sponding partial data consisting of 45 samples. The test data
used for evaluation is the combined set of data from all models
(105 samples), including the training samples. This allows us to
evaluate how well each model is able to predict the actual yield
that was collected from other sets, indicating how well the space
is dened by that model. The results of the parity plots show
that Model A has the lowest RMSE value of 0.18 andModel B has
the highest RMSE of 0.25. This suggests that Model A represents
the chemical space closest to the true space and suggests that
Model A performed the best and is fastest at learning, as evi-
denced by the combined results from Fig. 6a and 7a.

Due to BO's stochastic nature, the optimization outcome
differs based on the initial training conditions affecting the
model's acquisition. Therefore, robustness testing of the BBO
frameworks is essential to ensure generalization. To address
this, we conducted a pool-based BO where we randomly selected
the BBO frameworks, but rather than sampling for new data, we
queried the 105 collected samples. The pool-based BO was
repeatedly run 50 times with different initial training sets for
robustness testing. For baseline comparison, we also included
a pool-based random search. The results comparing the pool-
based BO with the experimental campaign are shown in
Fig. S1. We observed that Model A and Model B outperform the
random search, while Model C performs worse. However, this is
not a fair comparison as the random search draws samples
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00017c


Fig. 7 Parity plots to evaluate model performance and Root Mean Square Errors (RMSE) calculated from all data (a) full data set model: training
data of 105 conditions. Test data of 105 conditions, (b) partial data set using Model A data points: training data of 45 conditions colored in blue,
test data of 105 conditions, (c) partial data set using Model B data points: training data of 45 conditions colored in orange, test data of 105
conditions, (d) partial data set using Model C data points: training data of 45 conditions colored in green, test data of 105 conditions.
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from a pool of 105 samples, while the Models for the experi-
mental campaign query from the total chemical space, which
has 152 438 728 possible samples. For a better comparison,
Fig. S1b presents the pool-based results for random search and
all models querying the 105 sample pool. The results show that
all model frameworks outperform random search. Between
models, we observe that the number of high-yielding samples is
relatively similar, but Model C performs slightly better, as sug-
gested by having the lowest average RMSE and a higher mean
count for high-yield samples. This suggests that Model C may
have stronger potential for generalization across different
training sets.

To further assess the generalizability as well as the scalability
of the BBO frameworks, we applied them to an external, open-
source dataset. The open-source dataset we used was a 3D
printed cross-barrel toughness dataset reported by Gongora
et al., where the input variables are number of struts, n,
displacement angle, theta (degrees), strut radius, r (mm), and
strut thickness t (mm), and the output was mechanical tough-
ness.30 Since this data set has the same 4D space as our own
© 2025 The Author(s). Published by the Royal Society of Chemistry
experiments of redox-ow molecular synthesis, we structured
the pool-based BOO setup for the experimental campaign using
a batch size of 15 over three iterations. Robustness testing
against the random search was also conducted for this pool-
based analysis. The results showed that all three model frame-
works, Model A, B, and C, outperformed the random search,
which is consistent with the pool-based results from the
experiments' dataset. Additionally, we observed that the RMSE
rankings between the Gaussian process regression models
remained consistent with the campaign's results, where Model
A has the lowest RMSE and Model B has the highest. Our
ndings suggest that within the rst three rounds using a batch
size of 15, Model A was able to form the most accurate surrogate
model. To complement these generalizability and robustness
tests, we conducted additional benchmarking to investigate the
inuence of batch size on optimization performance. We
compared traditional single-point BO with BBO using batch
sizes of 3, 5, and 15 and constrained the number of samples to
50, including the training data, for fair comparison. Fig. S2
shows the results of this benchmarking, comparing BO and
Digital Discovery, 2025, 4, 2737–2751 | 2747
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BBO across iteration counts of 45, 15, 9, and 3, respectively. We
observed that traditional single-point BO converges faster to the
optimal compared to the larger batch sizes, highlighting the
trade-off between convergence and parallel sampling. However,
when considering hardware and synthesis time, larger batch
sizes can be inevitable.

It is worth noting that the ideal model for our system is one
that can select temperatures and other parameters non-
sequentially. Current BO libraries lack models that can adapt
dynamically to variable-size design spaces. The closest available
approach we found was mixed-variable BO, which assumes
a xed categorical variable, which this work demonstrated. The
poor performance of the mixed-variable BO model approaches
tested in this work is likely attributed to this assumption. We
have found prior work on variable-size BO for mixed-variable
and variable-size design space problems. However, this work
was designed for a highly complex single-objective system and
reported no experimental validation.31 Future work for non-
sequential approaches is to design BO for variable-size design
spaces or mixed-variable BO with updatable categories.
Experimental efficiency

The effectiveness of our BBO approach is further highlighted by
comparing the outcomes of the models to a brute-force method,
which is if the experiment were run by sampling every point in
the space using a grid. The detailed calculation of the sample
space and durations can be found in the SI under section
“Efficiency Comparison”. To collect samples for the entire
space, we would need to collect 152 438 728 samples for a step
size of 1, and since our system can only run 45 conditions at
a time, we would have to run 3 387 528 rounds of data collec-
tion. The synthesis time for a single round of experiments takes
approximately 12 to 14 hours, and the characterization is an
additional 5 to 6 hours. Hence, a single round of data collection
takes between 17 and 20 hours. Hence, running 3 million
rounds is impossible. Increasing the step size to 5 would reduce
the number of samples requiring 6655 rounds, but it is still
impractical as it would take about 15 years of continuous data
collection, which is highly inefficient in terms of the allocation
of time and resources. Comparably, our BBO approach explored
the space and identied several conditions that t our target of
milder conditions in only three rounds. The uncertainty of the
Gaussian model is relatively low, which suggests that the space
is adequately dened. Hence, our BBO approach is more
effective in dening the space and locating high-yield and,
consequently, more effectively optimizing targets in high-yield
regions.
Conclusions

In this work, we developed an experimental workow leveraging
BO-guided HTE systems to optimize the synthesis conditions of
uorenone derivatives for RFBs. The experimental design
involved a two-step process where samples were formulated and
subsequently heated. Hence, our workow entailed varying
variable sizes in a single batch due to differing hardware
2748 | Digital Discovery, 2025, 4, 2737–2751
capacity constraints. To overcome the challenge of constrained
variables, we developed an innovative, exible approach for our
BBO to t our HTE workow needs. We demonstrated the
implementation of Batch BO in HTE platforms employing three
distinct sampling strategies and evaluated their effectiveness in
exploring and exploiting the chemical space. Our results
showed that the post-clustering strategy (Model A) was the most
effective as it yielded the highest number of conditions with
high product yield and performed the best predictions for our
data set. The models that performed worse could be attributed
to the improper use of mixed-variable BO, as mixed-variable BO
assumes a static categorical input. Nevertheless, our BBO
framework enabled us to achieve our goal of determining high-
yield conditions under milder sulfonation conditions. We
found that from the 45 conditions sampled in Model A, 7
conditions reached over 90% yield, with the lowest temperature
at 133 °C and the lowest concentration of sulfonating agent at
87%. In Model B, we identied 4 conditions greater than 90%
yield out of the 45 sampled, with the lowest temperatures at
133 °C and the lowest sulfonating agent at 95%. Finally, from
the 45 conditions sampled in Model C, we identied 4 condi-
tions with yield greater than 90%, with the lowest temperature
at 139 °C and with the lowest sulfonating agent at 90%. Overall,
all conditions found with greater than 90% yield had temper-
atures below 150 °C. As demonstrated in this study, the pres-
ence of small amount of water does not adversely affect the
reaction, provided that the concentration of sulfuric acid
exceeds 90% and the temperature is in the range of 130 °C to
150 °C. Additionally, this study provides valuable insight into
the emerging eld of SDLs, highlighting the strategies for
implementing BO-based decision-making in predened hard-
ware. We demonstrate the overcoming of the challenges of
hardware and soware misalignment.
Methods: digital
Traning data

The three models used the same training set, where conditions
were generated using Latin hypercube sampling (LHS). LHS was
the most effective sampling method for the four variable spaces
since grid search sampling showed that it minimally covered
the space for 15 conditions, and random sampling effectively
covered the space more than the grid search. Still, the spread
between values was worse than LHS. We used the Python
package pyDOE 0.3.8, which produced a 2D array of size 4 × 15.
Each variable was given a minimum and maximum value from
which the lhs function sampled values between bounds. The
bounds for each variable were determined from preliminary
experiments. Three identical vials were made for each condition
and three controls were made for 48 samples. The conditions
aer clustering were sent to the HTE system for synthesis and
characterization.
Clustering

The clustering was done using the Scikit-learn 1.6.0 Python
package, which employed the k-means clustering algorithm.32
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The k-means clustering function parameters were set to cluster
3 groups with an initial value of ninit = 95, the mid value of the
temperature bounds.
Data extraction and data preparation

Feature extraction from the High-Performance Liquid Chro-
matography (HPLC) data was performed using the Python
package hplc-py 0.2.7. The soware in this Python package is
built to t the peaks detected in the HPLC, where the area under
the curve (AUC) is calculated by selecting the regions of interest.
Regions of interest are selected at the hypothesized retention
times (RT).33 The three peaks of interest for our experiment were
the product peak at 0.29 min RT, the reactant peak at 3.92 min
RT, and anything unknown, which tends to be found at around
4.3 min RT. The AUC was extracted from the regions of interest
to calculate the total product yield, which is determined by (eqn
(1)) product area/total area, where the total area is the sum of
the product area, reactant area, and area of the unknown. The
mean and standard deviation were calculated since each
generated condition had three repeated samples. The mean of
the three samples is the training output for the model, and the
standard deviation is the noise when training the GP models.

Product yield ¼ product AUC

product AUCþ reactant AUC
(1)

GP models and batch BO functions

Our GP models and BO framework were all done in
BOTorch.34,35 SingleTask GP is the default model of the BOTorch
library, pulled fromGPyTorch,34,35 that uses aMatern kernel and
works best with normalized values. Hence, all inputs were
normalized before being implemented into their respective GP
models using BOTorch botorch.utils.transforms.normalize. The
two GP models we used for our models were hetero-
skedasticSingleTaskGP andMixedSingleTaskGP. Our system used
Heteroskedastic SingleTask GP, which is much like the single-
task GP but treats noise independently. We used hetero-
skedasticSingleTaskGP in Model A and the temperature selection
portion of Model C. MixedSingleTaskGP were used for Models B
and C to generate optimized parameters post-temperature
selection. The mixed-variable BO in BOtorch is based on
Hammington's distance to convolve the categorical and
continuous variables. We used optimize_acqf and opti-
mize_acqf_mixed for the minimization function for their
respective models. While all frameworks presented in this study
use GP regression as the surrogate model, other surrogate
models can also be applied within the presented frameworks.
This is exemplied in the benchmarking analysis comparing GP
regression and Random Forest Regression as detailed in the SI
under section “Pool-Based Bayesian optimization” subsection
“Surrogate Model Comparison”. The BBO framework in this
study employed the qExpected Improvement (qEI) acquisition
function, which was selected aer initial pool-based simulation
comparing three analytical acquisition functions (qExpecte-
dImprovement, qUpperCondenceBound, qProbabilityOfIm-
provement). qEI is the batch version of the expected
© 2025 The Author(s). Published by the Royal Society of Chemistry
improvement for our acquisition function since regular ex-
pected improvement only takes a batch size of 1.26,36 In the
preliminary acquisition testing, the acquisition functions
resulted in similar results; therefore, we chose qEI, as it natu-
rally balances exploration and exploitation. This pool-based
analysis can be found in SI under “Acquisition Function”.

Methods: experimental

Sample collections were done at PNNL's automated robotics for
energy storage.

ARES: PNNL high-throughput facilities.
Video: autonomous organic synthesis video.

Robotic platform

An automated material handling system from Unchained Labs
(Big Kahuna model) was used for sample preparation and
reaction execution. The automated system is equipped with an
analytical balance (0.1 mg readability), solid dispensers (1 mg to
25 g), liquid handlers including the positive displacement
pipetting for viscous liquids/slurries (10 mL to 10 mL), capping/
uncapping station, on-deck magnetic stirrer with heating/
cooling (−20 °C to 180 °C) function, and vortex mixer
(Fig. S7). The robotic platform, including liquid/solid handling,
thermal control, and stirring, was benchmarked in prior work,
with routine calibrations ensuring <5% relative errors. Each
data point in this study represents the average of triplicate
samples, with variability monitored and outliers excluded. 1H
NMR conrmed product identity against a manual benchmark,
and cross-lab HPLC validation conrmed the reproducibility of
results across independent instruments.

High-throughput automated sulfonation workow

Following a typical sulfonation synthesis protocol described in
the literature,37,38 we implemented a high-throughput auto-
mated workow using a modular robotic platform. Each
experimental batch consisted of 48 vials processed concurrently
in approximately 10 hours. The workow was orchestrated via
automation soware to ensure seamless operation and precise
execution. Three pre-calibrated heating modules were main-
tained at the target reaction temperatures, while sample prep-
aration was conducted on an ambient deck. In each vial, 10 mg
of 9-uorenone-2-carboxylic acid (2CLF) was dispensed via
a powder hopper, followed by the addition of 5 mL of water using
a xed-volume syringe and 132 mL of sulfuric acid (99.99%,
Sigma-Aldrich) via a disposable positive displacement pipette.
The vials were then capped, stirred at 700 rpm, and transferred
to the heated modules based on the experimental design. Aer
the reaction time elapsed, the vials were sequentially moved to
the ambient deck for cooling, and this iterative process was
repeated until all reactions were complete.

Post-reaction, 1 mL of dimethyl sulfoxide (DMSO) was added
to each reaction vial under stirring to dissolve the products. An
equal volume of a 60 : 40 (v/v) acetonitrile/water solution was
added to UPLC vials, followed by aliquoting 10 mL of the DMSO-
diluted reaction mixture into these vials. The UPLC vials were
Digital Discovery, 2025, 4, 2737–2751 | 2749
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vortexed at 800 rpm and analyzed using a Waters ACQUITY
UPLC system equipped with a BEH C18 column (130 Å, 1.7 mm,
2.1 mm × 50 mm). This fully automated workow demon-
strated precise control over reagent handling, reaction timing,
and sample preparation, enabling reproducible and high-
quality data acquisition. These capabilities underscore the
effectiveness of high-throughput automation in accelerating
reaction optimization and materials discovery.
Automation experimental procedure

The automated experiments were performed on a 150 mL total
volume scale. Analyte, solvent, and sulfonating agent were
added to 2 mL glass vials, capped and then transferred to one of
three pre-heated reactor blocks. The system was then pro-
grammed to transfer the vials from heat to a room-temperature
deck at designated time intervals. At the end of the run, the
samples were dissolved in dimethylsulfoxide before diluting
with 60/40 acetonitrile/water mixture for UPLC analysis. An
example library design is provided.
Multi-robot sample transferring

Transfer of samples between the synthesis and characterization
units is achieved through multi-robot collaboration under the
Robot Operating System (ROS) framework. The mobile robot
(Ubiquity) autonomously navigates the laboratory, efficiently
performing sample transfer tasks as specied by the algorithm.
A Universal Robot UR3e facilitates the loading and unloading of
samples between the material handling system and the mobile
robot. Similarly, a Universal Robot UR5e manages the loading
and unloading of samples between the characterization system
(e.g., HPLC) and the mobile robot. Both UR robotic arms are
equipped with wrist cameras to precisely locate the mobile
robot's docking conguration for precision load transfer.

Note that a workstation is connected to and monitors all the
aforementioned devices via the ROS network, serving as the
master device for receiving experiment suggestions generated
by BO and executing the plan through the multi-robot system.
Additionally, the mobile robot is equipped with advanced
perception units, including lidar and sonar, enabling it to
detect and avoid collisions when humans or other moving
obstacles are present in the environment.
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BO-RFB. Pool-based Bayesian optimization for scalability
testing utilized open-source data from DOI: https://doi.org/
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