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Material discovery is a cornerstone of modern science, driving advancements in diverse disciplines from

biomedical technology to climate solutions. Predicting synthesizability, a critical factor in realizing novel

materials, remains a complex challenge due to the limitations of traditional heuristics and

thermodynamic proxies. While stability metrics such as formation energy offer partial insights, they fail to

account for kinetic factors and technological constraints that influence synthesis outcomes. These

challenges are further compounded by the scarcity of negative data, as failed synthesis attempts are

often unpublished or context-specific. We present SynCoTrain, a semi-supervised machine learning

model designed to predict the synthesizability of materials. SynCoTrain employs a co-training framework

leveraging two complementary graph convolutional neural networks: SchNet and ALIGNN. By iteratively

exchanging predictions between classifiers, SynCoTrain mitigates model bias and enhances

generalizability. Our approach uses Positive and Unlabeled (PU) learning to address the absence of

explicit negative data, iteratively refining predictions through collaborative learning. The model

demonstrates robust performance, achieving high recall on internal and leave-out test sets. By focusing

on oxide crystals, a well-characterized material family with extensive experimental data, we establish

SynCoTrain as a reliable tool for predicting synthesizability while balancing dataset variability and

computational efficiency. This work highlights the potential of co-training to advance high-throughput

materials discovery and generative research, offering a scalable solution to the challenge of

synthesizability prediction.
1 Introduction

Material discovery is a foundational pillar of modern science
and perhaps the driving motivation behind materials science. It
supports advancements in numerous scientic and technolog-
ical disciplines. In this eld, the ability to predict synthesiz-
ability is crucial. Developing materials with novel properties
expands the possibilities in endeavors from functional mate-
rials used in biomedical devices to addressing the challenges of
climate change.1 In the past decade or so, efforts such as the
Materials Genome Initiative aimed to accelerate the discovery,
development, and deployment of new materials in the hopes of
societal betterment.1,2 An essential part of realizing this goal is
employing high-throughput simulations and experiments for
screening candidate materials with desirable properties.1,3

Unfortunately, a substantial amount of resources and effort can
be wasted on hypothetical materials that currently cannot be
synthesized.
d Testing, Unter den Eichen 87, 12205

am.de

of Condensed Matter Theory and Solid-

, Germany

tion (ESI) available. See DOI:

the Royal Society of Chemistry
Historically, physico-chemical based heuristics such as the
Pauling Rules4 or the charge-balancing criteria5 have been used
to assess materials stability and synthesizability. Nevertheless,
these simplied approaches have been shown to be insufficient,
as more than half of the experimental (already synthesized)
materials on the Materials Project database6 do not meet these
criteria for synthesizability.5,7

In more recent attempts, material scientists oen employed
thermodynamic stability as a proxy for synthesizability,
ignoring the effect of kinetic stabilization. This involves con-
ducting rst-principle calculations to estimate the formation
energy of crystals and their distance from the convex hull. A
negative formation energy, or a minimal distance from the
convex hull, is commonly interpreted as an indicator of
synthesizability.8–12 While stability signicantly contributes to
synthesizability, it is just one aspect of this complex issue. There
are many –potentially interesting– metastable materials that do
exist, even though their formation energies deviate from the
ground-state.8,11,13–15 These materials can be synthesized in
alternate thermodynamic conditions in which they are the
ground-state. Aer removing the favorable thermodynamic
eld, they have stayed stuck in the metastable structure by
kinetic stabilization.8 On the other hand, there are many
hypothetical stable materials in well-explored chemical spaces
Digital Discovery, 2025, 4, 1437–1448 | 1437
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which have never been synthesized. This could be due to a high
activation energy barrier between them and the common
precursors.13–15 Beyond the theoretical and thermodynamic
considerations, synthesizability is also a technological problem.
Novel materials that are developed through cutting-edge
methods were practically unsynthesizable before the invention
of their methods of synthesis. For example, new high-entropy
alloys with great potential for catalysis applications were
recently synthesized using the Carbothermal Shock (CTS)
method.16 Their particular homogeneous components and
uniform structures were not accessible through conventional
synthesis methods. On the other hand, some materials can only
be synthesized under specic conditions, such as extremely
high pressures.17

The fact that estimating synthesizability is related to mate-
rials structures without a straightforward formula to solve for,
makes it an apt candidate for machine learning. This and many
other challenges have made machine learning the ideal tech-
nique to accelerate material discovery.18 In this work, we dene
a classication task for two classes of materials, namely syn-
thesizable (the positive class), and unsynthesizable (the nega-
tive class). This classication comes with a few challenges and
intricacies. The rst one is encoding materials structures in
a machine understandable format. Some previous works have
circumvented this challenge in creative ways such as combining
different elemental features,15,19 using text-mining algorithms
to search the relevant literature to identify synthesizable mate-
rials,20 using the picture of crystal cells with convolutional
neural networks,21 or even a network analysis of materials
discovery timeline with respect to their stability.22 Others,14,23

including this work, utilize graph convolutional neural
networks (GCNNs) to encode and learn from crystal structures.
While the GCNNs are more complicated to implement, they
have the advantage of including more information about the
structure than composition alone or the other previously
mentioned approaches that represent the structure information
indirectly through a proxy.

The second challenge of estimating synthesizability lies
within the nature of the available data. Unlike a typical classi-
cation task, we do not have access to enough negative data. On
the one hand, this is due to the fact that unsuccessful attempts
of synthesis are not typically published nor uploaded to public
databases. The attempts of using such failed experiments24

inevitably remain conned to local labs and a small class of
materials. Also, synthesis success strongly depends on the
synthesis conditions and technology. Hence, the failure of
synthesis attempts in one setting does not necessarily imply
failure in a different lab with different synthesis methods or
equipment. Finally, creating a proper negative-set for training
a classier is a whole new challenge.5 If the negative-set is too
different from real materials, it may not teach the model
a meaningful decision boundary for detecting synthesizability.
To design a realistic-looking negative-set, one would need to
understand the features that determine synthesizability in the
rst place.

The nal challenge in this task comes as a fundamental
aspect of machine learning. Regardless of which model is
1438 | Digital Discovery, 2025, 4, 1437–1448
chosen, it will inherently exhibit a certain degree of bias. One
introduces a possibly unintended bias when selecting one
model over another, since the model's ability to generalize out
of sample is, in part, predetermined by its architecture. This
model bias comes even with the best performing models. In
fact, a model with great benchmarks might perform worse than
simpler models when predicting targets for out-of-distribution
data,25 perhaps due to overtting. This challenge becomes
particularly pronounced when predicting synthesizability. The
objective is to forecast a target for new and oen out-of-
distribution data, where the issue of generalization is most
acute. The lack of the negative data compounds this issue, as it
makes performance metrics less reliable. One way to mitigate
this issue is by leveraging multiple models. An ensemble of
models with diverse architectures and learning strategies can
help balance individual model biases, improve robustness, and
provide a more reliable assessment of synthesizability. By
aggregating predictions from multiple models, the approach
reduces overtting, enhances generalization, and compensates
for the missing negative data, leading to more accurate and
trustworthy synthesizability predictions.25

To address these challenges, we have developed a model
ready for integration into high-throughput simulations and
generative materials research. It is called SynCoTrain
(pronounced similar to ‘Synchrotron’). It is a semi-supervised
classication model designed for predicting synthesizability
of oxide crystals. SynCoTrain addresses the generalizability
issue by utilizing co-training. Co-training is an iterative semi-
supervised learning process designed for scenarios with some
positive data and a lot of unlabeled data.26,27 It leverages the
predictive power of two distinct classiers to nd and label
positive data points among the unlabeled data. Different
models have different biases, and by combining their predic-
tions, we can practically reduce these biases while keeping what
they learn about the target. We use the Atomistic Line Graph
Neural Network (ALIGNN)28 and the SchNetPack29,30 models as
our chosen classiers. They are both innovative GCNNs with
distinct attributes. ALIGNN is unique in that it directly encodes
both atomic bonds and bond angles into its architecture,
offering a perspective that aligns with a chemist's view of the
data. SchNetPack stands out for using a unique continuous
convolution lter which is suitable for encoding atomic struc-
tures, which can be thought of as a physicist's perspective on
the data.

At each step of co-training, SynCoTrain learns the distribu-
tion of the synthesizable crystals through the Positive and
Unlabeled learning (PU learning) method introduced by Mor-
delet and Vert.31 This base PU learning method with a different
classier has already been employed to predict synthesizability
for all classes of crystals14 and for perovskites specically.23 In
this work, we utilize multiple PU learners as the building blocks
for co-training. In each iteration of co-training, the learning
agents exchange the knowledge they gained from the data
between each other. Eventually, the labels are decided based on
average of their predictions. This process increases the predic-
tion reliability and accuracy, much like two experts who discuss
and reconcile their views before nalizing a complex decision.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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This collaborative approach suggests that co-training is more
likely to generalize effectively to unseen data compared to using
a single model with equivalent classication metrics such as
accuracy or recall.

We verify the performance of the model by recall for an
internal test-set and a leave-out test-set. We also evaluate our
model further by predicting whether a crystal is stable or not for
the same data points. Note that in predicting stability, we do not
aim for a good performance. In fact, we expect an overall poor
performance due to high contamination of the unlabeled data;31

more info in ESI.†However, we compare the ground truth recall
in stability to the recall produced by the PU learning, to gauge
the reliability of the latter.

We chose a single family of materials, oxides, to establish the
utility of co-training in predicting materials properties. Oxides
are a well-studied class of materials with a large amount of
experimental data to learn from ref. 32 and 33. A higher number
of training data would typically decrease the classication error
in machine learning. However, training across all available
families of crystals would introduce greater variability in the
dataset, potentially increasing the uncertainty and error
margins in our results. In other words, the prediction quality for
new materials would vary substantially. By achieving high recall
values with oxides as our training data, we demonstrate the
effectiveness of co-training. This approach ensures reliable
results while maintaining reasonable training times for our
models. Our data stems from the Materials Project database,6 in
which all of the crystal structures have been optimized with DFT
and should be of similar quality. In many cases, the starting
structures for optimization were those from the Inorganic
Crystal Structure Database (ICSD).34 For training machine
learning models, it is crucial to minimize obvious biases, which
can arise from combining data from different sources. Such
biases can be easily detected by machine learning models,
leading to distorted performance metrics.35 To mitigate this
risk, we rely exclusively on a single data source for training our
model.

2 Results and discussion
2.1 Model development

The data for oxide crystals were obtained through the Materials
Project API. The experimental and theoretical data are distin-
guished based on the ‘theoretical’ attribute. We used the get_-
valences function of pymatgen36 to include only oxides where
the oxidation number is determinable and the oxidation state of
oxygen is −2.

Less than 1% of the experimental data with energy above
hull higher than 1 eV were removed, as potentially corrupt data.
The learning began with 10 206 experimental and 31 245 unla-
beled data points.

Co-training consists of two separate iteration series, the
results of which are averaged in the nal step. In the rst series,
we start by training a base PU learner with an ALIGNN classier.
This is the iteration ‘0’ of co-training, and this step is called
ALIGNN0. The learning agent predicts positive labels for some
of the unlabeled data, creating a pseudo-positive class. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
class is added to the original experimental data, expanding the
initial positive class. Iteration ‘1’ of co-training on this series is
to train a base PU learner with the other classier, here the
SchNet, on the newly expanded labels. This step is called
coSchnet1. Each iteration provides newly expanded labels for
the next iteration. The classiers alternate for each iteration,
from ALIGNN to SchNet and vice versa, as shown in Fig. 1a.

Parallel to this series, we set up a mirror series where itera-
tion ‘0’ begins with a SchNet based PU learner. This step of
iteration ‘0’ is called SchNet0. This series learns the data from
a different, complementary view compared to the former series,
see Fig. 1a. It continues in the same manner with alternating
classiers. The order of the steps in each series can be found in
Table 1.

Each base PU learner produces a synthesizability score
between 0 and 1 for each unlabeled datum. This is done
through 60 runs of the bagging method established by Mordelet
and Vert,31 as illustrated in Fig. 1c. In each independent run of
this ensemble learner, a random subset of the unlabeled data is
sampled to play the role of the negative data in training the
classier. The average of the predictions in these runs for data
points that were not part of the training in that run yields the
synthesizability score. This score is interpreted as the predicted
probability of being synthesizable. A threshold of 0.5 is applied
for labeling each datum as either synthesizable (labeled 1) or
not-synthesizable (labeled 0).

Aer several iterations of co-training, the optimal iteration is
chosen based on the prediction metrics (i.e. recall rate).
Continuing to further iterations yields diminishing returns in
performance metric while risking reinforcing existing model
bias. The scores provided from the two series at the optimal
iteration are then averaged. The 0.5 cutoff threshold is applied
to this averaged score to produce the nal synthesizability
score. Once we have synthesizability labels for both the experi-
mental and theoretical data, a simple machine learning task
remains. We train a classier on these labels and end up with
a model that can predict synthesizability (see Fig. 1b).
2.2 Model evaluation and results

Within each single run of the base PU learning, the classiers
optimize for accuracy, as they operate unaware of the PU nature
of the data. When reporting the performance of PU learning,
however, one should not use accuracy, Precision or the F1-score.
These common measures assume knowledge of the negative
labels and a false positive count. We use recall, also known as
sensitivity or true positive rate (true positive/(true positive +
false negative)) to report and benchmark the performance of
our PU learner as it only relies on the knowledge of the positive
data.

In our study, we employ two distinct test-sets to measure
recall. The rst is a dynamic test-set, which varies with each
iteration of base PU learning. The second is a leave-out test-set
that remains untouched during all training iterations. As the
result, we obtain a ‘recall range’ between the two distinct recall
measures; an averaged recall for the dynamic test-set and
a leave-out recall. This gives us more information than a single
Digital Discovery, 2025, 4, 1437–1448 | 1439
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Fig. 1 Overview of the Workflow in SynCoTrain (a) the PU data is passed to two distinct PU classifiers, each learning from a different view of the
data. Each classifier labels unlabeled data points as positive or negative. The new labels from each PU classifier are used to expand the positive
class for retraining the other classifier. (b) After co-training steps, each unlabeled data point receives a prediction score from each PU classifier.
An average of these scores is calculated for each data point, and a cutoff is applied to produce a label. All the data, now labeled, are used to train
a final classifier to predict synthesizability. (c) The PU learning process. Positive, negative, and unlabeled data are depicted as green, red, and gray
circles respectively. Each run starts with training a classifier, with a randomly chosen subset of the unlabeled data used as the negative class.
Labels are predicted for the remaining unlabeled data, and final scores are computed by averaging these predictions.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
1/

22
/2

02
5 

10
:0

2:
52

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
recall value. The construction and reasoning behind this are
detailed in the ground truth evaluation section.

The recall values for each iteration are depicted in Fig. 2. The
two distinct co-training series are separately visualized to clearly
illustrate recall changes at each step. Iteration ‘0’ represents
a basic PU learning approach with isolated classiers, without
any co-training. We see that the SchNet0 series somewhat
1440 | Digital Discovery, 2025, 4, 1437–1448
plateaus in iteration ‘2’, while the ALIGNN0 series still improves
in recall. However, neither series make signicant improvement
on their recall in iteration ‘3’. This suggests that using the third
iteration yields diminishing returns in terms of new learning,
while risking enforcing models' biases through too many
repetitions. Furthermore, the predicted positive rate increases
in both series for iteration ‘3’, without a meaningful increase in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Co-training steps

Co-training steps Iteration ‘0’ Iteration ‘1’ Iteration ‘2’ Iteration ‘3’ Averaging scores

Training data
source

Original labels Labels expanded
by Iteration ‘0’

Labels expanded
by Iteration ‘1’

Labels expanded
by Iteration ‘2’

Scores provided by the
optimal iteration

Training series ALIGNN0 > coSchnet1 > coAlignn2 > coSchnet3 Synthesizability scores
SchNet0 > coAlignn1 > coSchnet2 > coAlignn3

Fig. 2 Recall progression per iteration for both co-training series. The
first series (a) starts by training a base PU learner with an ALIGNN
classifier, whereas the second series (b) begins with a SchNet classifier.
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recall range to justify it. This means that the model is more
likely to classify a theoretical crystal as synthesizable, without
improving its understanding of synthesizability. This is akin to
© 2025 The Author(s). Published by the Royal Society of Chemistry
over-tting, when additional learning steps do not yield better
validation results. These factors indicate that iteration ‘2’ is
optimal. Consequently, we omit the third iteration and use the
results from iteration ‘2’ as the source for synthesizability
labels.

The synthesizability scores provided for the unlabeled data is
the actual goal of this PU learning task. The distribution of
these scores, alongside a large recall rate, provide a sense of the
performance quality. A model that marks almost all crystals as
synthesizable would have a high recall but could not distinguish
the two classes from each other. Fig. 3 and 4 show the distri-
butions of synthesizability scores at iteration ‘0’ and iteration ‘2’
of co-training, respectively. Despite high recall values, the PU
learners mark only about 20% of the unlabeled data as syn-
thesizable. The synthesizability scores for the intermediate
iterations can be found in the ESI.†

In the nal step of co-training, the scores from iteration ‘2’
are averaged and nal labels are predicted via a cutoff of 0.5.
This yields the nal labels to for training the synthesizability
predictor. The recall range is now [95–97]% and 21% of the
unlabeled data are predicted to be synthesizable, see Fig. 5. Of
course, all experimental data, including the ∼3% that were
misclassied as unsynthesizable, are labeled as positive for
training the synthesizability predictor.

Next, we examine the synthesizability score for the unlabeled
data and its relationship to stability. Crystals with energy more
than 1 eV above the convex hull are considered highly unstable
and unlikely to be synthesizable. As shown in Fig. 6, the
majority of our dataset consists of stable materials, indicating
that our synthesizability predictions largely exclude unstable
data. Furthermore, Fig. 6 reveals that unstable crystals are 2.5
times less likely to be classied as synthesizable than as non-
synthesizable. However, among all crystals with energy less
than 1 eV above the hull, only about 21% are classied as syn-
thesizable. Additionally, we observe a sharp decline in energy
above the hull when the synthesizability score increases slightly
from zero (contour line). Conversely, materials that are con-
dently predicted to be synthesizable exhibit an increase in
energy above the hull.

While one might expect stability to correlate directly with
higher synthesizability scores, this trend is not strongly
demonstrated here, likely due to the limited number of
unstable crystals in our dataset. Although stability plays
a signicant role in synthesizability, it is not expected to be the
sole determining factor. It is also important to acknowledge the
inherent limitations of DFT, such as nite temperature effects
Digital Discovery, 2025, 4, 1437–1448 | 1441
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Fig. 3 Synthesizability score distribution for Iteration ‘0’ for the (a) ALIGNN0 series and (b) SchNet0 series. The top half displays the experimental
data. Ideally, a single peak at 1 would be observed, as these materials have been synthesized. However, a few intermediate scores (and some
below 0.5) are present, which indicates that the model has not yet fully learned the target. The bottom half shows that most data points are
classified as 0. However, a meaningful portion of the data (15% above the 0.5 cutoff) falls in the middle. Later iterations show a clear peak at 1.
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and precision constraints, which may inuence these
observations.

In Fig. 7, we compare the energy above hull and formation
energy for data with positive and negative labels. The le
Fig. 4 Synthesizability score distribution for Iteration ‘2’ for the (a) ALIG
emerging in the unlabeled data, while the experimental data maintains a
where positively predicted materials are integrated into the positive set

1442 | Digital Discovery, 2025, 4, 1437–1448
column presents the experimental data, while the right column
corresponds to the actual task of distinguishing positive and
negative classes within the unlabeled data. As expected, we
observe a clustering of positive data around lower values of
NN0 series and (b) SchNet0 series. We observe a bimodal distribution
single peak. The bimodality results from the co-training mechanism,

of the training data.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Label distribution after averaging scores. The averaged scores
were converted to labels {0, 1} using an unbiased threshold of 0.5. A
label of 1 is assigned tomaterials that are predicted to be synthesizable.
The plot at the top shows that most experimental data has been
correctly classified as synthesizable.

Fig. 6 Density scatter plot of energy above hull vs. the synthesizability
score for the unlabeled data. The logarithmic color bar on the side
indicates density map. The black line shows a single contour line.
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energy above hull, without any distinct density peaks in
formation energy. This aligns with our expectations, as stability
(and, by extension, synthesizability) is inuenced more by
relative energy states than by absolute energy values.
2.3 Ground truth evaluation

2.3.1 Test-sets construction. Construction of a suitable
test-set is required to report any type error or merit measure in
© 2025 The Author(s). Published by the Royal Society of Chemistry
machine learning; more-so when predicting out-of-distribution
data is concerned.25 In their paper establishing the bagging PU
learning method,31 Mordelet and Vert use a different test-set at
each run. Aer all runs have been executed, the average label
predicted for each datum as part of the test-set is taken as the
probability of it belonging to the positive class. A threshold is
then applied to this probability to determine the label of the
datum, and thus, the error criteria. This does not lead to ‘data
leakage’ as nomodel is tested on the data it has been trained on.
This dynamic test-set also lends itself well to co-training, as it
does not take away valuable data permanently from the growing
train-sets of further iterations.

On the other hand, using a leave-out test-set in the common
practice in materials informatics. At the very least, a leave-out
test-set would provide a more comparable evaluation with
similar works in this topic.

Ultimately, the goal of a test error is to approximate the ex-
pected test error. By using both test sets, we will have two values
for recall. That means more information about the model's
performance. We chose a leave-out test set with 5% of the
positive data for all the runs. For the dynamic test set, 10% of
the positive data is chosen at each run of the PU learning.

2.3.2 Ground truth in PU learning. Recall is the typical
measure for evaluating PU learning tasks. Due to the unlabeled
data, this is not the most reliable measure. Recall only tells us
how much of the known positive samples were classied
correctly. The assumption is that the positive data are sampled
from an unknown distribution. Hence, the recall based on the
labeled data should approximate a recall based on all the
positive data. Yet, it would be benecial to have some evidence,
even if qualitative, that the recall solely based on the labeled
data in fact approximates a recall based on all the data, the
ground truth recall. To that end, we construct a new PU learning
task with the goal of predicting classes of stability. As
mentioned earlier, stability and synthesizability are related
properties. If the recall values for labeled stability classes closely
approximate the ground truth recall for all of the data, this
suggests a similar behavior in the recall values for
synthesizability.

We use the same dataset as before, now including the
outliers of experimental structures with high energy above hull
that were previously excluded. This adjustment retains data for
learning the higher energy structure and provides a better
benchmark for comparison with previous works in synthesiz-
ability that used the outliers. These data points were classied
into positive (stable) and negative (unstable) classes based on
a cutoff in energy above the convex hull; for details please see
ESI.† The key difference is that, unlike a real PU learning task,
all the positive and negative labels are available for evaluation
post training. A random subset of the positive class, with the
same number of data points as the original experimental class,
kept their positive label. We then hid the label of the remaining
data to manufacture a PU learning scenario. The models were
trained on the stability PU data using the same code as the
synthesizability task. Having access to all the labels, we could
estimate the ground truth recall value and compare it with the
recall values produces by the two test sets.
Digital Discovery, 2025, 4, 1437–1448 | 1443
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Fig. 7 Distribution of formation energy versus energy above hull for experimental data (left) and theoretical data (right), separated by predicted
labels. The figure illustrates the expected clustering of positively labeled data around lower values of energy above hull while no distinct density
peaks are observed with respect to formation energy.
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As shown in Fig. 8, the recall values produced by both test-
sets closely approximate the ground truth recall, conrming
the reliability of using recall for evaluating the model's
Fig. 8 Ground truth recall progression per iteration for stability classes

1444 | Digital Discovery, 2025, 4, 1437–1448
performance. In both co-training series, the leave-out recall
value starts more optimistic than the ground truth, especially
when high-energy experimental outliers are included in the PU
for the first (a) and second (b) series.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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learning. This optimistic recall was the reported recall value in
the previous PU learning studies predicting synthesizability.14,23

From iteration ‘1’ of co-training the order ips and the dynamic
test set becomes too optimistic. While there is no guarantee the
ground-truth will always be found in the range between the two
values, Fig. 8 illustrates why using both test-sets is worthwhile
rather than just keeping one.
2.4 Predicting synthesizability

The nal step in this work involves training a synthesizability
predictor using reliable labels generated through co-training.
Since materials databases apply different criteria for data
inclusion, they exhibit varied data distributions. Consequently,
achieving optimal performance on a specic test set is insuffi-
cient. It is crucial to avoid bias toward the Materials Project data
distribution, which was used to train the model. To mitigate
this, we applied regularization techniques during training to
prevent overtting. This was not particularly important in the
PU runs, where classier instability enhances the bagging
process by introducing variability.31 In the nal step, however,
the model needs to generalize well to data distributions not
seen during training, while still maintaining good performance
on the test-set.

We selected SchNet as our classier and achieved good
results, though other classiers like ALIGNN can also be trained
using the same labels. Detailed training parameters are avail-
able in the METHODS section. The pretrained model is acces-
sible in our repository (https://github.com/BAMeScience/
SynCoTrainMP).

The trained model reached 90.5% accuracy on a test set
comprising 5180 data points. To further evaluate the model's
performance, we analyzed the synthesizability predictions for
three additional datasets, focusing exclusively on oxides. These
datasets originate from other sources than our training data
and consequently exhibit different biases.35 First, we examined
Fig. 9 Synthesizability probability distributions across theoretical datab
represents the theoretical portion of the test set, selected from Materials
crystals generated by the iMatGen generative model. The third distribut
represents oxides from the OQMD database that are absent in Materials

© 2025 The Author(s). Published by the Royal Society of Chemistry
theoretical oxides from the Open Quantum Materials Database
(OQMD),37 downloaded via the Jarvis Python package,38 aer
ltering out any crystals already present in Materials Project's
experimental data, leaving 23 056 theoretical oxides. Second, we
analyzed 14 095 oxide crystals from the WBM dataset,39 which
were generated using random sampling of elements in Mate-
rials Project structures, with chemical similarity safeguards
based on ICSD data.34 We used the relaxed version of this
dataset. Finally, we predicted the synthesizability of 6156
vanadium oxide crystals generated by iMatGen.11 Fig. 9
compares the synthesizability scores of these datasets with the
theoretical portion of the test set. All these crystal structures
and their predicted synthesizability scores are available to
download in our GitHub repository.

Over half of the theoretical test-set data shows a synthesiz-
ability score close to zero, as expected, since previously
synthesized crystals have been excluded by Materials Project. In
contrast, the OQMD data shows roughly twice the proportion of
synthesizable crystals, which may result from differing inclu-
sion criteria between Materials Project and OQMD. We still
observe a peak near a score of 1, possibly indicating synthesized
crystals not listed in Materials Project. The iMatGen data show
the lowest synthesizability, with multiple peaks at low scores,
reecting the articial nature of these generated structures,
which are oen less realistic. TheWBMdataset scores higher on
average, without signicant peaks. Despite being articially
generated, the WBM data employed mechanisms like chemical
similarity to avoid unstable crystals. As a result, we observe
more novel crystals with ambiguous synthesizability predic-
tions, with scores around 0.5, and no clear peaks close to 0 or 1.
2.5 Discussion

In modern material discovery, the rst challenge is the abun-
dance of choices. The number of materials that may exist is
astronomical40 and high-throughput methods cannot screen
ases, expressed as a percentage of each dataset. The first distribution
Project data. The second distribution corresponds to vanadium oxide
ion shows data from the WBM dataset, followed by the fourth, which
Project experimental data.

Digital Discovery, 2025, 4, 1437–1448 | 1445
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them all. The nebulous nature of the synthesizability question
makes the development of a awless model challenging. The
goal, however, is not perfection. Based on the ndings of this
and other related studies, the majority of the unlabeled data is
determined to be unsynthesizable. Energy calculations, while
Fig. 10 Label distribution based on 0.25 and 0.75 classification
thresholds at the end of co-training for the first (a) and second (b)
series.

1446 | Digital Discovery, 2025, 4, 1437–1448
important, are not a good proxy for synthesizability. Filtering
out even half of the unsynthesizable data through synthesiz-
ability prediction could save a signicant amount of resources
on simulations and synthesis attempts. We imagine that our
tool can be used in the initial stages of materials discovery, to
lter out the structures which are not likely to result in real
materials.

The decision thresholds of 0.5 and 0.75 were used as unbi-
ased values for classication and class expansion. However,
these thresholds are ultimately arbitrary and can be adjusted
based on the specic goals and applications. In a more
exploratory study, a looser threshold could be utilized to avoid
overlooking potentially interesting novel structures. Conversely,
a project operating with a tighter budget could employ a stricter
threshold to save on resources. Label distributions based on
a threshold of 0.25 and 0.75 are illustrated as examples in
Fig. 10. When compared with the unbiased threshold of 0.5
shown in Fig. 5, a cutoff threshold of 0.25 is more lenient in
classifying crystals as synthesizable. However, it only identies
26% of the theoretical oxides in Materials Project as synthe-
sizable, recognizing two thirds of the data as unsynthesizable.
Conversely, a threshold of 0.75 results in a more stringent
classication, with only 17% of the theoretical oxides meeting
this threshold. And yet, these oxides are more likely to be syn-
thesizable compared to those that did not meet the cut.

In this work we combined two different learners based on
strong classiers to reach a more reliable recall. New models for
predicting materials properties are developed rapidly and
materials data is growing. Combining different tools, instead
creating one from scratch, is an untapped potential to learn
more from the data already available in the materials space.
3 Methods
3.1 Co-training

The co-training algorithm used here was based on previous
work in ref. 26 and 27. It is based on the idea that each data
point can be described by distinct sets of descriptors, each of
which are sufficient for learning the target. Consequently, two
models learning from different views of the data can each gain
knowledge that is inherently complementary. This is analogous
to transfer learning; but the transfer happens between the
knowledge gained from different views of the same data, rather
than an auxiliary data source.

At each iteration, a base learner calculates a synthesizability
score between 0 and 1 for both the unlabeled and experimental
test data. To expand the positive class, unlabeled data points
condently classied as positive by the PU learner are selected.
Here, we use a threshold of 0.75, rather than 0.5, to determine
which unlabeled data points are added in the original positive
class. Aer iteration ‘2’, the scores from both training series are
averaged. The 0.5 cutoff determines the nal label.

The base learner was changed from the original näıve Bayes
classier to a base PU learners equipped with convolutional
neural networks. The different views of the data were achieved
through the difference between the data encoding in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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classiers, i.e., ALIGNN and SchNet. Two parallel co-training
series with altering classiers were carried out accordingly.

3.2 PU learning

The algorithm of PU learning was established by Mordelet and
Vert.31 This method treats the unlabeled data as negative data,
contaminated with positive data. PU learning performs best
when this contamination is low.

In this work, two base PU learners were made through using
two classiers. In both cases, a complete bagging of PU learning
took 60 runs. Note that the separate runs of PU learning are not
referred to as iterations as each run is independent of the rest.
This is not the case in co-training, where each iteration depends
on the results produced by the previous iteration.

The training data at each PU learning run has a 1 : 1 ratio of
positive and negative labels. The size of the training set
increases aer each co-training iteration, due to the expansion
of the positive class. Each run of PU learning predicts a label,
0 or 1, for the data points that did not take part in the training
phase of that run. Aer the 60 runs, these predictions are
averaged for each data to produce the synthesizability score.
This score is also referred to as the predicted probability of
synthesizability. The cutoff thresholds of 0.5 and 0.75 are used
to predict the labels and expand the positive class, respectively.

3.3 Neural networks architecture

The ALIGNN model was used according to instructions
provided in its repository. We used the version 2023.10.01 of
ALIGNN.

The SchNetPack model was originally designed for regres-
sion. To accommodate classication, a sigmoid non-linearity
and a cutoff function were added to the nal layer. We used
the version 1.0.0.dev0 of this model.

3.4 The synthesizability predictor

The data labeling process utilized the averaged synthesizability
scores produced in iteration ‘2’ of co-training. A cutoff of 0.75
was applied for assigning positive labels, similar to the class
expansion strategy, reducing the likelihood of training on
uncertain labels.

During initial tests, the predictor displayed a tendency to
overestimate the positive class, likely due to overtting to the
data distribution in the Materials Project. To mitigate this,
several regularization steps were introduced. First, noise was
added to the labels by randomly selecting 5% of the positive
class and ipping their labels from 1 to 0. An equal number of
negative class labels were also ipped from 0 to 1. This small
amount of label noise helps regularize the model, preventing
classier's overcondence in any class distribution.

Data augmentation was then employed, following a previ-
ously published method that showed signicant improvements
in predicting material properties. This approach perturbs
atomic positions using Gaussian noise to generate slightly
altered versions of the original data, which are used alongside
the unperturbed data for training. This augmentation doubles
the size of the training set.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The SchNet model was used as the primary synthesizability
predictor, with additional regularization techniques enhancing
its generalizability. A weighted loss function was employed,
with a ratio of 0.45 : 0.55 for the positive and negative classes,
respectively. This adjustment subtly discouraged over-
prediction of the positive class, while maintaining model
sensitivity.

Finally, to implement regularization during training,
dropout layers were added to the model, with 10% dropout at
the embedding layer and 20% at each convolutional layer. To
manage the learning rate, a ‘Cosine Annealing with Warm
Restarts‘ scheduler was used, allowing it to cycle through pha-
ses, helping the model escape local minima early in training
while converging effectively later on. Early stopping was also
implemented to prevent overtraining.
3.5 Datasets

The experimental and theoretical data for co-training was
queried from the Materials Project API,6 database version
2023.11.1.

Open Quantum Materials Database (OQMD)37 served as an
external dataset that was not used in model training. However,
they were downloaded through the Jarvis Python package38 on
2023.12.12, which provides easy access to this data.

The WBM dataset39 was made available through the Mat-
bench Discovery41 project through gshare.42
Data availability

Soware code and all results presented in this paper, including
intermediate PU-learning steps are available at: https://doi.org/
10.5281/zenodo.14411489. Our method is implemented in
a public soware repository: https://github.com/BAMeScience/
SynCoTrainMP. The soware corresponding to this
publication is available at: https://github.com/BAMeScience/
SynCoTrainMP/tree/0.0.3. The input data for our algorithm
and the code for downloading and processing it is available in
our soware repository.
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