#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue,

DOPtools: a Python platform for descriptor

{") Check for updates‘
calculation and model optimization

Cite this: Digital Discovery, 2025, 4,

1188 *a

Said Byadi, 22 Philippe Gantzer, (22 Timur Gimadiev® and Pavel Sidorov

The DOPtools (Descriptors and Optimization tools) platform is a Python library for the calculation of
chemical descriptors, hyperparameter optimization, and building and validation of QSPR models. In
addition to the Python code that can be integrated in custom scripts, it provides a command line
interface for the automatic calculation of various descriptors and for eventual hyperparameter
optimization of statistical models, enabling its use in server applications for QSPR modeling. It is
especially suited for modeling reaction properties via functions that calculate descriptors for all reaction

components. While a variety of existing tools and libraries can calculate various molecular descriptors,
Received 18th December 2024

Accepted 16th March 2025 their output format is often unique, which complicates their integration with standard machine learning

libraries. DOPtools provides a unified API for the calculated descriptors as input for the scikit-learn

DOI: 10.1039/d4dd00399¢ library. The modular nature of the code allows easy addition of algorithms if required by the end user.

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1 Introduction

Quantitative Structure-Property Relationship (QSPR) modeling is,
to this day, one of the largest application fields of chemo-
informatics.! In a classical QSPR approach, to enable the predic-
tion of properties, molecules must be encoded by numerical
parameters — molecular descriptors, which are then used to train
machine learning (ML) algorithms. The choice of the optimal
molecular descriptors, as well as the ML algorithm, is often left to
rigorous benchmarking prior to modeling itself. However, the
lack of an open, unified pipeline to go from molecules to
descriptors to model optimization necessitates piecing together
disjointed steps produced by different software or scripts.
Numerous software tools have been specifically tailored for
the generation of molecular descriptors, providing user-friendly
platforms via graphical user interfaces (GUIs) for inputting
chemical structures and extracting a diverse array of molecular
information. Commercial tools developed by OpenEye Scientific
Software,> Molecular Operating Environment (MOE),”> and
ChemAxon* provide a variety of functions, including the calcu-
lation of molecular properties and descriptors. On the other
hand, programming libraries such as Chemistry Development
KIT (CDK),” RDKit,* and OpenBabel’ give access to a wide range
of chemoinformatics functions, with RDKit being a de facto
standard for chemoinformatics applications in most areas of
research. Other software kits such as PaDEL,* ISIDA (In Silico

“Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido
University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan. E-mail: pavel.
sidorov@icredd. hokudai.ac.jp

*A.M. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya
Str., Kazan, 420008, Russia

188 | Digital Discovery, 2025, 4, 1188-1198

The code for the platform is freely available at GitHub and can be installed through PyPI.

Design and Data Analysis) platform,” GUIDEMOL," etc.,
implement GUI or command line interfaces (CLI) for the
calculation of specific types of descriptors. Python libraries
CGRtools' and Chython' provide an open-access code for
managing chemical data, including the calculation of descrip-
tors (e.g., Chython implements its own Morgan-like and linear
fingerprints). Recently reported packages, MolPipeline** and
Scikit-Mol,™ provide an array of functions that facilitates inte-
grating chemical information into ML modeling through
automatic SMILES-to-descriptor calculations that include
important curation steps.

Once the descriptors are calculated, a ML algorithm needs to
be trained, and many solutions are available for this task.
Statistical software such as WEKA," XLSTAT, Statistica,'® etc.,
give access to a wide array of ML models that can be applied to
precomputed descriptors. More specialized chemoinformatics
software, like MOE, combines the calculation of descriptors and
the building of models in one package. The commercial KNIME
Analytics Platform' is an open-source platform with workflow-
driven cheminformatics capabilities, implementing the most
commonly used descriptor types and ML algorithms, and
providing bindings for external chemoinformatics and molec-
ular modeling tools and libraries. QSAR-Co"® is an open source
tool written in Java that is capable of robust data analysis and
the development of classification models, including multi-task
ones. However, models often require optimization of parame-
ters, which can be complicated with the above tools. Often,
researchers create in-house scripts tailored to the third-party
tools they have access to.” Some commercial solutions exist
for this problem, too; for example, Schrodinger provides
a platform with access to both calculation of descriptors and

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00399c&domain=pdf&date_stamp=2025-05-09
http://orcid.org/0000-0003-0913-2897
http://orcid.org/0000-0001-7494-458X
http://orcid.org/0000-0001-6462-702X
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004005

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

modeling (CANVAS), as well as tools for the automatization of
model optimization and building (AutoQSAR,** which has
recently evolved into DeepAutoQSAR). Auto-Sklearn has been
introduced recently**** as an ML automation (AutoML) plat-
form, implementing a Bayesian optimization algorithm for data
set preparation, feature calculation and preprocessing, and
model hyperparameter optimization.

The alternative that gives the most freedom for customization
of descriptors and models is writing custom scripts using the
abundance of tools available to researchers these days. Specifi-
cally, the Python programming language has an extraordinary
level of community support for ML-related tasks, with open-
source libraries like scikit-learn® for ML algorithms, pandas™
for data processing, as well as RDKit, OpenBabel, or Chython for
chemoinformatics-related tasks. Scikit-learn has limited capabil-
ities for model parameters optimization using grid search, and
other libraries such as Optuna® provide an expanded selection of
optimization algorithms. However, there is still an issue of
compatibility between application programming interfaces (API)
of these libraries, especially chemical ones, as their outputs often
cannot directly serve as inputs for ML algorithms. Still, some
recently reported tools, such as ROBERT,”® QSPRPred,” QSAR-
Tuna,”® and PREFER,” allow building a complete workflow from
descriptor generation to modeling of molecular properties.

The field of reaction modeling is rapidly gaining traction in
chemoinformatics; however, a notable gap remains in the
availability of comprehensive, ready-to-use programming
libraries capable of seamlessly performing reaction modeling
tasks. Since reactions involve multiple molecular entities
(reactants, products, catalysts, and additives), the most
common approach to their representation is concatenating the
descriptors of different species into a single table. Addressing
this challenge with existing solutions typically requires signifi-
cant customization, integration of multiple tools, or the devel-
opment of bespoke algorithms.

An alternative approach is the Condensed Graph of Reaction
(CGR),* which simplifies reaction representation by encoding it
as a single graph with explicit annotations for dynamic bonds
and atoms - those that change during the reaction. The CGR
concept has been successfully applied in numerous studies to
model various reaction properties.**** However, most Python-
based chemical libraries lack support for CGR structures. To
our knowledge, the only libraries capable of handling CGRs are
CGRtools™ and Chython.*

In this work, we present a new Python library, DOPtools, with
the capabilities to calculate an extensive array of molecular
descriptors, encompassing physico-chemical, structural, and
fragment-based descriptors, within an API tailored to most ML
libraries. DOPtools are especially tailored for reaction modeling,
providing functions for the calculation of descriptors both in
a classical way (concatenation of species) and using Condensed
Graphs of Reactions. Moreover, the library provides a CLI for
automatic descriptor calculation and optimization of hyper-
parameters for QSPR models, suitable for server applications.
While only three major statistical methods - Support Vector
Machine (SVM),** XGBoost,> and Random Forest (RF)* - are
available out of the box, the modular structure of the library and

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

the simplicity of Python itself allow for easy extension to other
methods or descriptor types. Moreover, this versatile tool extends
its utility by facilitating the visualization of atomic contributions
within the developed models. We present several examples of
functions to demonstrate the capabilities of the library, which are
also available as tutorials in the GitHub repository.*”

2 Implementation

DOPtools (current version 1.2) is a Python library that provides
functions to calculate a variety of molecular descriptors in
a unified manner, compatible with common ML libraries, as
well as scripts to prepare and optimize regression and classifi-
cation models. The library uses Python version 3.9 (or higher, as
long as the compatibility of other packages is not compromised)
and the widely used computation and machine learning pack-
ages such as Numpy (v.1.25), Pandas (v.2.1), Scikit-learn (v.1.5),
and XGBoost (v.2.0). The handling of chemical structures is
ensured by the packages Chython (v.1.7) and RDKit (v.2023.9.6).
Molecular descriptors are calculated using RDKit, the Mor-
dred*® library (v.1.2), or built-in functions within DOPtools.
Model's hyperparameter optimization is implemented using
the Optuna library (v.3.5).

The library can be installed from the PyPI repository:
pip install doptools. It is recommended to install it in an
Anaconda environment or similar, to have easy access to
executable scripts provided in the library. Alternatively, the
source code and setup files for the version in development are
also available on GitHub.”” The library has been tested and
validated on x86 platforms, but its performance on armé4 is
not guaranteed due to certain modules dependencies.

The main features provided by DOPtools are as follows:

e Reading of chemical structures (both molecules and reac-
tions) in the SMILES format and standardization of structures
are performed by the Chython library.

e Preparation of a wide array of descriptors from chemical
structures - structural (fingerprints from RDKit and newly
implemented molecular fragments) and physico-chemical
(Mordred library). Reaction fragments can be calculated via the
use of CGRs. Concatenation of different types of features or
features for several structures is implemented out of the box.

e Physico—chemical descriptors for 152 solvents.

e Model hyperparameter optimization, including the selec-
tion of the best descriptor set.

e Interpretation of models built on molecular fragments
using the ColorAtom methodology.*’

e A command-line interface is provided for descriptor prep-
aration, model optimization and plotting.

The following sections explain in detail the structure and the
functionality of various modules within the library. A brief
comparison of the features provided by DOPtools with other
similar tools is given in Table 1.

2.1 chem module

2.1.1 chem_features submodule. The DOPtools platform,
in its current implementation, allows the calculation of 2D

Digital Discovery, 2025, 4, 1188-1198 | 1189

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Table 1 Comparison of features between available libraries and tools for chemical model preparation and optimization®

Feature DOPtools ROBERT QSPRpred QSARtuna PREFER
Reaction/mixture modeling Yes No No No No

CLI for automation Yes No Yes Yes No

GUI support In development Yes No No No

Hyperparameter optimization Optuna hyperopt®® Customizable Optuna Python AutoML

libraries and Optuna

Uncertainty estimation No Yes No Yes No

Explainability features ColorAtom Yes Yes Yes Yes

Descriptor types Fragments, fingerprints,
physico-chemical (2D)

SVM, XGBoost, RF

empirical

ML algorithms Auto-selected

(RF, SVM, NN, GP)

Topological, quantum,

Physico-chemical,
fingerprints, graph
SVM, RF, NN

Structural (RDKit),
physico-chemical
SVM, RF, GP

2D physico-chemical,
RDKit descriptors
AutoML DL

(DNN, RF, XGBoost)

“ Abbreviations for ML algorithms: SVM - Support Vector Machines, RF - Random Forest, NN — Neural Networks, DNN - Deep Neural Networks, and

GP - Gaussian Processes

molecular descriptors of several types. The broadest category
includes the molecular fingerprints provided by the RDKit
library, which include Morgan,** Avalon,*> atom pairs,* topo-
logical torsion,* and native RDKit fingerprints. In addition, 2D
Mordred descriptors are available through the import of the
Mordred library.* Finally, two types of fragment descriptors are
implemented natively via Chython functions - circular frag-
ments Circus$ (first introduced in ref. 31) and linear fragments
ChyLine (a new implementation). The brief information on
these descriptors and details of their implementation are dis-
cussed in this section. The Python objects that calculate each
type of descriptors are coded as scikit-learn transformers and
realize the standard fit and transform functions, enabling
easy integration of those into pipelines and unifying the input
and output when used in the end user's code.

Calculation of molecular fingerprints is implemented in the
Fingerprinter class. The initialization of the object requires
the indication of the fingerprint type (fp_type argument). The
possible values for this argument are ’morgan’ for Morgan
fingerprints with or without the features, >rdkfp’ for RDKit
fingerprints of any topology, ’layered’ for RDKit layered
fingerprints, and ’atompairs’, >torsion’, avalon’ for the
corresponding types. nBits argument determines the length of
the bit vector the object will calculate. radius indicates the
maximum length/radius for Morgan and RDKit fingerprints and
does not affect other types. Additional parameters (e.g., calcu-
lation of Morgan fingerprints with chemical features) could be
passed via the params argument.

CircuS (Ccreular substructures) fragments account for frag-
ments of circular topology, i.e., atoms and their environments
within a certain radius. The user must indicate the desired
lower and upper limits for the size of substructures, as the
topological radius. A size of 0 means only the atom itself, a size
of 1 - an atom and all atoms directly connected to it, and so on.
The algorithm will run through all atoms in the molecule (or
CGR) and enumerate all possible substructures. Due to the way
the substructure extraction is implemented in the Chython
library, all bonds between selected atoms will be present, which
may be slightly counterintuitive and differs from the way

190 | Digital Discovery, 2025, 4, 188-1198

Morgan fingerprints are calculated in RDKit (see an example
above, Fig. 1). A new functionality is implemented via the
argument on_bond: if set to True, the algorithm will instead go
through all bonds in the molecules, extracting augmented
substructures centered on those bonds (example shown above).
An older implementation of the CircuS calculator® calculating
fragment counts via a substructure search is also available as
the ChythonCircusNoHash class. However, that version is
extremely slow and is not recommended for use.

ChyLine (Chython Linear) fragments are linear fragments
calculated using native Chython functions, specifically, from
the algorithms.fingerprints.linear module. Their imple-
mentation is similar to CircuS and requires specifying the lower
and upper limits for the lengths of fragments. The algorithm
gathers all linear subgraphs in the molecule of the specified
lengths (see examples in Fig. 1). Unlike the native RDKit
fingerprints, ChyLine gathers the information on the frequen-
cies of each linear substructure out of the box. Moreover, it can
calculate the fragments of CGRs in addition to single molecules,
similar to CircusS.

Descriptor calculators implement a transform function that
returns a Pandas DataFrame with the descriptor values for any
data set after fitting. The column names in fragment calculators
are the SMILES representations of the corresponding
substructures. Note that in these cases, only the fragments that
were initially recorded during fitting will be present in the
resulting table and all new fragments that may be present in
new molecules will be ignored. This is done in order to avoid
feature number mismatch during ML model training and
application. The fragment SMILES may also be accessed via the
get_feature_names function.

The platform also provides physico-chemical parameters for
152 solvents that can be used as descriptors. The data were
extracted from the literature*® as tabular values, and include the
empirical measurements of solvent acidity (SA), basicity (SB),
dipolarity (Sdp), and polarizability (SP). The
SolventVectorizer class implemented as a scikit-learn trans-
former takes an array of strings corresponding to the solvent
names and outputs a table with the four abovementioned

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

CircuS
circular
substructures

radius: 1

CircuS

o circular

substructures
on bonds

radius: 1

ChyLine
Chython -
linear

length: 2

S S
CO>-C0>-

R oy R
U= GO =

View Article Online

Digital Discovery

radius: 3

radius: 2

<
GO

radius: 2 radius: 3

length: 3

Fig. 1 Comparison of fragments generated by CircuS (top and middle) and ChyLine (bottom) fragments, starting from the same center atom
(indicated by the light blue dot). Bold blue lines in CircuS examples indicate the substructure of the specified radius. In ChyLine examples, the
bold lines indicate the substructure of the given radius from where all linear fragments starting at the center atom would be taken. Different

colors indicate different linear fragments of the same length.

values. The available solvent names are provided in the variable
available_solvents.

Finally, a utility class for calculating concatenated descrip-
tors (for either different structures, or different descriptor types)
is also introduced as ComplexFragmentor. Rather than an array
of molecules, it takes a DataFrame with several molecule
columns, and the associator parameter specifies which
calculator would be used for each column as a list of pairings
"column name” - “descriptor calculator” (similar to the Pipe-
line implementation in scikit-learn). The idea behind this
implementation is to allow seamless calculation of descriptors
for mixtures or reactions via concatenation of features. The
ComplexFragmentor class facilitates such concatenation,
allowing to specify which descriptors need to be used for each
species, and returning a unified table with columns labeled
according to their respective components. Similarly, solvent
descriptors or numerical parameters may also be passed into
a ComplexFragmentor.

DOPtools also allows to calculate fragments of various
topologies for reactions represented as CGRs out of the box. The
ChyLine and CircuS calculators presented here internally
transform a mapped reaction into a CGR during the calcula-
tions; thus no additional transformation steps are required. The
fragments that contain dynamic bonds or atoms will be anno-
tated in the CGR SMILES format introduced previously.*” For
example, a single bond formation is noted as [.>-], while a bond
changing order from single to double is represented as [->=].
Note that, since RDKit or Mordred do not support CGR struc-
tures, the calculation of fingerprints or physico-chemical
parameters for CGRs is not implemented.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Some examples of the descriptor calculation functions for
both molecules and reactions (in both concatenation and CGR
formats) are shown in Fig. 2. These examples are taken from the
tutorials available in the library's GitHub repository,*” where the
source code and data are deposited.

2.1.2 coloratom submodule. DOPtools provides a Python
implementation of the ColorAtom method* for CircuS and
ChyLine fragments. ColorAtom allows to interpret the model
predictions through atomic contributions. In this approach, the
weights of all fragments are calculated as a function of predic-
tion change. For regression, this is the partial derivative of the
prediction over this fragment's occurrence number. For classi-
fication, it is inversely proportional to the required change in
the descriptor value that would change the prediction (thus, the
smaller the change in the descriptor value that causes the
change in the predicted class, the more important the fragment
is). Atoms involved in all fragments accumulate their weights as
the score, which is then visualized by assigning colors to posi-
tive and negative contributions. This helps in drawing conclu-
sions about which modifications to the structure may be
beneficial for further improvement of the studied property. By
default, regression models are visualized using a divergent color
scale (the atoms contributing to higher values are colored in
magenta, and atoms contributing to lower values are colored in
green), and classification models use a single-color scale, with
the intensity of the color normalized across the molecule, so
that the relative contribution can be easily visualized (Fig. 3).
Contributions across several molecules may be compared by
scaling the colors to the maximum values between them. This is
the case for models that take several molecular structures via
ComplexFragmentor. If reactions are provided directly as

Digital Discovery, 2025, 4, 1188-1198 | 1191

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

(cc)

Digital Discovery

A. Calculation of CircuS descriptors from molecules

from doptools import ChythonCircus

circus_fragmentor = ChythonCircus(@, # minimum radius

3) # maximum radius

using fit function of sklearn Transformer
circus_fragmentor.fit(lambda_mols)

using transform function of sklearn Transformer
circus_descriptors = circus_fragmentor.transform(lambda_mols)
circus_descriptors

N CN nn(n)C nnn n(c)n nc(n)N N(=N)C cc(c)N ccc ... s
6 1 2 1 2 1 2 1 5
5 1 0 0 1 1 2 1 5
4 1 0 0 1 0 2 1 6
4 1 0 0 1 0 2 1 5
4 1 0 0 1 0 2 2 5

View Article Online

B. Calculation of ChyLine descriptors from molecules

from doptools import ChythonLinear

chyline_fragmentor = ChythonLinear(2, # minimum length

8) # maximum length

using fit function of sklearn Transformer
chyline_fragmentor. fit(lambda_mols)
using transform function of sklearn Transformer

chyline_descriptors =

chyline_fragmentor.transform(lambda_mols)

chyline_descriptors

-

A& W N

c:c:c:ic c:c:cic:ic c:c:c:c:icN=Nc c:c n:nC n:icN=Nc:c:c Nc Nc:c

6 6 2 6 2 4 3 2
6 6 2 6 1 4 3 2
6 6 2 8 1 2 3 3
6 6 2 8 1 2 3 3
6 6 2 8 1 0 3 4

C. Calculation and concatenation of structural and solvent descriptors for catalyst selectivity modeling

from doptools import ComplexFragmentor
from doptools import SolventVectorizer

this calculator doesn't fit anything, so it can be instantiated before the calculation

sv = SolventVectorizer()

the associator connects the column name in the table to the descriptor calculator

cf = ComplexFragmentor(associator=|
("ar_mol", ChythonCircus(®,3)),
("r_mol", ChythonCircus(@,1)),
("solvent", sv) # added the calcualtion of solvent descriptors
1)
DataFrame needs to be given as argument,
as it will use the associator keys to pick the correct columns
cf.fit(cat_data)
cat_desc = cf.transform(cat_data)
only some columns are shown for demonstration purposes
cat_desc[['ar_mol::C', ‘ar_mol::cc(c)C',
‘ar_mol::c(c)c(cc)C', 'r_mol::FC(F)(F)C',
'r_mol::CC(C)(F)F', ‘'solvent::SP Katalan',
'solvent::SA Katalan', 'solvent::SB Katalan']]

ar_mol::C ar_| ar_mol::c(c)c(cc)
o 7 2 2 -
1 7 2 2 3
2 8 4 a 5
3 8 4 4 =
4 8 2 2 o
5 i 2 2 .
6 9 6 6 5

r_mol::FC(F)(F)C r_mol::CC(C)(F)F solvent::SP Katalan solvent::SA Katalan solvent::SB Katalan

0 0.675 0 0.069
0 0.683 0 0.073
0 0.683 0 0.073
0 0.683 0 0.073
0 0.683 0 0.073
0 0.675 0 0.069
0 0.675 0 0.069

D. Calculation of fragments for a reaction represented as a Condensed Graph

reaction

OH —> O

Condensed Graph Of Reaction

0 S~ N\

A dynamic

_/ bonds

/\CC(C)
([->-

reaction must be mapped

reaction SMILES are cut due to size

r_smiles = "[OH:4] [CH2:13] [CH2:12] [CH2:11] [CH2:10] [C:2] (=

reac = smiles(r_smiles)

circus_fragmentor_r = ChythonCircus(®, # minimum radius
3) # maximum radius

using fit_transform function of sklearn Transformer

circus_fragmentor_r.fit_transform([reac])

c o cce)=c Jo) S €OL>" o ce cee clo)c
[=>- le Ie
1c
0 12 1 1 2 1 1 5 3 1

Paper

Fig. 2 Examples of code and output of fragment calculation functions of DOPtools. (A) Calculation of CircuS fragments; (B) calculation of

ChyLine fragments. Both examples use a photoswitch data set.** (C) Calculation of concatenated fragments for catalyst enantioselectivity

modeling, including structural descriptors of substituents and solvent descriptors (data from ref. 31 are used). (D) Calculation of reaction

internally. Dynamic bonds are represented in fragments using the CGR SMILES notation.*

192 | Digital Discovery, 2025, 4, 188-1198

fragments via condensed graph of reaction representation. Fragmentors can handle fully mapped reactions and transform them into CGR

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

structures, the user must specify whether they are visualized as
an ensemble of reactants or products (see the example in the
tutorials on the GitHub repository).

After defining the object, the user needs to specify the
pipeline (as a scikit-learn object) that is used for prediction, by
calling the set_pipeline function. The function assumes that
the first object in the pipeline is the fragment calculator.
Afterwards, the user can use the object to calculate the contri-
bution and output them numerically with the
calculate_atom_contributions function, or visualize them
directly with the output_html function. The visualization is
produced in SVG and HTML formats which can be directly
visualized in Jupyter notebooks using Chython to depict the
structure.

from doptools import ColorAtom

ca = ColorAtom()

ca.set_pipeline(pipeline)

it is necessary to indicate what pipeline, containing
the fragmentor, preprocessing and model, is used

for interpretation

ca.output_html(ext_mol)

from matplotlib.colors import LinearSegmentedColormap, ListedColormap
defining a new colormap, going from blue for negative to red for positive
RWB = LinearSegmentedColormap.from_list("RWB",
["#0571b0" , "#92c5de" , "#f7f717","#f4a582" ,"#ca0020"])
ca2 = ColorAtom(colormap=RWB)

ca2.set_pipeline(pipeline)
ca2.output_html(ext_mol, colorbar=True)

19.42

9.71

0.00

-9.71

-19.42

ca_class = ColorAtom()

ca_class.set_pipeline(pipeline_class)
SMILES of the test molecule here is
CC(C)(0C(=0) [C@@H](C)N)Cclccc(ccl)Cl

ca_class.output_html(bbb_mols[15], colorbar=True)
0.1859
0.1493
0.1126

0.0760

0.0393

NH,

Fig. 3 Model interpretation by ColorAtom. Top — a regression model
with the standard color scheme (SVM regression model using CircuS
fragments built on the photoswitch data set*®). Relative atom contri-
butions to the predictions are indicated by colors: green indicates that
the atom's presence leads to a higher (more positive) property value
and magenta - to a lower (more negative) property value. Middle — the
same model, but with a custom color scheme and a colorbar to
indicate the scale of atomic contributions. Bottom - a classification
model with the standard color scheme (RF classification using ChyLine
fragments built on blood—-brain barrier penetration data*®).

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

2.2 optimizer and c1i modules

The optimizer submodule contains functions for performing
the tasks of descriptor enumeration and model hyperparameter
optimization. preparer.py calculates and outputs the
descriptor table files; optimizer.py runs the algorithm for
hyperparameter optimization on the chosen descriptor type.
The submodule contains the corresponding CLI scripts
launch_preparer and launch_optimizer, as well as special
scripts rebuilder.py to rebuild a specified model from the
parameters indicated in the result table and plotter.py which
includes utility functions for plotting the cross-validation (CV)
results. The separation of the main function from CLI is done so
that the batch descriptor calculation and model optimization
could be performed separately in a Jupyter Notebook or
embedded into custom scripts, while CLI provides the backend
for server applications.

launch_preparer.py accepts a structure table (csv or Excel
format) to calculate a variety of descriptors. All options and their
descriptions are shown in Table 2. The script can output
descriptors in a CSV or a SVM format and allows for saving the
trained descriptor calculator objects for each type. The SVM
format is a representation of a sparse matrix where each line
contains only non-zero elements along with their indices,
making it highly suitable for fragments and fingerprints. The
property is recorded in the first column in both formats. If the
initial data table contains several property columns (i.e., the
--property_column argument is followed by more than one
column name), separate files will be produced for each prop-
erty. The script can sort the files by descriptor type, if a bench-
mark of each type is needed, or output them all in the same
folder if the goal is to select the best descriptor type. The user
may also concatenate the descriptors for several structure
columns and/or solvents into one descriptor file (please note
that only descriptors of one specific type at a time will be
calculated for all columns, so combinatorial concatenation is
not available at the moment). The descriptors that involve size
parameters allow all possible choices to be indicated simulta-
neously in one run. The resulting file names follow the format of
[prop_name] . [descriptor_typel] _[descriptor_size] .{svm or csv}.
The basic set of descriptor parameters to calculate all finger-
prints and fragments is given in the repository
((basic_params. json)) and can be applied via the option
--load_config basic.

launch_optimizer.py initiates the optimization of model
hyperparameters using the descriptor files generated by the
previous script. The optimization is powered by the Optuna
library, which implements the Tree-structured Parzen Estimator
(TPE).* Descriptor spaces as well as the algorithm hyper-
parameters that are given in the config.py file are all subject to
the optimization (the latter are given in Table 3). Currently, the
script allows to choose from Support Vector Machines (SVR and
SVC classes in scikit-learn), Random Forest
(RandomForestRegressor and RandomForestClassifier
classes in scikit-learn) and XGBoost (XGBRegressor and
XGBClassifier classes in the XGBoost library) as methods for
both classification and regression, although other methods may

Digital Discovery, 2025, 4, 1188-1198 | 1193

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Table 2 CLI options of the launch_preparer.py script corresponding to the various molecular descriptors and their parameters

General CLI option Description

Input file -i INPUT, --input INPUT Input file, requires csv or Excel format

Output directory -0 OUTPUT, --output OUTPUT Output directory

Output format -f {svm,csv}, --format {svm,csv} The format for saving the descriptor files

Output option --separate_folders A toggle to save each descriptor type into a separate folder
Input structures —_structure_col STRUCTURE_COL The name of the column where the SMILES are stored

--concatenate CONCATENATE
[CONCATENATE ...]

Solvents --solvent SOLVENT

--property_col PROPERTY_COL
[PROPERTY_COL ...]

--property_names PROPERTY_NAMES
[PROPERTY_NAMES ...]

Model target

Additional columns with SMILES, the descriptors for which will be
calculated and concatenated together

Column that contains the solvent names

The column containing the modeled property (in numerical format)

Alternative column names, for the cases where the column names in
the input file contain spaces or the names are overly long

Options -p PARALLEL, --parallel PARALLEL Any number over 0 launches the calculation of descriptors in parallel
-s, --save Save the fragmentors in pickle format
Descriptor type CLI option Description
Morgan® --morgan, --morganfeatures Toggles for calculation of Morgan and Morgan feature FP,
respectively
--morgan_nBits [n1 n2 ...], . .
. Sets the size of the bit vector (default 1024)
--morganfeatures_nBits [n1 n2 ...]
--morgan_radius [rl r2 ...], . .
. Indicates the radius of Morgan FP
--morganfeatures_radius [r1 r2 ...]
RDKit FP* --rdkfp, --rdkfplinear, --layered Toggles for calculation of RDKit FP, including linear and layered

--rdkfp_length [r1 r2 ...],
--rdkfplinear_length [rl r2 ...],
--layered_length [r1 r2 ...]

Avalon® --avalon

Atom Pairs® --atompairs

Torsion* --torsion

CircuS --circus
--circus_min [rl1 r2 ...],
-—circus_max [r1 r2 ...]

ChyLine --linear
--linear_min [r1 r2 ...],
--linear_max [rl r2 ...]

Mordred --mordred2d

ones

Indicates the maximum length of RDKit FP.

Toggle for calculation of Avalon FP
Toggle for calculation of atom pair FP
Toggle for calculation of torsion FP

Toggle for calculation of CircuS fragments

Indicates the minimum and maximum radii for
CircuS fragments. For each combination, separate files will be output

Toggle for calculation of ChyLine fragments

Indicates the minimum and maximum lengths

for ChyLine fragments. For each combination, separate files will be
output

Toggle for calculation of Mordred 2D

“ For all FP, the size of the bit vector can be parameterized as [name of FP]_nBits (an example is given for Morgan FP)

be added by the user as they see fit. The main arguments are the
input and output folders (-d and -0, respectively). The -m
argument defines the ML algorithm that will be used. Model's
performance is evaluated on the test set predictions in CV, and
its parameters are given by the options --cv_splits for the

M94 | Digital Discovery, 2025, 4, 1188-1198

number of folds K in K-fold CV and --cv_repeats for repeated
CV. All cross-validation during optimization is performed in
a random manner; there are currently no options for stratifi-
cation or a predetermined train-test split. The script will launch
the optimization in parallel if the parameter -j is used to

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

(cc)

Paper

Table 3 ML algorithm hyperparameters that are optimized by the
optimizer script, as they are in the original libraries (Scikit-learn and
XGBoost). These parameters and their possible values are given in the
config.py file of the optimizer module

Method Implementation Hyperparameters

SVM SVR, SVC C, kernel, coef0

n_estimators,
max_depth,
max_features,
max_samples

RandomForestRegressor,

Random Forest R
RandomForestClassifier

n_estimators,
max_depth, eta,
gamma, reg_alpha,
reg_lambda,
colsample_bytree,
min_child_weight,
subsample,
sampling_method,
booster,
tree_method

XGBRegressor,

XGBoost XGBClassifier

indicate the number of CPU cores. --timeout defines the time
in seconds that is given to each process to finish, otherwise the
process will be terminated (to prevent processes from getting

from doptools.cli.plotter import make_regression_plot

figl, ax1l = make_regression_plot(regr_file_name,
errorbar=True,
stats=True,
title="10-CV prediction results")

Regression 10-fold CV results

MAE(CV) = 10.233 A
600 1 RMSE(CV) = 19.497 y
R2(CV) = 0.913 o
550 - 'j
4
=
2500 A
i
D 450
ke
D 400
a
350 -
300 -
250 T T T T
300 400 500 600

Observed Epipi

View Article Online

Digital Discovery

stuck). Finally, an early stopping criterion is implemented to
stop the optimization if a specific number of best models
(--earlystop_leaders) do not change for a certain number of
steps (--earlystop_patience).

After the optimization, the output folder will contain a folder
for each successfully finished trial with CV prediction results for
each repeat (predictions file) and the overall statistics (stats
file). Also, two files with the scores and hyperparameters will be
recorded, one with all trials (trials.all) and one with the top
50, sorted by score (trials.best). The reported scores are
RMSE, MAE and R® for regression, and ROC AUC, accuracy,
balanced accuracy and F1 score for classification.

rebuilder.py allows to rebuild a pipeline containing the
descriptor calculator, preprocessing and model using the
hyperparameters obtained after optimization, and saves it as
a scikit-learn object. The arguments for the script are the
descriptor folder containing the descriptor calculator object in
the pickle format ((-d)), the folder where the trials.all file
is located for the models to be reproduced (-m), the number of
the trial to reproduce (-n) and the output folder (-o).

The plotter.py script outputs the figure with the cross-
validation results for a specific trial. The arguments are the
input folder where the predictions file is located (-d) and the
output file name (-o). The optional parameters include the title
of the plot (--title), the toggle for the output of the statistical
scores (--stats), and the toggle for the error bar (--errorbar).

from doptools.cli.plotter import make_classification_plot

fig2, ax2 = make_classification_plot(class_file_name,
class_number=1)

Mean ROC curve with variability
(Positive label '1')

1.0 A
0.8 A1
[0}
-+t
g
o 0.6 1
2
=
o ROC repeat 1 (AUC = 0.93)
% 0.4 1 ROC repeat 2 (AUC = 0.94)
> ROC repeat 3 (AUC = 0.94)
F ROC repeat 4 (AUC = 0.94)
0.2 4 ROC repeat 5 (AUC = 0.94)
—— Mean ROC (AUC = 0.94 * 0.00)
+ 1 std. dev.
0.0 -

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 4 Regression (on the left) and classification (on the right) plots produced by the plotter.py script from the optimization results files, using
the code snippets shown on top. The example plot is for an SVM regression model using CircuS fragments built on the photoswitch data set*® to
predict the maximum absorption wavelength. The classification model is built on a blood—brain barrier penetration data set*® using Avalon

fingerprints. Both plots are for illustration purposes only.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4, 188-1198 | 1195

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

The error bar is set to the standard deviation of the predictions
across the repeats of the CV, so it would have no effect if a non-
repeated CV was used during optimization. The script will use
the property name from the predictions file for the axis
names. The format of the predictions file and the examples of
the regression and classification plots are shown in Fig. 4.

3 Discussion

DOPtools provides two ways for users to interact with the
developed classes and functions. First, the classes for the
calculation of structural descriptors, solvent descriptors, and
ColorAtom implementation (i.e., chem module) can be freely
integrated into custom scripts or Jupyter notebooks. As the
calculators are written in a way that follows the scikit-learn
notations, they can be seamlessly merged with existing pipe-
lines using this library. In this case, the calculation of descrip-
tors, data processing, and outputs can be fully customized,
although the knowledge of Python coding would be required.
Second, the CLI scripts from the optimizer and cli modules
can be used in the command line without any previous
programming experience, as they only require the library to be
installed and the input files to follow specific formats.

Future developments of the library concern expanding the
functions that are commonly required in QSPR modeling and
chemical data analysis. One of the key areas to improve is
related to memory management. In the current implementa-
tion, both preparer.py and optimizer.py read the whole data
set as the default behavior. While this is not an issue for smaller
data sets and for certain types of descriptors, it may lead to
overconsumption of memory and long calculation time for large
data sets (over 10 000 data points). Partial fitting in descriptor
calculators, as well as data processing in batches, could resolve
such issues; however, these features are not part of the current
implementation and must be handled by the end user.

Another functionality that could prove useful in QSPR
modeling, especially for the prediction of external compounds
and virtual screening, is the implementation of applicability
domain (AD)* estimation. AD estimation is an important step
in virtual screening and evaluation of modeling results.
Currently, there are many ways to estimate the AD, including
some methods that are specific for certain descriptor types®
(e.g., fragment control is unique for molecular fragments).
However, at this time, DOPtools doesn't have any inherent
implementation of these methods, and the end user must
implement these themselves if needed.

4 Conclusions

DOPtools is a Python library that facilitates the calculation of
different types of descriptors for molecules and reactions,
including tabulated physico-chemical parameters for solvents,
as well as ML model optimization, building and validation. The
descriptor calculation functions are implemented following the
API of the widely used scikit-learn library, to adhere to the best
practices in the machine learning community. The library
provides unique capabilities for calculating reaction fragments

196 | Digital Discovery, 2025, 4, 1188-1198

View Article Online

Paper

through the Condensed Graph of Reaction approach, facili-
tating modeling of reactions of mixed classes. The command-
line interface allows to easily automatize the descriptor calcu-
lation and model hyperparameter optimization, enabling its
use in server applications. Additional tools such as ColorAtom
are available for model prediction interpretations and result
plotting. While a limited number of ML algorithms are available
out of the box, the modularity of the library and the general
simplicity of the Python language facilitate the extension of its
functions by the end user. The library is freely available on
GitHub or PyPI, and tutorials for its basic functions from
descriptor calculations to QSPR modeling and prediction are
provided as supplements to this manuscript.

Data availability

All data, including data sets used for illustration purposes, as
well as the source code, reported in this manuscript are freely
available in the DOPtools GitHub repository found at https://
github.com/POSidorov/DOPtools. The library with all the
code, tutorials and examples described in the manuscript, is
also available in the Zenodo repository at DOIL: 10.5281/
zenodo.15007477.

Author contributions

PS is the main developer and the main author of the manu-
script. SB participated in the design of main functionalities and
in testing the developed scripts. PG participated in the imple-
mentation of several utilities of the optimizer scripts, as well as
code formatting and testing. TG developed the functions for
calculating linear and circular fragments (Chython library). All
authors participated in the discussion of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

PS, PG and SB acknowledge the financial support from the
Institute for Chemical Reaction Design and Discovery
(ICReDD), which was established by the World Premier Inter-
national Research Initiative (WPI), MEXT, Japan, as well as the
JSPS KAKENHI grant 23H03807. PS and PG also acknowledge
the support from the List Sustainable Digital Transformation
Catalyst Collaboration Research Platform offered by Hokkaido
University. TG acknowledges the support from the subsidy
allocated to Kazan Federal University for the state assignment
in the sphere of scientific activities FZSM-2024-0002.

Notes and references

1 A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek,
I. 1. Baskin, M. Cronin,]J. Dearden, P. Gramatica,
Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuzmin,
R. Cramer, R. Benigni, C. Yang,]J. Rathman, L. Terfloth,

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/POSidorov/DOPtools
https://github.com/POSidorov/DOPtools
https://doi.org/10.5281/zenodo.15007477
https://doi.org/10.5281/zenodo.15007477
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

J. Gasteiger, A. Richard and A. Tropsha, J. Med. Chem., 2014,
57,4977-5010.

2 Cadence Molecular Sciences, OEChem TK, 2023.

3 CGC Inc., Molecular Operating Environment (MOE), 2011.

4 ChemAxon, Chemical Structure Representation Toolkit, 2023.

5 C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann
and E. Willighagen, J. Chem. Inf. Comput. Sci., 2003, 493-500.

6 G. Landrum, RDKit: Open-source cheminformatics, 2006.

7 N. M. Oboyle, M. Banck, C. A. James, C. Morley,
T. Vandermeersch and G. R. Hutchison, Open Babel: An
open chemical toolbox, 2011.

8 C. W. Yap, J. Comput. Chem., 2011, 32, 1466-1474.

9 A.Varnek, D. Fourches, D. Horvath, O. Klimchuk, C. Gaudin,
P. Vayer, V. Solovev, F. Hoonakker, I. V. Tetko and
G. Marcou, Curr. Comput.-Aided Drug Des., 2008, 4, 191.

10 J. Aires-de Sousa, Mol. Inf., 2024, 43, €202300190.

11 R. I. Nugmanov, R. N. Mukhametgaleev, T. Akhmetshin,
T. R. Gimadiev, V. A. Afonina, T. I. Madzhidov and
A. Varnek, J. Chem. Inf. Model., 2019, 59, 2516-2521.

12 R. Nugmanov, N. Dyubankova, A. Gedich and J. K. Wegner, J.
Chem. Inf. Model., 2022, 62, 3307-3315.

13 J. Sieg, C. W. Feldmann, J. Hemmerich, C. Stork, F. Sandfort,
P. Eiden and M. Mathea, ChemRxiv, 2024, preprint, DOIL:
10.26434/chemrxiv-2024-kd11b.

14 E. J. Bjerrum, R. A. Bachorz, A. Bitton, O.-h. Choung,
Y. Chen, C. Esposito, S. Viet Ha and A. Poehlmann,
ChemRxiv, 2023, preprint, DOI: 10.26434/chemrxiv-2023-
fzqwd.

15 M. Karim and R. M. Rahman, J. Software Eng. Appl., 2013, 6,
196-206.

16 S. Sarumathi, N. Shanthi, S. Vidhya and P. Ranjetha, Int. J.
Comput. Sci. Inf. Eng., 2015, 9, 473-480.

17 S. Beisken, T. Meinl, B. Wiswedel, L. F. de Figueiredo,
M. Berthold and C. Steinbeck, BMC Bioinf., 2013, 14, 257.

18 P. Ambure, A. K. Halder, H. G. Diaz and M. N. D. S. Cordeiro,
J. Chem. Inf. Model., 2019, 59, 2538-2544.

19 D. Horvath, J. B. Brown, G. Marcou and A. Varnek,
Challenges, 2014, 5, 450-472.

20 S. L. Dixon, J. Duan, E. Smith, C. D. Von Bargen, W. Sherman
and M. P. Repasky, Future Med. Chem., 2016, 8, 1825-1839.

21 M. Feurer, A. Klein, K. Eggensperger,]J. Springenberg,
M. Blum and F. Hutter, Adv. Neural Inf. Process. Syst., 2015,
28, 2962-2970.

22 M. Feurer, K. Eggensperger, S. Falkner, et al., J. Mach. Learn.
Res., 2022, 23, 11936-11996.

23 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, J. Mach. Learn.
Res., 2011, 12, 2825-2830

24 W. McKinney, Python for High Performance and Scientific
Computing, 2011, 14, 1-9.

25 T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama,
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New
York, NY, USA, 2019, pp. 2623-2631.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

26 D. Dalmau and J. V. Alegre-Requena, Wiley Interdiscip. Rev.
Comput. Mol. Sci., 2024, 14, e1733.

27 H. W. van den Maagdenberg, M. Sicho, D. A. Araripe,
S. Luukkonen, L. Schoenmaker, M. Jespers,
0. J. M. Béquignon, M. G. Gonzalez, R. L. van den Broek,
A. Bernatavicius, J. G. C. van Hasselt, P. H. van der Graaf
and G.]. P. van Westen, J. Cheminf., 2024, 16, 128.

28 L. Mervin, A. Voronov, M. Kabeshov and O. Engkvist,
ChemRxiv, 2024, preprint, DOIL: 10.26434/chemrxiv-2024-
2rlk7-v2.

29 J. Lanini, G. Santarossa, F. Sirockin, R. Lewis, N. Fechner,
H. Misztela, S. Lewis, K. Maziarz, M. Stanley, M. Segler,
N. Stiefl and N. Schneider, J. Chem. Inf. Model., 2023, 63,
4497-4504.

30 F. Hoonakker, N. Lachiche, A. Varnek and A. Wagner, Int. J.
Artif. Intell. Tool., 2011, 20, 253-270.

31 N. Tsuji, P. Sidorov, C. Zhu, Y. Nagata, T. Gimadiev,
A. Varnek and B. List, Angew. Chem., Int. Ed., 2023, 62,
€202218659.

32 T.R. Gimadiev, T. I. Madzhidov, R. I. Nugmanov, I. I. Baskin,
I. S. Antipin and A. Varnek, J. Comput.-Aided Mol. Des., 2018,
32, 401-414.

33 D. Horvath, G. Marcou, A. Varnek, S. Kayastha, A. de la Vega
de Leon and J. Bajorath, J. Chem. Inf. Model., 2016, 56, 1631-
1640.

34 H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola and
V. Vapnik, Adv. Neural Inf. Process. Syst., 1997, 155-161.

35 T. Chen and C. Guestrin, Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, 2016, pp. 785-794.

36 L. Breiman, Mach. Learn., 2001, 45, 5-32.

37 DOPtools GitHub repository, https://github.com/POSidorov/
DOPtools, Accessed: 2024-12-12.

38 J. Bergstra, D. Yamins and D. Cox, Proceedings of the Python
in Science Conference, 2013, pp. 13-19.

39 H. Moriwaki, Y.-S. Tian, N. Kawashita and T. Takagi, J.
Cheminf., 2018, 10, 1-14.

40 G. Marcou, D. Horvath, V. SolovEv, A. Arrault, P. Vayer and
A. Varnek, Mol. Inf., 2012, 31, 639-642.

41 D. Rogers and M. Hahn, J. Chem. Inf. Model., 2010, 50, 742—
754.

42 P. Gedeck, B. Rohde and C. Bartels, J. Chem. Inf. Model.,
2006, 46, 1924-1936.

43 R. E. Carhart, D. H. Smith and R. Venkataraghavan, J. Chem.
Inf. Comput. Sci., 1985, 25, 64-73.

44 R. Nilakantan, N. Bauman, J. S. Dixon and
R. Venkataraghavan, J. Chem. Inf. Comput. Sci., 1987, 27,
82-85.

45 R. R. Griffiths, J. L. Greenfield, A. R. Thawani, A. R. Jamasb,
H. B. Moss, A. Bourached, P. Jones, W. McCorkindale,
A. A. Aldrick, M. J. Fuchter and A. A. Lee, Chem. Sci., 2022,
13, 13541-13551.

46]. Catalan, J. Phys. Chem. B, 2009, 113, 5951-5960

47 W. Bort, 1. I Baskin, T. Gimadiev, A. Mukanov,
R. Nugmanov, P. Sidorov, G. Marcou, D. Horvath,
O. Klimchuk, T. Madzhidov and A. Varnek, Sci. Rep., 2021,
11, 3178.

Digital Discovery, 2025, 4, 1188-1198 | 1197

https://doi.org/10.26434/chemrxiv-2024-kd11b
https://doi.org/10.26434/chemrxiv-2023-fzqwd
https://doi.org/10.26434/chemrxiv-2023-fzqwd
https://doi.org/10.26434/chemrxiv-2024-2rlk7-v2
https://doi.org/10.26434/chemrxiv-2024-2rlk7-v2
https://github.com/POSidorov/DOPtools
https://github.com/POSidorov/DOPtools
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 17 March 2025. Downloaded on 2/9/2026 7:44:34 AM.

(cc)

View Article Online

Digital Discovery Paper
48 D. Roy, V. K. Hinge and A. Kovalenko, ACS Omega, 2019, 4, G. Klopman, A. Carol, G. Myatt, N. Nikolova-jeliazkova,
16774-16780. G. Y. Patlewicz and R. Perkins, Altern. Lab. Anim., 2005, 2,
49 J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl, Adv. Neural 155-173.
Inf. Process. Syst., 2011, 2546-2554. 51 A. Rakhimbekova, T. I. Madzhidov, R. I. Nugmanov,
50 T. I. Netzeva, A. P. Worth, T. Aldenberg, R. Benigni, T. R. Gimadiev, I. I. Baskin and A. Varnek, Int. J. Mol. Sci.,
T. D. Mark, P. Gramatica, J. S. Jaworska, S. Kahn, 2020, 21(15), 5542.

M98 | Digital Discovery, 2025, 4, 1188-1198 © 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00399c

	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization

	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization
	DOPtools: a Python platform for descriptor calculation and model optimization

