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Targeted a-therapy (TAT) is a promising radiotherapeutic technique for the treatment of various cancers

due to the high linear energy transfer and low penetration depth of a-particles. Unfortunately, one of the

major hindrances in the use of TAT is the accessibility of acceptable a-emitting radioisotopes. Of the

acceptable radioisotopes, 223Ra, 224Ra, 225Ra, and 225Ac can all originate from 227Ac. Being able to

selectively isolate 227Ac is crucial for aiding in increasing the accessibility of a-emitting radioisotopes for

TAT. Some of the more successful ligands used for the selective separation of trivalent actinides are the

6,60-bis(1,2,4-triazin-3-yl)-2,20-bipyridine (BTBP)-based ligand family. Current ligand performance

screening is accomplished by using a trial-and-error-based method which is expensive and based

primarily on chemical intuition and previous studies. In this study, effective computer-aided ligand

screening has been accomplished by generating CyMe4–BTBP-based ligands and predicting stability

constants for 227Ac extraction of each using scalar relativistic density functional theory (DFT) followed by

supervised machine learning (ML). DFT was used to compute stability constants from a 2 : 1

stoichiometric ratio of BTBP to 227Ac with three nitrate ions for charge balancing as demonstrated by

experimental analysis. The computed stability constants coupled with the vectorized information from

the optimized BTBP molecular geometries were used for the training of ML workflows. The performance

of each algorithm was determined by the validation set and the outcomes compared to the DFT stability

constants. This methodology can aid radiochemists in synthesizing targeted ligands for selective isolation

of 227Ac.
Introduction

Targeted a-therapy (TAT) is a promising radiotherapeutic
technique for the treatment of various cancers.1–8 The effec-
tiveness of TAT is due to the high linear energy transfer (50–230
keV mm−1)1,9 and the short path lengths (50–100 mm)1 of
a particles (4He nucleus) allowing for the destruction of cancer
cells in a conned region leaving healthy cells relatively unaf-
fected.1,2,5,9 There are, however, only a select few a-emitters that
are able to be used for TAT since the a-emitters need a half-life
long enough to be effective and cannot contain daughters that
emit g rays but ideally contain daughters that also emit
a particles.10 Of the acceptable radioisotopes for radiopharma-
ceutical applications, 223Ra (t1/2 = 11.4 d),1,5,7,11 224Ra (t1/2 = 3.6
d),9,10 225Ra (t1/2 = 14.9 d),9 and 225Ac (t1/2 = 9.9 d)1,2,6,9,10 are of
interest due to their origination from 227Ac,12 the longest-lived,
naturally occurring actinium isotope (t1/2 = 21.77 years) being
a great-granddaughter of 235U.3,13 Indeed, the rst and only
radioisotope currently approved by the FDA is 223Ra in the form
nessee, Knoxville, Tennessee 37996-1600,

tion (ESI) available. See DOI:

0–1112
of 223RaCl2 (Xogo, Bayer HealthCare Pharmaceuticals)11 for the
treatment of prostate cancer. This radioisotope is known to be
produced through the isolation of 227Ac and 227Th.14 There are
other methodologies for the production of 225Ac,3,4,6,7,9,15–17

where each of these processes involves the 227Ac radioisotope
whether directly from legacy sources or from the transmutation
of 226Ra, emphasizing the focus of this study on 227Ac extrac-
tion. The radioisotope 225Ac is also a promising a-emitter since
the daughters of 225Ac are also all a-emitters, allowing for
increased radiation dosage to the cancer cells.1,17,18 However,
one of the major hindrances to the implementation of TAT is
the supply of a-emitting radioisotopes.4,9,17,18

An alternative method for the extraction of actinide(III)
radioisotopes is by solvent-based extraction with 6,60-bis(1,2,4-
triazin-3-yl)-2,20-bipyridine (BTBP, Fig. 1A) ligands.19–24 These
ligands were designed for the selective extraction of trivalent
actinides over trivalent lanthanides from a nitric acid
medium.19,23 They were also designed to be more resistant to
radiation degradation than the 2,6-bis(1,2,4-triazin-3-yl)-
pyridine (BTP) ligands.19 The BTBP ligands coordinate to triva-
lent actinides in a 1 : 2 (actinide-to-ligand) ratio with instances
of extraction in nitric acid solution possessing a coordinated
nitrate ligand in the inner coordination sphere with the
remaining charge balancing nitrates in the outer solvation
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) The reference CyMe4–BTBP ligand and the five analogs labeled BTBP1–BTBP5 considered in this study. Nitrogen atoms in blue font
demonstrate the coordination sites of the BTBP ligands, R groups represent the substitution position(s) of themolecules. (B) Optimized geometry
of the [Ac(CyMe4–BTBP)2(NO3)2]

+NO3
− coordination complex. The first coordination sphere of Ac(III) is shown as spheres (color code: light blue

= Ac(III), red = O, blue = N, grey = C, and white = H).
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View Article Online
sphere of the coordinating complex (Fig. 1B).19,20,25 Extractions
with selected BTBP complexes have been shown to be diluent
dependent and importantly, structurally dependent. For
example, extractions with 6,60-bis(5,6-dipentyl-[1,2,4]triazin-3-
yl)-[2,20]bipyridine (C5-BTBP) were shown to be dependent upon
the utilized diluent showing an increase in the distribution
ratios between Am(III) and Eu(III) with an increase in the
dielectric constant of the diluent.19,26 Likewise, 6,60-bis(5,5,8,8-
tetramethyl-5,6,7,8-tetrahydro-benzo-1,2,4-triazin-3-yl)-2,20-
bipyridine (or CyMe4–BTBP, in short), the current trivalent
actinide/lanthanide extraction European reference ligand,27

when used for extraction in 1-octanol/kerosene and 1-octanol of
Am(III) and Eu(III), were shown to indeed selectively extract
Am(III) over Eu(III). Unfortunately, the kinetics of these extrac-
tions were shown to be inadequate to justify industrial
applications.19,28

Structural modication of BTBP ligands plays an important
role in the optimization of actinide extractions.19 As an example,
Cm(III) and Eu(III) extractions were evaluated with CyMe4–BTBP
in methanol/3.3 mol% water using TRLFS20 which demon-
strated conditional stability constants (log b) of 12.4 ± 0.3 and
11.3 ± 0.3, respectively, while C5-BTBP in 1-octanol/water/
0.04 M nitrate using TRLFS19,29 was shown to be 10.8 ± 0.6 and
9.4 ± 0.4, respectively. Another study focused on the synthesis
of two BTBP molecules (Cl–CyMe4–BTBP and Br–CyMe4–BTBP)
with the halogen substituted on the para carbon with respect to
the coordinating nitrogen atom on one of the bridging pyridine
groups.22 Comparing the behavior of both of these ligands to
each other for Am(III) separations from Eu(III) demonstrated
a maximum separation factor20,30 of 124 ± 12 and 112 ± 11 at
3 M HNO3 for Cl–CyMe4–BTBP and Br–CyMe4–BTBP, respec-
tively.22 This demonstrates that small structural changes in the
functionalization of BTBP ligands can signicantly affect the
binding affinity of the BTBP ligands to actinides (actinium in
this study) and the need to have a protocol for the screening of
thousands of different BTBP ligands for evaluation can be vital
towards separation optimization and ligand discovery.

Since current industrial processes utilize ligands, in the form
of resins, for the selective separation of Ac(III) from a mixture of
different isotopic quantities of Th(IV) and Ra(II) dissolved in
© 2025 The Author(s). Published by the Royal Society of Chemistry
nitric acid, solvent-based extraction methods have the potential
to selectively separate Ac(III) from a mixture of impurities by
utilizing highly selective BTBP ligands in the organic phase for
Ac(III) separations while utilizing a masking agent that can be
used to reduce divalent impurities (such as Ra(II))19 from being
extracted or a secondary ligand, such as the hydroxypyr-
idinonate 3,4,3-LI(1,2-HOPO) ligand,31 that can be used to
selectively extract tetravalent impurities (such as Th(IV)). Indeed,
one such ligand utilized in resin-based extraction is the
N,N,N0,N0-tetraoctyl diglycolamide (TODGA)9,18 ligand which has
been explored in solvent-based separation processes with
CyMe4–BTBP for SANEX applications.19,32 Utilizing solvent-
based extractions as an alternative method for the extraction
of 227Ac could reduce the number of processes providing
a simpler extraction process that can assist in the development
of novel methods for extracting trace amounts of Ac found in
the ocean,33 uranium ore during the uranium processing stage
instead of leaving it to decay, and from nuclear waste.34 This
would be advantageous for assisting in an increase in radio-
isotope supply for applications in targeted radiotherapy.

Articial intelligence and machine learning (ML) methodol-
ogies have shown promise in the analysis and prediction of
actinide properties and rare-earth element separations.35–45 A
recent study utilized ML to make thermochemical binding
predictions from computational data of La(III) and Ac(III) with
carboxylic acids.45 More specically, this study utilized super-
vised ML methods based on decision tree regression to predict
DGrxn values for the complexation of La(III) and Ac(III) with
carboxylic acids by using Coulomb matrices of the coordinated
complexes with inner shell coordination of solvent molecules
(water). The most accurate results acquired in this study, in
terms of mean absolute error (MAE), derived from the XGBoost46

method resulted in a MAE of 6.93 kcal mol−1.45 Overtting was
observed in all the ML models trained in this study, which was
hypothesized to be reduced upon the addition of a larger dataset.
Liu and coworkers developed ML models for the prediction of
logD, which is the logarithm of the distribution ratio, acquired
from experimental analysis for lanthanide separations.43 This
study utilized fully connected neural networks with the extended-
connectivity ngerprints47 and a descriptor input vector extracted
Digital Discovery, 2025, 4, 1100–1112 | 1101
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Fig. 2 Schematic overview of the individual steps considered in this study. The methodology calibration includes (A) examination of the
coordination complex with the assistance of experimental data and (B) the orientation and solvation effects of the BTBP analogs using dihedral
rotations with methyl groups as substituents. The model development focuses on (C) the generation of the ligand library that was used for this
study and (D) the collection of stability constants (log b) for the initial dataset used for training themachine learning algorithm. The active learning
process enabled us to augment the training dataset by taking the top 30 performing ligands as predicted by ML and computing their respective
log b value. The model's impact is evaluated based on (E) the interpretability from the ML results to provide targeted functional groups that were
computationally predicted to improve 227Ac complexation and (F) transfer learning where predictions were made on 10 + 1 CyMe4–BTPhen
ligands using ML algorithms trained with BTBP ligands.
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by RDKit48 for the individual ligands and the logD values with
their respective experimental conditions such as temperature
and concentration as examples, as inputs for the neural network.
From this study, they were able to acquire a MAE of 0.34 and
a root mean square error of 0.53 for their validation set.43 Both
studies have specic limitations but are relevant to our study as
we aim towards thermochemical predictions based on the
structure of the ligand to generate a simplemethod for screening
unexplored ligands for 227Ac extractions.

The present study explores 227Ac extractions using CyMe4–
BTBP-based variants as an alternative to current industrial
processes and provides a general methodology for BTBP-based
ligand discovery and design through scalar relativistic density
functional theory (DFT) and ML. We have considered ligand
featurization that utilizes information from molecular topology
and electronic structure. The workow for this study is graph-
ically illustrated by Fig. 2 which highlights the three major
sections that are presented and discussed: calibration, model
development, and impact of the ML results. Application of
active learning enabled an extended and reliable screening of
thousands of unexplored functionalized BTBP analogs. The
interpretability of the ML methodology presented here, as well
as its transferability to functionalized CyMe4–BTPhen ligands,
is discussed.
1102 | Digital Discovery, 2025, 4, 1100–1112
Results
Ligand library development

The aim of this study was the effective prediction of log b values
for more than 350 000 molecular units using only the BTBP
ligand geometries and without performing expensive geometry
optimization of the full complex (2 : 1 ratio between the ligand
and actinide cation). This was achieved by using DFT-generated
data from a small subset of the full ligand library. In particular,
a ligand library of 350 875 unique molecular structures were
generated (see Computational details). Each class of atom size
functional groups with respect to SMILES strings has approxi-
mately equal amounts of BTBP1–5 generated. Hereaer, when
discussing the atom size of a functional group it will be
implying the size of the SMILES string which excludes the
hydrogen atoms. The ve different families that were used for
the generation of the ligand library included two families that
were symmetrically functionalized and three that were asym-
metrically functionalized (Fig. 1A). The two symmetrical fami-
lies involved the functionalization of the para sites of the 2,20-
bipyridine unit of the CyMe4–BTBP scaffold with respect to the
coordinating N atoms (BTBP1), and the functionalization of the
lower C atom that is positioned between the tetramethyl
substituted cyclohexene unit of the scaffold (BTBP2). The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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asymmetric functionalization included the single substitution
of one side of the 2,20-bipyridine portion of the CyMe4–BTBP
scaffold by substitution of the meta site with respect to the
coordinating N atom closest to the other half of the 2,20-bipyr-
idine group (BTBP3), substitution of the para site (BTBP4), and
substitution of the other meta site, which is closest to the 1,2,4-
triazine group of the BTBP scaffold (BTBP5).

Ligand orientation and complexation calibration

Before the generation of the necessary data, we rst wanted to
determine the most stable conformation of the BTBP ligands
(ESI, Section S1†) and the Ac(III) complexation with BTBP. The
most probable Ac(III) complexation was determined by using
La(III) for select ligand complexation analysis due to its chemical
similarity to Ac(III).45,49 This was accomplished by taking known
experimental log b values of La(III) ligation since, to the best of
our knowledge, Ac(III) has no known experimental log b values
for these systems. This calibration allowed us to make infer-
ences about the expected performance of Ac(III) ligation with
BTBP ligands.

Table 1 demonstrates experimental log b values for the 1 : 2
ratio of Cm(III) (from our previous study,50 shown here for
comparison) and La(III) using different BTBP ligands. The log
b values were computationally determined from the chemical
reactions (R1) and (R2) for the complexation with Cm(III) and
La(III), respectively (L represents the BTBP variants). The coor-
dination complex for La(III) was shown to have an additional
nitrate ligand coordinated to the nuclide than Cm(III). Since in
our previous study we found agreement between the DFT opti-
mized coordination complex with spectroscopic experimental
observations of Cm(III) having a single nitrate ligand coordi-
nated to the complex,19,20,50 we could then imply that due to the
larger atomic radius, La(III) could allow for a larger coordination
number as determined by DFT. We also note that the predicted
log b values for La(III) were overall in better agreement with the
experimental values than the Cm(III) values. Thus, we infer that
due to the chemical similarity between La(III) and Ac(III), that the
log b values from our computational protocol should provide
reasonable agreement with the actual value from future
experiments.

Cm(NO3)3 + 2L / [Cm(L)2(NO3)]
2+(NO3)2

2− (R1)

La(NO3)3 + 2L / [La(L)2(NO3)2]
+NO3

− (R2)
Table 1 Selected experimental stability constants compared to
computationally determined stability constants for Cm(III) and La(III)
ligation with BTBP ligands

Structure M(III) Experimental log b Computed log b Dlog b

t-Bu–C2–BTBP Cm 11.1 � 0.15a 14.52d 3.42
CyMe4–BTBP Cm 12.4 � 0.3b 13.14d 0.74

La 8.8 � 0.1c 10.24e 1.44
C5-BTBP La 10.0 � 0.3c 9.75e 0.25

a From ref. 30. b From ref. 20. c From ref. 51. d From ref. 50. e This work.

© 2025 The Author(s). Published by the Royal Society of Chemistry
We then used computationally determined stability
constants and electronic energies to evaluate the trends from
rotations about dihedral angles of CyMe4–BTBP as well as
substituted CyMe4–BTBP analogs. The full discussion on dihe-
dral rotation can be found in the ESI (Sections S1 and S2)† and
our key ndings are summarized here. First, we evaluated the
log b associated with Ac(III) ligation with each BTBP analog
(Fig. 1A) usingmethyl as the substituent and then computed the
energy barrier between all BTBP conformations of the indi-
vidual analog to compare thermodynamic favorability with
respect to the rotational barriers. Analysis of the computed log
b for these analogs demonstrated the following trend frommost
favorable to least favorable: CyMe4–BTBP > BTBP2 > BTBP4 >
BTBP1 > BTBP5 > BTBP3. Comparison of the log b values with
respect to the energy barrier of the BTBP analogs demonstrated
that the thermodynamic stability constants are dependent upon
the coordination complex itself and are not affected by
complexation kinetics that are dependent upon the organiza-
tional penalty. This phenomenon was observed experimentally
when comparing the experimentally determined log b for La(III)
with the formation rate constant, which was too rapid of
a reaction to acquire interpretable results for CyMe4–BTPhen,
whereas CyMe4–BTBP was measured to be 70.5 ± 0.8 L mol−1

s−1 with the stability constants for CyMe4–BTBP (8.6 ± 0.2) and
CyMe4–BTPhen (8.5 ± 0.2) in acetonitrile showing only
a difference of 0.1 for these relatively similar ligands.52

To elucidate the solvation effects on the selective complex-
ation between Ac(III) and La(III), the separation factor (SF) for
La(III)/Ac(III) ligation using CyMe4–BTBP was evaluated since it
has been shown experimentally that the SF increases with
decreasing relative permittivity of the solvent when analyzed
with Am(III)/Eu(III) separations.23 We also chose to compare
Ac(III) with La(III) as the separation between these two radionu-
clides would be the most challenging if La(III) is present in an
analyte with Ac(III). SFLa(III)/Ac(III), the ratio of the bM(III)

30 values,
was calculated using eqn (1):

SFA=B ¼ 10log bA

10log bB
¼ bA

bB

(1)

Interestingly, SFLa(III)/Ac(III) was shown to have the opposite effect
for the following SFLa(III)/Ac(III) values with the solvent and their
respective relative permittivity in parentheses: 5024.52 (meth-
anol, 32.63), 1976.47 (water, 80.4), 793.32 (1-octanol, 10.3), and
2.58 (kerosene, 1.998). This inverse in the behavior demon-
strated by Am(III)/Eu(III) separations can be summarized by
stating that in general the SF decreases with decreasing relative
permittivity between La(III) and Ac(III); however, methanol was
an exception providing the highest SF value out of the four
solvents. Indeed, water, which has a higher relative permittivity
value than methanol, resulted in a signicantly smaller SF. This
computational nding implies that optimizing the SF between
specic actinides and lanthanides requires solvent dependent
investigations. These results also demonstrate that the
commonly used kerosene in industrial applications would be
ineffective at removing Ac(III) from La(III) and instead methanol
should be utilized since it possessed the highest SF value.
Digital Discovery, 2025, 4, 1100–1112 | 1103
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Data collection

We began this study with the consideration of a small subset
of 623 ligands evaluated with DFT from this library. We
followed a bottom-up procedure where the initial data were
collected from molecular geometries of BTBP variants with
small functional groups, with the aim of developing ML
models that predict properties of larger molecular structures.
More precisely, we have utilized all BTBP variants with
substituents consisting of 1, 2, 3, and 4 non-hydrogen atoms,
together with a small subset of substituents with 5
non-hydrogen atoms. The total number of the selected ligands
was 640. DFT computations were performed to determine the
log b values of each ligand in this subset, but 17 computations
were not completed successfully and were returned to the
ligand library. Thus, a total of 623 DFT data were used for
training a ML algorithm for making predictions on the full
ligand library (Fig. 3). A full breakdown on the distribution of
the datasets utilized in this study can be found in the ESI
(Section S4 and in Fig. S8).†

A short analysis was carried out on the 50 molecular
complexes with the highest computed log b values (out of the
initial 623 examined by means of DFT). We note some common
features present in the functional groups of these top 50
ligands, such as 27 of the top 50 contain amine groups, 12
contain a hydroxyl group, 6 contain a cyclic group, and 4 contain
Fig. 3 Schematic representation of the bottom-up active learning
process followed in this study. An initial subset of 623 ligands
(including the parent BTBP ligand) with a functional group size of 1, 2,
3, 4, and 5 non-hydrogen atoms was used as the initial set for ML
model training (space shown in purple) out of a total of 350 874
generated ligands. These 350 874 ligands were successfully generated
from the parent BTBP ligand by using SMILES strings with non-
hydrogen atom numbers of 1 through 8. This approach allowed us to
organize and monitor the different ligand sizes and their performance
with 227Ac ligation. Active learning steps systematically increased the
training set with data from molecular units with a larger functional
group (5, 6, 7 or 8 non-hydrogen atom substituents). The number of
ligands for each functional group size is given at the right, figure not to
scale.

1104 | Digital Discovery, 2025, 4, 1100–1112
a carboxyl group (ESI, Section S3†). These results demonstrated
that the addition of polar groups increases the favorability for
complexation with Ac(III) since only two ligands out of 50
contain nonpolar functional groups (cyclobutyl). We also iden-
tied the symmetrical BTBP1 and the asymmetrical BTBP4
ligand scaffolds as the preferable functionalization sites. In
both cases, the substituent is in the para site with respect to the
coordinating nitrogen of the 2,20-bipyridine group within the
BTBP analog.
High-throughput virtual screening via active learning

A major objective of this study was to provide the tools neces-
sary for the screening of unexplored BTBP ligands for the
prediction of reliable log b values. The computational workow
presented here avoids the explicit computation of each molec-
ular complex (350 875 in total) by means of DFT and active
learning, which can provide directions for the targeted
synthesis of the next generation of BTBP-based ligands. For that
purpose, we utilized the computational data collected from the
623-ligand dataset and progressively increased the size of the
ligand dataset in each active learning step (Fig. 3). The active
learning process included the following phases: training, data-
base screening, validation, data augmentation, and retraining.
The model trained on the 623-ligand dataset was used for
screening the unexplored 350 242 ligand dataset, and predicted
log b values were obtained for each molecular unit.

The validation of these predictions was performed by using
a validation set composed of 10 randomly selected structures
from the remaining 350 252 unexplored molecules. Of these 10
BTBP ligands, six consisted of functional groups with an eight-
atom scaffold, two contained seven, and two consisted of
functional groups with a ve-atom scaffold (see ESI S5† for more
details). Three of the BTBP ligands were members of the BTBP1
analog, four were of the BTBP2 analog, one was from the BTBP3
analog, and two were from the BTBP5 analog. We rst opti-
mized the geometry of all 10 structures and then determined
the log b values computationally to then be used as compari-
sons for the predictability of the trained algorithms on new
ligands. Note that the validation set was kept unchanged during
the active learning steps to track the performance and the
increased accuracy of the retrained models (vide infra).

Active learning is a machine learning technique that itera-
tively improves a model by identifying and incorporating new
data points where predictions are uncertain. If a model's
predictions deviate signicantly, new data are added to the
training set, the model is retrained, and the process repeats
until convergence or predened criteria are met. In this study,
active learning was implemented by selecting 30 ligands with
the highest predicted log b values from an extended, unexplored
ligand library to augment the dataset. Additional DFT geometry
optimizations were performed for the full molecular complexes
with these 30 additional ligands, new log b values were
computed, and comparisons between the ML and DFT log
b values were used as an additional control of the models'
performance (a detailed discussion on the active learning steps
and the collected data is provided in ESI Sections S6–S8†). The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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predicted log b values for each of the 10 molecules of the vali-
dation set with respect to the actual DFT values are shown in
Fig. 4, while the inset demonstrates the improved predictability
as the training dataset increased from the initial 623-ligand
instances to the 803-ligand dataset, aer 6 active learning steps.
The grey arrows show the shi of the predicted values during
the active learning steps. For example, we identied three
outliers that are located in the upper right region of the plot and
have signicantly higher DFT values (log b is 10 or higher).
These three cases belong to the BTBP1 family of functionalized
ligands, and they are shown in ESI S5, Fig. S9.† As the ML
models are trained with more data (from 623 to 803), the
model's accuracy is increased, as is shown with the value shi
towards the diagonal. We also note that similar behavior was
found for the rest of the validation set. The drop shown in the
inset of Fig. 4 (between dataset 713 and 743) further demon-
strates the improvement in themodel with aDlog b value of 0.84
which corresponds to 4.79 kcal mol−1 uncertainty. We also
quantied the performance of each dataset by calculating the
mean absolute error (MAE, which can also be found in the inset
of Fig. 4 as previously discussed) and root mean square error
(RMSE) for the 623-ligand dataset (MAE of 3.05 and RMSE of
4.23), the 653-ligand dataset (2.99 and 4.04, respectively), the
683-ligand dataset (3.04 and 4.12, respectively), the 713-ligand
dataset (3.01 and 3.77, respectively), the 743-ligand dataset (2.17
and 3.06, respectively), the 773-ligand dataset (2.50 and 3.30,
respectively), and the 803-ligand dataset with a MAE value of
2.42 and a RMSE value of 3.28.

To further elucidate the predictability improvement during
the active learning steps, we report the evolution of the data
distribution, as we augmented the training set from 623
Fig. 4 Parity plot between the DFT and the predicted log b values from
the ML models trained during the data augmentation from active
learning. The legend shows the color code corresponding to the
different training set sizes. The grey arrows demonstrate the evolution
of the log b values during the active learning process. The inset graph
demonstrates the learning curve of the 10-molecule validation dataset
with respect to the mean absolute error of the predicted and DFT log
b values starting from the initial 623-ligand dataset to the 803-ligand
dataset with each of the active learning steps in between.

© 2025 The Author(s). Published by the Royal Society of Chemistry
instances (ESI S8 Fig. S11, top†) to 803 instances (ESI S8
Fig. S11, bottom†). The 5 different families of ligands are
organized into 5 groups based on their log b values, i.e. below 0,
between 0 and 5, between 5 and 10, between 10 and 15, and
above 15. We highlight that the distribution associated with the
BTBP1 analog demonstrated that before the inclusion of the
active learning molecules, there were no reported log b values
above 15, whereas active learning provided 24 BTBP1 ligands
with a log b value above 15. This assisted in improving the
predictability of the validation set since the two signicant
outliers were both BTBP1 analogs with stability constants above
15. We also note the increase in ligands with a log b value in the
10–15 range by 59 during the active learning process for the
BTBP1 analog. Thus, active learning helped the model to adapt
and be trained on datapoints with higher log b values improving
the validation set performance.

The active learning process also identied that symmetri-
cally functionalized BTBP ligands signicantly improve 227Ac
complexation (BTBP1 and BTBP2 families). From the 623
ligands of our initial dataset, 20 BTBP1 and 3 BTBP2 variants
had a log b value above 10, while aer the four active learning
steps, these numbers increased to 103 and 7 variants from the
BTBP1 and BTBP2 families, respectively. The top-10 performing
ligands discovered by active learning are presented in Fig. 5. All
ligands are symmetrical, they belong to the BTBP1 family and
contain functional groups that are bonded to the BTBP scaffold
through a nitrogen atom (with the exception of ligand 664 that
is connected through a carbon atom). Additional observations
include that these ligands contain (a) cyclic functional groups
(ligands 769, 785, and 792 are exceptions), (b) at least one
double bond (ligands 774 and 795 are exceptions), and (c)
contain polar functional groups. These functional groups are all
composed of 8 atom scaffolds (excluding H atoms).

Finally, we provide a set of recommendations for the func-
tional groups and functionalization site (Fig. 6) based on anal-
ysis of the ligand characteristics that produced high log b values
for 227Ac complexation in methanol. We rst note the preferred
functional site of the BTBP analogs studied in this work. We
found that the symmetrical para positions of the coordinating
nitrogen atoms of the 2,20-bipyridine group enhance the liga-
tion with actinium. The recommended R groups providing the
largest log b values from this study are shown on the right side
of Fig. 6 in the magenta box. Our rst recommendation is to
bridge the BTBP scaffold to the functional group by using an –

NH– linker coordinated to the BTBP core. This was a charac-
teristic demonstrated by nine of the top ten ligands. The rest of
the functional group branching from the amine bridge has
several recommendations for design. The rst is the use of
cyclic groups such as cyclopentene, cyclopropyl, ethylene oxide,
cyclobutane, and imidazole groups. We also recommend
minimally branched functional groups, such as a single branch
from the linear chain with minimal steric strain. The presence
of double bonds was observed to be signicant as well, being
present in eight of the top ten ligands with a maximum of two
double bonds being observed in a functional group. The func-
tional groups should also be polar and contain oxygen and
nitrogen groups, especially hydroxyl groups that were in eight of
Digital Discovery, 2025, 4, 1100–1112 | 1105
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Fig. 5 The top ten ligands out of the 803 ligands analyzed through this study and their log b values computed by DFT.
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the ten ligands. Finally, we observed that functional groups
containing a higher composition of atoms provided stronger
favorability for 227Ac complexation than when functionalized
with smaller functional groups.
1106 | Digital Discovery, 2025, 4, 1100–1112
Transfer learning

Lastly, we evaluated whether the trained model could make
predictions on the structurally similar BTPhen-based ligands
on 227Ac complexation. To do so, we used the ML model
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Proposed ligand design for synthesizing ligands to optimize 227Ac extractions in methanol determined from this study. The functional
group design is demonstrated in the magenta box and the preferred functional sites are demonstrated by the magenta functional groups.

Fig. 7 Transfer learning results using the model trained on 803 BTBP ligands for predicting log b values of 10 + 1 CyMe4–BTPhen analogs (their
structures are shown in ESI Section S5 and Fig. S10†). The y-axis shows the absolute difference between the DFT-computed and the predicted
log b values.
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trained on the DFT optimized 803-ligand dataset to predict
log b values of the BTPhen parent ligand together with 10
BTPhen variants using only their molecular structure (and not
the full coordination complex) which are shown in ESI S5,
Fig. S10.† The resulting absolute differences in log b values
with respect to the DFT computed values and the predicted
values from the trained ML algorithms are demonstrated in
Fig. 7. To evaluate model performance, the mean absolute
error (MAE, 3.22) and the root mean square error (RMSE, 3.79)
between the DFT and predicted log b value are also reported.
These error values are in good agreement with the nal active
© 2025 The Author(s). Published by the Royal Society of Chemistry
learning step involving only BTBP ligands (the 803-ligand
dataset) which had a MAE of 2.42 and a RMSE of 3.28 and thus,
both models have comparable uncertainty. Since DFT-
optimized BTBP ligands were used, the DFT optimized
BTPhen-based ligands were also used for making predictions.
Overall, we found that for the prediction of BTPhenmolecules,
an algorithm trained on DFT optimized BTBP ligands can
provide reasonable agreement for the expected DFT stability
constants without the computation of the computationally
demanding coordination complexes.
Digital Discovery, 2025, 4, 1100–1112 | 1107
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Table 2 Distribution of functional group scaffold composition used
for ligand generation

Scaffold 1 2 3 4 5 6 7 8
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Conclusions

The in silico optimization of the tetradentate BTBP ligands for
enhancing ligation with 227Ac using active learning and ligand
topology was discussed in this article. The study involved three
stages: calibration, model development, and chemical inter-
pretation. The calibration included the molecular complex
ligation and the consideration of the correct coordination
environment between two BTBP units and 227Ac, conformation
search of the bare ligand, and solvent effects. These tasks were
important for the accurate modeling of the full molecular
complexes by DFT.

A dataset of 350 875 unique BTBP variants was generated by
considering 5 different functionalization sites, two of which
generated symmetrical ligands (BTBP1 and BTBP2 ligand
families) and three unsymmetrical (BTBP3, BTBP4, and BTBP5
families). From these, we selected 640 ligands, and we
computed their log b values by performing DFT geometry opti-
mizations of the full complex (2 : 1 ratio between BTBP and
227Ac). A curation step reduced the number of DFT data to 623 to
ensure the reliability of the data used for the training of a ML
model. In all ML models, we introduced topological informa-
tion of the molecular ligands together with electronic structure
features via a concatenated input vector (PI + SOAP). Then, we
utilized active learning to predict log b values of the unexplored
BTBP ligands in a systematic manner. This was accomplished in
six active learning steps which were augmenting the ligand set
with an additional 30 ligands, followed by extra DFT computa-
tions that determined the log b values. Following this proce-
dure, we increased the dataset from 623 ligands to 803 ligands.
The predictability of the trained models was evaluated by
comparing the ML-generated log b values with respect to DFT
for a separate set of 10 ligands (validation step). Analysis of the
top performers led to the suggestion of ligand design principles.
We concluded that the symmetrical BTBP1 analog is the
preferred class of ligands for 227Ac extractions, with substitu-
ents that are coordinated to the BTBP body via an NH group
(secondary amine).

We have also explored the transferability of the trained
model to a different family of tetradentate ligands. The trained
ML model on BTBP data showed good accuracy for a set of 10 +
1 CyMe4–BTPhen derivatives. The importance of this becomes
evident when considering that the only input information
needed for the log b predictions is the optimized geometries of
the bare ligands, an approach that surpasses the more time-
consuming optimization of the larger molecular complexes
ligated with 227Ac cations. Therefore, this methodology can be
used in the future for a large-scale study for the extraction of
227Ac over Th(IV) and Ra(II) for either the optimization of the
current leading extraction process with ion chromatography or
for solvent-based methods. The results presented here
demonstrate that solvent-based extractions of 227Ac should be
feasible, especially with the ligands that have log b values
above 15, and based on the fact that Th(IV) would not favorably
complex with BTBP molecules and Ra(II) interactions could be
reduced by the use of a masking agent. We conclude that
1108 | Digital Discovery, 2025, 4, 1100–1112
further optimization for the determination of the optimum
ligand to use for Ac(III) would still need to be carried out as
there is a vast number of unexplored ligands for Ac(III)
complexation.
Computational details
Molecular structure database

A molecular library that includes ve BTBP analog ligand
classes used for functionalization to use for data generation and
machine learning analysis was generated by using molSim-
plify53 that applies OpenBabel54,55 in the backend to create
molecular substitutions. The substitutions were made at
symmetrical and asymmetrical positions of a parent structure
(CyMe4–BTBP) creating ve uniquely substituted BTBP mole-
cule types (Fig. 1A). This was done by using a semi-automated
renement of the GDB8 database (subspace of the GDB11).56,57

Each GDB8 entry is represented as a SMILES string. For
example, structures that began with a F atom were excluded,
since a terminal uorine cannot coordinate to the parent
structure. Thus, a total of 350 875 unique BTBP molecules were
generated for this study. The distribution of the composition for
the functional groups per molecular scaffold used for ligand
substitution of the BTBP analogs is given in Table 2. Note that
the sum of these generated ligands is not the sum of the total
database by one ligand and that is simply due to the unsub-
stituted CyMe4–BTBP ligand not being included.

Since the creation of the coordination complexes for Ac(III)
with the individually functionalized BTBP molecules would be
an arduous task, the same protocol was utilized for the creation
of the Ac(III) 1 : 2 ratio BTBP complexes but with a pre-optimized
[Ac(CyMe4–BTBP)2(NO3)2]

+NO3
− coordination complex (shown

in Fig. 1B). The same molecular substitutions were used for the
two BTBP molecules shown in this complex as those from
Fig. 1A creating coordination complex counterparts to the
individual BTBP molecules for further DFT calculations.
Ligand orientation – calibration

Dihedral analysis was accomplished by using the built-in scan
function in ORCA 5.0 58–60 to investigate the energy barriers of
the different conformers of the CyMe4–BTBP molecule and the
BTBP analogs from Fig. 1 using methyl as the substituent. The
energy barrier analysis utilized water, methanol, 1-octanol, and
kerosene as solvents to show solvation effects on the organiza-
tion and energy barriers of the BTBP ligands.23,24,61 These energy
barriers were calculated with respect to the most stable
conformer (lowest electronic energy). Fig. 8A demonstrates the
dihedral angles investigated in this study. The dihedral angle 41

was used for CyMe4–BTBP as well as the methyl substituted
Generated ligands 20 35 90 340 1525 7995 46 096 294 773

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 (A) Labelled dihedral analysis for the BTBP ligands with CyMe4–BTBP as an example. 41 (blue) shows the dihedral angle used for the
rotation of the 2,20-bipyridine group while the 42 and 43 (red) shows the dihedral angle for the rotations about the connecting dihedral between
2,20-bipyridine and 1,2,4-triazine groups. (B) The six different conformers for the CyMe4–BTBP ligand. The cis conformations are color coded as
blue and the trans are red.
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BTBP ligands to investigate the steric effects of the transitions
between the ctc (cis, trans, cis) and the ccc conformers (Fig. 8B).
The dihedral scan was performed with 10° intervals from 0° to
360° making 37 conformers of each ligand. An additional
analysis was conducted for CyMe4–BTBP which took each 41

conformer, xed the dihedral, and did 37 scans at 10° intervals
from 0° to 360° for 42 producing the cct, ctc, ctt, and ccc
conformations, excluding the ttt and tct conformations. Further
analysis was conducted by taking the minimum ctt and cct
conformers along the path towards the most favorable ccc
conformer of each potential energy surface and rotating the
previously unrotated 1,2,4-triazine group (43) by 180° at 10°
intervals starting at 0° to analyze all possible BTBP conformers
and acquire the full energy prole of each BTBP ligand.
Quantum chemical calculations

Density functional theory (DFT) computations were performed
with the ORCA 5.0 quantum chemistry package58–60 which
© 2025 The Author(s). Published by the Royal Society of Chemistry
allows the incorporation of scalar relativistic effects using the
zeroth-order regular approximation (ZORA)62 and the
segmented all-electron relativistically contracted (SARC)63 basis
sets. The conductor-like polarizable continuum model
(CPCM)64 was utilized for the incorporation of solvation effects
using the built-in solvents methanol, 1-octanol, and water. For
kerosene, the dielectric constant and refractive index used were
1.998 and 1.44, respectively.65 All molecular geometry optimi-
zations used the BP86 (ref. 66 and 67) density functional with
the SARC-ZORA-TZVP63 basis set for Ac(III)/La(III), both with
a closed-shell electronic structure, and the ZORA-def2-SVP68,69

basis set for all other atoms. Each calculation also utilized the
resolution of identity for the calculation of the two-electron
integrals with the SARC/J auxiliary basis set. The quasi-
harmonic approximation was used to compute the Gibbs' free
energy at 298.15 K by the addition of the zero-point energy with
the thermal vibrational-rotational entropies of the lowest-
energy conformers using the same level of theory as the DFT
geometry optimizations. This methodology has been used in
Digital Discovery, 2025, 4, 1100–1112 | 1109
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our previous studies where it provided good agreement between
the computed and experimentally determined stability
constants of Cm(III) ligation with CyMe4–BTBP and t-Bu–C2–
BTBP.50,70

Automated data curation was mandatory to screen the large
number of calculations performed for this project. Any calcu-
lations that failed due to poor starting geometry or that
nished but contained imaginary frequencies below
−50i cm−1 were ltered out of the useable structures for
thermochemical analysis. The Gibbs' free energy values were
utilized for the calculation of log b at a specic temperature T
using (2).19,71 The reaction used for this study for both Ac(III) as
determined by the complexation calibration with La(III) is
shown in (R3).

DG = −2.303RT log b (2)

Ac(NO3)3 + 2BTBP / [Ac(BTBP)2(NO3)2]
+NO3

− (R3)

Where b is computed as:

b ¼
h�
AcðBTBPÞ2ðNO3Þ2

�þ
NO3

�
i

�
AcðNO3Þ3

�½BTBP�2 (3)

Machine learning

The machine learning input vectors utilized molecular
descriptors of the individual BTBP ligands by using persistence
homology72,73 coupled with the smooth overlap of atomic posi-
tions (SOAP).74,75 This involved the generation of persistence
images (PIs) by the vectorization of persistence diagrams to
incorporate ligand topology as the input vectors. Utilizing
persistence homology for machine learning in chemistry has
been used by previous studies76,77 and shown to be an effective
descriptor for regression. This study utilized Ripser78 for the
generation of persistence images (PIs) that include connected
components, and 1- (holes) and 2-dimensional (voids) homo-
logical descriptors by generating 100 × 100 square persistence
images with a standard deviation of the Gaussian kernel
(spread) of 0.009, an upper boundary of the PIs of 2.5 Å, and
a lower boundary of the PIs of−0.1 Å. The SOAP descriptor used
the positions of the H, C, N, O, and F atoms present for each
individual structure and constructed the descriptor with a local
region cutoff value of 4 Å, 6 radial basis functions, a maximum
degree of spherical harmonics as 4, and set the output as
a dense array as opposed to a sparse matrix. The persistence
images coupled with the SOAP (SOAP + PI) for each ligand were
used as the input vector with their respective log b values as y for
random forest regression as implemented in the Scikit-learn
package79 using Python 3.10. The ML model utilized a 5-fold
cross validation process with 200 trees, the mean absolute error
loss function criteria, and six minimum samples per leaf for the
analysis. The root mean square error was also calculated for
each fold with the standard deviation of the error. We also
investigated the performance of the individual descriptors on
the datasets for comparisons with the coupled descriptors (see
ESI Section S6†).
1110 | Digital Discovery, 2025, 4, 1100–1112
Data availability

The data for the following information are included in the ESI:†
the dihedral rotation study, the potential energy surfaces, the
top 50 functional groups from DFT optimization in terms of the
highest log b values, the distribution of BTBP analogs in the
different datasets used in this study, molecular representations
of the validation set and the CyMe4–BTPhen-based ligands used
for active learning and transfer learning respectively, the active
learning molecules, predicted and DFT log b values, and
a narrative on the manual correction of some of the generated
structures from molSimplify. Cartesian coordinates of all
molecular structures and Jupyter Notebook are publicly avail-
able at https://zenodo.org/records/14486728, https://10.5281/
zenodo.15018297. The code developed for the project that is
presented in the submitted paper with the title “Ligand
Design for 227Ac Extraction by Active Learning and Molecular
Topology” by Laub and Vogiatzis is deposited on GitHub
(https://github.com/Jeffrey-107/Code-for-Ligand-Design-for-Ac-
227-Extraction-by-Active-Learning-and-Molecular-Topology).
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Reis, P. Panak, P. Štěpnička, S. Trumm and C. Walther,
Inorg. Chem., 2012, 51, 591–600.

26 M. Nilsson, S. Andersson, F. Drouet, C. Ekberg,
M. R. S. Foreman, M. Hudson, J.-O. Liljenzin,
© 2025 The Author(s). Published by the Royal Society of Chemistry
D. Magnusson and G. Skarnemark, Solvent Extr. Ion Exch.,
2006, 24, 299–318.

27 P. Distler, M. Mindova, J. Sebesta, B. Gruner, D. Bavol,
R. J. M. Egberink, W. Verboom, V. A. Babain and J. John,
ACS Omega, 2021, 6, 26416–26427.

28 A. Geist, C. Hill, G. Modolo, M. R. S. J. Foreman, M. Weigl,
K. Gompper and M. J. Hudson, Solvent Extr. Ion Exch.,
2006, 24, 463–483.

29 T. Vu, PhD thesis, Université Louis Pasteur (Strasbourg-I),
2008.

30 S. Trumm, P. J. Panak, A. Geist and T. Fanghänel, Eur. J.
Inorg. Chem., 2010, 2010, 3022–3028.

31 G. J.-P. Deblonde, A. Ricano and R. J. Abergel, Nat. Commun.,
2019, 10, 2438.

32 G. Modolo, A. Wilden, H. Daniels, A. Geist, D. Magnusson
and R. Malmbeck, Radiochim. Acta, 2013, 101, 155–162.

33 N. Kemnitz, D. E. Hammond, P. Henderson, E. Le Roy,
M. Charette, W. Moore, R. F. Anderson, M. Q. Fleisher,
A. Leal, E. Black, C. T. Hayes, J. Adkins, W. Berelson and
X. Bian, Mar. Chem., 2023, 250, 104180.

34 G. Choppin, J.-O. Liljenzin, J. Rydberg and C. Ekberg,
Radiochemistry and Nuclear Chemistry, Academic Press,
Oxford, U.K., 4th edn, 2013.

35 S. M. Lyons, C. G. Britt, L. S. Wood, D. L. Duke, B. G. Fulsom,
M. E. Moore and L. Snyder, AIP Adv., 2023, 13, 085115.

36 C. Qin, J. Liu, Y. Yu, Z. Xu, J. Du, G. Jiang and L. Zhao, Ceram.
Int., 2024, 50, 1220–1230.

37 E. Stippell, L. Alzate-Vargas, K. N. Subedi, R. M. Tutchton,
M. W. D. Cooper, S. Tretiak, T. Gibson and R. A. Messerly,
Articial Intelligence Chemistry, 2024, 2, 100042.

38 J. Wang, D. B. Ghosh and Z. Zhang,Materials, 2023, 16, 4985.
39 A. Ghosh, F. Ronning, S. M. Nakhmanson and J.-X. Zhu,

Phys. Rev. Mater., 2020, 064414.
40 E. T. Dubois, J. Tranchida, J. Bouchet and J.-B. Maillet, Phys.

Rev. Mater., 2024, 8, 025402.
41 K. Zheng, N. Marcella, A. L. Smith and A. I. Frenkel, J. Phys.

Chem. C, 2024, 128, 7635–7642.
42 M.-T. Nguyen, R. Rousseau, P. D. Paviet and V.-A. Glezakou,

ACS Appl. Mater. Interfaces, 2021, 13, 53398–53408.
43 T. Liu, K. R. Johnson, S. Jansone-Popova and D.-e. Jiang,

JACS Au, 2022, 2, 1428–1434.
44 M.-T. Nguyen, B. A. Helfrecht, R. Rousseau and

V.-A. Glezakou, J. Mol. Liq., 2022, 365, 120115.
45 D. A. Penchoff, C. C. Peterson, E. M. Wrancher, G. Bosilca,

R. J. Harrison, E. F. Valeev and P. D. Benny, J. Radioanal.
Nucl. Chem., 2022, 331, 5469–5485.

46 T. Chen and C. Guestrin, XGBoost: A Scalabale Tree Boosting
System, 2016, preprint, arXiv:1603.02754, DOI: 10.1145/
2939672.2939785.

47 D. Rogers and M. Hahn, J. Chem. Inf. Model., 2010, 50, 742–
754.

48 G. Landrum, RDKit: Open-Source Cheminformatics, https://
www.rdkit.org.

49 D. Lundberg and I. Persson, Coord. Chem. Rev., 2016, 318,
131–134.

50 J. A. Laub and K. D. Vogiatzis, J. Phys. Chem. A, 2023, 127,
5523–5533.
Digital Discovery, 2025, 4, 1100–1112 | 1111

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://www.rdkit.org
https://www.rdkit.org
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00007f


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 7
/2

8/
20

25
 8

:1
7:

27
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
51 V. Hubscher-Bruder, J. Haddaoui, S. Bouhroum and
F. Arnaud-Neu, Inorg. Chem., 2010, 49, 1363–1371.

52 F. W. Lewis, L. M. Harwood, M. J. Hudson, M. G. B. Drew,
V. Hubscher-Bruder, V. Videva, F. Arnaud-Neu,
K. Stamberg and S. Vyas, Inorg. Chem., 2013, 52, 4993–5005.

53 E. I. Ioannidis, T. Z. Gani and H. J. Kulik, J. Comput. Chem.,
2016, 37, 2106–2117.

54 N. M. O'Boyle, C. Morley and G. R. Hutchison, Chem. Cent. J.,
2008, 2, 5.

55 N. M. O'Boyle, M. Banck, C. A. James, C. Morley,
T. Vandermeersch and G. R. Hutchison, J. Cheminf., 2011,
3, 33.

56 T. Fink, H. Bruggesser and J.-L. Reymond, Angew. Chem., Int.
Ed., 2005, 44, 1504–1508.

57 T. Fink and J.-L. Reymond, J. Chem. Inf. Model., 2007, 47,
342–353.

58 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2,
73–78.

59 F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem.
Phys., 2020, 152, 224108.

60 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022, 12,
1606.

61 K. Lyczko and S. Ostrowski, Nukleonika, 2015, 60, 853–857.
62 E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem.

Phys., 1996, 105, 6505–6516.
63 D. A. Pantazis and F. Neese, J. Chem. Theory Comput., 2011, 7,

677–684.
64 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–

2001.
65 P. Panda and S. Mishra, Chem. Phys. Impact, 2024, 8, 100447.
66 J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 1986,

33, 8822–8824.
1112 | Digital Discovery, 2025, 4, 1100–1112
67 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098–
3100.

68 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005,
7, 3297–3305.

69 D. A. Pantazis, X.-Y. Chen, C. R. Landis and F. Neese, J. Chem.
Theory Comput., 2008, 4, 908–919.

70 G. A. McCarver, R. J. Hinde and K. D. Vogiatzis, Inorg. Chem.,
2020, 59, 10492–10500.

71 A. N. Srivastva, Stability and Application of Coordination
Compounds, IntechOpen, London, 2020.

72 H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson,
P. Shipman, S. Chepushtanova, E. Hanson, F. Motta and
L. Ziegelmeier, J. Mach. Learn. Res., 2017, 18, 1–35.

73 G. M. Jones, B. Story, V. Maroulas and K. D. Vogiatzis,
Molecular Representations for Machine Learning, Am. Chem.
Soc., 2023.
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