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protein–ligand interaction prediction†
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and Luhua Lai *abc

Protein–ligand interaction prediction is a critical component of computer-aided drug design. Although

recent deep learning scoring functions have demonstrated advantages over conventional scoring

functions, accurate and efficient prediction of protein–ligand binding efficacy remains an intractable

challenge. Most of those methods are tailored for specific tasks, such as binding affinity prediction,

binding pose prediction, or virtual screening, and often fail to encompass all aspects. There are

longstanding concerns that deep learning methods lack a comprehensive understanding of binding free

energy and have limitations in generalization. Deep learning methods with a single optimization goal

tend to struggle to achieve balanced performance in scoring, ranking, docking, and screening, thus

failing to meet the needs of practical drug design research. To solve this challenge, we propose DeepRLI,

a novel interaction prediction framework that is universally applicable across various tasks. The proposed

model is trained with a multi-objective learning strategy that includes scoring, docking, and screening as

optimization goals. It allows DeepRLI to have three relatively independent downstream readout

networks, which can be optimized separately to enhance the task specificity of each output. Additionally,

the model incorporates an improved graph transformer with a cosine envelope constraint, integrates

a novel physics-informed module, and introduces a new contrastive learning strategy. With these

designs, extensive evaluations across various benchmarks demonstrate that DeepRLI has superior

comprehensive performance in broad applications, highlighting its potential as a fundamental tool for

evaluating protein–ligand interactions in practical drug discovery and development.
1 Introduction

Drug discovery aims to identify active molecules, namely lead
compounds, capable of binding to disease-related biological
targets.1 In the realm of drug design, the development of
a scoring function that can accurately quantify the interaction
between a protein and a ligand facilitates the discovery of lead
compounds via computer-aided techniques.2,3 Theoretically,
a perfect scoring function corresponds to the binding free
energy surface. A geometric optimizer can be used to nd the
minimum on the binding free energy landscape, thus realizing
molecular docking, and obtaining the stable binding pose of
the protein and the ligand. Subsequently, the calculation of
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protein–ligand binding free energy, commonly referred to as
binding affinity, can be conducted. Based on this, virtual
screening can be carried out, allowing the identication of
potent small molecular ligands as potential candidate drugs.1–3

However, the potential energy landscape of protein–ligand
systems is highly complex, and even with various approxima-
tions, the evaluation of binding free energy based on the prin-
ciples of statistical mechanics remains computationally
intensive and time-consuming.4,5 Scoring functions were actu-
ally developed for high-throughput virtual screening, balancing
speed and accuracy. Therefore, in essence, these functions serve
as signicantly simplied approximations for binding free
energy estimation. Usually, the scoring functions are derived by
considering a single conformation of the complex.6 A range of
traditional scoring functions, including physics-based, empir-
ical, and knowledge-based approaches have been developed
and widely used in docking and screening tasks.7,8 Although
some of them are still prevalent to this day, their preset math-
ematical forms limit the possibility of breakthroughs.

In recent years, there has been an exponential increase in
both experimental and computational data on the structures of
large biomolecules.9,10 At the same time, substantial advance-
ments have been made in articial intelligence algorithms.11,12
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This concurrent progress has sparked considerable research
interest in using machine learning methods to develop better
scoring functions. A number of machine learning-based scoring
functions that take 3D structures as input have emerged.13

These functions typically excel in some of the tasks, e.g.,
binding affinity prediction, binding pose prediction, or virtual
screening. For instance, based on crystal structures, methods
like KDEEP

14 and InteractionGraphNet15 are capable of inferring
affinity scores with a high linear correlation to experimental
binding data. Additionally, techniques such as DeepDock16 and
RTMScore17 demonstrate impressive capability to accurately
discern native binding poses from a pool of computer-gener-
ated decoy conformations and efficiently identify the true
binders within a collection of decoy molecules for a specied
target. However, very few machine learning-based scoring
functions have demonstrated consistently outstanding perfor-
mance across all tasks, highlighting the need for continuing
research to optimize these models for broad applicability.

An ideal scoring function should exhibit excellent perfor-
mance across all key metrics, including scoring power, ranking
power, docking power, and screening power.18 Task-specic
methods oen lack generalizability due to the biased nature of
the training data and the absence of inherent physical insights
in machine learning algorithms. This lack of generalizability
poses signicant challenges for models when making infer-
ences from unseen data. Numerous data augmentation strate-
gies have been proposed to solve this limitation.19–21

However, most existing strategies have predominantly
sacriced the prediction of binding affinity values in favor of
classication models, which offer broader practical applica-
tions.22 This shi arises primarily because augmented data does
not provide accurate binding free energy values. Besides, there
have been attempts to hybridize traditional scoring functions
with machine learning to enhance conventional methods.
These endeavors involve introducing energy correction terms
into classical equations23–25 and leveraging latent space repre-
sentations to parameterize physics-inspired formulae.26 A
recent development is the GenScore model proposed by Shen
et al., which achieves balanced multi-task performance by
correlating neural network statistical potentials with experi-
mental binding data.27 Notably, methods striving for multi-
aspect performance all incorporate elements of traditional
scoring functions to some extent.

In this work, we propose DeepRLI, a novel deep learning
model for protein–ligand interaction prediction. It adopts an
innovative multi-objective strategy that outputs multiple scores
simultaneously to suit various tasks with a balanced and
exceptional ability in scoring, ranking, docking, and screening.
Specically, DeepRLI employs an improved graph transformer
with a cosine envelope as its principal feature embedding
module to obtain the hidden representation of each atom.
Three independent readout modules predict the scoring score,
docking score, and screening score respectively. Among these,
the scoring score is used for binding free energy prediction of
the protein–ligand complex crystal structure and is suitable for
lead compound optimization scenarios; the docking score is
instrumental in ascertaining the most favorable binding pose
Digital Discovery
between a protein and a ligand; the screening score is utilized to
assess the potency of various small molecules against desig-
nated targets.

Theoretically, an ideal and powerful scoring function
would be one that can accurately predict the free energy
difference between the binding state of the protein and ligand
and their dissociation state. However, practical challenges
arise due to the scarcity of available data. The existing data on
complex structures and their corresponding binding free
energy information is notably limited, posing a signicant
challenge for developing deep learning scoring functions that
rely solely on data-driven approaches to precisely estimate the
relative free energies of various protein–ligand conforma-
tions. To address this, we incorporate physics-informed
components into both the docking readout module and the
screening readout module, enhancing the model's general-
ization ability. Additionally, we expand the training data by re-
docking and cross-docking crystal structure data using
a molecular docking program, AutoDock Vina.28,29 Consid-
ering that the native binding conformation is located at the
minimum point of the binding free energy surface, and that
the binding free energy of other conformations must inher-
ently exceed it, we devised an effective contrastive learning
method to optimize parameters. This enables the model to
understand the relationship between the binding free energy
values of different structures.

Overall, through a divide-and-conquer multi-objective
approach combined with data augmentation and a contrastive
learning strategy, our protein–ligand interaction scoring model,
DeepRLI, reaches the state-of-the-art level in scoring, ranking,
docking, and screening, and exhibits remarkable versatility and
efficacy across diverse tasks. Moreover, the model's inherent
attention mechanism and physics-inspired constraint blocks
provide excellent interpretability. Atom pairs with high atten-
tion weights and large physical scores correspond to key inter-
actions, such as hydrophobic interactions, hydrogen bonds,
and p-stacking. This demonstrates that our universal scoring
model accurately captures interaction-related information,
resulting in outstanding performance.

2 Overview of DeepRLI

DeepRLI is a novel deep learning-based scoring function
designed specically for predicting protein–ligand interactions.
It employs a graph neural network architecture to accurately
evaluate the binding strength of 3D complex structures. The
underlying methodology and detailed framework of DeepRLI
are described in the subsequent sections.

The basic model architecture of DeepRLI is illustrated in
Fig. 1. It accepts a protein–ligand complex with three-dimen-
sional spatial coordinates as input. Note that the receptors
investigated here are proteins, but since the model uses atoms
rather than residues as the fundamental unit, this framework
can also easily be extended to other biological macromolecules.

Generally, binding affinity is associated with the entire
system, corresponding to the free energy difference of the
system in distinct states. However, if there is no signicant
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic representation of the multi-objective DeepRLI architecture for protein–ligand interaction prediction. (a) The 3D structure
around the binding site of the protein–ligand complex is transformed into a fully-connected graph with atoms as nodes and interactions as
edges, serving as input for the neural network. (b) The input graph representation is processed through the neural network, composed of a linear
projection layer and several graph transformer layers, to obtain node embeddings and edge embeddings. The downstream readout network is
divided into three parts to target different task types respectively. For the scoring readout, the node embeddings are pooled using a ligand-only
graph-level pooling layer and then fed forward into a multi-layer perceptron block to output a predicted scoring score. (c) In the docking
readout, the node embeddings are pairwise added to form pair embeddings, which are then passed through a fully-connected layer to yield
weights for four physics-informed interaction terms. Finally, all weighted terms are summed to obtain the docking score. (d) The screening
readout module is similar to the docking readout, except that it includes an additional entropy scaling layer, which ultimately outputs the
screening score.
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change in the protein backbone before and aer binding, the
binding affinity is largely determined by the residues near the
pocket. To reduce computational costs, we focus on atoms near
the binding site for binding affinity prediction, specically
considering the small molecule and residues within 6.5 Å of it.
Instead of including only atoms within a certain cutoff, our
© 2025 The Author(s). Published by the Royal Society of Chemistry
approach encompasses entire residues as long as there is
a protein–ligand atom pair within 6.5 Å of each other.

In the subsequent step, the structure comprising the
selected residues and small molecules is transformed by the
model into a graph G ¼ ðV ; E Þ where atoms serve as nodes V
and interactions form edges E (Fig. 1a). To preserve the
Digital Discovery
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structural information as comprehensively as possible, we
assign an edge to every atom pair whose distance is less than 6.5
Å, a reasonable cutoff distance for interatomic interactions.
Consequently, such fully-connected graphs typically consist of
hundreds of nodes and tens of thousands of edges. Each node i
possesses corresponding atomic features ai ˛ R

dv×l, and each
edge similarly encompasses features bij˛ R

de×l representing the
interatomic interaction between nodes i and j.

2.1 Graph transformer with a cosine envelope

To achieve adequate expressive power, input node features and
edge features are rst embedded into a d-dimensional hidden
space via learnable affine transformations, respectively:

v0i = Aai + a; e0ij = Bbij + b, (1)

where A ˛ R
d×dv, B ˛ R

d×de and a,b ˛ R
d are the learnable

parameters of the linear projection layers. Our model does not
introduce node positional encodings, as atoms in the same
context contribute equally to the interaction, and ensuring
a unique representation for each node is unnecessary.

Following the initial embedding, hidden node features
and edge features undergo updates through ten graph
transformer layers (Fig. 2). Signicantly, in our DeepRLI
model, we use a rened graph transformer architecture to
enhance its applicability to molecular systems. This adapta-
tion is based on the principle that, within a molecular
structure, the importance of neighboring atoms to a central
atom diminishes with increasing distance, and the contex-
tual representation of the central atom is predominantly
inuenced by the immediate, proximal atoms. Therefore, we
introduce a cosine envelope factor, which is applied to the
weights derived from the key-query dot product, modulating
them to decay with increasing interatomic distances. The
incorporation of this cosine envelope function is crucial,
particularly in scenarios with limited training data. In the
absence of this modication, the model may inappropriately
focus on learning specic long-distance atomic interactions,
potentially leading to overtting. By implementing this
Fig. 2 The improved graph transformer used in DeepRLI. (a) The cur
transformer with a cosine envelope.

Digital Discovery
distance-sensitive weighting mechanism, our model more
effectively captures the local chemical environment of each
atom, thus mitigating the risk of overtting and enhancing
the model's generalizability in drug design applications. For
a detailed description of the impact of the cosine envelope,
please refer to the ablation study results presented in Section
1.1 of the ESI.†

In a single graph transformer layer, the convolution proce-
dure employs the following message-passing scheme: the
embedding of a node is updated based on the information from
all adjacent nodes and edges, while the embedding of an edge is
updated according to the information from its end nodes and
itself. It can be expressed as:30

v̂i
‘þ1 ¼ Ov

‘

����H
k¼1

 X
j˛N i

cijwij
k;‘Vk;‘vj

‘

!
; êij

‘þ1 ¼ Oe
‘

����
H

k¼1

�
ŵij

k;‘
�
;

(2)

where,

cij ¼ 1

2
cos

�
pdij
6:5

þ 1

�
(3)

and

wij
k;‘ ¼ softmaxj

�
ŵij

k;‘
�
; ŵij

k;‘ ¼
�
Qk;‘vi

‘Kk;‘vj
‘ffiffiffiffiffi

dk
p

�
Ek;‘eij

‘: (4)

In the above formulae, dij is the distance between nodes i and
j; ‘ represents the layer number; k denotes the index of H
attention heads; ‖ signies concatenation; N i refers to neigh-
boring nodes of atom i; Qk;‘, Kk;‘, and Vk;‘˛ℝdk�d correspond to
the query, key, and value generation matrices in the attention
mechanism, respectively; Ek;‘˛ℝdk�d is the linear trans-
formation matrix of edge information, with its projection
results used to adjust attention scores; Ov

‘;Oe
‘˛ℝd�d represents

the updating functions. The subsequent outputs v̂i
‘þ1 and êij

‘þ1

are each followed by a residual connection and batch normali-
zation layer, a fully-connected layer, and another residual
connection and batch normalization layer:30
ve of the cosine envelope function. (b) Block diagram of the graph

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Schematic diagram of the training objectives and corresponding loss functions for the DeepRLI interaction prediction model. (a) The
training objective for scoring readout is to make the predicted scoring score for native crystal structures close to the experimentally determined
binding free energy anchor points. (b) The training objective for docking readout is to ensure that the predicted docking score for any pose with
RMSD # 2 Å from the native crystal structure's small molecule is lower than that for any pose with RMSD $ 4 Å. (c) The training objective for
screening readout is to make the predicted screening score for any active ligand lower than that for any inactive decoy. (d) Loss function used to
achieve the scoring objective. (e) Loss function used to achieve the docking objective. (f) Loss function used to achieve the screening objective.
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^̂vi
‘þ1 ¼ BatchNorm

�
vi

‘ þ v̂i
‘þ1
�Þ;

^̂eij
‘þ1 ¼ BatchNorm

�
eij

‘ þ êij
‘þ1
�
; (5)

^̂
v̂i

‘þ1 ¼ Wv;2
‘ReLU

0
@Wv;1

‘^̂vi
‘þ1

1
A;

^̂
êij

‘þ1 ¼ We;2
‘ReLU

0
@We;1

‘̂êij
‘þ1

1
A; (6)

vi
‘þ1 ¼ BatchNorm

0
BB@^̂vi‘þ1 þ ^̂

v̂i
‘þ1

1
CCA;

eij
‘þ1 ¼ BatchNorm

0
BB@^̂eij‘þ1 þ ^̂

êij
‘þ1

1
CCA; (7)

in which Wv;1
‘;We;1

‘˛ℝ2d�d, Wv;2
‘; We;2

‘˛ℝd�2d, and the Batch-
Norm operation is

f ðxÞ ¼ x� E½x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½x� þ 3

p gþ b; (8)

where E signies the mean of the embeddings of nodes or
edges, Var represents the corresponding variance, and g,b ˛ R

d

are learnable parameter vectors. The description above encap-
sulates the function of a single graph transformer layer. Aer
iterating through this process ten times, the nal node
embeddings vi

L and edge embeddings eij
L are obtained.
© 2025 The Author(s). Published by the Royal Society of Chemistry
In the subsequent stages, the hidden features vi
L of the

nodes undergo distinct processing through three autonomous
downstream networks. This process yields three types of scores:
scoring scores, docking scores, and screening scores. The
nomenclature of these scores reects their underlying
purposes. Specically, the scoring scores are tailored for eval-
uating and ranking crystal structures, the docking scores are
optimized for molecular docking processes, and the screening
scores are designed for binder discrimination in virtual
screening tasks. This structured approach aims to enhance the
precision and applicability of each score to its respective
domain within computer-aided drug design.
2.2 Scoring readout

The downstream network on the right side of Fig. 1b is the
scoring readout, which focuses on the accurate quantication
of binding free energy values. The embeddings of the ligand
nodes N lig obtained aer passing through the graph trans-
former layers are aggregated as the graph-level hidden features.
This approach is employed because the features associated with
affinity are primarily determined by the ligand's environment,
and the global pooling of the entire graph would introduce
noise related to residues,

x ¼
X
i˛N lig

vi
L: (9)

Following this, the hidden graph features x are fed into
a multi-layer perceptron (MLP) to generate a scoring score:

y1 = Wr
3ReLU(Wr

2ReLU(Wr
1x + br1) + br2) + br3, (10)
Digital Discovery
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whereWr
1˛R

d/2×d,Wr
2˛R

d/4×d/2,Wr
3˛R

1×d/4 and br1˛R
d/2, br2˛

R
d/4, br3 ˛ R are learnable parameters of linear layers.
2.3 Docking readout

It is noteworthy that the ordinary neural network scoring
models are purely data-driven, inferring binding affinity based
on the similarity of graph embeddings. This approach, however,
introduces a critical deciency: the model's capability to
generalize across a diverse range of molecular structures is
inherently constrained by the breadth and variety of the
training data. Currently, our knowledge of accurate binding free
energy is limited to approximately ten thousand known
protein–ligand complex crystal structures. It means that scoring
models predominantly learn from data that may not be repre-
sentative of the entire spectrum of protein–ligand interactions,
thereby restricting its understanding to only these biased data
and impeding its ability to grasp the more complex, underlying
physical principles behind these interactions.

This limitation is particularly relevant in the context of
molecular docking and virtual screening tasks. Their objectives
oen involve estimating the binding scores for structures in
weak binding states, which can differ signicantly from the
conformations of experimentally determined crystal structures.
Therefore, enhancing the model's generalization ability to infer
on these loose states is of vital importance.

Here, we adopt two approaches together to tackle the chal-
lenge of model generalization: data augmentation and the
integration of physical constraints. On one hand, data
augmentation methodologically broadens the scope of the
training set by encompassing a more diverse range of chemical
compositions and phase spaces thereof. This expansion ensures
a comprehensive coverage of potential scenarios in the model's
training phase. On the other hand, more importantly, we
incorporate physical constraints into the model. This is ach-
ieved by embedding terms inspired by fundamental physical
principles, thereby ensuring that the model's predictions
remain consistent with established physical laws.

Drawing inspiration from the methodology employed in
PIGNet,26 our approach in DeepRLI includes the integration of
a specialized physical module. The module is specically
designed to account for the interactions between atomic pairs,
adding a layer of physical realism to the model's predictive
capabilities. The schematic diagram of this approach is
demonstrated in Fig. 1c and d, wherein we detail the workow
of two downstream readout networks. These networks leverage
physics-informed blocks to implement a kind of framework that
we term “neural network parameterized potential function”.31 It
effectively strikes a balance between precision in prediction and
the capacity for generalization.

The readout module for docking incorporates a physics-
informed block that encapsulates four distinct energy terms, as
delineated in Fig. 1c. These terms are extracted from the
Vinardo scoring function,32 an empirical method renowned in
the eld. They specically represent four types of interatomic
interactions: steric attraction, steric repulsion, hydrophobic
interaction, and hydrogen bonding. Notably, the rst two terms
Digital Discovery
are integral in accounting for van der Waals interactions, and
their mathematical formulations are presented as follows:

Vsteric_attraction;ij ¼ exp

�
�
�
d

0
ij

.
0:8
	2�

; (11)

Vsteric_repulsion;ij ¼
8<
: dij

02 if d
0
ij\0

0 if d
0
ij $ 0

: (12)

In the above formulae, d
0
ij is the reduced distance relative to the

atomic surfaces,

d
0
ij ¼ dij � ri � rj ; (13)

where r denotes the van der Waals radius of an atom. Addi-
tionally, the remaining two items have similar linear forms:

Vhydrophobic;ij ¼

8>>>>><
>>>>>:

1 if d
0
ij # 0

�0:4
�
d

0
ij � 2:5

	
if 0\d

0
ij\2:5

0 if d
0
ij $ 2:5

; (14)

VH-bond;ij ¼

8>>>><
>>>>:

1 if d
0
ij # � 0:6

�5d 0
ij

.
3 if � 0:6\d

0
ij\0

0 if d
0
ij $ 0

; (15)

which roughly explain the solvation entropy effect and the
dipole–dipole attraction of hydrogen bonds.

We obtain the embedding of any pair of atoms by pairwise
adding the node embeddings encoded through the graph
transformer, which contains information about the two atoms
and their mutual interactions. Subsequently, these pair
embeddings are processed through an MLP block that outputs
four weight parameters corresponding to four predened
interaction types. The weighted sum of these four components
represents the model's prediction of the interaction between
a pair of atoms,

Vij = w1Vsteric_attraction,ij + w2Vsteric_repulsion,ij

+ w3Vhydrophobic,ij + w4VH-bond,ij (16)

And the aggregation of the interactions of all atom pairs results
in the docking score of the protein–ligand interaction as pre-
dicted by the model:

y2 ¼
X
i\j

Vij : (17)

2.4 Screening readout

In our framework, the screening readout parallels the docking
readout in its foundational reliance on a physics-informed
block. This similarity notwithstanding, a distinctive feature of
the screening readout is the integration of an entropy scaling
layer prior to generating the nal output. This layer plays
a crucial role in compensating for conformational entropy los-
ses, as delineated in Fig. 1d. Delving into the specics, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The scoring power and ranking power of several represen-
tative scoring functions on the CASF-2016 benchmark. The data for
the first 5 methods are from Su et al.,18 while for other methods except
DeepRLI, the data are from their respective original literature. The best
and the second-best results in each column are highlighted in bold
and italic respectively

Method

Scoring power Ranking power

RMSE Rp r s PI

Vina28,29 1.73 0.604 0.528 0.453 0.557
Glide SP38,39 1.89 0.513 0.419 0.374 0.425
Glide XP40 1.95 0.467 0.257 0.227 0.255
X-Score41 1.69 0.631 0.604 0.529 0.638
DvinaRF20

23 1.26 0.816 0.750 0.686 0.761
DLin_F9XGB

25 1.24 0.845 0.704 0.625 —
AEScore42 1.22 0.830 0.640 0.550 0.670
D-AEScore42 1.34 0.790 0.590 0.520 0.610
PLANET37 1.25 0.824 0.682 — —
PIGNet26 — 0.749 0.668 — —
GenScore27 — 0.829 0.673 — —
DeepRLI 1.18 0.849 0.730 0.660 0.757
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process involves the transformation of node embeddings
through a network analogous to the docking readout, resulting
in the derivation of an intermediate variable, denoted as y

0
3.

Concurrently, a network akin to the scoring readout is employed
to ascertain the parameter w5, which is directly applied to scale
the number of rotatable bonds Nrot in the ligand. Culminating
this process, the screening score, represented as y3, is
computed, adhering to the stipulated formula:

y3 ¼ y
0
3

1þ w5Nrot

: (18)

The above delineates the fundamental architecture of
DeepRLI, a deep learning model designed for drug discovery. It
takes the three-dimensional structure of a protein–ligand
complex as input and, aer sophisticated calculations, predicts
three scores: a scoring score, a docking score, and a screening
score. These scores are related to the binding free energy,
meaning the smaller the score, the tighter the binding.

3 Results and discussions
3.1 Assessment of the model performance

To thoroughly assess the efficacy of the versatile DeepRLI
model, a comprehensive evaluation is conducted across four
critical aspects: scoring, ranking, docking, and screening. The
scoring power of a scoring function is dened by its capacity to
generate binding scores that linearly correlate with experi-
mental binding data. Similarly, ranking power describes the
scoring function's ability to accurately order the known ligands
of a specic target by their binding affinities, assuming the
precise binding poses of these ligands are known. Docking
power, on the other hand, refers to the scoring function's
prociency in distinguishing the native ligand binding pose
from a set of computer-generated decoys. Finally, screening
power is characterized by the scoring function's effectiveness in
identifying true binders to a target from a collection of random
molecules. Each of these capabilities plays a crucial role in the
evaluation of the efficacy and reliability of scoring functions.

Considering that the reliance on a single test set is con-
strained by its specic collection of proteins and small mole-
cules, leading to bias that could potentially skew the model's
performance assessment either positively or negatively, the
evaluation procedure is diversied to include several widely-
recognized benchmark test sets. Among these includes the
internal test set of PDBbind, specically the CASF-2016 bench-
mark18—a widely acknowledged standard in this domain.
Additionally, external test sets are employed to examine distinct
capabilities: the CSAR-NRC HiQ benchmark33 for assessing
scoring accuracy, the Merck FEP benchmark34 for evaluating
ranking efficacy, and the LIT-PCBA benchmark35 for screening
prociency. Furthermore, the 0 Ligand Bias benchmark36 is
utilized to rigorously test the model's ability to generalize
beyond ligand-specic biases, ensuring it captures meaningful
protein–ligand interactions rather than relying on dataset arti-
facts. Detailed descriptions of these benchmarks can be found
in Section 2.1.1 of the ESI.† This multi-faceted approach
© 2025 The Author(s). Published by the Royal Society of Chemistry
ensures a more balanced and thorough evaluation of the
DeepRLI model's performance across various scenarios.

In addition, to benchmark our method's inference capabil-
ities, we conduct a comparative analysis with existing scoring
functions. This comparison particularly targets those functions
for which comprehensive, detailed evaluation results are avail-
able, such as the array of scoring functions detailed in CASF-
2016 and the variety of scoring models discussed in the work on
GenScore. Note the variability in GenScore's performance across
different hyperparameter settings, and the GT_1.0 model is
selected as our baseline for comparison. Further enriching our
comparative investigation, we include results from the PIGNet
model, another deep learning method inspired by physics-
based principles, as well as the PLANET model,37 known for its
ability to expedite virtual screening processes without necessi-
tating binding poses. Baseline data for each model is directly
sourced from the relevant literature. And the models lacking
benchmark-specic data are excluded from certain comparative
analyses.

3.1.1 Evaluation on the CASF-2016 benchmark. In our
initial evaluation, we assess the efficacy of DeepRLI using the
CASF-2016 benchmark, which is a comprehensive and widely
recognized standard in the eld. This benchmark encompasses
three distinct structural categories: crystal structures, re-docked
structures, and cross-docked structures. Crystal structures are
pivotal for gauging the scoring and ranking capabilities of the
algorithm. In contrast, re-docked and cross-docked structures
play a crucial role in examining the algorithm's prociency in
docking and screening processes, respectively. All pertinent
results from this assessment are systematically detailed and
displayed in Fig. S2, S4,† and Tables 1 and 2.

3.1.1.1 Scoring power. The scoring power of a model refers
to its accuracy in predicting binding free energy. This is typically
assessed by examining the correlation between the computa-
tional scores generated by the model and the corresponding
Digital Discovery
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Table 2 The docking power and screening power of several representative scoring functions on the CASF-2016 benchmark. The data for the
first 5 methods are from Su et al.,18 while for other methods except DeepRLI, the data are from their respective original literature. The best results
in each column are highlighted in bold

Method

Docking power Screening power

SR1(%) SR2(%) SR3(%) SR1%(%) SR5%(%) SR10%(%) EF1% EF5% EF10%

Vina 90.2 95.8 97.2 29.8 40.4 50.9 7.70 4.01 2.87
Glide SP 87.7 91.9 93.7 36.8 54.4 63.2 11.44 5.83 3.98
Glide XP 83.9 90.2 94.4 26.3 45.6 52.6 8.83 4.75 3.51
X-Score 63.5 74.0 80.4 7.0 15.8 28.1 2.68 1.31 1.23
DvinaRF20 89.1 94.4 96.5 42.1 49.1 54.4 11.73 4.43 3.10
DLin_F9XGB 86.7 — — 40.4 — — 12.6 — —
AEScore 35.8 54.4 60.4 — — — — — —
D-AEScore 85.6 94.4 95.8 19.3 49.1 54.4 6.16 3.76 2.48
PLANET 71.8 81.6 87.9 — — — — — —
PIGNet — — — 50.0 — — 18.5 — —
GenScore 93.3 — — 57.3 — — 18.58 — —
DeepRLI 90.9 96.1 97.5 26.3 36.8 50.9 11.42 4.65 3.30

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 1
1:

01
:4

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
experimental data. To quantify this relationship, several statis-
tical metrics are commonly employed. These include the Mean
Square Error (MSE) and Root Mean Square Error (RMSE), which
measure the average magnitude of the errors in predictions.
Additionally, the Pearson correlation coefficient (Rp) and
Spearman correlation coefficient (r) are used to assess the linear
and rank-order correlations, respectively, between predicted
scores and experimental outcomes. The Concordance Index (CI)
is another metric offering a measure of the ranking
correctness.43

Our DeepRLI model shows a strong correlation between the
predicted binding affinities for 285 crystal structures in the
CASF-2016 dataset and the experimental pKd data (Fig. S2a†),
with an MSE of 1.384, an RMSE of 1.176, a Rp of 0.849, a r of
0.850 and a CI of 0.831. In Fig. 4a and b, we compare the scoring
performance of DeepRLI with that of other scoring functions.
Fig. 4a mainly includes scoring functions from CASF-2016, most
of which are traditional methods; Fig. 4b consists entirely of
deep learning-based methods developed in recent
years,14,15,19,25–27,37,42,44–72 most of which are structure-based.13

Among these scoring functions, DeepRLI achieves the current
state-of-the-art level in scoring power.

3.1.1.2 Ranking power. In the evaluation of scoring capa-
bilities, we include the analysis of several metrics relevant to
ranking. These metrics are calculated across the whole crystal
structure test set. Notably, in the context of the CASF assess-
ment, “ranking power” is specically dened as the prociency
in ordering known active ligands against a particular biological
target. Nevertheless, it indicates a positive correlation between
scoring and ranking abilities; typically, a robust scoring ability
is indicative of a similarly robust ranking ability. To quantita-
tively measure the ranking power, three primary metrics are
utilized: the Spearman correlation coefficient (r), the Kendall
correlation coefficient (s), and the Predictive Index (PI).18

In Fig. S2b,† the ranking efficacy of DeepRLI is demonstrated
through its performance in ranking ve active small molecules
across each of the 57 targets within the CASF-2016 dataset.
Notably, the model achieves a perfect prediction score (with all
Digital Discovery
indicators at 1) for several targets, indicating an exact match
between the predicted and actual ordering of molecules. For the
majority of the targets, the model's predictions exhibited
a positive correlation with the actual rankings, as evidenced by
scores exceeding 0.5. However, challenges arose in the case of
two specic targets, identied by PDB IDs 2ZCQ and 3G0W,
where the model's predictions are inversely correlated with the
actual data. Further analysis reveals that these discrepancies
could be attributed to the presence of multiple ligands with
closely similar pKd values, complicating the task of accurate
ranking. Upon aggregating the results across all 57 targets, the
overall ranking capability of DeepRLI is quantied, with a r of
0.730, a s of 0.660, and a PI of 0.757. As delineated in the
leaderboard in Fig. 4c, DeepRLI's ranking performance is highly
competitive, second only to DvinaRF20, aligning with the current
state-of-the-art in the eld.

3.1.1.3 Docking power. The concept of docking power
pertains to the prociency of a scoring function in accurately
identifying the native binding pose within a diverse array of
protein–ligand conformational states. In CASF-2016, each of the
285 complexes has nearly 100 decoy conformations sampled by
various docking programs. And scoring functions evaluate and
rank the 285 groups of conformations individually. Notably,
a scoring function demonstrating optimal docking ability tends
to assign higher ranks to those conformations that closely
resemble the binding pose of the complex's native crystal
structure. Therefore, the quantitative metric for measuring
docking ability is the success rate of having conformations
within the top n (1, 2, or 3) ranks whose RMSD from the native
ligand pose is less than 2 Å.

We evaluate the docking performance of DeepRLI on
a dataset comprising 285 protein–ligand systems from CASF-
2016, as depicted in Fig. S2c.† The results, predominantly rep-
resented by dark areas on the heatmap, suggest a high docking
success rate across most of the complexes. Specically, the top
1, 2, and 3 docking success rates achieved by our model are
90.9%, 96.1%, and 97.5%, respectively. Notably, achieving a top
1 success rate exceeding 90% is a remarkable outcome,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 A series of leaderboards comparing various performance metrics of many scoring functions. The labels and bar patches of DeepRLI are
highlighted in red. (a) A leaderboard ranked by the Pearson correlation coefficient, indicating scoring power. (b) Similar to a, but compared with
some representative deep learning-based scoring functions. (c) A leaderboard ranked by the Spearman correlation coefficient, manifesting
ranking power. (d) A leaderboard ranked by the success rate calculated at the top 1 level, demonstrating docking power. (e) A leaderboard ranked
by the success rate calculated at the top 1% level, demonstrating forward screening power. (f) A leaderboard ranked by the enhancement factor
calculated at the top 1% level, also reflecting forward screening power.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 1
1:

01
:4

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00403e


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 1
1:

01
:4

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
positioning our method among the leading approaches in
terms of docking capabilities, as demonstrated in Fig. 4d.

Furthermore, we conduct a binding funnel analysis for
DeepRLI, presented in Fig. 5. This analysis reveals a strong
correlation between the docking scores predicted by DeepRLI
and the RMSD values, particularly within a shorter RMSD range
(e.g., RMSD < 5 A ̊). This correlation manifests as a funnel
landscape, indicative of not only the model's high docking
accuracy but also its efficiency in docking procedures.

3.1.1.4 Screening power. Screening power denotes the effi-
cacy of a scoring function in accurately identifying potential
ligands that exhibit strong binding affinity to a specic protein
within a diverse pool of small molecules. CASF-2016 obtained
the structures of each of the 57 proteins bound to 280 other
small molecules through cross-docking.18 It is important to note
that cross-binders do exist, meaning that certain proteins may
have more than ve true binders, and the goal of screening is to
enrich all of these binders. Screening power is quantitatively
measured by the success rate in identifying the highest-affinity
binders within the top 1%, 5%, or 10% of the ranked small
molecules. Additionally, the enhancement factors at these top
percentile levels also serve as critical metrics for evaluation.

The evaluation of DeepRLI's screening efficacy across 57
proteins within the CASF-2016 framework is depicted in
Fig. S2d and S1e.† While the overall performance of the
screening process is moderate, the model exhibits notable
Fig. 5 A heatmap displaying the binding funnel landscapes of scoring
functions. The ticks on the x-axis refer to the ranges of RMSDs (for
example, 0–2 Å, 0–3 Å, etc.), and the corresponding blocks indicate
the Spearman correlation coefficient between the RMSD values and
the binding scores calculated using scoring functions for all ligand
poses within these ranges.

Digital Discovery
prociency in enriching the majority, or even all, active ligands
at the forefront for specic targets, notably those with PDB IDs
2P15 and 3EJR. In terms of quantiable metrics, the top 1%,
5%, and 10% screening success rates of our model are 26.3%,
36.8%, and 50.9%, respectively; and the corresponding
enhancement factors are 11.42, 4.65, and 3.30, separately. The
screening capability rankings, as illustrated in Fig. 4e and f,
indicate that DeepRLI's performance ranks competitively
among traditional scoring functions. However, it does not yet
match the efficacy of the leading-edge deep learning-based
methodologies. Notably, the general, rened and core datasets
of PDBBind have the problem of cross-contamination of
proteins and ligands with high similarity, and the existing deep
learning methods may exhibit overly high screening perfor-
mance on this test set.73,74 Further assessments conducted on
other virtual screening test sets have demonstrated that Deep-
RLI's screening performance aligns with the forefront of
contemporary deep learning-based approaches. This nding
underscores DeepRLI's robust generalization capabilities in
virtual screening.

To comprehensively demonstrate the performance level of
DeepRLI, we have listed in Tables 1 and 2 the scoring, ranking,
docking, and screening powers of some representative scoring
functions on CASF-2016. As can be seen, DeepRLI exhibits
robust overall performance. Notably, its screening capability
aligns with that of renowned traditional scoring functions such
as Vina, Glide SP, and Glide XP. However, DeepRLI excels in
other domains, demonstrating cutting-edge prociency,
particularly in scoring and ranking metrics. Signicantly out-
performing conventional scoring methods, DeepRLI also shows
marked superiority over recent deep learning-based
approaches, including GenScore, PIGNet, and PLANET. These
ndings underscore the efficacy of DeepRLI as a multi-objec-
tive, physics-informed, contrast-optimized model. Its versatility
and advanced capabilities position it as an integral tool for
diverse computational tasks in drug design, encompassing
affinity prediction, molecular docking, and virtual screening.

3.1.2 Evaluation on the CSAR-NRC HiQ benchmark. Given
the inherent limitations of analyzing performance based solely
on a single benchmark due to its constrained dataset, our study
extends the evaluation of DeepRLI to additional benchmarks
beyond the connes of CASF-2016. A key part of this expanded
analysis involves assessing the scoring power of DeepRLI on the
CSAR-NRC HiQ benchmark, which comprises three distinct
subsets, designated as set1all (comprising 176 complexes),
set2all (167), and set3all (123). For comprehensive analysis, we
aggregate these subsets into a collective set, referred to as settall,
encompassing a total of 466 complexes. The performance of
DeepRLI across these datasets is quantitatively evaluated, with
results depicted in correlation scatter plots (Fig. S3†). Notably,
the Pearson correlation coefficients between the predicted and
experimental values are remarkably high, being 0.875, 0.886,
0.816, and 0.868, respectively. While these results might initially
appear astonishing, further scrutiny reveals a critical issue of
data leakage, wherein a portion of the training data is included
in the test set, leading to an overestimation of scoring perfor-
mance. Furthermore, the subpar scoring performance observed
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 The scoring power of several representative scoring functions
on the CSAR-NRC HiQ benchmark. Apart from DeepRLI, data for all
other methods are from Shen et al.27 The best results in each column
are highlighted in bold

Method

Scoring power
on settegic

Scoring power
on setteg

Rp r Rp r

AutoDock4 75 0.527 0.542 0.561 0.610
Vina 0.306 0.589 0.282 0.543
Vinardo 0.286 0.586 0.260 0.543
Glide SP 0.126 0.571 0.115 0.551
Glide XP 0.126 0.388 0.115 0.365
X-Score 0.617 0.598 0.528 0.514
Pafnucy70 0.610 0.625 0.583 0.605
GenScore 0.713 0.697 0.678 0.674
DeepRLI 0.737 0.735 0.680 0.716

Fig. 6 A violin plot showing the screening performance of DeepRLI on
the LIT-PCBA benchmark. Each target has one or more PDB
templates. And each section in the figure depicts the distribution of
enhancement factors in the top 1% measured by DeepRLI on different
PDB templates of a target, with short horizontal lines marking the
positions of the extremes and the mean.
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in set3all can be attributed primarily to the dataset's composi-
tion, which encompasses a substantial proportion of data
entries annotated with imprecise pKd or pIC50 values. The
presence of these inaccurately measured experimental values is
a signicant factor contributing to the underestimation of the
model's scoring capability.

To eliminate the impact of data leakage on performance
evaluation, entries identical to those in the training set are
meticulously excluded from the aforementioned datasets. This
step leads to the generation of four reduced datasets, desig-
nated as set1et (50), set2et (36), set3et (75), and settet (161), where
“et” signies the exclusion of the training set. The performance
of DeepRLI on these reduced datasets is evaluated, with the
results being graphically depicted through correlation scatter
plots in Fig. S4.† Pearson correlation coefficients, measuring
the congruence between predicted and experimental values, are
found to be 0.804, 0.719, 0.679, and 0.733 for the respective
datasets. These coefficients indicate a robust correlation across
all datasets. Notably, DeepRLI's performance in these assess-
ments underscores its commendable generalization capabil-
ities, particularly in terms of scoring prociency.

Additionally, for comparative analysis with other methods,
especially the results of Shen et al.,27 we further evaluate the
scoring performance of DeepRLI on two types of datasets: one
that excludes duplicates from the PDBbind general set but
retains those belonging to the core set, and another that
completely excludes duplicates from the general set. These
datasets are respectively labeled “egic” (excluding the general
set, but including the core set) and “eg” (excluding the general
set), namely set1egic (48), set2egic (33), set3egic (21), settegic (102);
set1eg (36), set2eg (13), set3eg (17), and setteg (66). The evaluation
results of DeepRLI on these curated datasets are depicted in
correlation scatter plots (Fig. S5 and S6†). The Pearson corre-
lation coefficients for the “egic” datasets are 0.796, 0.749, 0.660,
and 0.737, respectively, while for the “eg” datasets, they are
0.773, 0.630, 0.628, and 0.680, respectively. These coefficients
indicate a consistently robust correlation across all datasets. In
Table 3, we list the performance of various representative
scoring functions on the settegic and setteg test sets. Notably, our
DeepRLI model outperforms others in terms of both Pearson
and Spearman correlation coefficients. This superior perfor-
mance underscores the exceptional scoring accuracy and
impressive generalization capability of our model, reinforcing
its potential utility in computer-aided drug design for binding
affinity prediction.

3.1.3 Evaluation on the Merck FEP benchmark. We further
evaluate the ranking capability of DeepRLI on the Merck FEP
benchmark. Originally, the Merck FEP benchmark is designed
to assess the precision of various computational approaches in
determining relative binding free energies based on funda-
mental physical principles. A notable characteristic of this
dataset is the minimal variance among active small molecules
targeting the same biomolecular target, presenting a signicant
challenge for scoring functions in accurately ranking these
molecules. The pure scoring scores make it difficult to distin-
guish them precisely. Therefore, here we combine the physics-
informed docking scores, that is, by adding them to the scoring
© 2025 The Author(s). Published by the Royal Society of Chemistry
scores, to rank small molecules across eight distinct targets
within the dataset. The outcomes of this analysis are detailed in
Table S1,† which shows an average Spearman correlation coef-
cient of 0.460. While this ranking performance is moderate, it
places DeepRLI amongst the leading methods in the eld. The
results highlight promising performance but the model needs
further improvement. Most importantly, DeepRLI demon-
strated exceptional performance in ranking molecules targeting
the c-Met protein,76 achieving a Spearman correlation coeffi-
cient of 0.745, thereby outperforming all comparative method-
ologies except PBCNet. This result underscores the potential of
our method in facilitating hit-to-lead and lead optimization
processes, particularly for specic target proteins.

3.1.4 Evaluation on the LIT-PCBA benchmark. To further
explore the screening capability of DeepRLI, we evaluate its
performance on the well-craed LIT-PCBA benchmark that
mimics a real virtual screening scenario (with active and inac-
tive data derived from experimental validations, and the
distribution of chemical features of active and inactive
Digital Discovery
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Table 4 The screening power, measured by the enhancement factor in the top 1% (EF1%), of several representative scoring functions on the LIT-
PCBA benchmark. The data for Vina, Lin_F9, and DvinaRF20 are from Yang et al.,25 the data for Glide SP are from Shen et al.,27 and for other
methods except DeepRLI, the data are from their respective original publications. The best result in each row is highlighted in bold

Target Vina Glide SP Lin_F9 DvinaRF20 DLin_F9XGB PLANET GenScore DeepRLI

ADRB2 0.00 5.88 0.00 0.00 11.76 5.88 15.69 6.25
ALDH1 1.49 2.02 1.59 1.66 6.46 1.38 1.96 1.48
ESR1_ago 15.38 7.69 0.00 15.38 7.69 7.69 10.25 30.00
ESR1_ant 3.92 1.94 2.94 2.94 3.92 3.88 3.56 11.22
FEN1 0.54 7.32 1.90 0.81 2.17 5.15 6.05 1.90
GBA 4.82 4.22 7.23 6.63 9.64 3.01 1.41 4.82
IDH1 0.00 0.00 2.56 0.00 5.13 2.56 5.13 2.70
KAT2A 0.52 1.03 2.06 0.52 7.73 3.11 1.20 3.89
MAPK1 2.92 3.24 1.62 1.95 2.60 1.30 4.87 3.27
MTORC1 2.06 0.00 2.06 3.09 2.06 2.06 2.40 2.11
OPRK1 0.00 0.00 4.17 0.00 12.50 4.17 2.78 0.00
PKM2 1.65 2.75 0.73 2.93 2.56 1.83 1.47 4.27
PPARG 7.41 21.96 3.70 11.11 7.41 3.66 20.74 3.70
TP53 0.00 2.50 2.53 0.00 1.27 2.50 0.00 5.13
VDR 1.02 0.34 0.11 0.68 0.34 1.02 1.13 1.33
Mean 2.78 4.06 2.21 3.18 5.55 3.28 5.24 5.47
Median 1.49 2.50 2.06 1.66 5.13 3.01 2.78 3.70
Max 15.38 21.96 7.23 15.38 12.50 7.69 20.74 30.00
>2 6 9 8 6 13 11 9 11
>5 2 4 1 3 8 3 5 4
>10 1 1 0 2 2 0 3 2

Table 5 The scoring power, measured by the Pearson correlation
coefficient (Rp), of various scoring functions on the 0 Ligand Bias
benchmark. Apart from DeepRLI, the data for all other models are
sourced from Durant et al.36 The best result is highlighted in bold

Method Rp Method Rp

LigandBias 0.08 PointVS 0.28
ProteinBias 0.41 Pafnucy 0.17
EnsembleBias 0.27 SIGN 0.27
BothBias 0.27 OnionNet-2 0.35
Smina 0.12 DeepRLI 0.73
RFScore 0.24 DeepRLIed 0.31
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molecules being similar, but with inactive molecules far out-
numbering active ones). The screening results of DeepRLI for
each target in the dataset are presented in Fig. 6, using the top
1% enrichment factor as an indicator. It is noteworthy that the
majority of the targets encompass several PDB templates.
Variations in binding site conformations across these templates
can exert differential impacts on our model's virtual screening
efficacy. A detailed examination of Fig. 6 reveals that for certain
targets, namely ADRB2, ESR_ago and ESR_ant, there exists
pronounced variability in the top 1% enrichment factor across
different PDB templates, with disparities exceeding a value of 5.
In contrast, for other targets, while the disparities in outcomes
across various PDB templates are relatively marginal, they
remain consistently minor. Overall, the best results of DeepRLI
on each target are generally satisfactory, with an average top 1%
enrichment factor of 5.47, demonstrating basic screening
prociency.

In Table 4, we have listed the performance of some repre-
sentative scoring functions on the LIT-PCBA benchmark. The
results of other methods for each target are primarily based on
a selected PDB template, so we also sampled a PDB template
with the best result for comparison. As can be seen from the
table, our DeepRLI model demonstrates satisfactory screening
performance across all targets, ranking at the current advanced
level, with an average EF1% of 5.47, a median of 3.70, and
a maximum of 30.00. A more detailed examination reveals that
the DeepRLI model achieved an EF1% of over 2 for 11 targets,
surpassed 5 for 4 targets, and exceeded 10 for 2 targets.
Compared to other scoring models, this is a fairly good
outcome. It is noteworthy that, among 15 targets, DeepRLI's
screening EF1% is higher than that of other compared methods
for 5 targets, indicating that our model can make reasonable
Digital Discovery
predictions of active molecules for most targets, rather than
performing exceptionally only on certain ones. It shows
a performance close to the current advanced methods on the
large-scale virtual screening benchmark LIT-PCBA, indicating
that DeepRLI has superior generalization ability and can make
reasonable screening inferences on external test sets.

3.1.5 Evaluation on the 0 Ligand Bias benchmark. We
further evaluate the performance of DeepRLI using the 0 Ligand
Bias benchmark, with results presented in Table 5. The model,
trained on the PDBbindGS_HiQ dataset, achieves a Pearson
correlation coefficient of 0.731. However, recognizing potential
data leakage due to shared PDB IDs between the PDBbindG-
S_HiQ and the 0 Ligand Bias datasets, we removed the over-
lapping entries and retrained themodel, resulting in amodied
version, DeepRLIed. This retrained model yields a Pearson
correlation coefficient of 0.313. In comparison, the LigandBias
method achieves a coefficient of 0.08, and most other baseline
methods report coefficients below 0.3, indicating that DeepRLI
maintains robust performance without excessive reliance on
© 2025 The Author(s). Published by the Royal Society of Chemistry
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ligand-specic features. Furthermore, given that the 0 Ligand
Bias dataset includes data labeled with IC50 and imprecise Kd or
Ki values, the performance of DeepRLI, which is optimized for
predicting precise Kd values, may be underrepresented in this
evaluation.
3.2 Interpretation

Our DeepRLI model, which leverages graph transformer layers
as its core graph representation learning module, allows for an
in-depth analysis of its scoring decision mechanism by
extracting the attention weights during model inference. This is
a signicant advantage of the model, as it can not only predict
the binding affinities between proteins and ligands but also
elucidate the potential interaction patterns through interpre-
tative analysis. It is crucial to highlight that the graph trans-
former within the DeepRLI architecture has been improved with
a novel modication, incorporating a cosine envelope
constraint to rene its functionality. Specically, in the context
of graph convolution operations, the effective weights for
neighborhood aggregation are represented as cijwij

k;‘, as delin-
eated in eqn (2). Here, we mainly concentrate on the attention
weights cijwij

k,L in the last graph transformer layer, and conduct
an in-depth interpretative analysis based on this.

In our approach, a graph typically consists of tens of
thousands of edges, each with corresponding attention
weights, making it challenging to display them all. Generally,
our primary interest lies in the components involving both the
protein and the ligand. By carefully examining these aspects,
we can gain insight into which interactions play a more crucial
role in the binding strength. Moreover, our model employs
a multi-head attention mechanism within the graph trans-
former layers, comprising eight heads. To facilitate visualiza-
tion, we compute the average of the attention weights across
these eight heads.

Additionally, it merits emphasis that the concept of attention
weights pertains to the signicance of interatomic relation-
ships. To elucidate the relationship importance between an
atom and a fragment (e.g., between a ligand atom and a specic
residue) or between fragments (e.g., between a ligand molecule
and a specic residue), it necessitates the aggregation of
attention weights from all constituent atoms within a fragment.
Here, we adopt a rational “summing” strategy for aggregation.
This entails calculating the sum of attention weights for all
atoms within a fragment to derive a cumulative signicance
score, thereby providing a special perspective of intermolecular
interactions.

We demonstrate the internal details of the decision-making
process of DeepRLI through an example of a protein–ligand
complex (PDB ID: 1BZC). The 1BZC complex consists of the
protein tyrosine phosphatase 1B (PTP1B) and its inhibitor, [1,1-
diuoro-1-((6-carboxamidoglutamic)naphth-2-yl)]methyl-
phosphonic acid (TPI).77 Protein tyrosine phosphatases (PTPs)
play a crucial role in regulating a variety of cellular processes,
including cell growth, proliferation, differentiation, metabo-
lism, immune response, intercellular adhesion, and cell–matrix
interactions.78,79 In the insulin signaling pathway, PTP1B is
© 2025 The Author(s). Published by the Royal Society of Chemistry
signicant as it dephosphorylates the activated insulin receptor,
negatively regulating the pathway.80 Given this context,
analyzing and explaining the decision mechanism of DeepRLI's
binding affinity prediction using 1BZC as an example holds
considerable reference value.

Fig. 7 illustrates the calculation results of the attention
scores in the last layer of the graph transformer of the DeepRLI
model when evaluating the binding affinity of the 1BZC
complex. In this gure, attention weights are represented by
a gradient from light to dark red, indicating low to high atten-
tion weights. Higher attention weights imply that during the
neighborhood aggregation process of graph convolution,
neighboring nodes contribute more signicantly to the central
node's hidden features. This typically corresponds to more
crucial structural patterns, oen indicating interactions that
have a substantial impact on binding affinity. As seen in Fig. 7b,
residues such as TYR46, ARG47, ASP48, LYS120, PHE182,
CYS215, ALA217, ILE219, GLY220, and ARG221 signicantly
inuence the updating of the ligand's hidden features, thereby
playing a key role in the prediction of binding affinity. Further
observation of the overall importance of interactions between
each residue and every ligand atom (Fig. 7c) and the importance
of interactions between each atom of the residues and every
atom of the ligand (Fig. 7d) reveals that TYR46 is assigned
relatively higher attention weights for interactions with the
naphthalene portion of TPI, ARG47 and ASP48 for interactions
with the carboxyl and amide portions of TPI. In contrast, resi-
dues like LYS120, PHE182, CYS215, ALA217, ILE219, GLY220,
and ARG221 mainly focus their attention weights on the
diuoromethylphosphonic acid side of TPI.

To verify the rationality of the attention assignment during
inference using the DeepRLI model, we employ the conven-
tional rule-based Protein–Ligand Interaction Proler (PLIP)81,82

to identify potential non-covalent interactions within the 1BZC
complex. The analytical outcomes from PLIP, visualized in
Fig. S7,† with the intricate details of various non-covalent
interactions delineated in Tables S2–S4,† reveal notable nd-
ings. Specically, p-stacking and hydrophobic interactions are
observed between TYR46 and the naphthalenemoiety of the TPI
ligand; ARG47 is found to engage in hydrogen bonding with the
carboxyl group of TPI; ASP48 exhibits hydrogen bonding with
the amide segment of TPI; and the residues ALA217, ILE219,
GLY220, and ARG221 demonstrate hydrogen bonding with the
phosphonic acid moiety of TPI, among other interactions.
Extended interpretability analyses for additional cases are
provided in the ESI (Fig. S8–S15 and Tables S5–S18†).

By comparison, it is found that the DeepRLI model generally
allocates greater attention weights to regions where these critical
interactions actually exist. This intuitively reasonable phenom-
enon suggests that our model captures key interactions based on
the atomic surroundings, which to a certain extent explains its
robust predictive capability in binding affinity scoring.
3.3 Case study

According to the above results, DeepRLI nearly achieves state-of-
the-art performance across a range of evaluations, including
Digital Discovery
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Fig. 7 Visualization of interactions based on the attention weights from the final graph transformer layer of DeepRLI. Darker colors represent
higher attention weights and more important interactions. The protein–ligand complex examined here is 1BZC. (a) The 3D structure of the
binding site of the protein–ligand complex; residues with higher attention weights are additionally shown in ball-and-stick representation. (b)
The graph displaying ligand–residue interaction connections. (c) The graph depicting [ligand atom]–residue interaction connections. (d) The
heatmap illustrating [ligand atom]–[residue atom] interaction connections. For clarity, only part of interaction connections with a larger weight
are shown for the latter two.
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scoring, ranking, docking, and screening tasks. In light of
DeepRLI's exceptional performance and its robust capability for
generalization, we undertake a deeper investigation into its
Digital Discovery
efficacy within practical application settings. Notably, other
members of our research team have previously conducted drug
design studies focused on the ATP binding site of the PLK1
© 2025 The Author(s). Published by the Royal Society of Chemistry
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kinase, during which they acquired experimental activity data
for several small molecules.84 Building on this foundation, we
initiate a retrospective analysis aimed at assessing the DeepRLI
model's predictive accuracy within real-world application
contexts, thereby providing a more comprehensive under-
standing of its potential utility in the eld.

Polo-like kinase 1 (PLK1) is a serine/threonine-protein
kinase that plays a crucial role in various stages of mitosis.85

Across a broad spectrum of tumor types, PLK1 is frequently
found to be overexpressed.86 And its expression is restricted to
actively dividing cells, with no detectable presence in differen-
tiated postmitotic cells, such as neurons.85 Based on the role of
PLK1 in tumor development and its specic expression in
dividing cells, PLK1 has become a promising target in cancer
therapy strategies. There are already inhibitors targeting PLK1
that have completed clinical trials, such as the selective potent
inhibitor Onvansertib (http://ClinicalTrials.gov identier
NCT03829410).83

Xie et al. from our research group developed an innovative
generative model, TransPharmer, which integrates ligand-
based pharmacophore ngerprints with generative pre-training
transformers for de novomolecular generation. TransPharmer's
characteristic exploration pattern within localized chemical
spaces makes it particularly suitable for scaffold hopping,
capable of generating structurally novel and pharmacologically
relevant compounds.84 Moreover, leveraging TransPharmer,
they generated potential new PLK1 inhibitors (namely IIP0942,
IIP0943, IIP0944, and IIP0945) from the topological pharma-
cophore ngerprints obtained from Onvansertib and experi-
mentally determined their activities (IC50),84 as shown in
Table 6.

We acquire the optimal binding poses between the ATP site
of PLK1 kinase and the ve small molecules (Onvansertib,
IIP0942, IIP0943, IIP0944, and IIP0945) using the Glide XP40

molecular docking program (illustrated in the le part of Fig. 8).
Subsequently, in virtue of our DeepRLI interaction prediction
model, we predict the binding efficacies of these molecular
complexes. The outcomes of the screening readout are dis-
played in Table 6, along with the binding free energy scores
estimated by Glide XP. Through careful analysis and compar-
ison, we observe that except for IIP0945, the DeepRLI model is
Table 6 The analysis of the binding efficacy of five small molecules
with the ATP pocket of PLK1 kinase includes computed Glide XP
scores, DeepRLI screening scores, and experimentally measured
enzymatic activity data. Onvansertib is a previously reported, potent,
and highly selective inhibitor;83 other molecules prefixed with “IIP” are
potential active inhibitors designed through the TransPharmer
molecular generation program by our research group84

Ligand
Glide XP score
(kcal mol−1)

DeepRLI screening
score

IC50

(nM)

Onvansertib −11.56 −5.07 4.8
IIP0942 −12.39 −4.83 37.6
IIP0943 −11.19 −5.00 5.1
IIP0944 −9.54 −3.44 >10 000
IIP0945 −10.82 −4.92 927

© 2025 The Author(s). Published by the Royal Society of Chemistry
able to accurately predict the activity ranking of the small
molecule compounds, thus demonstrating its outstanding
performance in evaluating binding efficacy. Although the Glide
XP method also successfully predicts the activity ranking of the
other small molecules except for Onvansertib, the DeepRLI
model shows more precise judgment in predicting the small
molecule with the strongest binding efficacy, reecting its
superiority in this eld.

In the DeepRLI framework, which incorporates a module
informed by physical principles, interpretability extends beyond
the attention mechanisms inherent in the graph transformer.
The module's inclusion of interatomic interaction potential
energy data, as delineated in eqn (11)–(15), further enhances
this aspect. This is particularly pertinent in the context of
docking and screening readouts, where such data facilitate
a more nuanced understanding of the origins of predictive
outcomes.

The DeepRLI model employs an empirical potential function
for interatomic interactions, which is parameterized by neural
network variables. Unlike traditional models that rely on pre-
determined functional forms, DeepRLI's approach dynamically
derives the exact mathematical expression of the potential
function from the latent embeddings of atomic pairs, thereby
adapting to the specics of each molecular interaction.

To elucidate the contribution of various ligand regions to the
interaction, quantied as the screening score, we extract
potential energies associated with atomic pairs formed between
all protein atoms at the binding site and all ligand atoms. For
each ligand atom, the cumulative potential energy arising from
interactions with all protein atoms is computed. This compu-
tation yields a distribution map of interaction contributions for
the ligand atoms, as exemplied in Fig. 8. In these visual
representations, benecial interactions (characterized by
negative potential energy) are denoted in red, whereas detri-
mental interactions (with positive potential energy) are indi-
cated in green. The intensity of the color correlates with the
magnitude of the interaction's contribution, with darker shades
signifying larger absolute values.

Comparative analysis of these atomic-level distribution
maps reveals a correlation between the extent and intensity of
green areas (denoting unfavorable interactions) and lower
screening scores. This pattern is indicative of spatial clashes
between atoms, which impede the tight association between the
protein and the ligand, thereby diminishing the likelihood of
effective binding. Such insights underscore the intricate
balance of forces governing molecular interactions and high-
light the utility of DeepRLI in decoding these complex
phenomena for enhanced predictive accuracy in computational
drug discovery.

Furthermore, it is noteworthy that the small molecules
derived from the TransPharmer design exhibit a shared
substructural motif with Onvansertib, specicallyN-(2-methoxy-
5-(4-methylpiperazin-1-yl)phenyl)pyrimidin-2-amine. This motif
is depicted as the blue region in the part illustrated on the right
side of Fig. 8. The aggregate contribution of a fragment to
molecular interaction is determined by summing the interac-
tion contributions of all constituent atoms within the fragment.
Digital Discovery
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Fig. 8 Visualization of interactions based on the atomic pair potentials derived from the physics-informed block in the screening readout of
DeepRLI. The protein studied here is serine/threonine protein kinase PLK1, and the binding site involved is the ATP-pocket thereof. Onvansertib is
recognized as an early-reported, potent, and selective inhibitor of PLK1, with its complex crystal structure deposited under the PDB identifier
2YAC.83 Other molecules named with the prefix “IIP” are potential active inhibitors designed using TransPharmer.84 From left to right, the binding
poses of the five ligands combined with PLK1 predicted by Glide XP, as well as the atomic contributions and fragment contributions to the
protein–ligand interactions inferred using DeepRLI, are displayed. In the atomic contribution diagrams, the red areas indicate negative interaction
contributions, meaning they are favorable for binding; the green areas indicate positive interaction contributions, meaning they hinder binding. In
the fragment contribution diagrams, the areas enclosed in blue represent the common substructures of these molecules, and the yellow areas
represent their differences.

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry
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Consequently, this approach facilitates a comparative analysis
of the interaction contributions attributable to identical frag-
ments across the ve small molecules in question, as well as an
examination of the interaction contributions from the distinct
fragments not shared among these molecules. The ndings of
this analysis are graphically represented in the right segment of
Fig. 8.

From the graphical representation, it is evident that the
DeepRLI model's overestimation of the binding affinity for
IIP0945 primarily stems from the inuence of the shared
substructural moiety. Although the screening score for IIP0943
closely mirrors that of Onvansertib, IIP0943's contributions in
areas of structural variance are inferior to those of Onvansertib.
Hence, the relative superiority of IIP0943 is predominantly
attributed to the advantageous conformational poses that the
shared substructure is able to adopt following a skeletal
transition.

Overall, DeepRLI's evaluation of the binding efficacy of
known inhibitors of PLK1 kinase (Onvansertib) as well as
potential inhibitors designed by our research group (IIP0942,
IIP0943, IIP0944, and IIP0945) is quite reasonable, reecting its
reliability in practical applications. Moreover, the interpret-
ability of DeepRLI can be used to analyze the contribution of
interactions of various fragments of ligand molecules, thus
providing effective guidance for the procedures of hit-to-lead
and lead optimization.

4 Conclusions

In this study, we propose DeepRLI, a novel multi-objective deep
learning framework designed for the universal protein–ligand
interaction prediction. DeepRLI employs a fully-connected
graph as its input, effectively preserving the molecular topology
and spatial structures. And this framework uses an improved
graph transformer layer, combined with cosine constraints,
which facilitates robust feature embedding. Central to Deep-
RLI's architecture are three distinct downstream networks, each
dedicated to a specic predictive task: scoring, docking, and
screening. The scoring readout network aims to accurately
predict the binding free energy of crystal structures using
a series of basic fully-connected layers. Meanwhile, the docking
and screening readout networks focus on identifying the
optimal binding poses and enriching active small molecules,
respectively. A key characteristic in these networks is the inte-
gration of physical information blocks, designed to improve the
model's inference capability, especially for protein–ligand
conformations with loose bindings that deviate from typical
crystal structures. To further enhance the model's generaliza-
tion ability, we incorporated data augmentation techniques,
including re-docking and cross-docking procedures to generate
more data, complemented by contrastive learning strategies.
This combination enhances DeepRLI's applicability across
diverse datasets and scenarios.

DeepRLI's efficacy was rigorously tested on several estab-
lished benchmarks. Its performance was evaluated across
a range of tasks – scoring, ranking, docking, and screening – on
the CASF-2016, CSAR-NRC HiQ, Merck FEP, and LIT-PCBA
© 2025 The Author(s). Published by the Royal Society of Chemistry
benchmarks. The results consistently demonstrate DeepRLI's
superior inferential abilities in all tested domains, under-
scoring its versatility as a predictive tool for protein–ligand
interactions. Additionally, a retrospective analysis was con-
ducted on the PLK1 kinase target to evaluate its practical
applicability. The results of the study indicate that, compared to
Glide XP, DeepRLI is capable of better predicting the binding
efficacy of various small molecules with the protein, demon-
strating satisfactory screening performance suitable for prac-
tical application scenarios.

Furthermore, the implementation of a graph transformer
layer as the primary feature embedding module in DeepRLI
offers notable interpretability advantages. The model assigns
greater attention weights to edges that signify crucial interac-
tion patterns, providing insights into the underlying molecular
interactions.

In conclusion, the DeepRLI framework can effectively
provide useful guidance for structure-based drug design. Its
innovative approach and proven efficacy in predicting protein–
ligand interactions position it as a powerful and versatile tool in
the eld of drug discovery.

5 Methods
5.1 Input features

Node features, ai, and edge features, bij, are chemical features
extracted from atoms and bonds, respectively, and then trans-
formed into representations suitable for deep learning. Specif-
ically, for the input of our neural network, the node features are
represented as 39-dimensional vectors, detailed in Table S19.†
These vectors include a dimension to differentiate between
protein and ligand atoms. The remaining dimensions encap-
sulate atomic properties derived using the RDKit chem-
informatics package.87 It is important to note that our model's
input criteria exclude hydrogen atoms, focusing exclusively on
heavy atoms. Consequently, chemical element symbols in our
representation do not include hydrogen. Moreover, due to the
negligible metal content in the PDBbind dataset,88,89 all metal
elements are collectively categorized under a single “Met”
element. Elements not explicitly listed are denoted as “Unk”
(Unknown). Additionally, the “degree” feature in our model
quanties the number of covalent bonds an atom forms with
other heavy atoms, effectively representing the number of edges
connected to a node. The other attributes of the node features
are self-explanatory and contribute to the comprehensive
representation of chemical entities in our neural network
model.

The edge features are 39-dimensional vectors, as shown in
Table S20,† among which two dimensions are designated for
discerning whether the interaction is intermolecular or cova-
lent, and the remainder includes the type of chemical bond and
the distance between atoms. It should be noted that the atomic
distance is not encapsulated by a singular dimension, but is
instead represented through a series of 33 Gaussian functions,
uniformly distributed within a range of 6.5 Å, each with a width
equivalent to the interval. This method of representation results
in an expanded distance vector, consisting of multiple values
Digital Discovery
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ranging between 0 and 1. Such a multi-valued representation of
distance is more effective for the model, facilitating a nuanced
utilization of distance data.
5.2 Datasets

The training and validation of the DeepRLI model are con-
ducted using datasets that encompass crystal structure–activity
data from PDBbind-v2020,88,89 supplemented with derived re-
docking and cross-docking data. Corresponding to the three
training objectives, our dataset also comprises these three
parts. The PDBbind database collects a wealth of protein–ligand
complex structures and related experimental binding affinity
data, making it the most widely used dataset for structure-based
protein–ligand binding affinity prediction studies. For the
scoring objective, we need to know precise binding free energy
data of some structures, which can be directly obtained from
PDBbind. However, nearly half of the data in the PDBbind
general set are experimental results with only IC50 values or
imprecise Kd values (notated as greater than, less than, or
approximately equal to). Therefore, we remove these data and
retained only the crystal structure data with exact Kd values. And
this curated dataset is named PDBbindGS_HiQ by us.

To enhance the robustness and accuracy of our model in
docking and screening tasks, a key requirement is to ensure its
adeptness in generalizing to loosely bound structures. To
address this, we re-dock the structures from the PDBbind
rened set using AutoDock Vina,28,29 thus generating a series of
binding conformations. These are compiled into what we have
termed the PDBbindRS_RD dataset, which serves to signi-
cantly bolster the model's capability in docking predictions.
Given that the exact relative free energy values of these confor-
mations are not precisely known, we posit a correlation between
the root-mean-square distance (RMSD) of these conformations
from the original crystallographic structures and their relative
free energy. Conformations exhibiting an RMSD of 2 Å or less
are hypothesized to possess lower relative free energy, and are
thus classied as positive instances (truths). Conversely, those
with an RMSD of 4 Å or greater are categorized as negative
(decoys). Furthermore, to augment the model's screening
prociency, we initiate a cross-docking protocol involving
structures from the PDBbind rened set, thereby creating the
PDBbindRS_CD dataset. This process entails docking various
small molecules present in the database with a range of
proteins. All conformations resultant from this process are
deemed as negative (decoys), providing a comprehensive data-
set for enhancing the predictive accuracy of our model in
identifying viable drug candidates.

The data unit for training is formed by a collection of
structures. Specically, the minimal input required for training
encompasses several components associated with the same
protein target: a crystal structure–activity data pair, a randomly
selected re-docked positive structure, a randomly selected re-
docked negative structure, and a randomly selected cross-
docked negative structure, as detailed in Table S21.† For a data
unit to comply with our criteria, it is essential that it contains at
least one instance of these specied data types, corresponding
Digital Discovery
to a particular Protein Data Bank (PDB) identier. Aer inter-
secting the PDBbindGS_HiQ, PDBbindRS_RD, and
PDBbindRS_CD datasets and removing data duplicated with the
CASF-2016 benchmark test set, we ultimately obtain 4156 such
data units. Additionally, to fully utilize the limited but valuable
crystal structure–activity data pairs, we randomly supplement
the remaining data from PDBbindGS_HiQ (7337 items) into the
aforementioned data units during training. This approach is
implemented to maximize the utility of the available data in our
training protocol.
5.3 Training

The overarching aim of our model training is the concurrent
optimization of predictions for three distinct variables: scoring
scores, docking scores, and screening scores. This tripartite
goal, depicted in Fig. 3, comprises the scoring, docking, and
screening objectives. These objectives, while being distinct and
relatively independent, are intricately interrelated.

1. Scoring objective: This involves rening the scoring scores
to align the model's predictions more closely with the actual
relative free energies. Given that the experimental binding free
energies (anchors) are available only for the native crystal
structures, our focus is on enhancing the accuracy of the
model's scoring predictions specically for these native poses.

2. Docking objective: The goal here is to ne-tune the
docking scores. The model is trained to yield lower docking
scores for poses that closely resemble the native binding pose.
Specically, we aim to achieve lower predicted docking scores
for any pose with the RMSD less than 2 Å from the native crystal
structure's small molecule compared to poses with an RMSD
greater than 4 Å.

3. Screening objective: This objective seeks to optimize the
screening scores, with a focus on minimizing the scores pre-
dicted for active binders. Essentially, the model is calibrated to
ensure that the predicted screening scores for any active ligand
are lower than those for any inactive decoy.

Through these tailored objectives, our model aims to achieve
a nuanced and precise prediction capability, catering to the
specic demands of each aspect of the drug design process.

In alignment with the previously delineated objectives,
DeepRLI's loss function comprises three distinct components:
scoring loss, docking loss, and screening loss, as described in
eqn (19) and (20):

L ¼ Lscoring þ Ldocking þ Lscreening (19)

¼ 1

N

XN
i¼1

"�
y
pred;1
native;i � ytruenative;i

	2
þ
�
y
pred;1
suppl;i � ytruesuppl;i

	2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

scoring loss

þmax
�
0; ypred;2rd-pos;i � y

pred;2
rd-neg;i

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

docking loss

þmax
�
0; ypred;3rd-pos;i � y

pred;3
cd-neg;i

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

screening loss

#
;

(20)

in which “suppl”, “rd-pos”, “rd-neg”, and “cd-neg” serve as
concise representations for “supplementary”, “re-docked
© 2025 The Author(s). Published by the Royal Society of Chemistry
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positive”, “re-docked negative”, and “cross-docked negative”,
respectively.

The scoring loss adheres to a conventional methodology,
utilizing the Mean Squared Error (MSE) to quantify the
discrepancy between the scoring score predicted by the model,
denoted as ypred,1, and the corresponding experimental binding
free energy, ytrue.

Conversely, for structures resulting from docking processes,
their exact relative free energies remain elusive. However, we
can roughly know the relative magnitude of free energy between
certain structures. Therefore, we innovatively introduce
a contrastive loss function to help achieve docking and
screening objectives. The selection of an appropriate contras-
tive loss function presents multiple viable options, including
HalfMSE, ReLU, Soplus, exp, etc., as listed in Table S22 and
depicted in Fig. S16,† with comprehensive derivations available
in the ESI.† Noteworthy is the characteristic of both HalfMSE
and ReLU, featuring a segment on their le spectrum that
incurs no loss, thereby ensuring null loss when predictions
accurately reect the true binary relationships. This design
effectively circumvents the potential issue of articially induced
gaps in predicted values, a concern prevalent in functions like
Soplus and exp. Furthermore, the right extremity of the ReLU
function exhibits a more gradual slope compared to HalfMSE,
offering a degree of leniency towards certain incorrectly pre-
supposed binary relationships. Consequently, aer thorough
consideration, ReLU is selected as the most suitable contrastive
loss function for our docking and screening objectives, as
detailed in eqn (20).

In this study, the aforementioned dataset is partitioned into
a training set and a validation set in a 9 : 1 ratio. For optimi-
zation, the Adam algorithm is utilized, supplemented with
a plateau-based learning rate decay strategy. This approach
entails a reduction in the learning rate when no improvement is
observed in the validation set loss across a predened number
of consecutive epochs. The training protocol is designed to
terminate automatically once the learning rate descends below
a specied threshold. For detailed hyperparameter settings,
please refer to Section 2.4 of the ESI.† The model corresponding
to the nal epoch is selected as the outcome of the training
phase.
Code availability

The source code of DeepRLI is publicly available at https://
github.com/fairydance/DeepRLI.
Data availability

The PDBbindGS_HiQ, PDBbindRS_RD and PDBbindRS_CD
datasets craed in this work, along with the preprocessed
training dataset and PLK1 case-related data, are publicly
accessible on Zenodo (https://doi.org/10.5281/
zenodo.15654352). Additionally, the source code of DeepRLI
and the trained model can also be obtained from the same
Zenodo repository. Detailed information on executing data
© 2025 The Author(s). Published by the Royal Society of Chemistry
processing, model training, and model inference is provided
in the README le of the code package.
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T. Fuchß, U. Grädler, J. Gunera, T. Johnson, C. Jorand
Lebrun, S. Karra, M. Klein, T. Knehans, L. Koetzner,
M. Krier, M. Leiendecker, B. Leuthner, L. Li, I. Mochalkin,
D. Musil, C. Neagu, F. Rippmann, K. Schiemann,
Digital Discovery
R. Schulz, T. Steinbrecher, E.-M. Tanzer, A. Unzue Lopez,
A. Viacava Follis, A. Wegener and D. Kuhn, J. Chem. Inf.
Model., 2020, 60, 5457–5474.

35 V.-K. Tran-Nguyen, C. Jacquemard and D. Rognan, J. Chem.
Inf. Model., 2020, 60, 4263–4273.

36 G. Durant, F. Boyles, K. Birchall, B. Marsden and
C. M. Deane, Bioinformatics, 2025, 41, btaf040.

37 X. Zhang, H. Gao, H. Wang, Z. Chen, Z. Zhang, X. Chen, Y. Li,
Y. Qi and R. Wang, J. Chem. Inf. Model., 2024, 64, 2205–2220.

38 R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren,
J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll,
M. Shelley, J. K. Perry, D. E. Shaw, P. Francis and
P. S. Shenkin, J. Med. Chem., 2004, 47, 1739–1749.

39 T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard,
L. L. Frye, W. T. Pollard and J. L. Banks, J. Med. Chem.,
2004, 47, 1750–1759.

40 R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye,
J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin and
D. T. Mainz, J. Med. Chem., 2006, 49, 6177–6196.

41 R. Wang, L. Lai and S. Wang, J. Comput.-Aided Mol. Des.,
2002, 16, 11–26.

42 R. Meli, A. Anighoro, M. J. Bodkin, G. M. Morris and
P. C. Biggin, J. Cheminf., 2021, 13, 59.
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