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ed database and predictive model
of experimental properties of surfactants†

Stefan L. Hödl, Luc Hermans, Pim F. J. Dankloff, Aigars Piruska, Wilhelm T. S. Huck*
and William E. Robinson *

Despite great industrial interest, modeling the physical properties of surfactants in water based on their

molecular structure remains a challenge. A significant part of this challenge is in obtaining sufficient

amounts of high-quality data. Experimentally determined properties such the critical micelle

concentration (CMC) and surface tension at CMC (gCMC) have been reported for many surfactants.

However, surfactant data are scattered across many literature sources, and reported in a manner which

is often unsuitable as input for predictive models. In this work, we address this limitation by compiling

the SurfPro database of surfactant properties. SurfPro consists of 1624 surfactant entries curated from

223 literature sources, containing 1395 CMC values, 972 gCMC values and more than 657 values for Gmax,

C20, pCMC and Amin. However, only 647 structures have all reported properties, and for most surfactants

multiple properties are missing. We trained a previously reported graph neural network architecture for

single- and multi-property prediction on these incomplete data of all surfactant types in the database to

accurately predict pCMC (−log10(CMC)), gCMC, Gmax and pC20. We achieved state-of-the-art

performance of these four properties using an ensemble of AttentiveFP models trained on ten different

folds of the training data in the multi-property setting. Finally, we leveraged the predictions and

uncertainties of the ensemble model to impute all missing properties for all 977 surfactants with an

incomplete set of properties. We make our curated SurfPro database, proposed test split and training

datasets, the imputed database, as well as our code publicly available.
1 Introduction

Surfactants are amphiphilic molecules that consist of a hydro-
philic head and a hydrophobic tail.1 They have a wide range of
applications, including in pharmaceutical formulations,
personal care, detergents and coatings.2 Due to their ability to
modulate surface tension at the air–water or water–oil interface
and formmicelles, their functions lie in controlling phenomena
such as wetting, emulsication, solubilization and lubrication.
The variation in surface tension g at increasing concentrations
of surfactant can be tted to a Langmuir isotherm3 using the
Szyszkowski equation.4 Key characteristic parameters such as
the critical micelle concentration (CMC), air–water surface
tension at CMC (gCMC), surface excess concentration (Gmax) and
the surfactant efficiency (C20) can be determined from this
isotherm5 (Fig. 1). The surface excess concentration character-
ises the surface concentration of surfactant molecules at the
saturated surface, which measures the effectiveness of adsorp-
tion of surfactant molecules to the interface.1 The CMC is the
niversity, Heyendaalseweg 135, 6525AJ

science.ru.nl; william.robinson@ru.nl

tion (ESI) available. See DOI:

–1187
concentration at which the interfacial concentration of surfac-
tant molecules is saturated and “excess” surfactant molecules
self-assemble into micelles. Beyond this concentration, the
surface tension is no longer sensitive to increasing surfactant
concentration.1 The C20 value measures the surfactant concen-
tration required to reduce the surface tension of a liquid by
20 mN m−1.

These parameters and other important characteristics are
strongly dependent on molecular structure. As the experimental
determination of surfactant properties is laborious, developing
models which are capable of predicting them given only
molecular structure is of high interest. For example, computa-
tional methods based on molecular dynamics (MD) simula-
tions6 or descriptor-based quantitative structure–property
relationship (QSPR) models7 have been developed to this end.
Whilst these approaches predict the CMC rather accurately, MD
simulations are computationally costly and QSPR models tend
to perform best within a single class of surfactants (cationic,
anionic, etc.).

Recently, machine learning methods have been demon-
strated to be effective in predicting surfactant properties given
molecular structure information as input. Qin et al.8 gathered
a dataset of 202 experimental CMC measurements and made
their dataset of SMILES strings and CMC values publicly
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic visualization of the Langmuir isotherm using the
Szyszkowski equation and derived properties. Surfactant molecules
adsorb to the air–water interface and lower the surface tension. With
increasing surfactant concentration (x-axis, log scale) the surface
tension g (y-axis) decreases until the interface is saturated and g stops
decreasing further. Beyond this critical point, surfactants self-
assemble into micelles. Surfactant properties can be extracted from
this experimentally determined isotherm: the critical micelle
concentration (CMC) and the surface tension at the CMC (gCMC). C20 is
defined as the surfactant concentration required to reduce the surface
tension g0 (72 mNm−1 for water at room temperature) by 20 mNm−1,
which quantifies the surfactant's efficiency. Gmax represents the
surface excess concentration, which is reflected in the slope of the
isotherm at its steepest descent (shown in orange) and is assumed to
be at g20. The area of the surfactant at the air–water interface (Amin)
and the surface pressure at CMC (pCMC) can also be determined from
the isotherm (not visualized).
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available. The authors trained a graph convolutional neural
network to predict the log(CMC) in CMC units of mM and re-
ported an R2 of 0.92/root mean squared error (RMSE) of 0.30 on
their 10% test set (22 surfactants) using two graph convolu-
tional layers (217 K parameters). The authors further demon-
strated that a single model is able to accurately predict the
log(CMC) for anionic, cationic, non-ionic and zwitterionic
surfactants.

Moriarty et al.9 used the same dataset to train graph neural
networks (GNN) combined with Gaussian processes, and
improved upon the predictive results obtained by Qin et al.,8

reporting a RMSE of 0.23 using a GNN – GaussianProcesses
model. The authors additionally explored another validation set
of 43 surfactants10 and various GNN architecture variants. Bro-
zos et al.11 extended Qin's dataset to 429 CMC values and further
collected 164 Gmax measurements from literature to train a GNN
(307 K parameters). They compared single- and multi-task
learning as well as model ensembles, and achieved 0.21 mean
absolute error (MAE)/0.28 RMSE for log(CMC) on a test set of 66
surfactants and 0.53 MAE/0.76 RMSE for Gmax (24 surfactants)
using a single-taskmodel ensemble. Using themulti-task model
ensemble trained on pCMC and Gmax, they report 0.4 MAE/0.56
RMSE on Gmax but worse performance on log(CMC) with 0.23
© 2025 The Author(s). Published by the Royal Society of Chemistry
MAE/0.31 RMSE. In another publication the same authors
further extended their database with measurements at different
temperatures from literature for 492 unique surfactants and
achieved accurate predictions for their test settings of 0.24
RMSE including temperature dependence.12

Recently, Chen et al.13 built upon the database of Qin et al.8 to
a total of 779 CMC values and developed a descriptor-based
QSPR model. The authors split the surfactants into two
classes (ionic and non-ionic) and trained separate linear and
tree-based machine learning models for both classes. They re-
ported a MAE of 0.24/RMSE of 0.28 on a test set of 79
surfactants.

For gCMC, a database of 691 air–water surface tension
measurements aggregated from literature was recently pub-
lished by Ricardo et al.14. The authors trained a random forest
model with ve-fold cross validation and achieved errors of 3.38
MAE or 0.55 R2 on average over ve hold-out validation sets,
which corresponds to the test set errors reported in other works.

Seddon et al.15 used a surface tension dataset of 154 hydro-
carbon surfactants to t the Szyszkowski equation4 and extract
the CMC, Gmax and Langmuir constant KL. Using these prop-
erties, they trained QSPR models using molecular descriptors
and gradient-boosted decision trees. Their approach to extract
training data was restricted to the availability of g – log(C) data,
and not all surfactants in their dataset included measurements
up to the CMC.

Despite these earlier studies, generally applicable surfactant
property prediction models are not available. A limiting factor is
the availability of a large database of experimentally determined
property measurements of the CMC, gCMC, Gmax and other key
surfactant parameters of relevance to the design of novel
systems, such as the efficiency of the surfactant in reducing the
surface tension (C20), the minimal area occupied by surfactants
(Amin) or the surface pressure at CMC (pCMC). Furthermore,
database entries must also be suitable for modeling. For
instance, providing molecular structure information in the
form of machine-readable SMILES strings, as opposed to trade
names or trivial names, is essential in facilitating structure-to-
property models.

In this work, we address the scarcity of publicly available,
machine-readable data suitable for modeling by curating a large
database of surfactant properties with machine-readable
structures, containing several surfactant classes and proper-
ties. This database contains CMC, gCMC, Gmax, C20, pCMC and
Amin values derived from experimental measurements. These
data and corresponding SMILES structures were digitized and
curated from 223 literature sources. For 977 out of 1624 struc-
tures not all properties have been reported, and both the frac-
tion and distribution of reported properties differ signicantly
between surfactant types.

We demonstrate GNNs trained for multi-property prediction
can effectively learn from this incomplete data and outperform
single-property models especially for properties with the fewest
data points. We leverage a stratied split to obtain a represen-
tative test set for evaluation and nd an ensemble from all
models trained on each cross-validation fold outperforms
individual models on average. Finally, we impute all missing
Digital Discovery, 2025, 4, 1176–1187 | 1177
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property values using the ensemble to complete the database.
We make our curated SurfPro database, proposed test split,
training data sets, imputed database and code publicly
available.16,17
2 Methods
2.1 Data acquisition

2.1.1 Dataset curation. The database was compiled by
starting with a review of literature, focusing specically on
CMC. An extensive search was performed for literature report-
ing experimental measurements of the properties given in
Table 1. We identied 223 relevant articles which reported
experimental results or aggregated measurements from primary
sources which originally characterized and reported the
surfactant properties. A full bibliography of these articles is
given in the ESI.† These articles report on data collected by
several measurement methods, such as the Wilhelmy plate,18–20

Du Noüy ring20–22 and conductivity,23 spanning a number of
decades (1959 (ref. 24)–2021 (ref. 25)).

The results from these papers were compiled into
a comprehensive database by manually digitizing and verifying
the entries. Tables of property measurements reported in
primary literature sources were extracted rst into a comma-
separated value format, alongside the chemical identiers
used to refer to the surfactants in the paper. The reported units
were also extracted and converted to standardized units (Table
1). Measurements performed in the presence of any oil (e.g.
paraffin) were not included the database.

A signicant challenge during this phase was to generate
SMILES strings26 from the source formats. Many primary sour-
ces only report trivial compound names, structure images,
abbreviations or “code names” dened in the manuscript text.
Trivial names were mapped to SMILES strings using PubChem27

searches where possible, and other structural references were
transcribed manually. In some cases it was possible to effi-
ciently translate from structured identiers which were con-
structed according to a well-dened scheme of structural units.
For example, in one publication28 gemini surfactants were
encoded as sequences of tokens encoding the head, tail, and
Table 1 Micellization-related properties of interest of surfactants, and th
measuring the air–water surface tension g at a given surfactant concent
surface tension of water; n, 1 + number of counter ions brought to the inte
R, ideal gas constant; T, temperature in Kelvin; NA, Avogadro constant; p

Property Database name Name

CMC CMCjpCMC Critical micelle concentration
gCMC AW_ST_CMC (Air–water) surface tension at CMC
Gmax Gamma_max (Maximum) surface excess concentr

C20 C20jpC20 Adsorption efficiency

pCMC Pi_CMC Surface pressure at CMC
Amin Area_min Area at the air–water interface

1178 | Digital Discovery, 2025, 4, 1176–1187
spacer groups. In this case, it was possible to write scripts to
combine SMILES fragments based on the provided identiers
into surfactant SMILES strings programmatically (results were
manually veried). SMILES strings were computationally veri-
ed and canonicalized using RDKit29 (version 2024.03.5). Source
references are reported for each property individually, and
primary sources were used where possible.

All surfactant properties reported in the database (Table 1)
can be determined from experimental measurements of the
relationship between surfactant concentration and air–water
surface tension (Fig. 1). The shape of this plot can be recon-
structed using values for CMC, gCMC and Gmax, and all other
reported properties can be derived from them. Properties which
were calculated from other properties are annotated with
a “calculated” note in the corresponding reference entry to
differentiate them from entries reported in the literature.

When more than one CMC value was reported in a given
source, tensiometry-based measurements (e.g. Wilhelmy
plate18–20 or Du Noüy ring20–22), as opposed to, for example
conductivity measurements,23 were favored where possible. For
duplicate entries of a given property, primary sources were
prioritized over aggregated literature sources, and measure-
ments were selected from publications with multiple reported
properties over single properties for consistency between
related properties. Per-property references and duplicate
structures were leveraged to ag questionable entries for further
manual verication. For example, entries with the same struc-
ture but signicantly different experimentally reported proper-
ties and structures for which calculated properties did not
match reported properties were manually veried.

2.1.2 Surfactant types. The surfactant structures were
classied hierarchically into the primary classes “non-ionic”,
“anionic”, “cationic” and “zwitterionic”, and the secondary
classes “gemini” and “sugar-based”. Though the surfactant
class is reported in most primary literature sources, classes in
the database were determined based on structure by calculating
the “formal charge” aer removal of all counterions, and
mapping this charge to the corresponding class (−3j–2 /

gemini anionic, −1 / anionic, 0 / non-ionic or zwitterionic,
+1 / cationic, +2j+3j+4 / gemini cationic). Zwitterionic
eir derivation from the experimentally determined Langmuir isotherm
ration (log(C)). All calculations are based on SI units. Abbreviations: g0,
rface (1 for non-ionic/zwitterionic, 2 for cationic/anionic, 3 for gemini);
CMC = –log10(CMC); C20 = 10−pC20

Unit Calculation

Mj– log10(M)
mN m−1

ation mol m−2

Gmax ¼ � 1

ð2:303nRTÞ

 
vg

vlog10ðCsurfÞ

!
T

Mj– log10(M)
pC20 ¼ g0 � 0:02� gCMC

2:303nRT$Gmax
� log10ðCMCÞ

mN m−1 pCMC = g0 – gCMC

nm2

Amin ¼ 1

NA$Gmax

© 2025 The Author(s). Published by the Royal Society of Chemistry
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surfactants were differentiated from non-ionic surfactants by
checking for the presence of atoms with non-neutral charge in
the surfactant. The “sugar-based” assignment was added
manually. Algorithmically assigned surfactant types were
manually veried.
2.2 Modeling

Python code used to implement, train and evaluate the models
described in this section, in addition to the dataset and test
split, is available on GitHub16 and Zenodo.17

2.2.1 Fingerprint-based machine learning models. Two
molecular featurization approaches implemented in RDKit29

combined with machine learning models were used as base-
lines for single-property prediction models. Extended Connec-
tivity Fingerprints (ECFP) with 2048 bits and radius 2 were
generated using “rdFingerprintGenerator.GetMorganGener-
ator”. RDKit topological ngerprints (RDKFP) were generated
using “AllChem.RDKFingerprint”, with default hyper-
parameters of 2048 bits and a minimum and maximum path
length of 1 and 7 bonds, respectively. These ngerprints were
regressed onto properties using the “scikit-learn”30 imple-
mentations (version 1.5.1) of a Random Forest Regressor
(“RandomForestRegressor”, RF) and Ridge regression (“Ridge”)
with default hyperparameters.

2.2.2 Graph neural network. A GNN was constructed to
generate learned molecular representations from molecular
graphs with node and edge features, which were then regressed
onto surfactant properties. The encoder consisted of the previ-
ously reported “AttentiveFP” model,31 implemented in
“PyTorch-Geometric”,32 which has achieved state-of-the-art
performance on many property prediction tasks.31,33,34 Molec-
ular structures were converted into input graphs using
“RDKit”29 to calculate input feature vectors for every atom (39
“in_channels” features) and bond (10 “edge_dim” features)
following Xiong et al.31 (see Table S2†). The atom (node) features
are one-hot encodings of the atom's element, degree, hybrid-
ization, aromaticity and chirality, charge, number of hydrogens
and radical electrons. The bond features are one-hot encodings
of the bond type, its stereochemistry and whether it is part of
a ring or conjugated system or not. The bond feature vector was
extended with a one-hot encoding for self-loop edges. Finally,
a sparse adjacency list (“edge_index”) with bidirectional edges
and self-loops was constructed. The atom features, bond
features and adjacency list were converted into the graph format
used by “PyTorch-Geometric”.

The AttentiveFP architecture consists of multiple “message
passing”35 layers which rene these initial input feature vectors
by propagating information based on the adjacency list. In each
layer, every node's feature vector is updated by aggregating
“messages” received from all adjacent nodes. AttentiveFP uses
a learned message function based on the graph attention
mechanism,36 which is parametrized by neural networks and
takes as input the feature vector of both the node, its neighbor
and (optionally) their edge vector. The messages from all
neighbors are aggregated into the updated node vector by
a “Gated Recurrent Unit” (GRU).37 Global “renement layers”
© 2025 The Author(s). Published by the Royal Society of Chemistry
are applied aer these local message passing layers, which
construct a representation of the entire molecule. These
attention-based layers instead connect each atom to a “virtual
super node” capturing global context. The output of the encoder
is a single latent vector describing the entire molecule, which is
the input to the regression head. A schematic of this GNN is
depicted in Fig. S1.†

2.2.3 Regression head. Latent molecular representations
produced by the AttentiveFP encoder were regressed onto np= 1
(single-property), np = 3 (multi-property) or np = 6 (all-property)
scalar property values using three sequential projections of size
[doutput × 64] / [64 × 64] / [64 × np] with interleaved ReLU
nonlinearities. LayerNormalization was applied before the rst
projection layer and a bias term was used for all linear layers. A
mask was applied to all predictions for which no property is
available in the database, which set all missing labels and
affected predictions to 0 for calculation of the training loss and
predictive errors.

2.2.4 GNN hyperparameter selection. AttentiveFP hyper-
parameter settings were screened close to the recommended
defaults using a sweep of parameters. Hyperparameters for
single-task and multi-task models were investigated separately.
The main hyperparameter controlling the number of trainable
model parameters was the “hidden dimension” of the Attenti-
veFP encoder, which controlled the size of the latent vector for
each message passing and renement layer. Hidden dimen-
sions of 32, 64, 96 and 128 were used, paired with an output
dimension of 64, 128, 192 and 256. Two to four message passing
layers (operating at the atom level) and two to four renement
“timesteps” (operating at the graph level) with dropout proba-
bilities of 0.0 to 0.4 were explored. These congurations yielded
very small to very large models with 36 K to 635 K model
parameters. Smaller models with similar accuracy to signi-
cantly larger ones were favored in these investigations.
Exhaustive sweeps were performed over subsets of these
congurations due to the relatively quick training times,
initially with only 1 cross-validation fold, and subsequently for
the better-performing congurations with 5 cross-validation
folds.

These preliminary investigations on model hyperparameters
indicated that the “hidden dimension” of the AttentiveFP GNN
had the biggest inuence on model performance. Doubling of
the hidden dimension leads to a sub-quadratic increase in
trainable parameters due to the linear to quadratic scaling of its
constituent modules. In contrast, using more than 2 “hidden
layers” and 2 “global renement layers” signicantly increases
the model parameters without robust gains in performance. A
“dropout” probability of p = 0.1 was found to give reliable
results. Either omitting dropout or using signicantly larger
dropout probabilities deteriorated model performance.

Based on these investigations, we found a hidden dimension
of 64 and output dimension of 128, with 2 hidden layers, 2
global renement layers and dropout p = 0.1 consistently yiel-
ded accurate results, and used these hyperparameters for all
further experiments unless stated otherwise. This conguration
(AttentiveFP64d) has 116 K model parameters including the
regression head, which is signicantly smaller than previously
Digital Discovery, 2025, 4, 1176–1187 | 1179
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proposed GNNs for surfactants (217 K8 and 307 K11) and mole-
cules (586 K38). A smaller variant with a hidden dimension of 32
and output dimension of 64 (AttentiveFP32d, with a total of 36 K
parameters) was also explored, as well as a larger architecture
with 96 hidden dimensions and output dimension 192
(AttentiveFP96d, 245 K parameters).

2.2.5 Multi-property prediction. Since some database
properties may be calculated directly from others, “multi”-
property prediction for a subset of np = 3 properties (pCMC,
gCMC and Gmax) was explored, as well as “all”-property predic-
tion for all 6 properties outlined in Table 1. The negative log-
transformed values for CMC and C20 was used for all models
(pCMC = –log10(CMC)), and Gmax was multiplied by 106.
AttentiveFP models were trained for multi- and all-property
prediction using a regression head with np outputs, rather
than training np separate models each with a scalar output. Due
to large differences in scale for these properties, each property
was scaled using the “RobustScaler” in scikit-learn30 to ensure
equal contributions to the loss function, which we found
necessary to obtain accurate models for multi- and all-property
prediction. To differentiate AttentiveFP models, we denote the
hidden dimension using a subscript (e.g. AttentiveFP64d denotes
a hidden dimension size of 64) and the task (single, multi or all)
in superscript, where single refers training on a single property,
multi refers to training on pCMC, gCMC and Gmax, and all refers
to training on pCMC, gCMC, Gmax, pC20, Amin and pCMC.

2.2.6 Test set split. A test set split strategy was chosen to
account for the incomplete nature of the database (not all
entries have a full set of properties), while allocating ∼10% of
the surfactant structures and property measurements to the test
set and preserving distributions of surfactant types. All
measurement were included in the training and test data,
regardless of the temperature they were recorded at. The test set
consists of 140 surfactants and was sampled with stratication
based on the surfactant type from two disjoint subsets of the
database. First, stratied sampling was used to select 70
surfactants from those surfactants for which all properties have
been recorded (647 surfactants). This test set was extended with
70 more surfactants, sampled with stratication from those
surfactants for which only the CMC is available (632 surfac-
tants). The surfactant classications “anionic”, “cationic”,
“non-ionic” and “zwitterionic”, “gemini cationic” and “sugar-
based non-ionic” were used as a basis for stratication. Scikit-
learn's “StratiedShuffleSplit” with surfactant type as the “class
label” was used to create the test set, and “StratiedKFold” was
used to obtain 10 cross-validation folds using all remaining
surfactants and property measurements. The test set contains
∼10% of property measurements for CMC, Gmax, C20, Amin and
pCMC, and ∼7% of gCMC measurements from the database. It
consists of 140 structures, with 24 anionic, 24 cationic, 52
gemini cationic, 28 non-ionic, 9 sugar-based non-ionic and 3
zwitterionic structures. Prediction errors (MAE/RMSE) for
pCMC were averaged for the 140 test set structures with a pCMC
measurement, while errors for gCMC, Gmax and C20 were calcu-
lated on the 70 test structures for which all properties are
available.
1180 | Digital Discovery, 2025, 4, 1176–1187
2.2.7 Model training. All models were trained in sequence
using PyTorch on a NVIDIA 4090 GPU with a batch size of 64
and the “AdamW” optimizer with betas 0.9 and 0.999. The
HuberLoss loss criterion was chosen as the training loss, which
combines the MAE and RMSE used as evaluation metrics.
PyTorch Lightning's39 “Trainer” was used with a learning rate
initialized using the “LearningRateFinder”. Early stopping was
used to terminate training aer 50 epochs with no improvement
in the validation MAE to avoid overtting to the training set. All
training runs stopped before the maximum number of epochs
(500), most runs nished within ∼100–300 epochs in ∼25–30
minutes for all 10 models trained on 10 cross-validation splits.

2.2.8 Model performance evaluation. Test set errors were
calculated using two methods. To characterise models' sensi-
tivity to data, the “average” MAE was calculated to estimate the
expected MAE value for a single model, trained on a single
instance of training data (eqn (1), where K is the number of
folds, N is the number of data points, yn is a property data point
and ŷn

k is the prediction of the property value by amodel trained
on the kth fold of data).

MAEaverage ¼ 1

K

XK
k¼1

 
1

N

XN
n¼1

��yn � ŷn
k
��! (1)

The “ensemble” MAE calculation method estimates the ex-
pected error when a prediction is made by taking the average
prediction across folds (eqn (2), where K is the number of folds
and ŷk is the prediction of a model trained on the kth fold of the
data). Ensemble methods also allow model prediction uncer-
tainty to be estimated. The standard deviation of the ensemble
prediction is dened in eqn (3). Ensembles of machine learning
models and (deep) neural networks have been theoretically40,41

and empirically42,43 shown to improve model accuracy and out-
of-distribution robustness. The MAE for the ensemble predic-
tion is given in eqn (4), with similar denitions as eqn (1).

ŷensemble ¼ 1

K

XK
k¼1

ŷk (2)

sensemble ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK
k¼1

��ŷk � ŷensemble
��2

vuut (3)

MAEensemble ¼ 1

N

XN
n¼1

��yn � ŷensemble
n

�� (4)

2.2.9 Imputing missing properties. Missing experimental
properties for surfactants with an incomplete set of properties
were imputed using the AttentiveFPall64d ensemble model ob-
tained from the 10 AttentiveFP models trained on 10 cross-
validation folds. Aer model training, the mean of the 10
models' predictions was calculated as the ensemble prediction
according to eqn (2) for all 1624 surfactant structures in the
database. The standard deviation of the predictions of the 10
models was calculated following eqn (3) to quantify the uncer-
tainty in the prediction. These predictions and uncertainties
© 2025 The Author(s). Published by the Royal Society of Chemistry
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were used to impute all missing properties for 977 structures
with an incomplete set of experimental properties. A standard
deviation of 0.0 was assigned for measurements derived from
literature values in the imputed database.
Fig. 2 Histograms showing the differences in distribution of pCMC for
(a) gemini cationic (red), (b) cationic (orange), (c) non-ionic (blue), (d)
anionic (green), with the overall distribution of the full dataset in grey.
The dashed lines visualize the median of the subset (color) compared
to the full dataset (grey).
3 Results and discussion
3.1 SurfPro database

Table 2 lists the overall count of experimental property
measurements per property, divided by surfactant type. The
largest fraction of surfactants in the database are cationic,
including 904 unique structures with one (cationic) or two
(gemini cationic) counter ions. The second-largest category is
non-ionic, which includes 100 sugar-based surfactants, fol-
lowed by anionic surfactants which contains 242 entries, and
only 3 gemini anionic surfactant entries. Zwitterionic surfac-
tants are the lowest represented class in the database, with only
54 entries overall, which includes 17 gemini zwitterionic
compounds.

The majority of experimental measurements (1327) were
recorded between 24.85 °C to 25 °C. The properties of 55
surfactants were measured below this range (20 °C to 23 °C),
and 13 surfactants were measured above it (27 °C to 40 °C). No
temperature was reported for gCMC measurements of 228
structures obtained from Ricardo et al.,14 but the authors only
included measurements at temperatures of 20 °C to 30 °C.
Surfactant properties are dependent on temperature,12 but it
has also been noted that gCMC does not vary signicantly in the
temperature range 20 °C to 30 °C.14 However, we included all of
the data that we collected in the test and train sets. We included
data recorded outside the modal temperature range of the
dataset with the aim of maximising the structural diversity, and
we were unable to nd data for these compounds at 25 °C. We
thus expect that models trained on these data are more accurate
predictors for properties at around 25 °C.

The fraction of reported properties varies signicantly
among surfactant types. The property pCMC has the highest
number of entries in the database, with a pCMC value given for
the majority of entries in each class of surfactants. The number
of gCMC values in the data is in general the second highest for
each surfactant class, and similar in proportion to the number
of Gmax, pC20, Amin and pCMC values in the database. Cationic
Table 2 Counts of experimental property measurements aggregated an
calculated from others (Table 1) are included in these counts. They acco
same Langmuir isotherm using the Szyszkowski equation

Surfactant type SMILES pCMC gCMC

Cationic 316 237 274
Gemini cationic 588 497 416
Anionic 239 239 39
Gemini anionic 3 3 0
Non-ionic 325 281 145
Sugar-based non-ionic 100 100 74
Zwitterionic 36 21 24
Gemini zwitterionic 17 17 0
Total 1624 1395 972

© 2025 The Author(s). Published by the Royal Society of Chemistry
surfactants have the highest overall proportion of micellization-
related properties reported in this database. Of the 647
compounds with a complete set of reported properties, cationic
and gemini cationic represent 27% and 47%, respectively. In
contrast, of the 632 compounds with only CMC values reported,
cationic and gemini cationic represent 7% and 28% respec-
tively, while 30% are anionic and 28% are non-ionic.
3.2 Visualization of the distribution of reported properties
by surfactant type

The distributions of experimental properties vary signicantly
between subsets of surfactant types, both compared to each
other and compared to the full dataset (Fig. 2–5). pCMC
measurements of gemini cationic structures (Fig. 2a, red) show
a mean and standard deviation close to Gaussian and similar to
the entire dataset (grey), while the distribution's mean shis
signicantly higher for non-ionic (Fig. 2b, blue) and lower for
cationic (Fig. 2c, orange) and anionic structures (Fig. 2d, green)
with heavy tails. For gCMC the distributions of gemini cationic,
cationic and non-ionic subsets (Fig. 3a–c) shi signicantly
d curated in the SurfPro database, split by surfactant type. Properties
unt for a small fraction of properties and are calculated based on the

Gmax pC20 Amin pCMC All

176 176 182 195 176
302 308 302 326 302
45 31 45 39 30
0 0 0 0 0

72 71 72 101 71
71 71 71 74 68
6 0 6 9 0
0 0 0 0 0

672 657 678 744 647

Digital Discovery, 2025, 4, 1176–1187 | 1181

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00393d


Fig. 3 Histograms showing the differences in distribution of gCMC (mN
m−1) for (a) gemini cationic (red), (b) cationic (orange), (c) non-ionic
(blue), (d) anionic (green), with the overall distribution of the full dataset
in grey. The dashed lines visualize the median of the subset (color)
compared to the full dataset (grey).

Fig. 4 Histograms showing the differences in distribution of Gmax (mol
m−2 × 106) for (a) gemini cationic (red), (b) cationic (orange), (c) non-
ionic (blue), (d) anionic (green), with the overall distribution of the full
dataset in grey. The dashed lines visualize the median of the subset
(color) compared to the full dataset (grey).

Fig. 5 Histograms showing the differences in distribution of pC20 for
(a) gemini cationic (red), (b) cationic (orange), (c) non-ionic (blue), (d)
anionic (green), with the overall distribution of the full dataset in grey.
The dashed lines visualize the median of the subset (color) compared
to the full dataset (grey).
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relative to the entire dataset, while very few measurements are
reported for anionic structures (Fig. 3d).

A skewed distribution is observed for Gmax both overall and
for each surfactant type (Fig. 4a–d). Heavy outliers are present in
cationic structures, and a large increase of the mean Gmax is
visible for non-ionic structures. pC20 measurements are nor-
mally distributed overall and for cationic and gemini cationic
structures. A bi-modal distribution is observed for non-ionic
(Fig. 5c) surfactants compounds, while few pC20 measure-
ments have been reported for anionic surfactants (Fig. 5d).
3.3 Modeling results

We developed a selection of QSPR models trained to predict
pCMC, gCMC, Gmax, and pC20. Conceptually, each model
1182 | Digital Discovery, 2025, 4, 1176–1187
consisted of an encoder for molecular structure, and
a regressor. The molecular structure encoder takes in molecular
structure information in the form of a graph, and converts it
into a numerical vector representation. This representation is
then regressed onto molecular properties using the regressor
part of the model. As “baselines”, we chose descriptors from
RDKit ngerprint and ECFP-based representations, which
algorithmically encode the molecular graph into vectors. ECFP
and RDKit ngerprint (RDKFP) representations were regressed
onto molecular properties using either random forest regres-
sion or ridge regression. GNNs have previously been shown to
be effective in predicting surfactant properties.8,9,12 Here, we
selected the AttentiveFP architecture as a GNN-based encoder
for molecular structure, which has previously demonstrated
state-of-the-art performance on a selection of other QSPR
tasks.31,34

Distributions of properties differ between different surfac-
tant types (Fig. 2–4). Previous reports on QSPR modeling of
surfactants such as Chen et al.13 developed separate models for
different surfactant types, while other works developed indi-
vidual models capable of predicting properties for all surfactant
types.8,11 Here, we developed models which can accept any
surfactant type by training on data containing surfactants of
each class. The test set of 140 surfactants was selected speci-
cally to enable evaluating models on the same set of surfactant
structures for all tasks and properties. Due to the varying
number of reported values for each property, ∼10% of property
measurements were allocated by sampling 70 surfactants with
stratication by surfactant type from two subsets of the dataset
separately, respectively from structures with all reported prop-
erties, and structures with only the CMC. The distribution of
surfactant type reported in the database was preserved through
stratied sampling based on the surfactant type (see Methods).
We included all data, regardless of the temperature they were
recorded at, in training, validation and test data.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Each model was trained for three tasks: single-property,
multi-property and all-property prediction. For single property
prediction, models were trained to predict a single property
given a molecular structure input. Multi-property AttentiveFP
models were trained to simultaneously predict pCMC, gCMC and
Gmax. All-property AttentiveFP models were trained to simulta-
neously predict pCMC, gCMC, Gmax, C20,pCMC and Amin. Ten-fold
cross validation was used during model training. For each task
and model, the MAE and RMSE were evaluated for each of 10
cross-validation folds, and averages were taken according to eqn
(1). Additionally, the ensemble error (eqn (4)), corresponding to
the errors of the average prediction from all models trained on
each fold, was also calculated. We did not train single-task
models to predict Amin or pCMC, since they can be calculated
from pCMC, gCMC and Gmax. Table 3 lists all obtained predictive
results for the ensemble (MAE and RMSE) for all tasks. Table
S3† lists the average results for the same tasks, box plots of the
results are provided in Fig. S2–S5.†

3.3.1 ECFP and RDKit ngerprint based models. We
included ECFP and RDKFP based models as “baseline”
approaches in which molecular structure is encoded algorith-
mically, rather than learned as in the GNN approach. These
models were only trained on single-property prediction tasks.
All ECFP and RDKFP based approaches achieved a relatively
small variance of their predictive errors, with the exception of
those predicting gCMC. RDKit ngerprints paired with a random
forest regressor (RDKFP – RF) achieved the lowest errors (MAE
and RMSE) on all four properties with the exception of pC20

(Fig. S2–S5,† RDKFP – Ridge – ECFP – RF). For pCMC and pC20,
all RDKFP based models had signicantly higher MAE and
RMSE (twice as large) values compared to the AttentiveFP-based
models, both on average (Table S3†) and for the ensemble
(Table 3). The best model of this class for pCMC prediction was
RDKFP – RF, which achieved similar results for average and
ensemble predictions at ∼0.63 MAE/0.84 RMSE. For Gmax
Table 3 Ensemble prediction errors for all model variants and propert
prediction errors obtained by first averaging the test set prediction of all 10
models on the test set see Table S3. We report the mean absolute error (M
specifically for the pCMC, gCMC, Gmax × 106 and pC20. The best (lowest
lowest errors are italicized. See also Fig. S2–S5 for boxplot visualizations

pCMC gCMC

MAE RMSE MAE

AttentiveFPsingle32d 0.275 0.428 2.685
AttentiveFPsingle64d 0.250 0.382 2.345
AttentiveFPsingle96d 0.241 0.365 2.424
AttentiveFPmulti

32d 0.277 0.415 2.796
AttentiveFPmulti

64d 0.239 0.358 2.621
AttentiveFPmulti

96d 0.237 0.360 2.308
AttentiveFPall32d 0.279 0.419 2.711
AttentiveFPall64d 0.246 0.358 2.548
AttentiveFPall96d 0.235 0.346 2.591
RDKFP – Ridge 0.674 0.902 3.367
RDKFP – RF 0.630 0.840 2.939
ECFP – Ridge 0.760 1.010 3.942
ECFP – RF 0.737 0.997 4.142

© 2025 The Author(s). Published by the Royal Society of Chemistry
prediction, the ECFP-based approaches performed similarly to
the single-task AttentiveFP models, albeit with lower variance
across cross-validation folds.

3.3.2 AttentiveFP model size scaling. Fig. 6 shows MAE
values obtained from different AttentiveFP model sizes for four
properties and predictive tasks. The panels show the average
MAE calculated across cross-validation folds, with error bars
corresponding to the standard deviation, as well as MAE values
derived from the ensemble prediction. The performance of the
models across folds with increasing model size overlaps
signicantly in terms of the standard deviation. For single
property prediction, there MAE decreases with increasing
model size, with the exception of gCMC MAE increasing from
AttentiveFP64d to AttentiveFP96d. In terms of the average error,
this decrease does not appear to be signicant, as there is
signicant overlap in terms of the standard deviation around
the average MAE values. The ensemble MAE values follow
a similar trend to the average MAE values, but they are much
lower in magnitude, indicating that the combined prediction
for a property calculated for the collection of models outper-
forms those of any single model. For the models trained on the
multi- and all-property prediction tasks, the same trend of
decreasing average MAE with increasing model size is observed.
This decrease is not hugely signicant due to the size of the
standard deviations around the averages. As for the single
property predictions, the ensemble error is much lower than the
average error, but mirrors the average values' trend in model
size. The results suggest that model performance increases with
size, but not signicantly enough to justify the use of the largest
model, AttentiveFP96d. In general, the smallest AttentiveFP32d
model always exhibits the highest average and ensemble MAE
for each task and thus is not large enough to accurately t the
data for all tasks. The medium AttentiveFP64d model achieves
an accurate t for all properties and tasks, and performs on par
with the large AttentiveFP96d model for pCMC.
ies under investigation. For each model, we reported the “ensemble”
models for each surfactant. For the “average” prediction errors of all 10
AE) and root mean squared error (RMSE) for each property individually,
) errors for each property/metric are highlighted in bold, the second-
of the MAE (top) and RMSE (bottom) for all four properties

Gmax × 106 pC20

RMSE MAE RMSE MAE RMSE

3.961 0.488 0.942 0.461 0.633
3.555 0.432 0.840 0.353 0.496
3.561 0.387 0.784 0.285 0.405
3.680 0.429 0.878 — —
3.600 0.358 0.685 — —
3.407 0.333 0.573 — —
3.626 0.479 0.999 0.349 0.530
3.516 0.353 0.842 0.282 0.390
3.531 0.347 0.707 0.259 0.363
4.549 0.444 0.786 0.511 0.754
4.211 0.443 0.773 0.582 0.743
5.124 0.474 0.876 0.591 0.753
5.442 0.453 0.784 0.588 0.742

Digital Discovery, 2025, 4, 1176–1187 | 1183
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Fig. 6 Comparison of AttentiveFP model size and its influence on the mean absolute error (MAE), respectively for pCMC (a), gCMC (b), Gmax × 106

(c) and pC20 (d). The hidden dimension of the AttentiveFP model is visualized on the x-axis, which is the primary determinant of the number of
trainable parameters: AttentiveFP32d (36 K parameters), AttentiveFP64d (116 K parameters) and AttentiveFP96d (245 K parameters). The four panels
show the four properties in the single-property (blue), multi-property (orange) and all-property (green) prediction task. The line plots with error
bars visualize the average MAE and its standard deviation from the 10 models evaluated on the test set, which are slightly offset for visibility. The
dashed lines visualize the ensemble MAE.
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3.3.3 Model ensemble. The ensemble prediction per-
formed signicantly better than the average prediction in terms
of both MAE and RMSE for every AttentiveFP-based model,
across all properties, tasks and model sizes (Tables 3 and S3†).
Fig. 6 shows the trends in model size discussed in the previous
paragraph are nearly identical for the average (lines with error
bars) and ensemble (dashed lines) MAE. Notably, for most
properties and tasks the ensemble model achieved lower errors
than the best individual model (Fig. S2–S5,† red stars). The
ensemble prediction's signicant improvement over the indi-
vidual AttentiveFP model is explained by instability of the
model's training43 and diversity of their predictors.40,41 The
AttentiveFP models obtained from each cross-validation fold
exhibit signicant variance in their predictions, especially for
properties with fewer data points (Fig. S3–S5†).

3.3.4 Multi-property and all-property prediction. For pCMC
prediction, all AttentiveFP models (AttentiveFP32d,
AttentiveFP64d and AttentiveFP96d) perform similarly across the
single, multi- and all-property prediction tasks for all model
sizes according to the average MAE (0.31–0.35) and RMSE (0.35–
0.50) (Table S3,† pCMC). This similarity in performance across
training tasks is also the case for the ensemble MAE (0.24–0.28)
and RMSE (0.35–0.43) (Table 3, pCMC). Thus, there is no
signicant improvement for pCMC prediction using multi- or
all-property training strategies.

For gCMC prediction, according to the average error calcula-
tion metric, the MAEs of all model of the same size fall within
one standard deviation of each other when trained upon the
three tasks (Fig. 6). For the ensemble, single-property models
perform better than multi-property models for gCMC prediction,
except for the AttentiveFPmulti

96d model (0.33 MAE/0.57 RMSE),
which outperforms both single- and all-property AttentiveFP96d
models (0.35–0.39 MAE/0.71–0.78 RMSE) (Table 3). Therefore,
training on multiple or all properties is in general detrimental
to predicting gCMC.
1184 | Digital Discovery, 2025, 4, 1176–1187
For Gmax we observe more drastic improvements in perfor-
mance between single-property and multi-/all-property predic-
tion, both on average and for the ensemble (Fig. 6). For the
ensemble, the single- and all-property models perform similar
(0.48–0.49 MAE/0.94–1.0 RMSE) for AttentiveFP32d, whilst the
multi-property model of the same size performs better (0.43
MAE/0.88 RMSE). Increasing the model size increases the
performance of the multi- and all-property models relative to
the single-property model. We thus consider multi-property
training to be benecial in developing models which are
better predictors of Gmax.

Training on all properties also appears benecial for pC20

prediction. This training mode introduces a moderate increase
in performance for AttentiveFP32d according to the average
metric, but this gain in performance closes as the model
becomes larger. However, for the ensemble models, there is
a greater difference in performance between AttentiveF-
Psingle32d (0.46 MAE/0.63 RMSE) and AttentiveFPall32d (0.35 MAE/0.53
RMSE). Again, this performance difference closes as the model
size gets larger (0.29 MAE/0.41 RMSE for AttentiveFPsingle96d , 0.26
MAE/0.36 RMSE for AttentiveFPall96d). These results indicate that
training on all properties can appreciably improve pC20

prediction.
The medium (AttentiveFP64d) and large (AttentiveFP96d)

ensemble models score similarly in the multi-property task, and
differences in predictive accuracy between the multi- and all-
property task are relatively small and not consistent across
properties (Fig. 6 and S2–S5†). We hypothesize this is due to the
similarity of information contained in both tasks, since pC20,
Amin and pCMC can be calculated given pCMC, gCMC and Gmax.
Both multi- and all-property prediction tasks effectively contain
the same information derived from the Langmuir isotherm, and
therefore all derived models show comparable performance for
the same model size.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.4 Property prediction performance

3.4.1 Critical micelle concentration (pCMC). We achieved
accurate predictions for our test set (140 surfactants) for pCMC
using a single model for all surfactant types. All AttentiveFP
model variants achieved an average MAE of 0.3–0.35/RMSE of
0.44–0.50. Furthermore, the ensemble prediction outperforms
the average and almost all individual models by a signicant
margin, and is the best predictor across all model sizes and
tasks (Fig. S2,† pCMC). The AttentiveFP64d and AttentiveFP96d
ensembles in the multi- and all-property prediction tasks ach-
ieve state-of-the-art results with 0.24 MAE/0.35 RMSE for pCMC
on the test set with all surfactant types (Table 3, pCMC). All
baseline models performed poorly for pCMC prediction, with
average and ensemble MAEs of 0.63 to 0.77 and RMSEs of 0.84
to 1.03. Prior work on pCMC by Brozos et al.11 used GNNs and
achieved a MAE of 0.21 MAE/0.28 RMSE for log10(CMC)
prediction in mM on 66 test set structures. Chen et al.13 used two
separate machine learning models for ionic and non-ionic
compounds, and reported a MAE of 0.24/RMSE of 0.28 on
a test set of 79 surfactants.

3.4.2 Air–water surface tension (gCMC). We achieved accu-
rate predictions for gCMC, with test set MAEs ranging between
2.31 and 3.30 mN m−1 for all AttentiveFP-based models (Tables
3 and S3,† gCMC). These errors are signicantly lower than
results obtained by Ricardo et al.,14 who reported an average
hold-out (test) set MAE of 3.38 mNm−1 averaged over ve cross-
validation folds. We observe a signicant variance in prediction
errors for gCMC for all models, which affects the model averages
(Fig. S3†). All but one of the ngerprint based approaches
perform poorly for gCMC. Interestingly, the RDKFP – RF model
achieves competitive accuracy with an average 3.02 MAE/4.34
RMSE on the test set, and on average performs comparably
with the single-task AttentiveFP models for gCMC prediction. All
AttentiveFP ensemble models improve upon the corresponding
individual models' performance on average. The multi-property
models further improve upon the results of the single-property
AttentiveFP model, and the AttentiveFPmulti

96d ensemble achieves
state-of-the-art performance with 2.31 MAE/3.41 RMSE
(Table 3, gCMC).

3.4.3 Surface excess concentration (Gmax). For Gmax the
single-task AttentiveFP models performed comparable to the
ngerprint-based baseline models. The single-property Atten-
tiveFP models achieved MAEs of 0.49 to 0.57 and RMSEs of 0.83
to 1.03, falling slightly behind all baseline models with MAEs of
0.47 to 0.50 and RMSEs of 0.80 to 0.90. The model ensembles
show a small, consistent improvement for all baseline models,
with more signicant gains for the larger single-task ensemble
models. The RDKFP – RF ensemble achieved the lowest errors
among the baseline models with 0.44 MAE/0.77 RMSE, followed
by the RDKFP – Ridge ensemble. Multi-property training and
the model ensembles signicantly improve upon the single-
property models and baselines for Gmax. The
AttentiveFPmulti

96d ensemble model performed best in terms of
MAE and in particular RMSE, achieving a test set error of 0.33
MAE and 0.57 RMSE (Fig. S4,† bottom). Prior work by Brozos
et al.11 reported a Gmax MAE of 0.4/RMSE of 0.53 obtained from
© 2025 The Author(s). Published by the Royal Society of Chemistry
a GNN trained using multi-task learning and ensembles on
a test set of 24 surfactants.

3.4.4 Surfactant efficiency (pC20). For pC20, all baseline
approaches perform poorly (Fig. S5,† bottom). The RDKFP –

Ridge ensemble achieves the lowest errors out of the machine
learning models with 0.51 MAE/0.75 RMSE, but scores signi-
cantly worse than the single-property AttentiveFP models with
an average 0.35 MAE/0.50 RMSE. AttentiveFPall96d achieves the
lowest average MAE/RMSE, with the ensemble as the best
overall predictor at ∼0.26 MAE/0.36 RMSE (Tables 3 and S3,†
pC20).
3.5 Imputing missing properties

We selected the AttentiveFPall64d ensemble model to provide
imputed properties which complete the SurfPro dataset. For
pCMC prediction the model's test MAE is 0.246, which is below
the average, but approximately the median test MAE, over all
AttentiveFP ensemble models.

Inspection of the model's parity plot for pCMC (Fig. S6a†)
and the distribution of differences between the true and pre-
dicted values (Fig. S6b†) indicates that the model predicts
pCMC for each surfactant type with similar accuracy. Therefore,
the model's performance for pCMC prediction does not appear
to be dependent on the surfactant type.

In the case of gCMC prediction, the overall test MAE is 2.55,
just below the mean test MAE, and well below the median, for
the AttentiveFP ensemble models. The parity plot (Fig. S7a†)
and distribution of errors (Fig. S7b†) indicates that the majority
of samples in each surfactant class are similarly distributed
close to the mean error. However, there are some samples of the
anionic, cationic and gemini surfactant classes which have
signicantly higher errors than average. Since these are isolated
examples from the test data set, we cannot draw any inferences
about any structural basis for the low prediction accuracy for
these samples.

For Gmax prediction, the test MAE is 0.35, which is below the
mean (and median) test MAE for all AttentiveFP ensemble
models. As for pCMC and gCMC, parity plots (Fig. S8a†) and
distributions of errors (Fig. S8b†) indicate similar model
performance over each class of surfactants. However, there is
single outlier cationic surfactant sample whose Gmax value is
predicted to be signicantly lower than its experimental value.
Again, we cannot infer any general insight intomodel behaviour
based on this single sample.

Finally, for pC20, the model performs with a test MAE of 0.28,
which is approximately the median, but above the mean test
MAE over all AttentiveFP ensemble models. The pC20 values for
gemini surfactants are in general lower in error, as indicated by
their relatively narrow distribution of errors about 0.0 compared
to the other surfactant classes (Fig. S9a and b†). Thus, the
AttentiveFPall64d model performs well in comparison to the other
investigated models, performing similarly to the larger
AttentiveFPall96d and AttentiveFPmulti

96d ensemble models, and
signicantly better than all smaller AttentiveFP32d models. The
model can also make predictions across variety of surfactant
classes well, and in general does not appear be systematically
Digital Discovery, 2025, 4, 1176–1187 | 1185
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biased to predict one surfactant class with better accuracy than
any other.

Out of the 1624 structures, only 647 have all properties re-
ported, and we ll the database with the ensemble model's
predictions and uncertainties for all missing properties for
those 977 structures. We used the AttentiveFPall64d ensemble
model to calculate predictions for missing values in the data-
base using the mean prediction of the ten members of the
ensemble (eqn (2)). We also used these ten values to estimate
the uncertainty of their mean prediction by calculating their
standard deviation (eqn (3)). The entries for which the literature
values are provided are assigned a standard deviation of 0.0 in
the imputed database. The imputed database is available on
Github16 and Zenodo.17
4 Conclusion

SurfPro is a manually curated surfactant property database of
1624 unique amphiphiles, which we have made publicly avail-
able for the community. At the time of writing, it is the largest
dataset for this class of compounds, containing 1624 unique
surfactant entries with corresponding measurements of the
CMC, gCMC, Gmax and C20. Importantly, literature sources typi-
cally do not include experimental measurements of all proper-
ties of surfactants, oen only reporting pCMC or gCMC values.
Therefore, despite the size of the database, it remains incom-
plete as not all samples have a complete set of annotated
properties. Furthermore, SurfPro contains only three anionic
gemini surfactants, 21 cationic gemini with 3 or 4 counterions,
and three high molecular weight compounds ($2000 Da).
Future data collection efforts could thus be targeted to address
the balance of structural diversity and experimental surfactant
property measurements to ll the chemical structure and
property spaces of surfactants more efficiently.

Using the SurfPro database, we trained an ensemble of GNN-
based models for single- and multi-property prediction for
pCMC, gCMC, Gmax and pC20. This model then allowed us to
impute missing property values for 977 compounds in the
SurfPro database, thus providing a complete database consist-
ing of experimentally measured properties from literature
sources, and a set of estimates according to the GNN ensemble
model. We hope the database and modeling strategy will
provide new avenues in data-driven property prediction and
surfactant design.
Data availability

The SurfPro database (“surfpro_literature.csv”), reference list
(“surfpro_bibliography.bib”), “imputed” database (“surf-
pro_imputed.csv”), test split (“surfpro_test.csv”), cross-
validation folds (“surfpro_train.csv”) and Python code used to
implement, train and evaluate the models described in this
work are available via GitHub (https://github.com/
BigChemistry-RobotLab/SurfPro16) and Zenodo (https://
zenodo.org/records/14931937, DOI: https://doi.org/10.5281/
zenodo.14931937).17
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Y. Bengio, Graph Attention Networks, arXiv, 2018, preprint,
arXiv:1710.10903, DOI: 10.48550/arXiv.1710.10903.

37 K. Cho, B. v. Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk and Y. Bengio, Learning Phrase
Representations using RNN Encoder-Decoder for Statistical
Machine Translation, arXiv, 2014, preprint,
arXiv:1406.1078, DOI: 10.48550/arXiv.1406.1078.

38 Z. Wu, B. Ramsundar, E. Feinberg, J. Gomes, C. Geniesse,
A. S. Pappu, K. Leswing and V. Pande, Chem. Sci., 2018, 9,
513–530.

39 W. Falcon, PyTorch Lightning, 2019, https://github.com/
Lightning-AI/lightning.

40 L. Breiman, Mach. Learn., 1996, 24, 123–140.
41 T. G. Dietterich, International workshop on multiple classier

systems, 2000, pp. 1–15.
42 M. Ganaie, M. Hu, A. Malik, M. Tanveer and P. Suganthan,

Eng. Appl. Artif. Intell., 2022, 115, 105151.
43 S. Fort, H. Hu and B. Lakshminarayanan, Deep Ensembles: A

Loss Landscape Perspective, arXiv, 2020, preprint,
arXiv:1912.02757, DOI: 10.48550/arXiv.1912.02757.
Digital Discovery, 2025, 4, 1176–1187 | 1187

https://doi.org/10.5281/zenodo.14931937
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1406.1078
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://doi.org/10.48550/arXiv.1912.02757
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00393d

	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d

	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d

	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d
	SurfPro tnqh_x2013 a curated database and predictive model of experimental properties of surfactantsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00393d


