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This work utilizes collected and organized instructional data from the field of chemical science to fine-tune

mainstream open-source large language models. To objectively evaluate the performance of the fine-

tuned models, we have developed an automated scoring system specifically for the chemistry domain,

ensuring the accuracy and reliability of the evaluation results. Building on this foundation, we have

designed an innovative chemical intelligent assistant system. This system employs the fine-tuned Mistral

NeMo model as one of its primary models and features a mechanism for flexibly invoking various

advanced models. This design fully considers the rapid iteration characteristics of large language models,

ensuring that the system can continuously leverage the latest and most powerful AI capabilities. A major

highlight of this system is its deep integration of professional knowledge and requirements from the

chemistry field. By incorporating specialized functions such as molecular visualization, SMILES string

processing, and chemical literature retrieval, the system significantly enhances its practical value in

chemical research and applications. More notably, through carefully designed mechanisms for

knowledge accumulation, skill acquisition, performance evaluation, and group collaboration, the system

can optimize its professional abilities and interaction quality to a certain extent.
1 Introduction

Large Language Models (LLMs) stand out as one of the most
noteworthy achievements in the eld of articial intelligence in
recent years and represent a crucial direction for the develop-
ment of Articial General Intelligence (AGI).1,2 Since the intro-
duction of ChatGPT and GPT-4o, Large Language Models
(LLMs) and Multimodal Large Language Models (MLLMs) have
attracted signicant interest due to their versatile abilities in
understanding, reasoning, and generating content.3 However,
the current state of this technology still presents signicant
deciencies and imbalances, including persistent illusions,
misaligned values, weak specialization, and the black box
effect.2 In this scenario, how to apply Large Language Models
(LLMs) to different professional elds has become a current
research hotspot.

Fine-tuning has a signicant effect on improving the
performance of LLMs in specic application scenarios, which
lays the foundation for LLMs to further promote scientic
progress in various elds.4,5 For example, research by Ouyang
et al. (2022), Wei et al. (2021), and Sanh et al. (2021) demon-
strates that ne-tuning language models on a specic set of
tasks signicantly enhances their ability to understand and
mation Engineering, Zhejiang Normal

a. E-mail: kangyongma@outlook.com;

tion (ESI) available. See DOI:

the Royal Society of Chemistry
execute instructions.6–8 This method not only reduces the reli-
ance on large datasets but also improves the generalization
capabilities of the models. Given the scale of LLMs, a common
ne-tuning strategy currently involves adjusting a limited
number of parameters while keeping the rest xed.9 This tech-
nique, known as Parameter-Efficient Fine-Tuning (PEFT),
selectively tunes a small subset of parameters. PEFT has also
gained interest beyond NLP, particularly in the CV community,
for ne-tuning large-parameter visual models such as Vision
Transformers (ViTs), diffusion models, and visual-language
models.4

However, ne-tuning large models still has some drawbacks.
For example, this method requires substantial computational
resources and data. Fine-tuning large models is also prone to
overtting on small-scale datasets and cannot accurately reect
potential risks (e.g., “hallucinations”), which may introduce
latent hazards. Additionally, it cannot update its knowledge
base in real time.10 The primary reasons for these drawbacks are
that both pre-trained large models and ne-tuned large models
use parameter memory to construct a parameterized implicit
knowledge base.11 Hybrid models that combine parametric
memory and non-parametric (i.e., retrieval-based) memory can
address some of these issues.12–14 The Retrieval-Augmented
Generation (RAG) technique improves the accuracy and reli-
ability of hybrid model generation by integrating knowledge
from external databases (non-parametric memory), especially
for knowledge-intensive tasks. This approach also allows for
continuous knowledge updates and the integration of domain-
Digital Discovery, 2025, 4, 355–375 | 355
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View Article Online
specic information. RAG synergizes the intrinsic knowledge of
large language models with the extensive dynamic repositories
of external databases.15
Fig. 1 Research process.

356 | Digital Discovery, 2025, 4, 355–375
Furthermore, with the continuous development of LLMs, they
are seen as potential sparks for Articial General Intelligence
(AGI), providing hope for the construction of general AI agents.16
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Currently, AI agents are considered a crucial step towards
achieving AGI, encompassing the potential for a wide range of
intelligent activities.17–19 In many real-world tasks, the capabilities
of agents can be enhanced by constructing multiple cooperative
agents.20 Studies have shown that multi-agent systems help
encourage divergent thinking21 (Liang et al., 2023), improve
factuality and reasoning abilities22 (Du et al., 2023), and provide
verication23 (Wu et al., 2023). These features have garnered
widespread attention. Currently, the general frameworks for con-
structing LLM applications with multiple agents include Auto-
Gen,20 crewAI,38 Langchain39 and others. Intelligent agents based
on large language models (LLMs) are increasingly permeating
various aspects of human production and daily life. However,
designing articial intelligence agents with self-evolution capa-
bilities has become a current research hotspot. For example, Li
et al.24 proposed an evolutionary framework for agent evolution
and arrangement called EvoluaryAgent. Qian et al.25 proposed
a general strategy for inter-task agent self-evolution based on
Investigation-Consolidation-Exploitation (ICE).

These articial intelligence technologies will provide a new
paradigm for scientic research and open new avenues for
scientic innovation, thereby signicantly accelerating the pace
of scientic discoveries. The close collaboration between arti-
cial intelligence technologies and scientists heralds the advent
of a new era of scientic exploration and technological
breakthroughs.26,27

In recent years, despite the rapid development of articial
intelligence technology, especially the emergence of large
language models, its application in the eld of chemistry has
not yet been widely popularized. As an important productivity
tool, articial intelligence not only improves work efficiency but
also provides a new paradigm for scientic research. For
chemistry, a discipline with a long history, how to combine with
this advanced productivity tool to breathe new life into the eld
has become an important topic facing the new generation of
chemists. This research aims to address this challenge by
developing a dedicated intelligent assistance system for the
eld of chemistry through the integration of cutting-edge AI
technologies. Specically, we rst collected and organized
a large amount of data from the eld of chemical science to ne-
tune mainstream open-source large language models. Secondly,
we designed a set of evaluation systems specically for the
chemistry eld to detect the performance of the ne-tuned
models and select the best-performing model from them. On
this basis, we developed an AI assistant for the chemistry eld.
This system integrates multi-agent architecture, retrieval-
augmented generation (RAG) technology, online search func-
tionality, and an interactive user interface. It not only provides
an innovative platform for chemical research and education but
also offers valuable research opportunities for exploring multi-
agent collaboration in complex systems. By fusing traditional
chemical knowledge with cutting-edge AI technology, this
system is expected to promote innovative development in the
eld of chemistry and provide new ideas and tools for solving
current scientic and engineering challenges. Fig. 1 illustrates
the overall process of this study.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2 Related work
2.1 Fine-tuning LLMs for applications in the eld of
chemistry

In recent years, with the rapid development of articial intelli-
gence technology, Large Language Models (LLMs) have been
increasingly applied in the eld of chemical sciences. Through
ne-tuning for specic chemical tasks, these models have
demonstrated remarkable potential, bringing new perspectives
and methods to chemical research. Currently, signicant
progress has been made in chemical science research using
ne-tuned large language models, covering various aspects
from material design to drug discovery. These studies not only
showcase the exceptional ability of LLMs in handling complex
chemical problems but also provide innovative approaches to
addressing long-standing chemical challenges.

For example, Kevin Maik Jablonka et al. 45 ne-tuned the
large language model GPT-3 to perform various tasks in
chemistry and materials science, including properties of
molecules and materials, as well as chemical reaction
outcomes. Zikai Xie et al. 46 demonstrated the effectiveness of
ne-tuned GPT-3 in predicting electronic and functional prop-
erties of organic molecules. Shifa Zhong et al. 47 developed
quantitative structure–activity relationship (QSAR) models for
water pollutant activity/properties by ne-tuning GPT-3 models.
Seongmin Kim et al. 48 evaluated the effectiveness of pre-trained
and ne-tuned large language models (LLMs) in predicting the
synthesizability of inorganic compounds and selecting
synthetic precursors. Results showed that ne-tuned LLMs
performed comparably, and sometimes superiorly, to recent
custom machine learning models in these tasks, while
requiring less user expertise, cost, and time to develop.

These research ndings conclusively demonstrate that ne-
tuning LLMs can signicantly enhance their application
breadth and effectiveness in the eld of chemical sciences. This
approach not only provides powerful tools for chemical
research but also promises to accelerate innovation in chemical
sciences, offering new ideas and methods for solving complex
chemical problems. As technology continues to advance, we can
anticipate that ne-tuned LLMs will play an increasingly
important role in the eld of chemical sciences, driving chem-
ical research towards deeper and more precise directions.
2.2 AI agents in the eld of chemistry

Although large language models (LLMs) have demonstrated
excellent performance in tasks across multiple domains, they
face challenges in chemistry-related problems and lack the
ability to access external knowledge sources, limiting their
practicality in scientic applications. To address these de-
ciencies, researchers have conducted relevant explorations.

For example, Kevin Maik Jablonka et al. 49 developed
ChemCrow, an LLM chemical agent designed to complete
chemistry tasks such as organic synthesis, drug discovery, and
materials design. By integrating multiple expert-designed
chemical tools and using GPT-4 as the LLM, they enhanced
the performance of LLMs in the eld of chemistry and
Digital Discovery, 2025, 4, 355–375 | 357
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View Article Online
demonstrated new capabilities. Daniil A. Boiko et al. 50 reported
Coscientist, a GPT-4-powered articial intelligence system
capable of autonomously designing, planning, and executing
complex scientic experiments. Coscientist leverages large
language models combined with tools such as internet
searches, document retrieval, code execution, and experimental
automation. Andrew D. McNaughton et al. 51 introduced
a system called CACTUS (Chemistry Agent Connecting Tool-
Usage to Science), which is an intelligent agent based on large
language models (LLMs) designed to enhance advanced
reasoning and problem-solving capabilities in the elds of
chemistry and molecular discovery by integrating chem-
informatics tools.

These research ndings demonstrate that AI agents, by
expanding the functionality of large language models, enable
their more extensive application in the eld of chemistry.
3 Materials and methods
3.1 Dataset-related work

This work collects and organizes datasets sourced from the
studies of Yin Fang et al. 44 and Tong Xie et al. 43 For example,
Yin Fang et al. 44 constructed a dataset called Mol-Instructions,
which includes three key components: molecule-oriented
instructions, protein-oriented instructions, and biomolecular
text instructions. Each component aims to enhance the
performance of LLMs in related elds. The data are sourced
from multiple authorized biochemical databases, extracted and
selected through data mining and AI-assisted generation tech-
niques. Strict quality assurance measures were implemented,
Table 1 List of datasets used in our study

Dataset Url link

ESOL43 https://github.com/MasterAI
MoosaviCp43 https://github.com/MasterAI

MoosaviCp/MoosaviCp.json
MoosaviDiversity43 https://github.com/MasterAI

MoosaviDiversity.json
NagasawaOPV43 https://github.com/MasterAI

NagasawaOPV.json
Chembl43 https://github.com/MasterAI
matbench_expt_gap43 https://github.com/MasterAI

matbench_expt_gap.json
matbench_glass43 https://github.com/MasterAI

matbench_glass.json
matbench_is_metal43 https://github.com/MasterAI

matbench_is_metal.json
matbench_steels43 https://github.com/MasterAI

matbench_steels.json
Pei43 https://github.com/MasterAI
waterStability43 https://github.com/MasterAI

waterStability.json
description_guided_molecule_design44 https://huggingface.co/datas
forward_reaction_prediction44 https://huggingface.co/datas
molecular_description_generation44 https://huggingface.co/datas
reagent_prediction44 https://huggingface.co/datas
property_prediction44 https://huggingface.co/datas
Retrosynthesis44 https://huggingface.co/datas

358 | Digital Discovery, 2025, 4, 355–375
including chemical validity verication. Its focus in the chem-
istry domain is to enhance large language models' (LLMs)
understanding and application capabilities in chemistry by
providing instruction data specically targeted at chemical
molecules. Here are several key aspects of this dataset's focus on
chemistry.

3.1.1 Molecular description generation. The dataset
includes tasks requiring the model to generate detailed text
descriptions based onmolecular structure descriptions (such as
SMILES or SELFIES strings), including the molecule's physico-
chemical properties, bioactivity, and potential applications.

3.1.2 Description-based molecular generation. It provides
the reverse task of generating chemical structure representa-
tions from text descriptions, which is signicant for molecular
design in drug discovery and materials science.

3.1.3 Chemical reaction prediction. This includes forward
reaction prediction (predicting products given reactants and
reagents), retrosynthesis (predicting possible reactants and
reagents given a product), and reagent prediction (predicting
required reagents given reactants and products).

3.1.4 Molecular property prediction. The dataset also
involves predicting physicochemical properties based on
molecular structure information, such as quantum mechanical
properties (e.g., frontier orbital energies of molecules).

For instance, Tong Xie et al. 43 constructed a dataset by
integrating resources from multiple scientic domains to
support natural science research, especially in the elds of
physics, chemistry, and materials science. It includes:

3.1.5 Scientic knowledge dataset (SciQ dataset). This is
a crowdsourced science question-answering dataset consisting
Data format

EAM/Darwin/blob/main/dataset/ESOL/ESOL.json Json
-EAM/Darwin/blob/main/dataset/ Json

-EAM/Darwin/blob/main/dataset/MoosaviDiversity/ Json

-EAM/Darwin/blob/main/dataset/NagasawaOPV/ Json

-EAM/Darwin/blob/main/dataset/chembl/chembl.json Json
-EAM/Darwin/blob/main/dataset/matbench_expt_gap/ Json

-EAM/Darwin/blob/main/dataset/matbench_glass/ Json

-EAM/Darwin/blob/main/dataset/matbench_is_metal/ Json

-EAM/Darwin/blob/main/dataset/matbench_steels/ Json

-EAM/Darwin/blob/main/dataset/Pei/pei.json Json
-EAM/Darwin/blob/main/dataset/waterStability/ Json

ets/zjunlp/Mol-Instructions/tree/main/data Json
ets/zjunlp/Mol-Instructions/tree/main/data Json
ets/zjunlp/Mol-Instructions/tree/main/data Json
ets/zjunlp/Mol-Instructions/tree/main/data Json
ets/zjunlp/Mol-Instructions/tree/main/data Json
ets/zjunlp/Mol-Instructions/tree/main/data Json

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of 13 679 science exam questions covering subjects such as
physics, chemistry, and biology.

3.1.6 Scientic paper dataset. It collected about 6 million
scientic papers from the Web of Science in the eld of mate-
rials science, including chemistry, physics, energy, etc., meeting
specic criteria such as full-text format availability and English
language. Using the SciCrawler tool, content was downloaded
from different publishers and converted to plain text. This
dataset aims to enhance models' understanding of professional
scientic knowledge to promote signicant advancements in
various elds.

3.1.7 FAIR dataset. FAIR stands for “Findable, Accessible,
Interoperable, and Reusable,” which is a set of principles aimed
at improving the value and accessibility of data. It collected 16
open-access FAIR datasets on multidisciplinary topics,
including physics, chemistry, and materials science.

This study collected and organized datasets related to the
eld of chemical science from the above research for use in this
study. Specic details can be found in the ESI†.
Fig. 3 Histogram of character count.

Fig. 2 Example of fine-tuned data.

© 2025 The Author(s). Published by the Royal Society of Chemistry
3.2 Datasets

During the adjustment of the LLM, various datasets related to
chemical sciences were utilized. The ne-tuning data for this
work come from the datasets listed in Table 1, with a total of
1.72 million ne-tuning instructions collected and organized.
Based on this, two different types of instructions were divided
for the ne-tuning training of different large models. Fig. 2
illustrates a representative example of ne-tuned data.

Fig. 3 and 4 show the distribution of output character
lengths for the instruction dataset and the usage frequency and
types of the 20 most commonly used instructions in this work.

Fig. 3 illustrates the character count (output length) of the
output text in the dataset, which exhibits a wide distribution
range, covering both short and long texts. The distribution is
concentrated in the 0 to 1000 character range. Short texts (texts
with fewer characters) appear more frequently, and as the
output length increases, the frequency decreases. Kernel
Density Estimation (KDE), also known as Parzen's window,28 is
one of the most renowned methods for estimating the under-
lying probability density function of a dataset. The KDE curve
provides a smooth estimate of the distribution within this
range, aiding in a more intuitive understanding of the text
distribution pattern.

The bar chart (Fig. 4) shows the frequency of the 20 most
common instructions in the dataset for this study. Among
these, “Provide a brief overview of this molecule” and “Provide
a description of this molecule” appear signicantly more oen
than other instructions, indicating their prominent role in the
dataset. Nonetheless, other types of instructions also appear,
demonstrating the diversity of instruction types within the
dataset.
Digital Discovery, 2025, 4, 355–375 | 359
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Fig. 4 Top 20 most frequent instructions.
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3.3 Fine-tuning

In this work, we collected and curated 1 720 313 ne-tuning
instructions from the eld of chemical science. Using the
Fig. 5 Training loss of LLMs.

Table 2 Fine-tuning process parameter settings

Parameter Value Description

Lora_alpha 16 LoRA alpha parameter
Max_steps 60 Maximum training

steps
Learning_rate 2 × 10−4 Learning rate
Weight_decay 0.01 Weight decay

parameter
Seed 3407 Random seed

360 | Digital Discovery, 2025, 4, 355–375
unsloth29 tool, we ne-tuned open-source large language
models including llama-3-8B-Instruct-bnb-4bit, mistral-7B-
instruct-v0.3-bnb-4bit, gemma-7B-bnb-4bit, gemma-2-9b-bnb-
4bit, Phi-3-mini-4k-instruct, Mistral-Nemo-Instruct-2407-bnb-
4bit and Llama-3.1-8B-Instruct-bnb-4bit. We employed the
PEFT (Parameter-Efficient Fine-Tuning) method to apply the
LoRA (Low-Rank Adaptation) technique for ne-tuning the pre-
trained models. The training parameters were congured using
SFTTrainer and TrainingArguments. By combining quantiza-
tion techniques, LoRA technology, and optimized training
congurations, we aimed to enhance performance and optimize
resource utilization. Table 2 shows parameter settings for the
ne-tuning process for LLMs.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 presents the training loss curve during the training
process of LLMs. In the initial phase of training, the loss value is
relatively high because the model parameters have not yet been
optimized, leading to a signicant gap between the predicted
results and the actual values. As the training progresses, the
model gradually learns and continuously adjusts the parame-
ters, making the predicted results increasingly closer to the
actual values. Consequently, the error decreases, and the loss
value gradually declines and tends to stabilize.

3.4 Deployment of LLMs (large language models)

Aer the ne-tuning step in Section 3.3 of the large language
model, we employed Ollama for the local deployment and
Fig. 7 Scoring criteria for different types of questions.

Fig. 6 Model parameter specific settings.

© 2025 The Author(s). Published by the Royal Society of Chemistry
testing of ne-tuned LLMs. Model parameters were set using
the Modelle conguration le. Specically, the model's
temperature was set to 0.8 and the context window size was
congured to 8192 tokens. Additionally, three stop markers
were dened to control the boundaries of the generated text.
The detailed conguration is shown in Fig. 6. Aer ne-tuning,
the four large language models were deployed on a local
computer for testing. The four ne-tuned large language
models (Llama3-8B, Phi-3-mini, Gemma-7B, and Mistral-7B)
were deployed on a local computer with an Intel(R) Core(TM)
i5-10210U CPU @ 1.60 GHz (up to 2.11 GHz) and an NVIDIA
GeForce MX250 GPU for testing. The two ne-tuned models are
tested using Google Colab, with Gemma2-9B tested on a T4
GPU, Phi-3Medium tested on an L4 GPU, Llama3.1-8B tested on
a Colab CPU and Mistral NeMo tested on an L4 GPU.
3.5 Methods for evaluating the quality of LLM responses

Based on previous research, evaluation aer ne-tuning large
language models is crucial, as it serves as a key tool for identi-
fying current system limitations and informing the design of
more powerful models.30 Therefore, in this work, to assess the
performance of different large models aer ne-tuning, 100
questions were randomly selected from the dataset for model
testing. To evaluate the performance of different models aer
ne-tuning more objectively, this study specically designed
OptimizedModelEvaluator, an automatic scoring program to
evaluate the performance of different models.

Different scoring criteria were designed for different ques-
tions. Additionally, the evaluator considered some special cases
in the eld of chemical science, assigning higher weights to key
words such as ‘reaction’, ‘mechanism’, 'synthesis', and ‘cata-
lyst’. It also recognizes specic chemical terms (e.g., ‘alkane’,
‘alkene’, and ‘alkyne’), considers conversions between different
units when making numerical comparisons (such as kJ to kcal),
and applies special processing for questions involving specic
concepts such as the LUMO, the HOMO, and orbital energies
(comparing the signs (positive or negative) of the extracted
answer value and the correct answer value; LUMO and HOMO
energies are typically negative, so the correctness of the sign is
Digital Discovery, 2025, 4, 355–375 | 361
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important). For questions involving MOFs, it pays special
attention to key concepts such as ‘linker’, ‘node’, and ‘topology’.

The system employs various methods to evaluate the quality
of answers. For numerical problems, it calculates relative errors
and assigns corresponding scores. It uses Levenshtein
distance31 or simple word set intersections to compute the
similarity between answers and standard solutions. BLEU
scores32 and ROUGE scores33 are used to assess the quality of
generated text and summaries, respectively. The Flesch34

Reading Ease Index is utilized to evaluate text readability. In
addition to these methods, the system also incorporates eval-
uation criteria such as keyword relevance, coherence, concise-
ness, factual accuracy, and creativity. Fig. 7 presents the scoring
criteria for various types of questions.

Through these detailed settings, the evaluator can better
assess the model's understanding of concepts related to
molecular orbital theory, rather than just simple numerical
Fig. 8 Automatic grading program process.

362 | Digital Discovery, 2025, 4, 355–375
matching. This enables a comprehensive evaluation of AI
models' performance in answering chemistry-related questions,
covering multiple dimensions including accuracy, relevance,
readability, and creativity. Fig. 8 illustrates the scoring process.
(See the ESI† for details).

3.5.1 Details of optimizedmodelevaluator. In this study, we
rst systematically organized and categorized the responses
from ne-tuned large language models. Based on the nature of
the questions and the expected form of answers, we classied
all questions into three main categories: numeric, descriptive,
and generate. This classication method allows us to more
precisely evaluate the model's performance in different types of
tasks. The categorized dataset and code can be found in our
GitHub repository (https://github.com/KangyongMa/GVIM).

Based on this classication, we developed a highly custom-
ized scoring analysis system, implemented through the Opti-
mizedModelEvaluator class. This system evaluated eight
© 2025 The Author(s). Published by the Royal Society of Chemistry
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different models, including Llama3, Mistral, Phi-3, Gemma,
Gemma2, Phi-3 Medium, MistralNemo, and Llama3.1. Specic
scoring criteria and weights were designed for the three main
question types: numeric, descriptive, and generate. For numeric
type questions, the system focuses on numeric_accuracy (60%),
keyword_relevance (20%), and conciseness (20%). The
descriptive type considers bleu_score (20%), rouge_scores
(20%), keyword_relevance (20%), readability (20%), and coher-
ence (20%). The generate type emphasizes creativity (40%),
coherence (30%), and keyword_relevance (30%).

The system also introduced chemistry-specic keyword
weights and terminology, assigning different weights to various
chemical concepts. For example, reaction, mechanism, and
synthesis each account for 0.5 points, while bond, electron, and
orbital each account for 0.3 points. Additionally, the system
pays special attention to key chemical terms such as alkane,
alkene, alkyne, aromatic, nucleophile, and electrophile. To
ensure the accuracy of numerical evaluations, the system inte-
grated conversion factors between common units. For instance,
1 kJ = 0.239006 kcal and 1 eV = 96.485 kJ. This carefully
designed conguration ensures that the scoring system can
accurately capture the characteristics and challenges of
different types of questions.

For numeric type questions, the system identies and
extracts values and units, supports the aforementioned unit
conversions, and calculates accuracy scores based on relative
errors. In terms of keyword relevance scoring, the system uses
a predened keyword_importance dictionary to assign weights
to different keywords, while also considering specic chemical
terminology.

For descriptive and generate type questions, the system
integrates various advanced natural language processing tech-
niques. Text similarity scoring primarily uses Levenshtein
distance, with the word set overlap rate as a fallback when
unavailable. The system also applies BLEU and ROUGE algo-
rithms to evaluate generated text quality, uses the textstat
library to calculate readability, and assesses text coherence
based on the word overlap rate between adjacent sentences.

For domain-specic knowledge such as HOMO/LUMO
energy levels or MOF structures, the system applies special
scoring rules to accurately evaluate these highly specialized
chemical concepts. We implemented a complex and rened set
of rules in the scoring system. These rules not only consider
numerical accuracy but also include unit consistency, relative
energy relationships, structural composition, functional prop-
erties, and more.

For HOMO/LUMO energy levels, the system rst evaluates
numerical accuracy, allowing an error range of ±0.1 eV. We also
consider unit consistency, prioritizing electron volts (eV) as the
standard unit and slightly penalizing answers using non-
standard units. Furthermore, the system checks if the relative
positions of HOMO and LUMO levels are correct and rewards
answers that correctly mention the energy gap.

When evaluating MOF structures, our rules are more
comprehensive. The system checks if the answer correctly
identies the metal center, organic linkers, and their connec-
tivity. We also assess descriptions of porosity and specic
© 2025 The Author(s). Published by the Royal Society of Chemistry
surface area, as well as the identication and explanation of the
MOF's main functions. To encourage more in-depth answers,
we provide extra points for mentioning synthesis methods and
characterization techniques.

These rules are implemented through the calcu-
late_factual_accuracy method in the OptimizedModelEvaluator
class. This method uses regular expressions to extract values
and units and combines them with a chemistry knowledge base
to provide reference values and expected ranges. The scoring
system can dynamically adjust weights based on the depth and
accuracy of the provided information.

By implementing these special rules, our scoring system can
more accurately evaluate the model's performance in handling
complex chemical concepts. This not only improves the accu-
racy and professionalism of the evaluation but also provides
valuable feedback to model developers regarding the model's
mastery of specic chemical domain knowledge. This approach
allows us to gain a more comprehensive understanding of the
capabilities and limitations of large language models in
specialized chemical problems, providing important guidance
for further improvement and application of these models.
Creativity scoring combines uniqueness (degree of difference
from standard answers) and coherence, mainly used to evaluate
generate type questions.

This comprehensive scoring system is not just a simple word
count or hard-coded decision tree, but a complex evaluation
tool that integrates multiple techniques and domain knowl-
edge. By preliminarily classifying questions and designing
specic scoring criteria and weights for each category, we can
more accurately evaluate the model's performance in different
types of tasks. This approach enables us to comprehensively
and deeply analyze the performance of large language models
on complex and diverse chemical problems.
3.6 LLM ne-tuning test results and discussion

This study conducts a comprehensive evaluation of eight ne-
tuned large language models: Llama3-8B, Mistral-7B, Phi-3
Mini, Gemma-7B, Gemma2-9B, Phi-3 Medium, Llama3.1 and
MistralNemo. Through testing across multiple dimensions, we
aim to gain a deep understanding of the performance differ-
ences of these models under various tasks and criteria,
providing insights for model selection and future optimization
directions. Using the automated scoring program introduced in
Section 3.5, the ne-tuned models were evaluated with four
main metrics: overall score, average performance, multi-
dimensional criteria evaluation, and question type classica-
tion assessment. Each model was ne-tuned using the same
strategy and tested on the same test set (details in the ESI†),
ensuring the comparability of the results.

The results from Fig. 9, model performance evaluation, show
that Mistral NeMo demonstrated the strongest overall perfor-
mance with an average score of 4.39. The model excelled
particularly in descriptive tasks (3.60) while maintaining strong
performance in numeric tasks (4.25) and generative tasks (6.24).
Mistral and Llama3 follow closely behind, scoring 4.07 and 4.00
respectively, with both performing very similarly. Phi-3 follows
Digital Discovery, 2025, 4, 355–375 | 363
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Fig. 9 Model performance evaluation results.
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with a score of 3.84, showing balanced capabilities across
different question types.

Both Mistral and Llama3 performed notably better in
generative tasks (Mistral: 6.36 and Llama3: 6.26) compared to
descriptive ones (Mistral: 2.25 and Llama3: 2.28). Phi-3 showed
particular strength in generative tasks (6.09) and comparative
weakness in descriptive ones (2.61).

Notably, Gemma2-9B (3.70 points) shows signicant
improvement compared to its predecessor Gemma-7B (3.02
points). According to the technical reports,35,37 these gains can
be attributed to several key architectural enhancements: First,
Gemma2-9B adopts a deeper architecture with 42 transformer
layers compared to Gemma-7B's 28 layers, along with an
increasedmodel dimension (d_model: 3584 vs. 3072). Second, it
introduces novel components including interleaving local-
global attentions (with a 4096-token local window and 8192-
token global span) and the group-query attention (GQA)
mechanism with num_groups = 2. Third, Gemma2 models
employ knowledge distillation for training instead of traditional
next-token prediction, learning from a larger teacher model on
8 trillion tokens. However, both models still face common
challenges in keyword relevance, BLEU score, and ROUGE
364 | Digital Discovery, 2025, 4, 355–375
scores (<0.2), suggesting that while architectural and training
advances boost overall capabilities, some fundamental limita-
tions in text generation quality and precision remain.

The iteration from Mistral 7B to Mistral NeMo demonstrates
signicant architectural advances, scaling up from 7B to 12B
parameters while introducing innovations such as the Tekken
tokenizer for improved multilingual handling and expanding
context length to 128 k tokens. These improvements enhance
themodel's capabilities across reasoning, instruction following,
and multilingual tasks.52,53

We observe that Phi-3-medium (14B parameters), despite its
larger capacity with 40 attention heads and 40 layers (embed-
ding dimension 5120), shows more modest improvements on
certain benchmarks compared to Phi-3-mini (3.8B parameters,
32 heads, 32 layers, and embedding dimension 3072). This
suggests that our current data mixture, while effective for the
smaller model architecture, may need further optimization to
fully leverage the increased representational capacity of the 14B
parameter scale.54

While Llama 3.1 8B incorporated multilingual capabilities
and extended context length to 128 K tokens, it scored lower
than Llama 3 8B which utilized a comprehensive post-training
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00398e


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 2
/1

1/
20

26
 3

:4
1:

21
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
approach combining supervised ne-tuning, rejection
sampling, PPO and DPO. This suggests that the diversity in ne-
tuning strategies may play a more crucial role in model
performance than expanded linguistic coverage and context
length at the 8B parameter scale.36,55,56

Based on the comprehensive evaluation data, the analysis
reveals a clear hierarchy in model performance, with Mistral
NeMo leading at an average score of 4.39, followed by Mistral
(4.07) and Llama3 (4.00). The models demonstrate distinct
strengths across different question types, with generative tasks
yielding the highest performance scores ranging from 6.2 to 6.4
for top performers. In numeric tasks, models showed moderate
capability with scores between 4.02 and 4.25 for the leading
models, while descriptive tasks proved most challenging with
signicantly lower scores, though Mistral NeMo maintained
a notable advantage at 3.60 compared to others ranging from
1.97 to 3.01. Looking at specic evaluation criteria, most models
exhibited strong creativity (above 0.77) and coherence, with
Mistral NeMo particularly excelling in coherence at 0.962.
However, all models struggled with keyword relevance, with
scores varying across models but generally remaining low. The
correlation analysis indicates that numeric accuracy operates
largely independently from other metrics, while keyword rele-
vance shows a moderate negative correlation with conciseness
(−0.29). These ndings suggest that while current models excel
at creative and generative tasks, there remains signicant room
for improvement in precise information extraction and keyword
relevance, particularly in descriptive tasks. The substantial
variation in performance across different question types also
indicates that optimal model selection should be task-
dependent rather than assuming that one model will excel
universally.

Research ndings reveal the signicant impact of model
iterations on performance improvement, particularly evident in
the evolution from Gemma-7B to Gemma2-9B35 and from
Mistral-7B to Mistral-Nemo. However, the iteration from
Llama3-8B to Llama3.1-8B failed to achieve the expected
performance leap, possibly due to different iteration priorities.36

Notably, all tested models face common challenges, especially
in keyword relevance and task scoring, highlighting the neces-
sity of introducing additional technologies to address these
shortcomings.

Nevertheless, the outstanding performance of these models
in creative and generative tasks continues to demonstrate the
inherent advantages of large language models in these
domains. The test results indicate that ne-tuned large
language models can meet researchers' needs to some extent,
but still have many limitations, including the inability to update
data in real-time, lack of online search capabilities, poor
compatibility with specic domains, insufficient response
accuracy, and limitations in decision-making for single large
models.

Given these limitations exhibited by ne-tuned large
language models, this study developed an articial intelligence
assistant for the chemical domain. This system cleverly inte-
grates multi-agent architecture, Retrieval-Augmented Genera-
tion (RAG) technology, online search functionality, and a user-
© 2025 The Author(s). Published by the Royal Society of Chemistry
friendly interactive interface, aiming to comprehensively
address the aforementioned shortcomings and provide
researchers with a more intelligent, precise, and practical
auxiliary tool.
4 AI agent system for chemistry

This work builds upon the ne-tuning of the aforementioned
large language models to design an AI assistant platform
specically tailored for the eld of chemistry. The platform
integrates multi-agent systems, retrieval-augmented genera-
tion, real-time web search, and chemical structure visualization.
The system incorporates AI agents with diverse professional
backgrounds (such as laboratory directors, senior chemists,
safety officers, etc.), simulating a virtual chemistry research
team environment. These agents can collaborate and continu-
ously learn to provide researchers with comprehensive and
professional support in chemical knowledge, experimental
design suggestions, safety guidance, and data analysis. Addi-
tionally, the system has the capability to convert chemical
structure formulae (SMILES) into visualized images, greatly
enhancing the efficiency and intuitiveness of chemical research,
education, and team collaboration. The system primarily
consists of the following components: a multi-agent system,
retrieval-augmented generation (RAG), real-time web search,
chemical structure visualization, an agent improvement system
and user-friendly interface design.
4.1 Multi-agent system

This system is the core architecture of the project, simulating
a real chemical team. The system contains ve specialized
agents, each with a specic role and expertise, together forming
a comprehensive and efficient virtual chemical research team.
The Lab_Director is responsible for overall task allocation and
research direction guidance, ensuring that the team's research
direction aligns with the overall goals and coordinating work
between agents. The Senior_Chemist provides in-depth chem-
ical knowledge and solutions to complex problems, possessing
rich chemical theory and practical experience to handle chal-
lenging chemical issues and propose innovative research ideas.
The Lab_Manager is responsible for experiment planning and
resource management, ensuring the feasibility of experimental
plans, managing laboratory resources, optimizing experimental
processes, and improving research efficiency. The Safety_Officer
ensures that all discussions and suggestions comply with safety
standards, focusing on experimental safety, reviewing potential
risks of all experimental protocols, and providing safety oper-
ation guidance. The Analytical_Chemist focuses on data anal-
ysis and instrument use, responsible for interpreting
experimental data, providing instrument operation advice, and
ensuring data accuracy and reliability. This design allows each
agent to have its specic area of expertise, providing in-depth
professional knowledge. Agents can complement each other
to solve complex problems collaboratively. For example, when
the Senior_Chemist proposes an experimental protocol, the
Safety_Officer reviews its safety, while the Lab_Manager
Digital Discovery, 2025, 4, 355–375 | 365
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considers its feasibility. This multi-perspective analysis allows
agents with different backgrounds to analyze problems from
various angles, providing comprehensive insights. The struc-
ture simulates the team dynamics of a real chemistry research
group, closely mimicking real team decision-making processes.
Each agent in the system is based on a large languagemodel but
has specic system prompts to dene its role and expertise, and
different language models can be substituted to meet the needs
of different tasks. AutoGen is used to manage interactions and
dialogue ow between agents, adopting a round-robin approach
to select speakers, ensuring that each agent has the opportunity
to contribute. The above multi-agent design allows the system
to analyze and solve chemical problems from multiple
perspectives, providing comprehensive insights.

AutoGen is an open-source framework for building LLM
applications through multi-agent dialogue. In AutoGen,
a conversable agent is an entity with a specic role that can send
and receive messages to and from other conversable agents,
such as starting or continuing a conversation. It maintains its
internal context based on the messages sent and received and
can be congured to have a range of functionalities, such as
being supported by LLMs, tools, or human input. These agents
can be implemented through AutoGen's built-in AssistantAgent
(powered by GPT-4 for general problem-solving) and User-
ProxyAgent (congured to gather human input and execute
tools).20

(This research can utilize models that have undergone ne-
tuning and comprehensive performance testing as the
system's response model. All ne-tuned large language models
have been uploaded to the Hugging Face platform, allowing
researchers to exibly invoke different models from
KANGYONGMA/Chemistry based on specic application
Fig. 10 Answer demonstration 1 based on the RAG intelligent system.

366 | Digital Discovery, 2025, 4, 355–375
scenarios. Additionally, the system supports the use of original
base models without ne-tuning to execute tasks, providing
greater exibility and diverse options for research).
4.2 Retrieval-augmented generation (RAG)

RAG is a core functionality of the system, extending the
knowledge base of agents by integrating preloaded chemical
literature and experimental data. The RAG workow includes
document loading, text splitting, vector embedding, vector
storage, similarity search, context enhancement, and answer
generation. This process is implemented using the LangChain
library and RetrievalQA chain, signicantly improving the
accuracy and relevance of answers while reducing the possi-
bility of AI generating false information. RAG technology
enables agents to provide answers based on the latest chemical
research, cite relevant literature to support views, and associate
user queries with existing knowledge bases, thereby greatly
enhancing the system's ability to handle complex chemical
problems and provide more precise and relevant information.
Fig. 10 and 11 demonstrate the AI Agent system's RAG-based
responses using local documents.

The above examples demonstrate the capability of
a Retrieval-Augmented Generation (RAG) based intelligent
agent system in accurately answering questions about the water
solubility of chemical compounds. The system precisely
answered the water solubility of two compounds at room
temperature: CCC(O)(CC)CC at 0.14125375446227545 mol L−1,
and a compound with a complex InChI representation at
2.0989398836235246 × 10−5 mol L−1. This high-precision
response highlights the advantages of RAG technology in
cheminformatics applications, especially in tasks requiring
precise numerical outputs, where it outperforms traditional
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Answer demonstration 2 based on the RAG intelligent system.
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ne-tuned large language model approaches. The application of
RAG functionality enables the system to retrieve and provide
accurate numerical information. Fig. 12 illustrates the Q&A test
results based on the RAG.
4.3 Real-time web search

Another important feature of the system is its ability to perform
real-time web searches by integrating the Tavily search API40 to
supplement the preloaded knowledge base. The workow of
this feature includes query analysis, API calls, result processing,
and information integration. The system uses the requests41

library to send API requests and implements error handling and
retry mechanisms to ensure stability. This feature allows agents
to access the latest chemical research and discoveries,
Fig. 12 Based on RAG's Q & A test results.

© 2025 The Author(s). Published by the Royal Society of Chemistry
supplement information that may be missing from the pre-
loaded database, and signicantly improve the system's ability
to answer current affairs questions. By combining preloaded
data and real-time search, the system can provide users with
comprehensive, up-to-date, and accurate chemical information,
excelling particularly in handling emerging research, the latest
discoveries, or real-time data-related issues. Fig. 13 showcases
the system's real-time web search summarization.

The project not only integrates advanced online search
functionality but is also equipped with an intelligent summa-
rization system that signicantly enhances information
retrieval capabilities. The project employs a multi-layered pro-
cessing architecture that intelligently merges and renes web
search results with knowledge base data to present users with
precise and concise information summaries. Notably, the
Digital Discovery, 2025, 4, 355–375 | 367
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Fig. 13 Real-time web search summarization.
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search results go beyond simple text summaries by incorpo-
rating interactive design elements. Specically, key content
within the summaries includes corresponding hyperlinks,
allowing users to trace back to original information sources
with just a click. This design enables researchers to conve-
niently access primary sources and quickly verify the accuracy of
search content.

4.4 Chemical structure visualization

This feature greatly enhances the system's interactivity and
intuitiveness when discussing chemical structures through
368 | Digital Discovery, 2025, 4, 355–375
comprehensive molecular visualization and analysis. The
system converts SMILES strings into both 2D and interactive 3D
molecular structures, while also providing detailed molecular
property analysis. The visualization process leverages RDKit42

for 2D representation and basic molecular structure display,
while utilizing py3Dmol57 for interactive 3D visualization that
allows users to manipulate and examine molecular structures
from any angle. The system automatically generates optimized
3D conformers using MMFF force eld58–64 optimization with
explicit hydrogen atoms, enabling accurate structural repre-
sentation. Beyond visualization, the system calculates and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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displays a comprehensive set of molecular properties including
core molecular descriptors (molecular formula, exact molecular
weight, atom and bond counts), physicochemical properties
(Log P for lipophilicity assessment and TPSA for polar surface
area), and structural features (rotatable bonds, ring count, and
formal charge). The interactive interface provides real-time 3D
structure manipulation with zoom, rotation and pan capabil-
ities, along with atom-by-atom positional data and element-
specic coloring. The system automatically validates and
processes SMILES strings within conversations, offering inte-
grated “View 3D” buttons for instant structure visualization
through a performance-optimized viewer with anti-aliasing and
customizable display styles. This implementation signicantly
Fig. 14 Dialogue interface SMILES visualization.

© 2025 The Author(s). Published by the Royal Society of Chemistry
enhances the visual understanding of chemical concepts and
improves the efficiency of discussing complex molecular
structures through the integration of both structural visualiza-
tion and quantitative property analysis. The system's ability to
automatically detect and process SMILES strings while
providing instant access to both 2D and 3D structural repre-
sentations, along with detailed molecular properties, creates
a seamless and informative environment particularly valuable
for chemical education, drug discovery research, and molecular
design applications. This enhanced functionality provides
chemistry researchers with a comprehensive molecular inter-
action experience, combining visual inspection capabilities
with quantitative chemical property analysis in a single, inte-
grated interface, Fig. 14.
4.5 Agent improvement system

The adaptive learning system implements a basic framework
with four interconnected components: knowledge enrichment,
capability enhancement, performance assessment, and rene-
ment mechanisms. While still in its early stages, the system
takes initial steps toward knowledge expansion and skill
development, allowing agents to gradually build upon their
fundamental capabilities through user interactions and
feedback.

The framework consists of two primary classes: Chemistry-
Agent and ChemistryLab. The ChemistryAgent class maintains
a developing knowledge repository and growing skill set
through the knowledge_base and skills attributes, working to
expand its capabilities via the learn() and acquire_skill()
methods. A preliminary performance tracking system has been
implemented through history-based assessment, with the
evaluate_performance() method beginning to analyze effec-
tiveness based on user feedback.

The renement process, managed by the improve() and
rene_skills() methods, represents early efforts toward devel-
oping new capabilities and rening existing ones. The system
makes initial attempts to identify potential areas for enhance-
ment by examining interaction patterns and user responses. At
the group level, the ChemistryLab class introduces basic
knowledge sharing among agents and implements founda-
tional assessment cycles.

This architecture takes preliminary steps toward enabling
incremental adjustments based on interactions and feedback,
aiming to gradually enhance its domain expertise and interac-
tion quality in chemistry-related discussions. While the current
design creates a basic responsive framework that shows
potential for adapting to user needs, it acknowledges substan-
tial room for improvement across all aspects. The user feedback
interface, shown in Fig. 15, provides initial support for ongoing
renement of the system's developing capabilities.

Through basic mechanisms including knowledge base
expansion, skill development, and feedback incorporation,
agents work toward building their understanding of chemical
concepts and problem-solving approaches. This measured
approach to capability enhancement represents early progress
while acknowledging the signicant work still needed to
Digital Discovery, 2025, 4, 355–375 | 369
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Fig. 15 User feedback and intelligent agent interface.
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achieve more sophisticated and comprehensive functionality.
The system remains in its nascent stages, with considerable
opportunities for advancement in areas such as response
accuracy, contextual understanding, and adaptive learning
mechanisms.

4.6 User-friendly interface design

The project includes an intuitive web interface that can display
real-time conversations between agents, agent status, and
feedback mechanisms, providing a better interactive
experience.
370 | Digital Discovery, 2025, 4, 355–375
4.7 Functionality expansion

During the system design phase, the team fully considered the
potential impact of model updates and iteration and therefore
reserved corresponding upgrade and development space.
Fig. 16 demonstrates the image recognition capabilities aer
the integration of multi-modal large models, which provides an
important foundation for expanding more functionalities in the
future. This extensible architecture also creates opportunities
for incorporating advanced inference-time computation strate-
gies, such as chain-of-thought prompting and Monte Carlo tree
search, which could enhance the system's reasoning
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Functionality expansion—multimodal models.
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capabilities in complex chemical analysis tasks. While
balancing real-time performance with computational resources
remains a challenge, our multi-agent framework is well-
positioned to accommodate such future optimizations, partic-
ularly in tasks requiring sophisticated chemical reasoning and
analysis.

The system's architecture leverages the capabilities of large
language models through a exible model-calling mechanism
that can integrate different advanced models as they become
available. The implementation incorporates specialized chem-
istry domain functions, including molecular visualization and
© 2025 The Author(s). Published by the Royal Society of Chemistry
SMILES string processing, to address specic requirements in
chemical research. Fig. 17 illustrates the structure of the AI
agents within the chemistry system. The agents' prompts can be
found in the ESI.†

The system's effectiveness stems from its integrated design
combining language model capabilities with domain-specic
chemical tools. Through structured knowledge organization,
targeted skill implementation, performance monitoring, and
coordinated agent interactions, it aims to provide reliable
support for chemical research tasks. This modular approach
allows for systematic updates and renements as underlying
Digital Discovery, 2025, 4, 355–375 | 371
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Fig. 17 The structure of AI agents for the chemistry system.
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technologies advance, helping to maintain consistent and effi-
cient assistance for complex chemical problems.

5 Conclusion

This study utilized 1 720 313 instruction data points from the
eld of chemical science to ne-tune 8 mainstream open-source
large language models, including Llama3-8B, Mistral-7B, Phi-3
Mini, Gemma-7B, Gemma2-9B, Phi-3 Medium, Llama3.1, and
372 | Digital Discovery, 2025, 4, 355–375
MistralNemo. Through an automatic scoring program speci-
cally designed to evaluate the quality of responses from large
language models in the chemistry domain, the Mistral NeMo
model demonstrated the most outstanding performance,
achieving a score of 4.39 points, surpassing othermodels. Based
on these research results, an innovative chemical intelligent
assistant system was designed. This system can utilize ne-
tuned models as its primary models and call upon different
large models according to task requirements. Furthermore, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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system deeply integrates professional knowledge and require-
ments from the chemistry eld, featuring specialized func-
tionalities such as molecular visualization, SMILES string
processing, and chemical literature retrieval. Through the
integration of knowledge bases, continuous performance
monitoring, and interactive feedback mechanisms, the system
shows potential for gradual improvement in its professional
capabilities and response quality. While still in its early stages
with considerable room for enhancement, these initial steps
suggest promising directions for developing more effective AI
assistance tools in chemistry applications. The current imple-
mentation, though requiring further renement, represents an
exploratory effort toward better supporting chemical research
and analysis.
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