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-guided design of
electroanalytical pulse waveforms†

Cameron S. Movassaghi, ‡§*ab Katie A. Perrotta, ‡a Maya E. Curry,c

Audrey N. Nashner,a Katherine K. Nguyen,a Mila E. Wesely,de Miguel Alcañiz Fillol,f

Chong Liu, a Aaron S. Meyerg and Anne M. Andrews *abgh

Voltammetry is widely used to detect and quantify oxidizable or reducible species in complex environments.

The neurotransmitter serotonin epitomizes an analyte that is challenging to detect in situ due to its low

concentrations and the co-existence of similarly structured analytes and interferents. We developed

rapid-pulse voltammetry for brain neurotransmitter monitoring due to the high information content

elicited from voltage pulses. Generally, the design of voltammetry waveforms remains challenging due to

prohibitively large combinatorial search spaces and a lack of design principles. Here, we illustrate how

Bayesian optimization can be used to hone searches for optimized rapid pulse waveforms. Our

machine-learning-guided workflow (SeroOpt) outperformed random and human-guided waveform

designs and is tunable a priori to enable selective analyte detection. We interpreted the black box

optimizer and found that the logic of machine-learning-guided waveform design reflected domain

knowledge. Our approach is straightforward and generalizable for all single and multi-analyte problems

requiring optimized electrochemical waveform solutions. Overall, SeroOpt enables data-driven

exploration of the waveform design space and a new paradigm in electroanalytical method development.
Introduction

Voltammetry is widely employed across elds, including energy
storage,1 catalysis,2 organic synthesis,3 and electroanalysis (i.e.,
neuroscience,4–8 diagnostics,9 environmental applications,10

and food and beverage analysis11). Despite the many types of
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analytes suitable for voltammetry, few design principles exist to
enable analyte-specic voltammetry waveforms to be identied
and optimized systematically. This lack of objectively guided
waveform design and optimization imposes signicant limita-
tions on the accuracy, selectivity, and robustness of voltam-
metry applications for single- or multi-analyte detection and
monitoring.

A grand challenge in chemical neuroscience is to uncover the
functional and dysfunctional interplay between neurotrans-
mitters in the brain.12 Voltammetry is broadly used to charac-
terize and quantify electroactive neurotransmitter release and
reuptake using brain-implanted microelectrodes during bio-
logical perturbation,13–15 including in humans.6 Recent progress
has focused on developing novel electrode materials, coatings,
or data analysis procedures to improve the selectivity and
sensitivity of real-time neurochemical monitoring in behaving
subjects.13,16–23 Meanwhile, voltammetry waveform development
(i.e., selecting optimal waveform parameters for detecting
particular analytes) has remained essentially unchanged for
decades. It relies principally on historic performers (e.g., pre-
patterned waveforms), heuristics, and grid searches.24–29

For neurochemistry applications, historic performers
include fast-scan cyclic voltammetry (FSCV) triangle or N-shape
(i.e., sawtooth) waveforms for detecting evoked dopamine8 or
serotonin,30 respectively, in vivo. The N-shape waveform
improved serotonin detection over the FSCV waveform by
increasing the scan rate to 1000 V s−1 and altering the holding
© 2025 The Author(s). Published by the Royal Society of Chemistry
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potentials.31 Modifying these waveform parameters impacts
sensitivity, selectivity, and temporal resolution.24,32–34 For
example, increasing the switching potential from 1.0 V to 1.3 V
renews the electrode surface and enhances serotonin detec-
tion.24 The development of fast-cyclic square-wave voltammetry
has improved the sensitivity and selectivity of dopamine35 and
serotonin36 detection by superimposing triangle and N-shape
waveforms, respectively, on pre-patterned staircase waveforms.
Other waveform modications have led to fast-scan controlled
absorption voltammetry and multiple cyclic square-wave vol-
tammetry to determine basal dopamine37 or serotonin
levels.38,39 These approaches required separate waveforms to
measure different analytes over different timescales and were
derived from the prior triangle and N-shape waveforms in
a guess-and-check manner (Fig. 1, top).

We developed rapid pulse voltammetry (RPV) to enable multi-
analyte monitoring (e.g., simultaneous serotonin and dopamine
detection) across timescales (i.e., quantication of basal and
stimulated neurotransmitter levels using the same waveform in
the same recording session).40 Rapid pulse voltammetry utilizes
background-inclusive (i.e., non-background subtracted) data,
requiring novel waveform design to produce informative back-
ground currents.41 This custom design is opposed to other
popular pulse voltammetry approaches (e.g., normal, differential,
staircase), which use pre-patterned approaches to longer wave-
forms (s to min).42 While also based on characteristic oxidation
and reduction potentials derived from the triangle and N-shape
waveforms, rapid pulses (i.e., 2 ms), rather than fast linear
sweeps, reduce fouling and produce informative faradaic and
non-faradaic currents. The resulting current–time ngerprints
from our original generation (OG) RPV waveform40 yielded
analyte-specic information that can be used by partial least
squares regression (PLSR) or other supervised regression models
(e.g., articial neural networks, elastic net) to distinguish analytes
and predict their concentrations. Because the OG waveform was
inspired by heuristics from the voltammetric electronic tongue
(VET) eld for ‘so’ sensing (e.g., intermediate and counter
pulses),43–45 we refer to this as VET-inspired design (Fig. 1,
middle).
Fig. 1 Approaches to voltammetry waveform design. Funnels denote lik

© 2025 The Author(s). Published by the Royal Society of Chemistry
Having shown that our VET-inspired OG waveform out-
performed conventional waveforms,40 we sought a generalizable
and expandable approach to designing and optimizing rapid
pulse (and other types of) waveforms. Because tuning specic
waveform parameters improves analyte-specic currents,13,24,46

we hypothesized that enhanced RPV waveforms for serotonin
and dopamine co-detection (and many more analytes) exist but
remain undiscovered due to the lack of design principles
needed to explore intractably large waveform search spaces.

We focused rst on detecting serotonin to address this
waveform space problem (vide infra). Serotonin is involved in
modulating mood, anxiety, and reward-related behavior via
interconnecting brain circuits.47–51 Serotonin is an essential gut
hormone. It also plays a role in spinal pain transmission and
immune function.52–55 Serotonin is a challenging target to detect
using voltammetry due to its relatively low physiological
concentrations (high pM to low nM),48 colocalization with other
neurotransmitters having similar redox proles (e.g., dopamine,
norepinephrine), and irreversible oxidation byproducts56 that
can foul electrodes. We further hypothesized that a waveform
development paradigm to discover optimized serotonin wave-
forms would generalize to other neurochemicals, other types of
analytes, and their combinations.

When developing RPV or other complex waveforms, a prohib-
itively large number of waveform step or segment combinations
prevents exhaustive empirical investigation, even for a small
number of steps or segments. Step potentials, lengths, order, and
hold times are all variables for investigation when exploring and
improving pulse waveforms; minormodications of each variable
can have complex effects on electrochemical signals due to
changes in the surface roughness, fouling propensity, and func-
tionalization (e.g., anionic oxide groups) of carbon ber micro-
electrodes.24,32 The use of various electrode materials, carbon
allotropes, and polymeric coatings further complicates this
landscape.57 While a ‘guess and check’ approach has yielded the
handful of useful conventional and VET-inspired waveforms
mentioned above, one-parameter-at-a-time or randomized58,59

optimization approaches do not take advantage of the rich
information diversity encoded in complex waveforms, leaving the
overall waveform search space relatively unexplored.
ely bottlenecks.

Digital Discovery, 2025, 4, 1812–1832 | 1813
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Recently, Bayesian optimization has been used to navigate
intractable physiochemical search spaces when combined with
experimental training data.60–65 This adaptive experimental
approach presents an opportunity to pair machine learning
with electroanalysis to create a new waveform development
paradigm (Fig. 1, bottom). Here, we present a Bayesian opti-
mization workow (SeroOpt) that generates t-for-purpose vol-
tammetry waveforms for selective serotonin detection. To our
knowledge, a systematic machine-learning-based approach to
designing, testing, and optimizing analyte-specic waveforms
has not yet been reported. We show that analyte-specic wave-
form information depends on specic potentials occurring in
a particular order and timing, conrming the need for a parsi-
monious search approach across parameter dimensions. Our
active learning approach outperformed randomly designed and
domain expert-designed waveforms aer only a handful of
iterations. Our methods can be straightforwardly extended to
designing any voltammetry waveform for any electroactive
analyte to discover new and perhaps non-intuitive waveforms
optimized for application-specic metrics. To encourage wide-
spread adoption, we provide data, tutorial code notebooks, and
videos at github.com/csmova/SeroOpt (https://github.com/
csmova/SeroOpt), as well as our corresponding open-source
voltammetry acquisition and analysis soware66 at
github.com/csmova/SeroWare (https://github.com/csmova/
SeroWare) and github.com/csmova/SeroML (https://
github.com/csmova/SeroML).
Fig. 2 Bayesian optimization workflow (SeroOpt) for machine learning-gui
and dopamine (DA). An example visualization of optimization landscapes i
S = string, a.c. = altered cation; b$ represents estimation of true value.

1814 | Digital Discovery, 2025, 4, 1812–1832
Results
The SeroOpt workow casts waveform development as black-
box optimization

We designed the following Bayesian optimization workow for
robust, iterative, and adaptive voltammetry waveform develop-
ment (SeroOpt; Fig. 2). Representative i–t curves (i.e., voltam-
mograms) are provided (Fig. S1†). We sought to identify an
input (a rapid pulse waveform) related to an optimized output
objective (sensor performance metric; e.g., serotonin detection
accuracy) by an unknown, ground-truth objective function (the
black box). This function can only be accessed by obtaining
experimental training data on various waveform–metric
combinations, approximating the black-box function using
a surrogate model, and then querying the model to generate an
input (waveform) corresponding to a predicted objective
optimum. The generated (new) waveform is then tested exper-
imentally, and the true objective value for that waveform is
provided as subsequent training data for the next round of
optimization. When a probabilistic surrogate model is used,
both the model predictions (mean) and associated uncertainty
(variance) can be updated using Bayesian inference as new data
(evidence) becomes available in each iteration. This optimize-
update process is repeated sequentially, referred to herein as
Bayesian optimization. Each of the workow steps is described
in detail below.
ded rapid pulse voltammetry (RPV) waveform design for serotonin (5-HT)
s shown (bottom). GP = Gaussian process, M = metric, W = waveform,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Search space constraints & initialization by embedding
domain knowledge

Each training waveform W was embedded as a vector in 8-
dimensional space such that W = [E1, s1, E2, s2, E3, s3, E4, s4]
(Fig. 2, step 1). Here, Ei is each potential step (V) and si is each
step hold time (ms). In this initial design, for eventual
comparison with our original generation (OG) human-designed
four-step waveform40 (Fig. 3a), we constrained the search space
to four steps per waveform, with E1 and E2 constrained to 0–
1.3 V and E3 and E4 constrained to −0.5–0 V. These constraints
ensured that waveforms remained inside the solvent window32

and encoded a ‘pulse/counter-pulse’ concept (i.e., anodic steps
followed by cathodic steps) from VET theory.67 We constrained s
to 0.5–2.0 ms based on our preliminary results showing that
capacitive current completely decays aer ∼2 ms, yet critical
features are contained in as little as the rst ∼0.5 ms of each
pulse.40 Pulses do not result in voltage cross-talk (i.e., residual
capacitive current from successive voltage steps).36,37 The hold

time was dened as
�
100�

X4

i¼1

si

�
ms to limit the number of

parameters. Each pulse was applied at 10 Hz; the hold potential
was dened as E4.

To initialize a model of the relationship between waveform
and objective (i.e., the optimization metric), six waveforms were
randomly generated using the constraints above (Fig. 2, step 1).
The choice of six waveforms was arbitrary and within the
number of waveforms that could be experimentally evaluated in
a single-day experiment. We refer to this collection of random
initialization waveforms as string 1 (S1).
Model calibration & optimization metrics allow for relevant
objective functions

We obtained experimental calibration curves (Table 1) for each
S1 waveform (gray boxes, Fig. 2) to train a partial-least squares
regression (PLSR) model as demonstrated previously.40 The
choice of the PLSR model, compared to other models, such as
principal components regression (PCR), is detailed elsewhere.40

Briey, PLSR was shown to outperform PCR,40 while more
advanced models (e.g., deep learning) provide modest gains in
predictive accuracy at the expense of computational
complexity.68 We note that our Bayesian optimization approach
can be used to optimize waveforms with output metrics
regardless of the choice of calibration model (PCR, PLSR, arti-
cial neural networks, etc.).

The PLSR model predicted the test and challenge set sample
concentrations of serotonin and dopamine (Fig. 2, steps 2 and
3; see Methods for denitions of training, test, and challenge
samples). These predictions were used to calculate the eight
optimization metrics listed (Fig. 2, step 4; dened in Table S1†).
All metrics were calculated on all waveforms in each string,
unless otherwise noted (Fig. 2, steps 2–4). We focus on the
results for the second waveform (W2) of each string, which is
optimized across strings for the serotonin test set prediction
accuracy metric. The latter is the mean absolute error in the
PLSR model predictions of test samples T1–4 (including
© 2025 The Author(s). Published by the Royal Society of Chemistry
a blank; Table S1†), thus creating a minimization task
(maximum accuracy implies minimum error). We chose mean
absolute error rather than relative error due to the presence of
the blank (true null concentration).

The choice of test set accuracy as an optimization metric was
motivated by several factors. First, we pursued single-objective
optimization for simplicity and (at the time of analysis) a lack
of user-friendly open-source soware to performmulti-objective
human-in-the-loop optimization. Having to choose only a single
metric to focus on, test set accuracy is an attractive choice as it is
a direct measure of waveform performance, instead of alterna-
tives, such as PLSR model-specic metrics (e.g., scores clus-
tering). Using model-specic metrics is less physically
meaningful and would limit the extendibility of our method.
Using physically meaningful parameters, such as test set accu-
racy, our workow remains model-agnostic (i.e., any model that
performs supervised regression prediction can be used). For
similar reasons of retaining metrics in raw form, we chose not
to combine multiple metrics into a single objective task (e.g.,
scalarization69).

Second, we encoded selectivity in our test and challenge set
design. Our calibration curve varies the concentrations of all
analytes and interferents across the training, test, and challenge
sets used to build and evaluate the PLSR models (Table 1). If the
PLSR model for a given waveform confuses any interferent for
serotonin, this will be represented in the test or challenge set
accuracy metric for serotonin and will contribute to the mean
absolute error. Thus, serotonin test and challenge set accuracy
is a proxy for selectivity in varying dopamine, 5-hydroxyindole-
acetic acid (5-HIAA), ascorbate, 3,4-dihydroxyphenylacetic acid
(DOPAC), pH, and K+/Na+ concentrations (see Methods).

Lastly, other analytical gures of merit that could be used as
optimization metrics (sensitivity, limit of detection (LOD),
linear range, etc.) are irrelevant if model accuracy and selectivity
are not rst established. For example, we included LOD as an
alternative optimization metric (Fig. 2). The selectivity perfor-
mance of LOD-optimized waveforms (inferred via test and
challenge set accuracy) was poor. Thus, we did not continue to
optimize for LOD in subsequent campaigns but were still able to
utilize these waveforms as training data by calculating their
other metrics. For these reasons, we focused on test set accu-
racy. Specically, we focused on serotonin (5-HT) because it is
historically more difficult to detect by voltammetry than dopa-
mine. Serotonin concentrations are approximately 10-fold lower
than dopamine in striatum,48 and serotonin has complex redox
mechanisms and fouling processes.30

Regardless, we included other optimization metrics in our
workow rather than solely serotonin test set accuracy to
explore which metrics have an objective landscape that is
‘optimizable’. As this was a rst attempt, we had no guarantee
that the serotonin test set accuracy was a viable choice of metric.
We also wanted to investigate other analytes and metrics for
future use with multi-objective optimization. For example, we
included dopamine-specic metrics in the scheme for
comparison with our original RPV work40 because serotonin/
dopamine co-detection is a long-term goal for multi-objective
optimization.70
Digital Discovery, 2025, 4, 1812–1832 | 1815
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Fig. 3 (a) Bayesian optimization waveform (R1S4W2; bottom) outperformed the original generation (OG) human-designed RPV waveform (top)
after four iterations. Error bars represent standard deviations. (b) Convergence plot of theminima of serotonin (5-HT) test set accuracy per string.
The waveforms optimized specifically for 5-HT test set accuracy (W2) are shown in the inset. (c) Test and challenge set results for the OG
waveform in triplicate across two electrodes. Error bars represent theminimum andmaximum values predicted. (d) Test and challenge set results
for the optimized serotonin waveform (R1S4W2) in triplicate across two electrodes. Error bars represent the minimum and maximum values
predicted. (e) Average of (c) and (d). Error bars represent standard deviations.
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To maximize the training data produced in an experimental
day, we calculated the performance of all waveforms on all
metrics in each string, regardless of which metric a waveform
was designed to optimize. For example, the optimal serotonin
test set accuracy waveform (W2) in each string was used to
calculate the serotonin test set accuracy metric. Still, the
performance of this waveform on the dopamine, pH, and
altered cation (a.c.) accuracy metrics was also recorded. This
approach allows additional waveforms (albeit waveforms not
optimized specically for that metric) to be tested per string
rather than solely the one ‘optimized’waveform for eachmetric.
Performing single objective optimization in this parallel
1816 | Digital Discovery, 2025, 4, 1812–1832
manner explores ‘optimizable’ metrics while obtaining addi-
tional training data per string in a simple yet sample-efficient
manner. For example, if test set accuracy failed as an optimiz-
able metric for serotonin, we could pivot to an alternative metric
exhibiting promising optimization progress (e.g., serotonin pH
or a.c. accuracy, or serotonin LOD), with training data already
aggregated across all waveforms for that metric.

Parallel single-objective optimization of multiple metrics

The waveform embeddings and corresponding experimentally
determined metrics were used to train the surrogate models
(i.e., Gaussian processes)71 of the unknown objective functions
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Training, test and challenge set concentrations, in order of injection. All solutions were prepared in artificial cerebrospinal fluid; a.c. =
altered cations

Set Sample DA (nM) 5-HT (nM) 5-HIAA (mM) DOPAC (mM) Ascorbate (mM) pH (units) KCl (mM) NaCl (mM)

Training Blank 0 0 0 0 0 7.3 3.5 147
A 300 0 6 80 200 7.3 3.5 147
B 1000 20 10 70 110 7.3 3.5 147
C 0 120 6 90 190 7.3 3.5 147
D 450 350 4 0 130 7.3 3.5 147
E 600 500 1 10 170 7.3 3.5 147
Blank 0 0 0 0 0 7.3 3.5 147
F 160 250 2 20 180 7.3 3.5 147
G 700 300 0 0 100 7.3 3.5 147
H 80 160 10 60 100 7.3 3.5 147
I 20 60 0 50 160 7.3 3.5 147
J 40 40 2 100 120 7.3 3.5 147
Blank 0 0 0 0 0 7.3 3.5 147
K 800 10 8 30 150 7.3 3.5 147
L 500 0 0 0 100 7.3 3.5 147
M 0 250 0 0 100 7.3 3.5 147
N 0 0 10 0 100 7.3 3.5 147
O 0 0 0 50 100 7.3 3.5 147
P 0 0 0 0 100 7.3 3.5 147
Blank 0 0 0 0 0 7.3 3.5 147

Test T1 750 50 1 85 200 7.3 3.5 147
T2 100 400 5 9 200 7.3 3.5 147
T3 400 200 5 85 190 7.3 3.5 147
T4 70 30 5 35 200 7.3 3.5 147
Blank 0 0 0 0 0 7.3 3.5 147

Challenge (pH) T1 pH 750 50 1 85 200 7.1 3.5 147
Blank pH 0 0 0 0 0 7.1 3.5 147
T2 pH 100 400 5 9 200 7.2 3.5 147
Blank pH 0 0 0 0 0 7.2 3.5 147

Challenge (a.c.) T3 a.c. 400 200 5 85 190 7.3 120 31
Blank a.c. 0 0 0 0 0 7.3 120 31
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(Fig. 2, step 5). As mentioned, only single-objective optimization
was performed on each metric. Separate Gaussian processes
were trained (one for each metric; eight total) in parallel on the
aggregated data aer evaluating each string. An acquisition
function (i.e., expected improvement)71 nds the optima of each
surrogate function and outputs the next most likely waveform
that will improve each respective metric (Fig. 2, step 6). The
process then repeats (Fig. 2, steps 7–9). The overall workow is
illustrated in Fig. 2 and S2.†

The eight waveforms (each corresponding to optimization
for one of the eight metrics) output from the rst optimization
loop of this workow are shown as string 2 (S2). Eight new
waveforms were generated, with each new waveform optimized
on a single metric (i.e., using the training data generated from
S1 (Fig. 2, steps 4–6)). Because S1 was randomly generated to
initialize the surrogate model, S2 represented the rst iteration
of optimized waveforms produced by the workow.

We repeated the optimization loop by obtaining experi-
mental calibration curve data using each new S2 waveform. We
then calculated the individual optimization metrics, aggregated
the data with the previous string(s) (e.g., all S3 waveforms were
predicted using all S1 and S2 data, one metric at a time), and
predicted the next set of optimal S3 waveforms for each metric
(Fig. 2, steps 7 and 8). This process was repeated again to
© 2025 The Author(s). Published by the Royal Society of Chemistry
generate four waveform strings in total (Fig. 2, step 9). We refer
to the group of strings as S1–4. Each string had eight waveforms
(W1–8) corresponding to the eight separate metrics, except the
initial string (S1), which had only six randomly generated
waveforms (arbitrary). All four strings and their associated
waveforms were collectively referred to as run 1 (R1).
Machine learning outperforms human-guided waveform
design

Across R1, three new waveforms were generated, optimized for
serotonin test set accuracy (S1W2 was random; the three
successive waveforms (S2W2, S3W2, S4W2) were each more
highly optimized than the last). The evolution of the serotonin
accuracy waveform across three successive strings was
compared to our initial RPV OG waveform (Fig. 3). In the rst
run, the nal waveform generated by our Bayesian optimization
scheme nearly perfectly mimicked our chemically intuitive
choices for the potentials of the waveform design; the step
potentials differed only by ∼100 mV or less (Fig. 3a). The more
discernible differences were in the individually optimized step
lengths (s) for R1S4W2, i.e., 0.7 ms, 1.5 ms, 1.9 ms, and 1.4 ms
for s1–4, respectively. Values of s are rarely optimized individu-
ally and instead are set to a global value decided by one-factor-
Digital Discovery, 2025, 4, 1812–1832 | 1817
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at-a-time optimization under single experimental conditions
(e.g., 2 ms for all steps in the OG design).35–38,40

Even though R1S4W2 was only 5.5 ms long, it outperformed
the OG waveform, which was 8 ms. Given the similarity in pulse
potentials, the increase in data delity was attributed partly to
changes in the hold times of each step; that is, Bayesian opti-
mization was able to generate better-performing choices of s.
While a 2.5 ms difference in overall pulse length was ostensibly
negligible at data rates of 1 MHz, this equates to a reduction of
2500 data points per scan. This reduction can easily save giga-
bytes of data that otherwise would need to be stored, and save
computation time wasted during multi-hour experiments.
Decreasing the overall length of the rapid pulse sequence also
opens opportunities to increase the temporal resolution to
>10 Hz or design more complex combinations of pulses with
additional steps, while retaining 10 Hz sampling.

We do not attribute the success of the optimized waveform to
chance, as the convergence plot (Fig. 3b) shows that for each
optimization string (S2–S4), the waveform optimized for sero-
tonin test set accuracy (W2) found a new minimum for sero-
tonin prediction error during each iteration. This improvement
across strings suggests that the surrogate model is learning
a reasonable representation of the optimization landscape for
serotonin accuracy. Convergence plots for all metrics and runs
are provided (Fig. S3†).

While sample T2 for R1S4W2 still had a mean absolute error
of ∼50 nM (13% error, 2.8% coefficient of variation (CV)),
predictions were improved compared to the OG waveform (22%
error, 3.4% CV). Continuing the optimization campaign for
additional iterations might have minimized the remaining
error further. However, the T2 samples had lower DOPAC and
higher 5-HIAA concentrations than other test samples. These
similarly structured interferents may have had confounding
effects on the serotonin concentration predictions. Moreover,
these samples may have analyte instability due to degradation
or surface adsorption to sample vials.

Regardless, Fig. 3a represents a single trial of the waveform
on a single electrode, performed during the optimization
campaign. Meanwhile, Fig. 3c–e represents a reproducibility
study, performed across three total trials using two separate
electrodes. These panels demonstrate a more dramatic
improvement in the accuracy and precision of R1S4W2
compared to the OG waveform. For example, across these three
runs, sample T2 had 0.7% error and 14% CV. Meanwhile, T2 for
the OG had 34% error and 42% CV. Given that the microelec-
trodes were hand-made, different electrodes were used across
strings, and dynamic surface changes occur at electrode
surfaces, variability in concentration predictions is expected.
Nonetheless, compared to the OG waveform, SeroOpt produced
a more precise and accurate waveform that generalized across
electrodes and replicates.
Explicit and implicit discovery of interferent-agnostic
waveforms

Next, we compared the results for the test and challenge set
samples from the OG waveform to R1S4W2 (which should be
1818 | Digital Discovery, 2025, 4, 1812–1832
the best-yet waveform for test set serotonin performance).
Indeed, R1S4W2 outperformed the OG waveform for serotonin
detection in the test and challenge set samples (see Methods).
The train and test sets contained samples with varying levels of
three physiologically relevant metabolites (DOPAC, 5-HIAA,
ascorbate). Meanwhile, the challenge set samples have physio-
logically relevant differences in pH, and Na+ and K+ levels held
constant in the training set (Fig. 3a and Table 1, samples
denoted pH 7.1, pH 7.2, and altered cations or “a.c.”). The
optimized serotonin waveform R1S4W2 outperformed the OG
waveform regarding interferents it was explicitly (DOPAC, 5-
HIAA, ascorbate) and not expressly (pH, Na+/K+) trained on
(Fig. 3a, c–e).

While the OG waveform confounded changes in pH and Na+/
K+ in the challenge set, the R1S4W2 waveform did not suffer
similar pitfalls (see samples T2 pH 7.2, T3 a.c., blank a.c. for
each waveform in Fig. 3a). We discuss the performance of test
and challenge set samples further in Fig. S4a and b.† This result
was not due to the waveform not sensing a change in current for
varying cation concentrations or being ‘electrochemically
silent’.72 Increases in current (hundreds of nA) were evident
when aCSF a.c. blanks were injected compared to normal aCSF
blanks (Fig. S4c†). Similar responses were noted for pH blanks.

To investigate whether the initial results for R1S4W2 out-
performing the OG waveform were precise and robust, the
waveforms and training/test/challenge sets were run in tripli-
cate using two different electrodes (Fig. 3c–e). We determined
that the R1S4W2 waveform increased prediction accuracy for
test samples 1–4 by ∼20% compared to the OG waveform. We
found that the agnostic behavior towards pH was reproducible
for R1S4W2 and not the OG waveforms. However, we noticed
that the T3 a.c. challenge sample accuracy was not reproducible
across electrodes for either waveform. We attribute this to
variations in electrode fabrication. Standardizing the fabrica-
tion of fast voltammetry electrodes, along with multi-objective
optimization with reproducibility as a metric, will help to alle-
viate this issue. Regardless, the performance of R1S4W2 as an
early optimization candidate, showing enhanced test and
challenge set accuracy, demonstrates the success and future
promise of the SeroOpt workow.
The SeroOpt workow reproducibly outperforms random
search

To investigate whether Bayesian optimization was improving
waveforms by random chance or gleaning chemically relevant
information, this process was repeated, starting with a new set
of six random waveforms and carried out for four strings as
described above (Fig. 4). We refer to this as run 2 (R2). While
data were aggregated across strings within each run, data were
never aggregated between runs. The runs were kept separate to
compare, from a new randomized initialization, whether four
rounds of Bayesian optimization repeatedly produced improved
waveforms. In any case, we did not expect the convergence of R2
on the same waveform as R1. The search space is vast, and given
the small subset of waveforms tested, converging on the same
optima is unlikely. Instead, if R1 and R2 found improved
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Bayesian optimization outperforms random search. Mean absolute errors for run 1, run 2, and the aggregate of both runs are shown for
serotonin test set accuracy (a), pH robustness (b), and ion robustness (c). Error bars represent standard deviations. Sample sizes are shown above
the error bars. Red stars denote the minimum error for each group of waveforms. Random waveform types refer to string 1 waveforms.
Optimized refers to waveforms optimized for 5-HT performance (i.e., W2, 4, 6, 8). (d–f) Convergence plots corresponding to (a–c), respectively,
showing the minimum mean absolute errors for currents at each waveform iteration. Gray boxes represent random initialization waveform
regions.
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waveforms compared to the randomized waveforms, we could
examine the black box models to see what led the optimizer to
generate specic waveform design patterns for each optimiza-
tion metric.

In all cases, except for the rst run of pH and a.c. challenge
samples, the average serotonin test/challenge set errors were
lower when using the optimized serotonin waveforms (W2, 4, 6,
8 for S2, 3, 4 of R1 and R2), compared to the averages for the
randomly generated S1 waveforms of R1 and R2 (Fig. 4). The
error minima were lower in all cases for the optimized wave-
forms; random search never produced a better waveform than
Bayesian optimization. Moreover, while each W2 waveform in
R1 improved across strings, R2S2W2 immediately found
a 5-fold lower minimum than the starting initialization. Thus,
new random initialization waveforms lead to the discovery of
new optimized waveforms in new local minima.
© 2025 The Author(s). Published by the Royal Society of Chemistry
These results suggest the following. Bayesian optimization
produces better waveforms than randomly generated or
chemist-enabled waveforms. Moreover, Bayesian optimization
nds waveforms corresponding to error minima better than
random chance. The Bayesian optimization surrogate model
(i.e., Gaussian process) effectively models the relationship
between voltammetry waveforms and performance, as the
minima only occurred for waveforms optimized specically for
serotonin detection metrics (e.g., W2, 4, 6; Table S3†). For
example, the average serotonin accuracy was ∼45 nM using the
randomly generated waveforms. By optimizing for any sero-
tonin parameter (test set accuracy, a.c. accuracy, pH accuracy,
detection limit), serotonin accuracy, on average, was improved
to 34 nM (24% improvement). While an ostensibly small return
on investment, this is only the rst iteration of this protocol,
and the results consistently outperformed the few standard
alternatives to waveform design.
Digital Discovery, 2025, 4, 1812–1832 | 1819
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Fig. 5 Search space of all waveforms tested experimentally from runs 1 and 2. Red stars represent optimal parameters. Histograms represent the
frequency of that parameter value in the waveforms tested. (inset) Evolution of the predicted Bayesian optimization waveforms across two
separate Bayesian optimization runs, 1 and 2, for serotonin accuracy metric in blue (W2). String 1 data are not shown as they were randomly
generated.
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Fine-grained waveform parameter tuning improves predictive
performance

In total, 55 waveforms were tested experimentally (the OG
waveform, 12 randomly generated waveforms from R1S1 and
R2S1, and 42 Bayesian optimized waveforms from R1 and R2
S2–4) with their corresponding metrics given as optimization
training data. These waveforms covered a large search space
across the waveform parameters. In Fig. 5, clusters of points are
1820 | Digital Discovery, 2025, 4, 1812–1832
interpreted as exploitation, while isolated points are interpreted
as exploration. A key advantage of Bayesian optimization is that
the acquisition function parsimoniously explores a search space
with an exploration–exploitation trade-off.71 Bayesian optimi-
zation judiciously explored the search space over 55 waveforms.
At the time of writing and to our knowledge, this is the largest
optimization scheme covered in neurochemical voltammetry
waveform development.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) Partial dependence plots for the serotonin (5-HT) test set accuracy metric for runs 1 and 2 combined. (b) Individual conditional
expectation plots. Ticks represent deciles of the feature values. (c) Shapley additive explanations summary plot.
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Data for all waveforms and metrics are provided (Tables S2
and S3†). We noticed that for serotonin accuracy (W2), the
predicted waveforms between R1 and R2 looked similar,
© 2025 The Author(s). Published by the Royal Society of Chemistry
especially for S3 and S4 (Fig. 5, inset). The serotonin accuracy
waveforms share characteristics with the OG waveform across
R1 and R2. They exhibit low to high potential steps for the
Digital Discovery, 2025, 4, 1812–1832 | 1821
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oxidative potential steps, and high to low potential steps for the
reductive potential steps. By S4, all waveforms prefer the
‘intermediate’ anodic pulse step concept described in the VET
literature, in which a relatively low amplitude E1 step before
a higher amplitude E2 step prevents signal saturation and
enhances concentration discrimination.44 Further, most wave-
forms exhibited a large amplitude counter-pulse (e.g., a large
difference between E2 and E3 to complete the redox cycle).67 The
fact that the model learned these domain knowledge heuristics
across the four iterations suggests it can also learn more
complex, higher-order interactions.

Waveform optimizations occurred with relatively small
changes in E and s, even for waveforms as simple as four steps,
as shown here. Tuning waveforms can result in dramatic
improvements in the predictive performance differences of the
resulting models. The effect of varying and reorganizing pulse
parameters is relatively unexplored in a systematic, multi-
variate manner, as done here. For example, R1S4W6 and
R1S3W8 differed by#0.04 V and#0.9 ms in E and s (Table S2†).
Yet, R1S3W8 outperformed R1S4W6 for serotonin test set, pH,
and ion accuracy, with up to nearly a 50% reduction in error
(Table S3†).

To test whether these performance increases were due to
differences in electrodes across strings (separate electrodes
were used across strings to encourage generalizability across
electrodes), we compared two similar waveforms tested on the
same electrode: R2S1W2 and R2S1W3. These waveforms
differed by #0.21 V and #1.2 ms, yet R2S1W2 outperformed
R2S1W3 in all serotonin metrics (Table S2 and S3†). Thus, small
and seemingly “insignicant” changes in step potentials and
hold times can produce signicant accuracy differences. These
ndings support the importance of a technique like Bayesian
optimization to tune parameters with ne-grained adjustments.

The order of the steps in the rapid pulse also matters. For
example, R1S1W1 and R1S4W3 are nearly identical, except for the
order of their pulses. Yet, R1S1W1 outperformed R1S4W3 in all
serotonin detection metrics up to ve-fold (Tables S2 and S3†).
Interpretable machine learning reveals waveform parameter
interactions and learnable heuristics

In addition to the qualitative explanations above, interpretable
machine learning methods73 can be applied to ‘open the black
box’ and assess how Bayesian optimization decides on
improved waveforms. Thus, we investigated whether the opti-
mizer was learning the heuristics that electrochemists use to
optimize waveforms, if it was learning novel relationships from
the data, or both. We used a global, model-agnostic technique
known as partial dependence plots (PDPs) to visualize how
varying waveform parameters affect the surrogate model
predictions.73 The PDPs are useful for non-parametric models,
such as Gaussian processes, that are not directly interpretable.73

Essentially, PDPs average the predictions from the model over
samples where all parameters, except the ones of interest, are
held constant. The effect of changing only the parameter(s) of
interest can then be inferred (i.e., the partial dependence of
a feature).
1822 | Digital Discovery, 2025, 4, 1812–1832
The PDPs for the aggregated runs (R1 and R2 combined) and
the individual runs are shown for the serotonin test set accuracy
metric (Fig. 6a, S5 and S6,† respectively). We focus on the
aggregated models because these have more total samples and,
thus, are more likely to uncover meaningful relationships. The
2D plots on the diagonal represent the average effect of a metric
while varying that parameter. Generally, the more a PDP plot for
a particular feature varies, the more important that feature is.
Conversely, at lines indicate either unimportant or interacting
features.

The aggregated data PDPs (Fig. 6a) conrm a complex and
interacting optimization landscape. For example, E3 oscillates,
E4 is parabolic, and E1 and s1 are monotonically decreasing or
increasing, respectively. The 3D contour plots below the diag-
onal represent the average effects on each metric while varying
two waveform parameters. Because we minimize error, the
purple shading represents the optimal (minima) regions, while
the yellow regions represent maxima.

Interpreting the PDPs has some weaknesses. First, PDPs
represent averages, meaning heterogenous interactions can be
obfuscated (e.g., an effect on one-half of the data may be aver-
aged out by an opposite effect on the other half). Thus, non-
varying parameters in PDPs could be misinterpreted. To
conrm this, we examined individual conditional expectation
(ICE) plots. The ICE plots show the individual contributions
that make up the averages in the PDP plots.73 Thus, the 2D PDPs
(blue lines, Fig. 6a) have matching structures with the average
ICE plots (blue lines, Fig. 6b). The individual instances (gray
lines, Fig. 6b) show that there are heterogeneous effects hidden
by the PDP averages for some parameters. For example, s1, E3,
and E4 have traces that do not all follow the same general
trends. Thus, varying these parameters depends on heteroge-
neous interactions between the other waveform parameters.
Meanwhile, the remaining parameters, E1, E2, s2, s3, and s4,
follow the same general trends (at lines suggesting non-
interacting waveform parameters).

As an alternative to PDP and ICE plots, we used Shapley
additive explanations (SHAP) plots.73 The SHAP values enable
interpretations of how features contribute to individual model
predictions. The SHAP plots conrmed that the essential
features were E3, E4, s1, and E1. Fig. 6c shows the spread of the
SHAP value per feature. Further, the heterogeneous effects,
particularly in E3 and E4, are conrmed by the different colors of
the feature values that do not cluster on a single side.
Discussion

Bayesian optimization has been widely applied in diverse elds,
including autonomous experimentation75 materials discovery
and synthesis61,76–79 peptide and protein engineering60,80,81 and
chemical reaction optimization82–85 It enables the identication
of global optima in high-dimensional search spaces through
data-driven experimental designs across complex interaction
parameters.74 Despite its advantages and versatility, Bayesian
optimization has rarely been applied to analytical chemistry,86

and specically, electrochemistry.87–90
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Other approaches can be used to design waveforms (e.g., rst
principles, chemometric screening, design of experiments).
However, these approaches suffer from limited computational
complexity, an exponential number of experiments required to
optimize individual parameters, resource intensity (labor, time,
materials, etc.), and an inability to account for confounding
waveform parameter interactions.91 Our attempts to use feature
selection to identify critical waveform step potentials and lengths
were complicated by the magnitude of the current response and
the pulse pattern (Fig. S7†). The difficulty in designing electro-
chemical waveforms arises partly because each pulse (voltage and
step length) inuences the state of the interface between the
solution and the working electrode. This interface evolves during
and between pulses. The effect of an individual pulse depends
not only on its characteristics (E and s) but also on preceding
pulses.

We introduced an experimental design framework to embed
voltammetry waveforms and their corresponding electroana-
lytical performance into a Bayesian optimization workow to
overcome these limitations. Rather than optimizing for
a particular electrochemical response (e.g., peak oxidative
current of a single analyte), the accuracy of the supervised
regression models was optimized directly by including model
accuracy metrics as the objectives. We explored which model
metrics were optimizable by simultaneously performing parallel
single-objective optimization loops across eight metrics (Fig. 2).
We found that serotonin test set accuracy optimization was
sample-efficient, reproducible, and outperformed domain-
guided and randomly designed waveforms across multiple
metrics (Fig. 3).

We demonstrated that in two separately initialized optimi-
zation campaigns, consisting of four strings or ‘rounds’ of
optimization, we generated waveforms selective for serotonin in
the presence of interferents (Fig. 4). Previous applications of
Bayesian optimization in other elds achieved improvements in
as few as three or four string-like iterations (i.e., low data
regimes). Thus, the behavior we observed was antici-
pated.76,82,92,93 Notably, our selectivity challenges were more
arduous yet efficient than standard waveform validation
schemes that test only a single interferent or interferent
concentration aer a waveform is developed for an analyte of
interest.

Future efforts could include more lengthy optimization
campaigns. In the present work, our stop criteria were some-
what arbitrary; we empirically noticed improvements in
predictive accuracy by string 4, and other studies have found
improvements in <5 iterations. Thus, we stopped aer four
strings to analyze the results. Based on the convergence plots,
we identied that waveform accuracy metrics were unlikely to
improve once they reached <10 nM error, even if the waveform
was found early in the campaign (e.g., within the rst ten
waveforms; Fig. 4e and S3†). This suggests a possible signal-to-
noise limit in the single-digit nanomolar range, consistent with
previous voltammetry methods.24 Thus, a campaign should be
stopped early if the metric reaches known or reasonable
instrument detection limitations. Further, only one metric
(dopamine pH robustness, run 2) failed to improve aer any
© 2025 The Author(s). Published by the Royal Society of Chemistry
iterations (Fig. S3,† bottom). Thus, in our hands, ∼30 wave-
forms (the total number of waveforms tested across four strings,
per run) indicated whether the waveform would improve. The
campaign may be halted if a metric fails to improve aer 30
waveforms.

Selectivity is a signicant barrier to effective waveform
design, especially for background-inclusive and multi-analyte
waveforms. Most voltammetry approaches achieve selectivity
by either training a machine-learning model, modifying
a waveform, or changing the electrode material. Rather than
independently adopting one of the latter approaches, our data-
driven waveform design uses the predictive performance of
a machine learning model as feedback to modify waveform
parameters – the black boxmodel decides what waveformwould
generate more accurate PLSR predictions.

In addition to 5-HIAA, DOPAC, and ascorbate, monovalent
cation concentrations (i.e., Na+, K+, H+) uctuate in the brain
extracellular space with neural stimulation due to the
biophysics of membrane polarization and repolarization,
transporter dynamics, and elevated O2 consumption (and CO2/
carbonic acid/H+ production) associated with synchronized
action potentials.94 Thus, these species represent key interfer-
ents to test in the presence of analytes, as electrodes will likely
encounter changes in cation concentrations under real-world
(in vivo) conditions.

The literature suggests that specic voltage pulses can
deconvolute monoamine neurotransmitter responses from
cation changes.95–97 Thus, we hypothesized our search space
would contain cation and interferent agnostic waveforms. We
expected to nd waveforms whose voltammograms, modeled in
low-dimensional space by PLSR, are selective for features
specic only to the analytes of interest (dopamine and sero-
tonin) and not those affected by interferents. Training across
such interferents is unnecessary if a waveform-model combi-
nation can ignore cation interferent effects (i.e., is cation
agnostic). Thus, we implicitly built the search for agnostic
waveforms into our Bayesian workow by introducing the
concept of a challenge set.

Challenge set samples illustrated that SeroOpt can identify
implicitly (i.e., requiring no explicit training samples) interfer-
ent agnostic waveforms (Fig. 3a). While the literature has
demonstrated cationic interferent agnostic waveforms,72,95–97

our approach required no manual or additional data process-
ing, and instead automatically acquired agnostic waveforms.
Combining the information content of an optimized waveform
with a powerful machine learning model (PLSR) enabled this
agnostic behavior.

Because step potential,44,67 step order,43 and hold time98 or
hold potential96 can impact waveform performance, other pulse
techniques that layer steps at constant potentials and times could
maximize their performance by tuning these parameters simi-
larly to the manner presented here.45 Adding more pulses could
deteriorate model performance, as useless steps add noise to the
data.45 Thus, careful selection of the number of steps is para-
mount. We conrmed this by noting performance differences
across waveforms with only slight parameter differences. We
Digital Discovery, 2025, 4, 1812–1832 | 1823
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attribute this behavior to the unique faradaic and non-faradaic
processes occurring at sub-ms timescales.72,95,97,99

Optimization of individual pulse step lengths results in
different transient redox responses from the preceding pulses
becoming the starting state for the succeeding pulses, as
opposed to letting the current decay to steady-state. A non-
steady-state approach has been shown to discriminate
compounds more efficiently using VETs. Yet, a lack of methods
for optimizing individual step lengths has prevented the broad
adoption of this practice. Differentiating dopamine from
norepinephrine has been accomplished using pulses with
differences as small as 0.1 V, though without systematic design
patterns.100

Potential mechanisms underlying interferent agnostic
waveforms include diffusion layer depletion of the interfering
species by the onset pulse (E1/s1),101 and other differentiating
information provided by unique pulse sequences and transient
responses of the rapid pulses to the model.95,97,98 More optimi-
zation campaigns, interpretability techniques, and numerical
simulation of species at electrode surfaces could uncover the
phenomena at play.

Regardless, the nding that interferent agnostic waveforms
can be identied and optimized, especially when forgoing
background subtraction, shows the utility of historically cate-
gorized “nonspecic” capacitive currents. These ndings show
that analyte-specic information from appropriately designed
waveforms occurs in the background current. This information
is captured by our model without explicit training, even in the
presence of interferents that affect the double layer. Previous
reports have shown that pH and Na+/K+

uxes can cause
hundreds to thousands of nM prediction errors in vitro.95,102 For
the same uxes, our waveform-model combinations show only
tens of nM error or less, and do not require explicit training,
specialized waveform augmentation, or data analysis.

We noticed that across runs and interpretability methods, E1
or s1 (onset pulse/time), E2 and E3 (pulse/counter pulse67), and
E4 (holding potential) were repeatedly ranked as the most crit-
ical features for the surrogate models of serotonin test set
accuracy. These parameters represent four known heuristics: s1
and E1 (onset time/intermediate potential; useful for selectivity
and diffusion layer depletion),101 counter pulse potential (E3,
useful for analyte conrmation),67 and holding potential (E4,
useful for analyte accumulation, sensitivity, and reduced sero-
tonin fouling).32 The E3 parameter completes the redox cycle of
the analytes, as it is the rst cathodic step aer a series of
anodic steps. While the relationship of E3 with other parameters
is complex and affected by their choices, in general, moderate,
sequential reductive steps (e.g., E3 ∼ −0.2 V) are optimal.
Previous work found that a −0.1 V cathodic limit, as opposed to
−0.4 V, was optimal for serotonin detection by limiting analyte
polymerization, which resulted in electrode fouling.24 As
mentioned for E1, an intermediate voltage of E3 may also act as
a more selective step for serotonin reduction amidst its possible
interferents, or have benecial effects on the diffusion layer
environment relevant to the proceeding E4 step.

Based on these results, future waveform optimization
studies should include as comprehensive training sets of
1824 | Digital Discovery, 2025, 4, 1812–1832
interfering analytes as possible, as done here, and should not
use one-factor-at-a-time optimization, which is currently the
most common approach. The setting of one parameter inu-
ences the optimal settings for the remaining parameters
(Fig. 6). An interesting area of future exploration would be to
determine whether these effects generalize to waveforms with
greater than four steps, i.e., if the rst cathodic step remains the
key step to optimize for a 6, 8, or 10-step or greater waveforms.
Further meta-analyses of these behaviors will provide essential
insights into unexpected electrochemical optimization design
patterns.

Small amplitude onset pulses have been shown to improve
the deconvolution and differentiation of ions such as H+,97 Na+,
and K+,95 along with small amplitude onset sweeps for dri and
pH.72,103 Again, carefully designed waveform tuning can result in
explicit and implicit interferent-agnostic waveforms. Other
waveform parameters deemed unimportant in this study might
be associated with the imposed constraints affecting the full
exploration of parameter space or our relatively small sample
size. Further, the interpretability methods are also estimates of
the surrogate model, which is an estimate. Thus, our interpre-
tations must be taken lightly as correlations, not causation.

The SeroOpt paradigm is immediately extendable to more
than four steps (eight parameters) to create more complex
waveforms. Future research into other optimization metrics,
supervised regression and surrogate models/kernels, and
additional analytes is underway.104,105 For example, pulses have
been shown to differentiate norepinephrine from dopamine.100

We note the extendibility of our waveform embedding
approach. This embedding can be used for any waveform type,
such as sweeps, where the parameter values represent the slope
(scan rate) of each segment, along with parameters for start and
stop potentials. Pulse and sweep designs can also be
combined.101 Similar approaches could also extend to embed-
ding AC voltammetry parameters (e.g., amplitude, phase).106

Thus, rather than starting from a historic performer and
exploring new waveforms one factor at a time, entirely new
waveforms can be discovered de novo.

Our approach will accelerate waveform development for new
single- and multi-analyte panels in environments that hinder
selectivity or other difficult-to-optimize metrics. Further explo-
ration of waveforms with agnostic behavior and for multi-
analyte co-detection is underway. Applications of Bayesian
optimization or alternative machine-learning guided workows
to electrochemical reaction studies and battery technology
development have delivered robotics and other automated
instrumentation solutions. An area of future work could be to
develop an automated ow cell/waveform optimization pipeline
to fully ‘close the loop’.65,107,108 To aid other investigators in this
pursuit, we provide data, tutorial code notebooks, and videos at
github.com/csmova/SeroOpt (https://github.com/csmova/
SeroOpt), as well as our corresponding open-source voltamme-
try acquisition and analysis soware66 at github.com/csmova/
SeroWare (https://github.com/csmova/SeroWare) and
github.com/csmova/SeroML (https://github.com/csmova/
SeroML).
© 2025 The Author(s). Published by the Royal Society of Chemistry
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To our knowledge, we report the rst application of active
learning to electrochemical waveform design. Our study repre-
sents one of the largest-scale investigations of neurochemical
detection waveforms. Using a data-driven approach, we gener-
ated a waveform for serotonin detection that outperformed our
expert-designed waveform and randomly generated waveforms
across various metrics. We demonstrated the ability to search
for interferent-agnostic waveforms using a priori design of
‘challenge’ samples. We attributed the success of SeroOpt to the
efficient ne-grained tuning of voltage and temporal waveform
parameters by Bayesian optimization, each having complex
interaction effects. Lastly, we interpreted our model with three
separate techniques to conrm our model was learning
a representation of the waveform optimization landscape that
aligned with heuristics and domain knowledge.
Methods
Chemicals

Serotonin (5-HT) hydrochloride (#H9523), dopamine (DA)
hydrochloride (#H8502), 5-hydroxyindoleacetic acid (5-HIAA)
(#H8876), 3,4-dihydroxyphenylacetic acid (DOPAC) (#850217),
and ascorbic acid (#A92902) were purchased from Sigma-
Aldrich (St. Louis, MO). Articial cerebrospinal uid (aCSF)
solutions were prepared as previously described.40,109 The aCSF
solution was adjusted on the day of each experiment to pH 7.1,
7.2, or 7.3± 0.03 using HCl (Fluka, #84415). Altered cation (a.c.)
aCSF buffer contained the following ion composition: 31 mM
NaCl (#73575), 120 mM KCl (#05257), 1.0 mM NaH2PO4

(#17844), and 2.5 mM NaHCO3 (#88208) purchased from Hon-
eywell Fluka (Charlotte, NC), and 1.0 mM CaCl2 (#499609) and
1.2 mM MgCl2 (#449172) purchased from Sigma-Aldrich. All
aqueous solutions were prepared using Milli-Q grade or higher
water (Sigma-Aldrich).
Electrode fabrication and polymerization

Carbon ber microelectrodes were fabricated by vacuum-
aspirating 7-mm diameter carbon bers (T650/35, Cytec
Carbon Fiber) into O.D. 1.2 mm × I.D. 0.69 mm, 10 cm length
borosilicate glass capillaries (Sutter Instrument Company,
Novato, CA, B120-69-10). A micropipette puller (P-1000, Sutter
Instrument Company, Novato, CA) was used to pull each
capillary into two electrodes tapering and sealing the glass
around the carbon ber. Four-part epoxy (Sigma Aldrich, Spurr
Low Viscosity Embedding Kit- EM0300) was backlled into the
tip of each electrode. Epoxied electrodes were dried at 70 °C for
8–12 h. Electrode tips were cut to ∼100 mm using micro-scissors
under an inverted microscope. For electrical conduction, the
electrodes were backlled with a non-toxic metal alloy of
gallium–indium–tin, Galinstan (Alfa Aesar, 14634-18). Bare
copper wire (0.0253-in. diameter, Archor B22) was polished
using a 600-grit polishing disc and inserted into working elec-
trode capillaries to serve as the electrical connection to the
potentiostat. Epoxy (Loctite EA 1C) was then placed around the
end of each electrode to secure the Cu wire in place. The epoxy
was cured for 24 h at room temperature.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Electrode tips were cleaned with HPLC-grade isopropanol
(Sigma Aldrich #34863) for 10 min. Electrodes were then over-
oxidized by applying a static 1.4 V potential for 20 min.110 Low-
density EDOT:Naon solution was made by rst preparing
a 40 mM EDOT (3,4-ethylenedioxythiophene; Sigma Aldrich, St.
Louis, MO; 483028) stock; 100 mL of this stock was added to 200
mL of Naon (Ion Power, Inc., Tyrone, PA; LQ-1105) and diluted
with 20 mL of acetonitrile.16 A triangle waveform (1.5 V to−0.8 V
to 1.5 V) was applied using a CHI Instruments Electrochemical
Analyzer 15× at 100 mV s−1 to generate a PEDOT:Naon coating
on each electrode.
In vitro experiments

Reference electrodes were made by placing 0.025-inch silver
wire (A-M Systems, 783500) into bleach (5–10% sodium hypo-
chlorite, Clorox, Oakland CA) for 10 minutes. Each reference
electrode was rinsed with distilled water before being used in
experiments. A ow cell (NEC-FLOW-1, Pine Research Instru-
mentation Inc.) was used to make measurements with a VICI
air-actuated injector (220-0302H; VICI Valco Instruments,
Houston, TX). An HPLC pump by Dionex (Sunnyvale, California)
pumped aCSF through the ow cell at a constant ow rate of 1.0
mL min−1 (Fig. 7).

Standard concentrations were selected using a fractional
factorial box design (Table 1). This is a chemometric approach
that designs a multi-dimensional ‘box’ spanning analytes, their
concentrations, and experimental conditions of interest.91,111

We selected a fractional approach to bias towards low analyte
concentrations and small relative changes. High accuracy and
precision in the nM range are important for monitoring basal
and stimulated neurotransmitter levels using a single
technique.

The fractional approach avoids a full factorial design, which
would require orders of magnitude (and prohibitively) more
calibration samples. In contrast, traditional calibration sets are
information-poor and can lead to spurious correlations when
training a multiplexed method with overlapping signals from
analytes and interferents.91 The training and test sets effectively
spanned the concentrations and combinations of analytes of
interest without correlation (Fig. S8†). Ascorbate was included
in all samples (except blanks) for antioxidant properties. The
concentrations of dopamine, serotonin, 5-HIAA, DOPAC, and
ascorbate were altered over physiologically relevant changes in
concentration throughout so the model could be trained and
tested across all analytes.

Solutions of aCSF were purged with nitrogen for at least ten
minutes before sample preparation. All training and test
samples were prepared from stocks stored at −80 °C on the day
of experiments. All solutions were adjusted to the correspond-
ing pH each day prior to aliquoting. All solutions were kept
covered from light and on ice during the experiments.

We dene a training set (i.e., calibration set) as known
concentration analyte mixtures, i.e., “standards”, used to train
a PLSR model. A test set is dened as known concentration
analyte mixtures that were not used during training but instead
held out and used to measure model performance. Test set
Digital Discovery, 2025, 4, 1812–1832 | 1825
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Fig. 7 Workflow for parallel Bayesian optimization of voltammetric waveforms with intrinsic interferent selectivity.
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samples only include samples with conditions occurring in the
training set (i.e., the same buffer conditions). We dene “chal-
lenge” samples as additional test set samples prepared under
conditions not included or varied in the training set, such as
varied pH and cationic buffer salt concentrations (Table 1; see
Data analysis). We dene an injection blank or zero (0) as an
injected solution containing only aCSF.

Training, test, and challenge sets were injected (∼1 mL into
a 500-mL loop) into a ow cell using a six-port valve (Fig. 7). The
valve was switched to the inject position for ∼20 s per injection.
The time between injections was $200 s, depending on the
waveform and time for the current to return to baseline.
Samples were injected in a pseudo-randomized but consistent
order. Within each string, the waveform calibration curves were
completed across consecutive days. All waveforms within
a string were acquired with the same electrode. A different
electrode was used for each string to ensure the robustness of
the waveform optimization. All waveforms were conditioned for
$10 min in aCSF before acquiring data.
Voltammetry hardware and soware

A two-electrode conguration via an Ag/AgCl reference electrode
and a carbon-ber microelectrode working electrode was used.
A PC with a PCIe-6363 data acquisition card (National Instru-
ments (NI), Austin, TX) was used to control a WaveNeuro One
FSCV Potentiostat System (NEC-WN-BASIC, Pine Research
Instrumentation Inc.) with a 1000 nA V−1 headstage amplier
(AC01HS2, Pine Research Instrumentation Inc.). The copper
1826 | Digital Discovery, 2025, 4, 1812–1832
wire of the working electrode and the silver wire reference
electrode were inserted into amicroelectrode-headstage coupler
(AC01HC0315-5, Pine Research Instrumentation Inc.) that
connected the electrodes to the potentiostat.

In-house soware was developed for RPV as described in
a previous publication.40 The soware has since been published
and named SeroWare, and is described elsewhere.66
Bayesian optimization

Bayesian optimization was carried out using the open-source
Python package scikit-optimize.112 This soware uses an ‘ask
and tell’ interface. First, the search space was constrained, as
described in the Results. The surrogate model (Gaussian
process regressor with a Matérn and white noise kernel, and
uniform prior) was initialized through the ‘tell’ interface using
vectorized and normalized string 1 waveform parameters and
optimization metrics. A Matérn kernel was chosen because of
its exibility and the assumption that the true objective func-
tion of the waveform parameters is not innitely differentiable
(i.e., the potentials and time applied by the potentiostat/data
acquisition card are discretized to some degree).

The acquisition function (expected improvement) was then
minimized using the ‘ask’ interface to generate a vectorized
waveform to be experimentally queried. Kernel hyper-
parameters (i.e., length scale, smoothness) and the acquisition
function were optimized automatically by the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm in the
soware package. The acquisition function returned
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a vectorized waveform that was then created in SeroWare format
for data acquisition. Aer experimental results were obtained
with the predicted waveform. The metrics of all previous
waveforms were aggregated with the newest metrics. The
Bayesian optimizer was updated using the ‘tell’ interface to set
new query points using the ‘ask’ interface.

In this work, increments of voltage were rounded to the
nearest 0.001 V, and increments of time were rounded to the
nearest 0.1 ms. Built-in partial dependence functions to scikit-
learn and scikit-optimize were used to interpret the model,
along with the SHAP Python package.
Data analysis

Data were extracted using in-house custom acquisition soware
written in MATLAB 2016a. Models were built as described in
previous literature using open-source Python packages (scikit-
learn).40,113 Briey, roughly 40–100 voltammograms were
extracted per sample injection. All voltammograms were
normalized, and the number of components was chosen using
5-fold cross-validation. Optimization metrics were then calcu-
lated using the nal model (Table S1†).

Dri training. The PLSR model was trained to account for
dri using voltammograms collected throughout the experi-
ment while aCSF containing interferents owed and injections
were not occurring (∼2 h). We dene these voltammograms as
“background blanks”. They are portions of the data when no
samples are being injected. The injection blanks correct for
injection artifacts, while the background blanks correct for dri
(Fig. S9†). Data in which dri was evident were extracted from
these background epochs and labeled as ‘zero’ analyte
concentrations to teach the model what dri, as opposed to
analyte-containing, voltammograms, looked like. Background
blanks were in addition to data from injections of aCSF alone
(i.e., injection blanks), which accounted for ow cell injection
artifacts.

We found this process increased the accuracy and precision
of the PLSR predictions. It was generalizable to test set samples.
We attribute this to a low-dimensional representation of dri
learned by the model (Fig. S9†). All concentration predictions
were constrained to be $0 (i.e., domain knowledge dictates
concentrations cannot be negative). Negative concentration
predictions were replaced with 0.

Optimization metrics. The eight different optimization
metrics were dopamine accuracy (mean absolute error of the
test set predictions), serotonin accuracy (mean absolute error of
the test set predictions), variance of the test set blanks (proxy for
LOD) for zero dopamine or serotonin, mean absolute error for
dopamine or serotonin in altered cation (a.c.) aCSF (ion
robustness challenge samples), and varying pH aCSF (pH
robustness challenge samples) (Table S1†). Due to experimental
time constraints, the LOD metric was excluded from the opti-
mization panel for the second run of Bayesian optimization
(R2). This resulted in 30 unique waveforms for the rst run (six
random waveforms in string 1, plus three strings of eight
waveforms from subsequent rounds of Bayesian optimization)
and a total of 24 waveforms for the second run (six random
© 2025 The Author(s). Published by the Royal Society of Chemistry
waveforms in string 1, plus six waveforms in three rounds of
optimization). In R1 and R2 combined, 55 unique waveforms
were tested (with the additional OG RPV waveform also tested;
Table S2†).

Challenge samples. Test samples (T1–T4), prepared at pH 7.3,
were used to assess dopamine and serotonin accuracy and LOD.
Some test samples (T1–T3) were also prepared in aCSF at pH 7.1
or pH 7.2, and in aCSF with altered cation concentrations (Na+

and K+) to assess the accuracy of dopamine and serotonin
predictions in the presence of varying H+, Na+, and K+ concen-
trations expected in vivo. We refer to these specially prepared test
samples as ‘challenge’ samples (Table 1 and Fig. 7). These
samples enabled sparse training set size. Thus, we could opti-
mize for interferent agnostic waveforms without explicitly
training on these interferents. Otherwise, training across varia-
tions in pH or other cations would require partial or up to full-
fold increases in the samples injected. As an efficient alterna-
tive, we optimized for accuracy on the challenge set samples
without any increase in training set size. Thus, the optimization
goal of challenge samples was to nd a waveform inherently
agnostic to changes in pH or cations rather than a waveform that
was ‘trainable’ across these interferents. In this case, the inter-
ferents implicitly optimized were pH and monovalent cations,
which is extendable to any a priori domain knowledge of inter-
ferents expected. This approach is particularly useful in situa-
tions where the training data matrix differs from the model's
application (i.e., in vitro to in vivo generalizability).
Data availability

Data for this article, including acquisition and analysis code,
are available at https://doi.org/10.5281/zenodo.15339008,
https://github.com/csmova/SeroWare (DOI: https://doi.org/
10.5281/zenodo.15580629), https://github.com/csmova/SeroML
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part of the ESI.†
Author contributions

AMA, ASM, CL, CSM, KAP, and MAF conceived the work and
designed the experiments. ANN, CSM, KKN, KAP, MEC, and
MEW performed all experiments. CSM and KAP analyzed the
data. CSM wrote the code for the regression and Bayesian
optimization models. KAP performed statistical analyses. AMA,
ASM, MAF, and CL guided the project. All authors wrote and
approved the nal version of the manuscript.
Conflicts of interest

There are no conicts to declare.
Digital Discovery, 2025, 4, 1812–1832 | 1827

https://doi.org/10.5281/zenodo.15339008
https://github.com/csmova/SeroWare
https://doi.org/10.5281/zenodo.15580629
https://doi.org/10.5281/zenodo.15580629
https://github.com/csmova/SeroML
https://doi.org/10.5281/zenodo.15580636
https://github.com/csmova/SeroOpt
https://github.com/csmova/SeroOpt
https://doi.org/10.5281/zenodo.15580638
https://doi.org/10.5281/zenodo.15580638
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00005j


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 3
:4

4:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Acknowledgements

This work was supported by the National Science Foundation
(CHE-2404470). CSM was supported by the National Science
Foundation Graduate Research Fellowship Program (DGE-
1650604 and DGE-2034835). Any opinions, ndings, conclu-
sions, or recommendations expressed in this material are those
of the authors and do not necessarily reect the views of the
National Science Foundation. This research was also supported
by the Spanish Ministry of Science, Innovation, and Universities
under project number PID2021-126304OB-C44. The authors
acknowledge Biorender.com (http://Biorender.com) for the
Table of Contents graphic and Fig. 7. See: https://
BioRender.com/fxn08n1 and https://BioRender.com/lre0n7d.

References

1 Q. Pang, J. Meng, S. Gupta, X. Hong, C. Y. Kwok, J. Zhao,
Y. Jin, L. Xu, O. Karahan, Z. Wang, S. Toll, L. Mai,
L. F. Nazar, M. Balasubramanian, B. Narayanan and
D. R. Sadoway, Fast-charging aluminium–chalcogen
batteries resistant to dendritic shorting, Nature, 2022,
608(7924), 704–711, DOI: 10.1038/s41586-022-04983-9.

2 P. Garrido-Barros, J. Derosa, M. J. Chalkley and J. C. Peters,
Tandem electrocatalytic N2 xation via proton-coupled
electron transfer, Nature, 2022, 609(7925), 71–76, DOI:
10.1038/s41586-022-05011-6.

3 W. Zhang, L. Lu, W. Zhang, Y. Wang, S. D. Ware,
J. Mondragon, J. Rein, N. Strotman, D. Lehnherr, K. A. See
and S. Lin, Electrochemically driven cross-electrophile
coupling of alkyl halides, Nature, 2022, 604(7905), 292–
297, DOI: 10.1038/s41586-022-04540-4.

4 J. Li, Y. Liu, L. Yuan, B. Zhang, E. S. Bishop, K. Wang,
J. Tang, Y.-Q. Zheng, W. Xu, S. Niu, L. Beker, T. L. Li,
G. Chen, M. Diyaolu, A.-L. Thomas, V. Mottini,
J. B. H. Tok, J. C. Y. Dunn, B. Cui, S. P. Paşca, Y. Cui,
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