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We present MAAPE, a novel algorithm that integrates a k-nearest neighbour (KNN) similarity network with
co-occurrence matrix analysis to extract evolutionary insights from protein language model (PLM)
embeddings. The KNN network captures diverse evolutionary relationships and events, whereas the co-
occurrence matrix identifies directional evolutionary paths and potential signals of gene transfer. MAAPE
addresses the limitations of traditional sequence alignment methods by effectively detecting structural
homology and functional associations in protein sequences with low similarity. By employing sliding
windows of varying sizes, it analyses embeddings to uncover both local and global evolutionary signals
encoded by PLMs. We benchmarked the MAAPE approach on three well-characterised protein family
datasets: the RecA/RAD51 DNA repair protein families, the form | Rubisco families and P450 proteins
from oomycetes. In all cases, MAAPE successfully reconstructed evolutionary networks that aligned with
established phylogenetic relationships. This approach offers a deeper understanding of evolutionary
relationships and holds significant potential for applications in protein evolution research, functional
prediction, and rational design of novel proteins. The MAAPE algorithm is available at GitHub repository:

rsc.li/digitaldiscovery

Introduction

Artificial intelligence has achieved breakthroughs in the field of
protein science. The success of AlphaFold2 and AlphaFold3,
along with other algorithms'™ has led to significant advance-
ments in protein structure prediction, and large-scale language
models such as ESM-2 (ref. 5) and ProtGPT2 (ref. 6) have
established novel paradigms for understanding the complex
interplay between protein sequences, structures, and functions.
They not only predict protein structures with high accuracy but
also possess profound capabilities in understanding protein
evolution, function, and interactions. This milestone opens new
opportunities in protein drug development, mutation effect
prediction, industrial enzyme design, innovations in life
science, and offers new solutions to major challenges in human
health and environmental protection.

The evolutionary scale modelling (ESM) series is among the
leading models in the current landscape of protein language
models. It employs transformer and self-supervised learning to
dissect relationships between amino acid residues from billions
of natural protein sequences. The latest iteration, ESM-3, is
a multimodal generative language model containing up to 98
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billion parameters trained on a dataset with 2.78 billion natural
proteins.” This model encodes three-dimensional structural
information using discrete tokens and incorporates invariant
geometric attention mechanisms, achieving comprehensive
feature extraction by effectively representing proteins as
embeddings and enabling the generation of proteins.

Recent studies have revealed that PLMs encode complicated
evolutionary information.? This finding demonstrates that
language models can predict the evolutionary dynamics of
proteins, and the embedding space of these models reflects
evolutionary distances within protein families and even recon-
structs evolutionary histories. Specifically, ESM-3 successfully
generated a novel green fluorescent protein (esmGFP) with 58%
sequence divergence from existing fluorescent proteins,
a degree of difference comparable to that accumulated over 500
million years of natural evolution.” This achievement indicates
that PLMs can generate functionally similar proteins with high
sequence divergence, demonstrating their capacity to navigate
the sequence space in ways that parallel natural evolutionary
outcomes.

Traditional sequence alighment methods have long faced
the “twilight zone” of protein sequence similarity, where
sequence identity falls below 20-35%.° Methods such as BLO-
SUM matrices struggle to capture evolutionary relationships in
these low-similarity regions because proteins may retain similar
three-dimensional structures and functions despite significant
sequence divergence.'™'* Studies indicate that proteins with as
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little as 20% sequence identity can still exhibit homology and
structural similarity, yet these critical evolutionary insights are
often lost in sequence comparison analyses.*

To address these issues, we draw inspiration from assembly
theory,"® which is brought up upon how nature tends to reuse
already existing functional sequential modules rather than
reinventing a similar module in another organism, such as
complex biological structures emerge from simpler compo-
nents. When applied to protein evolution, assembly theory
suggests that evolutionary relationships can be inferred by
examining how sequence modules/fragments are shared and
assembled across different proteins.

Given the limitations of sequence alignment in the “twilight
zone”, we leverage PLMs embedding vectors that capture both
semantic and evolution information beyond mere sequence
similarity. Under the theoretical framework of assembly theory,
we hypothesize that these embeddings encode evolutionary
relationships through hierarchical fragment patterns, where
recurrent sub-vectors represent conserved evolutionary
modules. Based on this premise, we present the Modular
Assembly Analysis of Protein Embeddings (MAAPE) algorithm,
which is designed to extract evolutionary insights from protein
language model embeddings. MAAPE comprises two core
components: (1) a KNN similarity network based on Euclidean
distance, which captures various evolutionary relationships and
events, including functional and structural changes, point
mutations, recombination events, gene duplication, and hori-
zontal gene transfer (HGT); (2) a co-occurrence matrix analysis
system that compares the similarity and assembly directions of
subvectors across different window sizes, revealing the direc-
tional paths of evolution and signals of gene transfer. The
undirected KNN graph encapsulates various evolutionary rela-
tionships and events, such as functional and structural
changes, point mutations, recombination events, gene dupli-
cations, and HGT events, but lacks information about the
directionality of the evolutionary paths and the detection of
gene transfer signals. MAAPE innovatively integrates
a Euclidean distance-based KNN similarity network with mul-
tiscale co-occurrence matrix analysis, enabling the capture of
traditional sequence similarities while also indicating evolu-
tionary directions. By employing sliding windows of varying
sizes to analyse embeddings, MAAPE can detect local and global
evolutionary signals captured by PLMs. This algorithm not only
facilitates a deeper understanding of evolutionary relationships
among low-similarity protein sequences but also reveals func-
tional associations that conventional methods might overlook
and therefore holds substantial promise for applications in
protein evolution research, functional prediction, and the
design of novel proteins.

Materials and methods

Details of the benchmark dataset

To test the validity of MAAPE, three datasets of widely studied
protein families were chosen, including P450 proteins from
oomycetes, the RecA/RAD51 family and form I Rubisco, and

3246 | Digital Discovery, 2025, 4, 3245-3259

View Article Online

Paper

their evolutionary histories were reported through phylogenetic
analysis and practical experiments.

Bacterial cytochrome P450s play crucial roles in the metabolism
of diverse compounds. The P450 dataset used in this study
contains 356 protein sequences from the oomycetes class, 159 of
which are from the Peronosporales order, 134 of which are from
the Pythiales order, and the remaining 63 of which are from the
Saprolegniales order. Lengths range from 77-997 amino acids.
Saprolegniales P450s presented a highly distant phylogenetic
relationship from those of Pythiales and Peronosporales. In
contrast, P450s from Pythiales and Peronosporales presented close
phylogenetic relationships. This evolutionary pattern aligns with
the taxonomic relationships and adaptation states among these
orders: Saprolegniales, primarily aquatic saprophytes, have P450s
that are involved mainly in basic metabolism; Pythiales, which
began to adopt terrestrial and parasitic lifestyles, show that P450s
start to participate in pathogenicity-related functions; and Per-
onosporales, as obligate parasites, possesses P450s involved in
more sophisticated host interactions and resistance mechanisms.*

The RecA/RAD51 family dataset comprises 334 protein
sequences collected from UniProt, including 110 RecA
sequences, 121 RadA sequences, 102 Rad51 sequences, and one
RadB sequence from Methanococcus voltae. We downloaded
protein sequences for each gene from Bacillus subtilis in UniProt
and performed BLAST searches against the nonredundant (nr)
database using default parameters, with the top hit sequences
from different domains of life used for each search. The
sequences vary considerably in length, ranging from 280 to 1640
amino acids. The RecA/RAD51 family represents a highly
conserved group of proteins that play essential roles in DNA
repair and homologous recombination across all domains of
life. RecA is found in bacteria, whereas RadA and Rad51 are
homologues in archaea and eukaryotes, respectively. These
proteins share a core ATP-dependent DNA binding and strand
exchange mechanism, reflecting their common evolutionary
origin. RecA appears to be the ancestral form, with RadA and
Rad51 emerging after the divergence of bacteria from archaea
and eukaryotes. RadB, which is found in some archaea, has
a divergent form with distinct functional characteristics.*

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)
is a crucial enzyme responsible for most inorganic carbon
assimilation on earth and plays a vital role in photosynthesis by
fixing CO, to ribulose-1,5-bisphosphate. Our dataset comprises
110 sequences, including 10 form II/III Rubiscos and 100 Form I
Rubiscos (26 Form I thermus + 66 Form I AB/CD + 8 ancestral
Form I), with sequence lengths ranging from 235-1501 amino
acids. Rubisco initially evolved in anaerobic environments
before the emergence of oxygenic photosynthesis. Its evolu-
tionary trajectory progressed from Form II/III to ancestral Form
I to Form I AB/CD, marked by the acquisition of small subunits
(SSUs) to form an L8S8 complex structure and improved CO,
specificity while reducing O, side reactions. Notably, Rubisco
developed increased CO, specificity before atmospheric oxygen
levels rose, with the earliest form I likely originating in ther-
mophilic anaerobes. The acquisition of SSUs improved both
carboxylation efficiency and substrate specificity, indicating
crucial adaptation in photosynthetic organisms."”*®

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Phylogeny tree generation

For phylogenetic analysis, multiple sequence alignment was
performed using Clustalw (https://www.genome.jp/tools-bin/
clustalw). The aligned sequences were then used to construct
a phylogenetic tree using the “build” function of the ETE3
3.1.3 toolkit implemented on the GenomeNet web server
(https://www.genome.jp/tools/ete/). Tree reconstruction was
performed using FastTree version 2.1.8 with default
parameters, which implements the maximum likelihood
method under the JTT + CAT model. The reliability of the
internal branches was evaluated using SH-like local support
values, which were calculated using the Shimodaira-
Hasegawa test implemented in FastTree. The resulting tree
was visualised and annotated using the iTOL (https://
itol.embl.de/upload.cgi) web-based tool.

Overall framework of MAAPE

MAAPE combines a k-nearest neighbour KNN similarity
network that is based on the Euclidean distances between the
embedded vectors and a co-occurrence matrix that measures
both the similarity between the embeddings and their assembly
directions.’** We dissected embeddings with windows of
different sizes and compared the Euclidean distances between
subvectors of the same size using Faiss's IndexFlatL2 imple-
mentation, which performs exact L2 distance calculations. This
brute-force approach, while computationally more intensive
than approximate methods, ensures precise similarity
measurements between vectors without compromising accu-
racy. We evaluated their similarity by constructing a co-
occurrence matrix. Additionally, we identified the contain-
ment relationship paths between subvectors of different sizes.
Based on the hypothesis that segmented embeddings encode
evolutionary information that can be hierarchically assembled
into more complex representations, we established direction-
ality in the matrix by defining evolutionary vectors pointing
from smaller subvectors towards their containing larger sub-
vectors, reflecting the progressive assembly of evolutionary
complexity (Fig. 1). For each pair of nodes, we calculated sepa-
rate weights for both directions based on co-occurrence
frequencies across window sizes. We sum both directional
weights (weight, + weight,) to preserve the total relationship
strength between this pair while standardizing edge direction
based on the higher weighted edge. To address situations where
bidirectional gene flow between sequence pairs show similar
strength, potentially creating loops in the network, we imple-
mented a weight aggregation strategy for bidirectional rela-
tionships, by classifying edges as bidirectional (weight
difference <50%) or unidirectional (weight difference =50%) to
analyze spatial distribution patterns of different gene transfer

types.

Language model and feature extraction

In this study, we utilised Facebook's pretrained ESM2_t36_3-
B_UR50D model to embed protein sequences, which comprises
36 layers, each with a hidden state dimension of 2560, totalling
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approximately 3 billion parameters. By reading protein
sequences from both target and outgroup sequences, the ESM-2
tokenizer was utilised to encode these sequences, and the
encoded sequences were processed in batches through the
ESM-2 model. We extracted the output from the last hidden
layer as feature representations of sequences.’

For each batch S containing n sequences, where S is defined
as § = {S1, Sy, ..., Sn} and the hidden state dimension is 2560,
the hidden state matrix H of the final layer can be expressed as
He R"F*2%%0 where L is the length of the sequences. For the i-th
sequence S;, we extract E(S;) = H{i, 0, :] as the embedding
representation, which corresponds to the [CLS] token repre-
sentation, it serves as a learned global representation that
captures sequence-level features through self-attention during
pre-training.

To further optimise the representation of the embedding
vectors, we normalise all the vectors to the unit hypersphere by
L2 normalization of the embedding vectors. This eliminates the
influence of the vector magnitude and increases the accuracy of
similarity calculations.

Feature dimensionality reduction

Considering that the high dimensionality of the embedding
vectors is not conducive to computing power and storage, we
employed principal component analysis (PCA) to reduce the
dimensionality of the embedding vectors. PCA is a linear
dimensionality reduction technique that is well suited for
capturing the main directions of variation in high-dimensional
data while preserving the most important patterns and rela-
tionships between data points.*® By analysing the low-
dimensional embedding through PCA, we decided to reduce
the dimension of each embedded sequence to 110, which
balances computational efficiency and representation fidelity.
Therefore, we performed dimension reduction on the normal-
ised embedding vectors to obtain a low-dimensional represen-
tation that captures the essential features of the original high-
dimensional data.

Modular transfer matrix computation of sequence
embeddings

Sliding window slice of embedding vectors. When normal-
ised vectors are segmented using sliding windows of varying
sizes, we can identify recurrent fragments within windows of
the same size. To avoid the inclusion of irrelevant information
that could introduce excessive noise and obscure the signals of
genuine modules, we employed the concept of information
entropy to determine which window sizes provide the most
informative content on average.

Information entropy. Information entropy, introduced by
Claude Shannon, quantifies the uncertainty or unpredictability
in a set of data.” In the context of our study, entropy measures
the distribution of sequence fragments within each window.
Higher entropy values indicate a more uniform distribution,
suggesting a higher degree of variability and, by extension,
richer information content. Conversely, lower entropy values
suggest redundancy and less informative content. By
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Fig.1 Overview of the MAAPE pipeline. Protein sequences are embedded using ESM-2 to generate 2560-dimensional vectors, then we analyse
the dataset to determine the optimal target dimensionality that balances computational efficiency with information preservation, and subse-
quently applied dimensionality reduction to this identified optimal dimension (here we illustrated 110 dimensions as an example). We then
implement a hierarchical pairwise comparison approach across different window sizes, systematically comparing adjacent window groups (in
this figure: 1 vs. 2, 2 vs. 3, which continuing to the maximum window size). For each comparison pair, we re-segment the larger window
fragments using the same window size as the smaller fragments to ensure dimensional consistency. We then perform similarity search between
these dimensionally aligned fragments to identify similar fragments establish co-occurrence relationships between their original sequences with
directed edges from smaller window fragments to larger window fragments. Based on the counts and directionality, we construct co-occur-
rence matrices for each window pair comparison. Recognizing that larger windows have lower probability of reoccurrence, we calculate weights
for each window based on their reoccurrence frequency (illustrated as weight 1 and weight 2 in the figure). We aggregate all pairwise co-
occurrence matrices to generate a total co-occurrence matrix across all window groups (in the case of this figure, excluding diagonals, it
contains one edge from sequence 1 to each of sequences 2 and 3, and one edge from each of sequences 2 and 3 back to sequence 1. Finally,
a KNN similarity network is built and applied with directions and weight differences from total co-occurrence matrix to transform into MAAPE
directed graph for downstream analysis.

calculating the average entropy across different window sizes,
we can objectively identify which sizes yield the most informa-
tive and potentially significant fragments, and the entropy can
be computed using the following formula:

H(X) = —Zp(x)logyp(x).

where x represents the numerical values within each sliding
window extracted from the protein embeddings, and p(x)
denotes the probability distribution derived from these window
values. Specifically, for each window of size w, we normalize the
embedding values to create the probability distribution: p(x) =
(x+e)/=(x +¢), where e = 1 x 10~ '° is added to ensure numerical
stability and avoid zero probabilities. With this approach, we
selected window sizes that maximise average information
entropy, and the stride is set to 1 to preserve the context
information generated by the language model, thereby
enhancing our ability to detect meaningful evolutionary
modules. The chosen window sizes are as follows: [5, 10, 15, 20,
25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110].

3248 | Digital Discovery, 2025, 4, 3245-3259

Pairwise similarity search for vector fragments. We utilised
the IndexFlatL2 index of the Faiss library to perform a similarity
search on the split vector fragments for each window size; those
with Euclidean distances less than a threshold were set to be
recurrent modules and saved for downstream analysis.”® To
determine a proper threshold for each window, we established
base thresholds of 1 x 10~ for window size 5 in the RecA/
RAD51 and Rubisco families and 1 x 10> for the P450
family, which corresponds to average element-wise differences
between vector components of approximately 4.47 x 10~% and
4.47 x 10° respectively. For other window sizes, we applied
square root scaling to maintain consistent sensitivity: threshold
for window size w =1 x 1077 x /(w/5), where w represents
the target window size.

Modular transfer matrix computation. We further explored
the modular transfer routes between sequences. Starting from
the smallest fragments, we progressively searched for their
containment relationships within the next-level fragments by
calculating their Euclidean distance and iterate this process to
the largest vectors. Within each search cycle, we defined the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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containment relationship found as the process of passing
assembled modules between sequences, ie., how complex
sequential modules evolve from simpler ones through hori-
zontal transfer, etc., and we defined the direction of subordi-
nation from small to large vectors as the direction of assembly
trajectories.

Intuitively, smaller modules are easier to form than larger
modules, thus, they can be observed more often. Therefore, in
our subsequent calculations, we assigned larger weight coeffi-
cients to larger vectors according to their occurrence frequency.

A cooccurrence matrix between the original sequences is
calculated based on the containment relationships of different
window-sized fragments, which reflects the evolutionary prox-
imity and module transfer directions between target sequences.
For target sequences Sy, S, ..., Sy, Where n is the number of
sequences, for each window size w, the co-occurrence matrix is
defined as:

1My

C!f/,“') - Z 1 (v}(“")e Sinv e S,)
=1

where the element Cg»”) represents co-occurring pairs between
window-w fragments v from sequence S; and their corre-
sponding window-(w + 1) fragments v{**") from sequence S;
(where w + 1 denotes the next level window size in the pre-
defined sequence of increasing window sizes), m,, is the
number of possible containment fragment pairs from window
size w, and 1(-) is the indicator function.

For each window w, a weight matrix W) is defined as
element wf}”), which represents the edge weight between
sequences S; and S; for the window size w:

()

() Gy
wy = ~ | -f(w)
iy ZC’(;)

i

where Zc;”) is the total cooccurrence count for the window size
i

w. The function flw) is a function that increases with window
size to assign higher weights to larger vectors.

The directions for each pair of sequences S; and S; are
calculated by comparing the forwards edge weight wﬁ}") and the
reverse edge weight w{}":

Si—S;, wl(»}") > w](-,-"">

S;—Si, wf-}")

Edge direction = )
<wj

The weight of the edge between S; and S; is the sum of the
weights in both directions:

(w) _ w (w)
Wij_total = Wi~ + Wy

A directed acyclic graph was constructed through the co-
occurrence weight matrix.

The edge weights in the graph contain information about
both the sequence similarity represented by the cooccurrence
counts and the assembly direction from small vectors to large

© 2025 The Author(s). Published by the Royal Society of Chemistry
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vectors, providing valuable insights for understanding the
evolutionary patterns of protein sequences.

Specifically, we used window sizes ranging from 5-110 resi-
dues [5, 10, 15, ..., 110], with a step size of 1. For each window
size w;, we searched for matches within fragments generated
from the next larger window size wj.q). The computational
complexity of this hierarchical search is O(n*), where n is the
number of protein sequences, as we used the IndexFlatL2 index
from the Faiss library, which performs exact L2 distance
calculations through an exhaustive search between all vector
pairs at each window size level.

KNN graph for sequence similarity representation and
evolution trajectory integration

KNN graph construction. Although our task of generating
a modular transfer matrix places greater attention on sequence
variations in large regions, the effect of evolution also manifests
as recombination at the residue level or in small regions. To
address this issue, we noted that the potential of protein
language models to encode the intrinsic information from
protein sequences, including evolutionary, functional, and
structural properties, is well studied, and those even remain
unclear; thus, building effective relationship networks based on
sequence embeddings will contain details of various evolu-
tionary relationships.

We developed a multistep approach to construct and visu-
alise KNN graphs from protein sequence embeddings.'> The
KNN algorithm calculates the distances between data points in
the training set by metrics such as the Euclidean distance and
Manhattan distance. On the basis of the calculated distances,
each point with the K data points nearest is clustered. KNN
graphs were constructed using the embedded protein
sequences of interest and the outgroup sequence with the help
of the sklearn.neighbours package from the scikit-learn library.
We used the NearestNeighbors function with metric =
‘euclidean’ and implemented an adaptive k approach with
a specified range of k values (kpin = 5, kmax = 20) and a distance
threshold (0.5) as training parameters.>* The adaptive k value,
which is determined on the basis of the threshold, ensures that
only neighbours within a certain distance are considered; thus,
when focusing on the most relevant connections, the choice of k
value depends on a balance between the clustering performance
of the generated graph and the computational cost. We chose k
= 20 in our benchmark datasets for balanced visualization and
performance.

The resulting KNN graph was processed using the networkx
library to extract all edges, which represented connections
between similar protein sequences on the basis of their
embeddings.” These edges were saved for further analysis and
visualization.

Evolution trajectory integration. KNN graph can display the
clustering relationships of nodes while lacking information on
evolutionary trajectories. Therefore, we integrated the calcula-
tion of the module transfer matrix and edge weights or direc-
tions with the KNN graph. By extracting edges from the KNN
graph and querying the weight matrix and edge direction

Digital Discovery, 2025, 4, 3245-3259 | 3249
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results, we can obtain a directed graph with module transitions
and assembly directions, providing insights into evolutionary
path simulations.

Node cluster and edge bundle analysis. We employed
a hierarchical approach to cluster nodes and bundle edges in
the KNN network.”® We performed hierarchical agglomerative
clustering on the normalised PCA-reduced embeddings of the
protein sequences while maintaining the distinction between
different protein categories. We determined the optimal clus-
tering threshold as 30% of the maximum linkage distance,
resulting in distinct clusters that each represent a group of
closely related sequences within their respective categories.
Clusters were labelled using a combination of taxonomic order
and cluster number. We then aggregated the edges between
clusters, summing the weights of individual edges to create
a condensed representation of the network. The edge weights
were processed to handle bidirectional connections, where
significantly asymmetric weights were reduced to unidirectional
edges. The root nodes were identified on the basis of the ratio of
outgoing to incoming edges to establish evolutionary direc-
tionality. The final network was visualised using a force-directed
layout with logarithmically scaled edge weights and curved
connections for improved clarity.

View Article Online
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Root node prediction. To predict the root node of the inte-
grated MAAPE network, we developed a scoring system on the
basis of its topological properties. For each node, we calculated
a score as the ratio of its out-degree to its in-degree plus one,
effectively measuring the node's tendency to act as a source in
the network. This approach is grounded in the assumption that
ancestral sequences are more likely to have a higher proportion
of outgoing edges, representing their role as evolutionary
ancestors. The node with the highest score was designated the
predicted root.

Results
Dimension reduction of protein embeddings
The 2560-dimensional protein vectors obtained from

ESM2_t36_3B_UR50D embeddings pose significant computa-
tional challenges. To optimise computational efficiency while
maintaining information integrity, we performed dimension-
ality reduction on the embedding vectors from three datasets to
various dimensions (300, 200, 100, 50, 20, and 10 dimensions,
with the Rubisco dataset excluded from 300 and 200 dimen-
sions owing to its smaller sample size). The reduced vectors
were then visualised in 3D space using uniform manifold
approximation and projection (UMAP), and we conducted
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dimensionality reduction analysis across three datasets (Fig. 2).
Note that UMAP was applied solely for 3D visualization and all
subsequent analyses were performed on the PCA-reduced
embeddings. Our analysis revealed that while the topological
structures showed some variations across different dimen-
sionality levels, the clustering information was preserved
(Fig. 2a—c). Remarkably, even the 10-dimensional embeddings
maintained the same classification patterns as the original
embeddings. This demonstrates the robustness of the
embedded features and suggests that the essential structural
information can be effectively preserved in lower-dimensional
representations while maintaining biological relevance. After
evaluating the impact of different dimensions on explained
variance (information retention), KNN preservation (local
structure maintenance for network construction), and distance
correlation (global pairwise relationship preservation), we
determined that 100 dimensions provide an optimal balance for
the Rubisco dataset, which contains 110 sequences, and that
200 dimensions best suit the other two datasets, which possess
over 300 sequences (Fig. 2d-f). Nevertheless, we opted to stan-
dardise the dimensionality to 100 across all three datasets, as
this dimension consistently demonstrated acceptable perfor-
mance metrics.

At 100 dimensions, all three datasets demonstrated favour-
able performance metrics. The explained variance remained
between 0.6 and 0.8, indicating the preservation of most
essential information. The KNN preservation rates of 0.5-0.9
suggested good maintenance of the local structure, whereas the
distance correlation remained within acceptable ranges despite
some fluctuations. Higher dimensions (200-300), while
showing marginally better explained variance, offered minimal
additional benefits while substantially increasing computa-
tional costs and potentially introducing noise. Conversely,
lower dimensions (5-50) showed significant information loss
with decreased explained variance and poor KNN preservation.

Sliding window analysis configuration

To determine the optimal window size configuration for the
sliding window method, we analysed the information entropy
across three datasets using varying vector segmentations
(Fig. 3). Starting with a window size of 5, we segment the
embeddings by increasing the window size by 1 dimension until
the full length of the original vector is reached. At each window
size, we computed the average information entropy of the
resulting subvectors, as shown in Fig. 3a-c. Despite the differ-
ences among the three datasets, they exhibited similar infor-
mation patterns: when the window dimension reached 40-50,
the growth rate of information entropy began to decrease,
indicating that the main information structure of the data
might have been captured within this dimensional range.
Additional dimensions contributed minimal new information,
suggesting that dimensions beyond this point may primarily
contain redundant or noise information. On the basis of these
observations, we selected a dynamic sliding window strategy:
fine sampling with windows every 5 dimensions for the first 50
dimensions, followed by sparse sampling with windows every

© 2025 The Author(s). Published by the Royal Society of Chemistry
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10 dimensions beyond the 50-dimensional point. This config-
uration ensures both adequate preservation of critical infor-
mation and improved computational efficiency.

Comparative analysis of embedding similarity metrics and
sequence alignments

To establish appropriate parameters for determining vector
similarity, we adopted a different approach from sequence
comparison by utilising the Euclidean distance as our similarity
metric. The pairwise similarities between subvectors from
sliding window decomposition of embeddings were calculated
(window sizes ranging from 5-110 positions, SI Fig. S1-S3). A
high frequency of subvector pairs with Euclidean distance
approaching zero was observed; however, the degree of simi-
larity gradually decreased as the subvector length increased.
Notably, the P450 family generally presented greater Euclidean
distances between subvectors than the other two protein fami-
lies. To investigate whether this pattern was driven by inherent
sequence diversity within each protein family, we conducted
a comparative analysis between sequence and embedding
similarities. We employed global alignment with the BLO-
SUMS62 scoring matrix (gap opening penalty: —10, extension
penalty: —0.5, normalised by shorter sequence length) to assess
sequence similarities while using cosine similarities as our
embedding similarity metric (Fig. 3d-f). The comparison across
three protein families revealed distinct patterns: P450s pre-
sented a broad, continuous distribution with weak correlation
(Pearson r = 0.196, Spearman p = 0.339) and normalised
alignment scores ranging from 0.09-514.67; the Rad family
presented a strong correlation (Pearson r = 0.580, Spearman p =
0.865) with clear groupings suggesting distinct evolutionary or
functional groups, with normalised alignment scores ranging
from 0.15-506.78; and Rubiscos presented a moderate correla-
tion (Pearson r = 0.601, Spearman p = 0.539) with the most
concentrated distribution and clustering in high alignment
score regions, with similar alignment scores with the other two
datasets, which were distributed within 0.32-536.94.

Analysis of the distribution patterns across the three families
revealed lower subvector similarities in P450 s. The P450 family
presented the most dispersed distribution pattern and the
weakest correlation. In contrast, the RecA/RAD51 family di-
splayed clear groupings with cosine similarities concentrated in
discrete horizontal bands, whereas the Rubisco family showed
a more concentrated distribution with generally higher cosine
similarities (96-100%). These distinctive patterns likely reflect
the inherent characteristics of the P450 superfamily, including
greater sequence variability and potentially greater evolutionary
distances between family members.

Notably, all three datasets maintained high cosine similari-
ties (>94%) despite varying sequence similarities, indicating
that embeddings encode higher-order functional and structural
features as well as evolutionary relationships, which is not re-
flected by traditional sequence alignment methods. The higher
Spearman versus Pearson correlations suggest a monotonic
rather than linear relationship between sequence and
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Fig. 3 Information preservation analysis for optimizing sliding window segmentation strategy. (a—c) Analysis of information content across
different window sizes (0-100) for P450 (a), RecA/RAD51 (b), and Rubisco (c) protein families. Left panels display the average entropy curves,
indicating cumulative information entropy as window size increases. Right panels show the first derivative of the entropy curves, suggests di-
minishing information capture beyond certain window sizes, this pattern indicates that denser sampling of window sizes before 50 would be
more effective for capturing critical sequence information. A consistent trend is observed throughout three datasets, suggesting a universal
pattern in how information is structured in PLM-derived embeddings. (d—f) Correlation analysis between pairwise alignment scores and
embedding cosine similarity for P450 (d), RecA/RAD5L1 (e), and Rubisco (f). P450shows relatively lower correlations (Pearson r = 0.196, Spearman
p = 0.339), potentially reflecting its high diversity and complex evolutionary relationships. RecA/RAD51 exhibits the strongest correlations
(Pearson r = 0.580, Spearman p = 0.865), indicating excellent preservation of sequence relationships and reflecting its conserved evolutionary
features as a crucial DNA repair and recombination protein. Rubisco demonstrates a unique pattern (Pearson r = 0.601, Spearman p = 0.539)
where Pearson r slightly exceeds Spearman p, suggesting a more linear sequence—function relationship that may reflect its functional
conservation as a key metabolic enzyme.

embedding similarities, reflecting the complex nature of Application of MAAPE for protein family validation
protein sequence-structure-function relationships.

Hence, we initiated our analysis by setting a baseline
threshold of 10~ for 5-dimensional vectors in the RecA/RAD51
and Rubisco families and 10> for the P450 family. Then,
thresholds for other window sizes are dynamically adjusted
through square root-based scaling across different window
sizes. Additionally, recognizing that longer sequence modules
are inherently less likely to be discovered multiple times than
shorter ones are, we implemented a weighted scoring system
and assign weights to co-clustering relationships based on their
discovery frequency across different window sizes, thereby
accounting for the natural probability distribution of finding
shared patterns at various scales.

After establishing the subvector similarity threshold and sliding
window partitioning strategy, we identified the hierarchical
containment relationships where subvectors from smaller
windows point to those from the next larger window size. This
process iterates until the indivisible original vectors are
reached. Each such containment relationship represents
a cooccurrence relationship, and we recorded these cooccur-
rences on the basis of their directionality and the indices of
their source vectors. By collecting cooccurrence relationships
across all hierarchical levels and weighting them according to
their frequency of appearance at different levels, we can quan-
tify the strength and directionality of evolutionary relationships
between the original vectors. The MAAPE algorithm integrates
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exceeds the other by more than 50%, only the stronger direction is retained. This directed network reveals the evolutionary progression patterns

within the Rubisco family.

two complementary components to construct a comprehensive
evolutionary network. The first is an undirected KNN similarity
network constructed from ESM-2 sequence embeddings, which
represents the fundamental relationships between sequences
based on their high-dimensional vector representations. The
second component incorporates directional evolutionary
information derived from co-occurrence analysis, quantifying
both the intensity and directionality of evolutionary relation-
ships between sequences. By synthesising these two compo-
nents, we generated an evolutionary network graph that utilizes
protein language models to simultaneously represent both
structural similarities and evolutionary trajectories.

To systematically validate the effectiveness of MAAPE, we
selected three protein families with distinct characteristics.
Rubisco, a key enzyme in photosynthesis, has well-documented
evolutionary relationships established through published
experimental studies, providing a reliable benchmark for vali-
dation. The RecA/RAD51 family of proteins, which play crucial
roles in DNA repair and cell cycle regulation, are widely present
in eukaryotes, whose evolutionary history is traceable to that of
early eukaryotes, making them excellent models for studying
the evolution of conserved proteins. The P450 superfamily
represents the other example, with its members displaying
remarkable sequence and functional diversity, large family
sizes, and broad distributions from bacteria to humans. The
P450 family has undergone complex evolutionary processes,
including multiple gene duplications, functional divergence,
and parallel evolution, making it an effective tool for testing
methods' ability to handle complex evolutionary relationships,
all sequence information from the three datasets is docu-
mented in SI Table S1.

Evolution relationship of form I Rubiscos

Form I Rubisco represents an ideal benchmark dataset for
evolutionary studies owing to its well-documented evolutionary
trajectory and clear functional transitions. Through ancestral

© 2025 The Author(s). Published by the Royal Society of Chemistry

sequence reconstruction, the evolution of the Form I Rubisco
has been traced from simple to complex forms, evolving from
ancestral Form II/III to a series of transitional forms (Form T,
Form I”, Form I” and Form Ia). These ancestral forms then
evolved into Form I Rubiscos, which are found in anaerobic,
thermophilic environments, ultimately giving rise to the
modern Form I AB/CD. A key evolutionary event in this
progression was the acquisition of the small subunit (SSU),
which occurred before the transition to modern Form I Rubis-
cos and resulted in the characteristic L8S8 structure that
enhanced both CO, specificity and carboxylation efficiency.
The weighted co-occurrence matrix heatmap (Fig. 4a) reveals
distinct patterns in sequence relationships among 110 Rubisco
proteins. The high cooccurrence values observed in the 1-20
region, corresponding to Type II/III and ancestral Form I Ru-
biscos, suggest strong sequence conservation in these evolu-
tionarily earliest forms. This indicates their fundamental role as
ancestral sequences from which later forms diverged. The
visualization of the force-directed network layout provides
additional insights into evolutionary relationships (Fig. 4b).
Type II/III clusters (red nodes) occupy central positions with
high degree centrality, which is consistent with their ancestral
status in Rubisco family evolution. The form I AB/CD clusters
(purple nodes) show dense interconnectivity, suggesting
substantial sequence conservation within this group. We
further conducted a directional analysis of cooccurrence rela-
tionships, where edges are classified as unidirectional (>50%
weight difference) or bidirectional (<50% weight difference),
revealing a hierarchical evolutionary pattern: strong unidirec-
tional information flow originates from Type II/III forms, rep-
resenting the ancestral state, followed by early Form I types
(Fig. 4c). The subsequent emergence of weaker bidirectional
relationships among later forms reflects the classic pattern of
gene family evolution, characterised by initial strong directional
selection followed by diversification and subfunctionalization.
The MAAPE (Fig. 5a) and KNN (Fig. 5b) graphs demonstrate
consistent clustering patterns, with both methods effectively
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hierarchy. (b) KNN network constructed from sequence embeddings, showing local similarity relationships between Rubisco sequences. (c)
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directions are determined by the dominant weight after bundling. Node numbers represent distinct clusters identified within each Rubisco form,
with edge thickness reflecting aggregated connection weights. Predicted root positioned at a Type II/1ll Rubisco cluster, conforms to their known
evolutionary relationships. (d) Root node prediction analysis for Rubisco enzyme clusters using out-degree/(in-degree + 1) ratio ranking. Cluster
Typell/lll_5 emerges as the predicted root node with the highest ratio of 6.000. (e) Maximum likelihood phylogenetic tree with collapsed
branches for adjacent sequences from the same Rubisco form. (f) Further simplified network where each Rubisco form is constrained to a single
cluster node. This highest-level abstraction clearly reveals the major evolutionary transitions between different Rubisco forms, with edge colors

indicating relationship strengths.

grouping similar Rubisco sequences and clearly separating
different Rubisco types. While the specific spatial arrangements
may vary due to different force-directed layout algorithms, both
approaches reveal similar inter-cluster connectivity patterns.
Edge colour reflects sequence correlation strength, with deeper
red edges concentrated in the Type II/III region, indicating
greater sequence conservation. We further condense the
MAAPE graph through node clustering and edge bundling
refinement (Fig. 5c), where clustering is performed using
a distance threshold set at 30% of the maximum pairwise
distance between the most distant nodes, followed by aggre-
gating edges between different clusters to create simplified
inter-cluster connections. Then further condense to a simplified
version, sequences of each type are restricted into single clus-
ters (Fig. 5f) to gain a more distinct vision of evolutionary
relationships. Details of clustering results and corresponding
sequence IDs are documented in SI Table S2. Quantitative
analysis of the edge-bundled graph reveals that Type II/III and
primitive forms exhibit the highest out-degree centrality, with
most inter-cluster transitions originating from these nodes
(Fig. 5d), whereas Form I AB/CD and thermophilic Form I
demonstrate lower out-degree or in-degree ratios and serve as
terminal nodes in the evolutionary network. The analysis aligns
well with maximum likelihood-based phylogenetic trees
(Fig. 5e, SI Fig. S4), confirming the evolutionary progression

3254 | Digital Discovery, 2025, 4, 3245-3259

from Type II/III as the ancestral form through transitional
ancestral Form I (including Form Ia, Form I', Form I"), to
modern Form I AB/CD. Notably, the MAAPE algorithm reveals
complex nonlinear network relationships beyond traditional
linear tree structures, providing additional insights into evolu-
tionary connections.

Evolutionary relationship of the RecA/RAD51 family

The cooccurrence matrix revealed that the RecA/RAD51 protein
family exhibited a distinctive circular topology with uniform
and regular connections between nodes (Fig. 6a). The four
subfamilies demonstrated evenly distributed edge weights and
prevalent bidirectional connections throughout the network
(Fig. 6b), suggesting close evolutionary relationships and
implying that the RAD family has undergone a more conserva-
tive evolutionary process. This observation is in accordance
with sequence similarity analysis (Fig. 3e), which shows discrete
clustering patterns in the pairwise alignment scores, indicating
conservation between family members while maintaining clear
boundaries between subfamilies.

Fig. 7a and b shows that the dispersion within each protein
cluster is relatively small, and clear evolutionary pathways
between clusters are displayed. Analysis indicates these four
protein clusters originated from a common ancestor. RadB is

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Rad51), with edges colored by normalized weight differences. RadB, in accordance with its early diverged relationship to the other three
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based on sequence embeddings, highlighting the local similarity relationships. The clear subfamily segregation with limited inter-subfamily
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node with the highest ratio of 3.000, highlighted by a red border. (e) Maximum likelihood phylogenetic tree with collapsed branches for
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strengths.

the most ancient form in this gene family. Starting from RadB,
this gene family differentiated for adaptation to different
domains of life: RadA primarily developed and was retained in
archaea, RecA is widely present in bacteria, and Rad51 evolved
in eukaryotes. In condensed MAAPE (Fig. 7c and d, SI Table S3),
RadB, along with a group of RecA and RadA, are positioned at
the root of the network. These findings suggest that these two
groups of RadA and RecA might be intermediate forms that
evolved from RadB, whereas the rest of their members deviated
from each other, indicating the presence of these protein
subfamilies. Rad51 further differentiated from the other two
proteins after the emergence of eukaryotes. Although the main
evolutionary path in eukaryotes is vertical transmission, there
are substantial HGT events between archaea and bacteria,
which could explain the high-weighted edge relationships
between RadA and RecA near the root node in Fig. 7f. The
compact clustering of nodes within protein subfamilies
underscores the high degree of sequence conservation, likely
reflecting strong purifying selection on critical functional
domains. Fig. 7e presents a collapsed phylogenetic tree where
branches within each protein subfamily are condensed (the
complete phylogenetic tree is shown in SI Fig. S5), and the
evolutionary order among protein subfamilies in this collapsed
tree is consistent with the topology observed in Fig. 7f, where
each subfamily is condensed into a single node in the MAAPE
network.

Evolutionary relationships of the P450 protein family

In the P450 family, three orders from the oomycete class display
a more dispersed diffusion structure with distinct hierarchical
features and directionality, particularly showing a pattern of
radiation from certain core nodes (Fig. 8a). Within the P450
family, Peronosporales (shown in red) nodes are relatively large

3256 | Digital Discovery, 2025, 4, 3245-3259

in proportion and often occupy central positions. This pattern
resembles the rubisco family, exhibiting strong unidirectional
information flow starting from type II/III (ancestral state) to
early type I forms. Later forms show weaker bidirectional rela-
tionships (Fig. 8b).

The MAAPE visualization reveals distinct clustering patterns
of P450s across three oomycete orders, with points coloured for
Peronosporales (red), Saprolegniales (turquoise), and Pythiales
(purple). Quantitative analysis of the embedding space shows
order-specific clustering with measurable separation between
Saprolegniales and Peronosporales groups, while Peronospor-
ales and Pythiales demonstrate significant overlap based on
distance metrics (Fig. 9a and b). This pattern aligns with
sequence similarity analyses, in which P450s show the most
dispersed pairwise similarity distribution among the three
datasets, featuring the highest number of intergroup over-
lapping nodes (Fig. 3f).

Notably, Saprolegniales occupies the root position in the
node-clustered MAAPE diagram (Fig. 9¢), which is consistent
with the maximum likelihood phylogenetic tree reconstruction
(Fig. 9e and SI Fig. S6). The extensive proximity between the
Peronosporales and Pythiales branches led to their clustering
when they collapsed, whereas an early diverging Pythiales P450
branch appeared adjacent to the Saprolegniales root, corre-
sponding to purple node 1 near the root position (Fig. 9c and d,
SI Table S4). Strong weighted edges between Pythiales and
Peronosporales suggest gene flow events, such as HGT or
duplication event, demonstrating the dynamic evolutionary
relationships among these orders (Fig. 9f).'»*” This may be
related to the fact that CYP5014, CYP5015 and CYP5017 in this
dataset are present in both Peronosporales and Pythiales
simultaneously, whereas Saprolegniales possesses 11 unique
P450 families.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Visualization of P450 evolutionary relationships through network and phylogenetic analyses. (a) Force-directed network visualization of
MAAPE-based sequence relationships in the P450 dataset. Nodes represent sequences colored by order (Peronosporales, Saprolegniales, and
Pythiales), with edges indicating weighted relationships. The network shows extensive mixing between orders, suggesting frequent evolutionary
exchanges and functional diversification. (b) KNN network based on sequence embeddings. The overlapping clustering pattern, particularly
between Peronosporales and Pythiales, reflects their close evolutionary relationship, while Saprolegniales shows some distinct clustering. (c)
Condensed network derived through node clustering and edge bundling. Numbers represent distinct clusters, with edge thickness reflecting
aggregated connection weights. Two clusters from Saprolegniales P450 are predicted to be the root. (d) Root prediction using out-degree/(in-
degree + 1) ratio between different clusters. Two clusters share the highest ratio of 4.000: Peronosporales_1 and Saprolegniales_0 (predicted
root, highlighted with red border). (e) Maximum likelihood phylogenetic tree with collapsed branches showing major clades. The presence of
mixed clades supports the network-based observation of extensive evolutionary interchange between orders. (f) Highest-level abstraction

showing relationships between the three orders.

Discussion

Conventional evolutionary analysis algorithms often employ
alignment strategies that construct guide trees on the basis of
pairwise sequence similarities.”® Phylogenetic algorithms inher-
ently assume a fixed hierarchical evolutionary relationship
among sequences, which simplifies the complex nature of
evolutionary pathways.?® Such simplistic assumptions can lead to
obscured alignments in regions where sequence identity falls
below 30%, often referred to as the “twilight zone”, diminishing
sensitivity and accuracy when dealing with proteins that exhibit
significant sequence divergence yet maintain structural and
functional conservation. In these low-similarity regions, the
progressive alignment method may fail to account for intricate
evolutionary events such as horizontal gene transfer, convergent
evolution, and compensatory mutations, resulting in fewer
correct homologous pairings and misaligned residues. Moreover,
the reliance on heuristic search strategies in many algorithms
leads to compromises between computational efficiency and
alignment precision, limiting their applicability to large and
complex genomic datasets.*

As such, the persistent challenges of conventional phyloge-
netic methodologies call for new algorithms capable of dealing
with enormous datasets while capturing accurate and nonlinear
evolution networks without compromising misalignhment. The
capacity of PLMs to utilize deep contextual and latent evolutionary

© 2025 The Author(s). Published by the Royal Society of Chemistry

patterns appears to perfectly address this problem.® In this work,
we developed an evolutionary analysis method that dissects PLM
embeddings across multiple window sizes to extract hierarchical
subvectors. By assessing the similarities between these hierar-
chical subvectors, we construct a similarity matrix that not only
represents the relationships between sequences but also indicates
the direction of evolution from smaller to larger subvectors. This
approach leverages the rich contextual representations generated
by PLMs through sliding window approaches with a stride of 1,
encoding subtle evolutionary signals.

In all the datasets we benchmarked, the information entropy
of vector segments derived from varying window sizes increases
with segment length. However, beyond a length of 100, the rate
of entropy increase significantly diminishes. This observation
suggests that the 2560-dimensional embeddings generated by
ESM-2 contain considerable redundant information, suggesting
that dimensionality reduction can effectively extract the core
information while eliminating redundancy. By embedding long
sequences into uniformly sized vectors, ESM-2 facilitates the
handling of extensive and diverse protein data without the
computational burden typically associated with variable-length
sequences. Furthermore, the uniform vector length enables the
application of advanced dimensionality reduction techniques,
such as PCA or t-distributed stochastic neighbour embedding (t-
SNE), to further decrease the computational load and increase
the efficiency of downstream analyses.*
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We further validated our evolutionary analysis method on
datasets using three datasets with well-characterized evolu-
tionary relationships, including P450s, Rubisco and a group of
DNA repair protein families, achieving good performance, as
our results revealed similar intergroup evolutionary relation-
ships to those seen in phylogenetic trees. Instead of traditional
hierarchical phylogenetic trees, our approach generates spatial
relationship network graphs that represent the intricate rela-
tionships between different protein sequences. These network
graphs encapsulate a multitude of informational dimensions,
providing a comprehensive view that extends beyond the
phylogenetic trees. In these validations, the predominant
pathways align consistently with known evolutionary relation-
ships, demonstrating the accuracy of the method in capturing
established phylogenetic trajectories. However, our approach
also uncovers correlations that are not readily apparent in
traditional hierarchical evolutionary trees. These additional
associations highlight the capacity of PLMs to identify subtle
and complex evolutionary relationships that standard tree-
based methods may overlook.

In evolutionary trees, branch lengths represent evolutionary
distances on the basis of the number of amino acid residue
differences, offering a linear and abstract measure of evolu-
tionary divergence. In contrast, we used Euclidean distances
between sequence positions within a high-dimensional
embedding space. This geometric representation offers
a more intuitive visualization and captures richer information
regarding evolutionary distances. By mapping sequences into
a spatial framework, we can reveal complex evolutionary
patterns and relationships that are often obscured in tree-based
algorithms.

MAAPE exhibits unique advantages when compared to
existing methods, we established similar topological relation-
ships with maximum likelihood phylogenetic trees, as demon-
strated in panels d and e of Fig. 5, 7, and 9, however, MAAPE
additionally identifies gene transfer connections and ancestral
pathways that hierarchical trees cannot represent. Furthermore,
MAAPE uses KNN graph as the main backbone for representing
similarity between proteins, yet purely similarity network such
as KNN does not have evolutionary direction that distinguish
ancestral from derived states, for instance, it cannot identify
Saprolegniales as ancestral to other oomycete lineages.
MAAPE's co-occurrence analysis enables identification of
evolutionary trajectories and ancestral relationships.

Hie et al. developed evolutionary velocity graph using protein
language model embeddings to predict evolutionary dynamics
by treating embeddings as fitness landscapes where pseudo-
likelihood changes reflect evolutionary driving forces and
temporal trajectories.** They focused on dynamic mechanisms
of how evolution proceeds within families, in contrast, MAAPE
considered embeddings as hierarchical biological information,
giving complex evolutionary patterns such as HGT or conver-
gent evolution greater attention, focusing on what evolution has
produced rather than how it proceeds. Similar studies can
interpret embeddings from multiple perspectives and provide
novel understanding.
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One key limitation of the current MAAPE implementation is
computational accessibility. Complexity analysis reveals two
distinct bottlenecks: multi-scale similarity search and cross-
scale path generation. While the first stage dominates for
smaller datasets, path generation becomes the primary bottle-
neck as dataset size increases due to quadratic scaling in the
number of unique vectors generated in the first step. Future
implementations will incorporate optimization strategies to
enhance computational efficiency.

Overall, our PLM-based evolutionary analysis method lever-
ages the powerful embedding capabilities of protein language
models to overcome the limitations of traditional phylogenetic
approaches. By providing a spatial and information-rich
framework for visualizing evolutionary relationships, our
method improves both the accuracy and interpretability of
evolutionary studies, offering significant advancements for
fields such as protein engineering, functional genomics, and
the comprehensive understanding of evolutionary mechanisms.

While we have observed that embeddings can be dissected
into segments that retain specific informational properties, the
precise functionalities and the extent of information conveyed
by each subvector remain to be elucidated. Furthermore, the
utilization of embeddings to address position-related chal-
lenges within the protein domain holds substantial develop-
mental potential, and our approach opens new avenues for
solving complex spatial relationships buried in protein struc-
tures. This promising aspect requires extensive research to fully
understand the capabilities of protein language models, ulti-
mately advancing our ability to decode and manipulate the
structural and functional properties of proteins.
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