#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue,

ULaMDyn: enhancing excited-state dynamics

i") Check for updates‘
analysis through streamlined unsupervised learning

Cite this: Digital Discovery, 2025, 4,
Max Pinheiro Jr, ©** Matheus de Oliveira Bispo, &2 Rafael S. Mattos, 2

Mariana Telles do Casal, 2P Bidhan Chandra Garain, & *2 Josene M. Toldo, 2
Saikat Mukherjee 2 and Mario Barbatti (& *@¢

The analysis of nonadiabatic molecular dynamics (NAMD) data presents significant challenges due to its
high dimensionality and complexity. To address these issues, we introduce ULaMDyn, a Python-based,
open-source package designed to automate the unsupervised analysis of large datasets generated by
NAMD simulations. ULaMDyn integrates seamlessly with the Newton-X platform and employs advanced
dimensionality reduction and clustering techniques to uncover hidden patterns in molecular trajectories,
enabling a more intuitive understanding of excited-state processes. Using the photochemical dynamics
of fulvene as a test case, we demonstrate how ULaMDyn efficiently identifies critical molecular
geometries and critical nonadiabatic transitions. The package offers a streamlined, scalable solution for

Received 19th November 2024
Accepted 7th January 2025

DOI: 10.1039/d4dd00374h interpreting large NAMD datasets. It is poised to facilitate advances in the study of excited-state

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1 Introduction

Photochemical and photophysical phenomena in molecules,
supramolecular assemblies, and solids involve the time evolu-
tion of electronic populations through multiple electronic
states. Understanding these processes requires nonadiabatic
dynamics simulations that account for the interplay between
nuclear and electronic motions beyond the adiabatic
approximation.'® Given the high computational costs of these
simulations, several strategies have been developed. One
approach is to address the problem fully quantum mechanically
but with reduced dimensionality, such as focusing only on
electron dynamics within a fixed nuclear framework or
considering a few nuclear modes. Another strategy is to retain
full dimensionality by treating part of the system's degrees of
freedom quantum mechanically and the rest classically. This
latter approach underpins Nonadiabatic Mixed Quantum-
Classical (NAMQC) dynamics. NAMQC dynamics is a broad
category that includes various methods developed over the years
to account for time-resolved simulations.”"® Among these,
trajectory surface hopping (TSH) is the most widely used.'” In

“Aix Marseille University, CNRS, ICR, 13397 Marseille, France. E-mail: maxjr82@
gmail.com; bidhan-chandra.garain@univ-amu.fr

*Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU
Leuven, 3001 Leuven, Belgium

‘UCBL, ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon Cedex 07, France
Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100
Torun, Poland

“Institut Universitaire de France, 75231 Paris, France. E-mail: mario.barbatti@
univ-amu.fr; Web: https://barbatti.org/

666 | Digital Discovery, 2025, 4, 666-682

dynamics across a wide range of molecular systems.

this approach, a swarm of independent trajectories is propa-
gated, each utilizing the forces from a single adiabatic elec-
tronic state. The nonadiabatic nature of the dynamics is
captured by allowing the trajectories to probabilistically hop to
different electronic state surfaces.

Trajectory-based nonadiabatic dynamics require running
numerous independent trajectories to approximate the
quantum system behavior until statistical convergence is ach-
ieved. At each time step of the dynamics, electronic properties
for a given molecular configuration are computed. Thus,
statistical analysis provides essential insights into dynamics
features, such as excited-state lifetimes, reaction channel
branching ratios, and dominant molecular motions. With the
advancements in surface hopping techniques and the
substantial growth of computational power, the systems under
study are becoming increasingly complex.'®*® This progress
allows for the generation of a large number of configurations
more efficiently, resulting in a massive amount of high-
dimensional data and reducing the uncertainty in the calcu-
lated mean properties.

When considering nonadiabatic molecular dynamics
(NAMD) for data generation, a sequential array of frames rep-
resenting diverse molecular configurations is produced. These
frames can be condensed into vectors, enriched with quantum
properties computed during the dynamics, creating a compre-
hensive dataset of molecular behaviors. As time scales extend,
the dataset becomes increasingly extensive and intricate.
Moreover, multiple electronic states and their associated
potential energy surfaces are involved in NAMD dynamics. As
molecular trajectories evolve over time, they encounter regions

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00374h&domain=pdf&date_stamp=2025-03-08
http://orcid.org/0000-0002-5120-4172
http://orcid.org/0000-0001-8597-5875
http://orcid.org/0000-0003-0215-7100
http://orcid.org/0000-0002-4320-6055
http://orcid.org/0000-0003-2258-0002
http://orcid.org/0000-0002-8969-6635
http://orcid.org/0000-0002-0025-4735
http://orcid.org/0000-0001-9336-6607
https://barbatti.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004003

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

of stronger nonadiabatic coupling, where transitions between
states can occur. The surface hopping approximation adds
complexity by increasing data volume through the requirement
of multiple independent trajectories, which in turn further
increases system dimensionality. Given the complexity of these
dynamics and the high-dimensional nature of molecular
geometry data, advanced statistical methods like dimension-
ality reduction and unsupervised learning are necessary to
extract meaningful patterns. ULaMDyn addresses this challenge
by automating the analysis of these large datasets, uncovering
critical internal coordinates, and allowing researchers to iden-
tify key features across molecular trajectories. This concept has
already been successfully applied to the analysis of ground-state
molecular dynamics data, demonstrating its potential for
broader applications.”*?®

However, the application of unsupervised learning algo-
rithms to analyze nonadiabatic dynamics simulation results
remains challenging, with only limited progress made in recent
years. Perrella et al. applied K-medoids clustering techniques to
molecular dynamics (MD) trajectories to reduce the dataset size
for ab initio modeling of electronic absorption spectra.*® They
tested this approach on two challenging case studies: a non-
covalent charge-transfer dimer and a ruthenium complex in
solution at room temperature. Virshup et al. utilized the diffu-
sion map technique for dimensionality reduction in analyzing
photoisomerization dynamics through ab initio multiple
spawning simulations.*® Similarly, Belyaev et al. applied the
same dimensionality reduction method to examine the
geometric evolution in TSH nonadiabatic dynamics.** Li et al.
explored the geometric evolution in nonadiabatic dynamics
using two closely related dimensionality reduction techniques:
classical multidimensional scaling (MDS) and isometric feature
mapping (ISOMAP), alongside the density-based spatial clus-
tering of applications with noise (DBSCAN) clustering
approach.®»* Principal component analysis (PCA) was
employed by Peng et al.** and Capano et al.*® to study the pho-
tophysics of a Cu-complex in TSH dynamics and to investigate
the role of bath motion in the symmetrical quasi-classical
dynamics method based on the Meyer-Miller mapping Hamil-
tonian, respectively.

Recently, Lan et al. have developed a hierarchical protocol
using unsupervised machine learning to automatically identify
different photoreaction channels and critical molecular
motions from on-the-fly TSH dynamics simulations, effectively
addressing challenges like characterizing the ring distortion for
keto isocytosine.***” Lan and co-worker's recent work highlights
the growing potential of integrating unsupervised machine
learning methods into NAMD simulation analysis, emphasizing
the need for interdisciplinary collaboration and the future
development of automated “black-box” tools to enhance effi-
ciency and insight into nonadiabatic dynamics.*® Acheson et al.
have introduced clustering as a computational tool for inter-
preting photoexcited dynamics trajectories, using variance
mapping, L,-norm, and dynamic time warping (DTW) measures
with the DBSCAN algorithm to classify complex trajectory
datasets in an unbiased manner, showcasing its application in
a photochemical ring-opening reaction.*® Additionally, some

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

progress has been made in applying unsupervised machine
learning algorithms to analyze the nonadiabatic dynamics of
solid-state systems.* Prezhdo et al applied unsupervised
machine learning to analyze correlations between structural
and electronic properties of CsPbl; perovskite, establishing key
geometric features and motions that govern charge carrier
dynamics in this widely studied solar cell material.** Despite the
emergence of such advanced techniques to address the chal-
lenges of analyzing high-dimensional data in this fast-paced
field, these methods often function independently, requiring
distinct approaches for each type of data generation and clus-
tering. This separation can complicate the practical analysis
and interpretation of results.

To address this challenge, we developed a unified, free, and
open-source Python package called ULaMDyn, which stands for
“Unsupervised Learning Analysis of Molecular Dynamics”
(Fig. 1). It is designed to automate the discovery of hidden
patterns in high-dimensional molecular datasets. ULaMDyn
offers a comprehensive set of tools for preprocessing, statistical
analysis, and unsupervised learning of trajectory data generated
by Newton-X.** Seamlessly integrated with Newton-X's surface
hopping NAMD, it streamlines the processing and analysis of
simulation outputs. The package also leverages dimensionality
reduction and clustering techniques to enhance dataset
construction for supervised learning tasks conducted using
MLatom, which is similarly interfaced with Newton-X.** This
unified approach establishes a comprehensive pipeline that
combines both supervised and unsupervised learning meth-
odologies, thereby streamlining the analysis of molecular
dynamics simulations and improving the interpretability and
understanding of complex potential energy surfaces and
nonadiabatic dynamics.

2 Prerequisites

To effectively engage with this article, it is recommended that
the reader has a basic knowledge of Python. Familiarity with the
nonadiabatic dynamics package Newton-X** and an under-
standing of NAMD principles is beneficial, as our discussions
incorporate NAMD data.* Additionally, a basic understanding of
fundamental machine learning concepts, such as evaluation
metrics and data partitioning strategies, is assumed to grasp the
more advanced topics discussed in this paper on unsupervised
learning.

To run ULaMDyn, essential Python packages like SciPy,
Pandas, and tslearn should be installed. The list of require-
ments is provided when downloading the package, and
instructions for any additional libraries are provided in the
Python notebook accompanying the package. The reader must
have access to a platform capable of executing them, such as
a dedicated integrated development environment (IDE) like
Jupyter or equivalent alternatives. Alternatively, ULaMDyn can
be run as a single code line, and subsequent analysis can be
done using simple Python scripts. The notebook example and
code provided in this article are designed to be executable on
a standard laptop, ensuring accessibility and ease of imple-
mentation for a broad range of readers.

Digital Discovery, 2025, 4, 666-682 | 667

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

——TD-BA
- - - Exact

Population

Statistical
Analysis

Data collection and
processing

Dimensionality

View Article Online

Paper

Reduction

Gurface Hoppingdata ' &
Nonadiabatic d \\°\ e
Molecular Dynamics =

Geometries
+

Isomap @ Z-Matrix
Ea)

kmeans_labels
o

Quantum
Properties

Featurization

Time step

Long timescale (~1 ns)

(N

R2 descripto :. _
Z Matrix, :
SOAP

Fig. 1 ULaMDyn streamlines the analysis of high-dimensional data from Nonadiabatic Molecular Dynamics (NAMD) simulations. It integrates
statistical analysis, dimensionality reduction, and clustering to extract relevant information and visualize key molecular properties, simplifying the

understanding of complex trajectories.

3 Methods

In the context of nonadiabatic dynamics, unsupervised learning
techniques are often applied to various data types, including
molecular geometries (3D structures), NAMD trajectories (time-
series data), electronic properties (tabular data), geometric
parameters of photochemical reaction intermediates (tabular
data), and excited state interactions (graph networks). These
techniques can generally be categorized into two groups:

(1) Dimensionality reduction schemes. They reduce the
complexity of high-dimensional datasets by mapping them to
lower-dimensional spaces, ensuring that essential information
and features present in the data are preserved.

(2) Clustering techniques. They aim to identify groups of
data points with shared attributes by detecting distinct patterns
in the data, such as metastable states from an MD trajectory.

All these methods can make the exploration of large phase
spaces more manageable and are essential tools for identifying
photochemical pathways and relevant molecular geometries.

3.1 Molecular representations

An appropriate molecular representation is essential for
capturing the relevant chemical variability in data, significantly
influencing the accuracy and interpretability of machine
learning models. This process includes descriptor and feature
selection, where specific molecular attributes are identified and
combined into a compact vector representation for each
molecule.***

668 | Digital Discovery, 2025, 4, 666-682

In ULaMDyn, there are three types of geometry-based
descriptors, which incorporate translation and rotation invari-
ances: the pairwise distances between atoms (R2 family of
descriptors), the Z-matrix representation, and Smooth Overlap
of Atomic Positions (SOAP) descriptors. Additionally, Cremer-
Pople parameters for ring puckering analysis are also available,
providing a detailed description of ring conformations.*®

3.1.1 R2 descriptor. The R2 descriptor is represented as
a flattened matrix containing all pairwise Euclidean distances
between atoms in a molecule. Since this matrix is symmetric
with respect to the interchange of atom indices (i.e., D; = D),
only the lower triangular portion of the R2 matrix is included in
the final dataset.

ULaMDyn also provides additional feature engineering steps
to convert the R2 distance matrix into other meaningful
variants:

e Inverse R2: this descriptor is defined as the inverse of the
R2 (1/R;) distance matrix, similar to the Coulomb matrix
descriptor.”

e Delta R2: this descriptor represents the difference between
the R2 vector of the current geometry at time ¢ and the corre-
sponding R2 vector of a reference geometry, typically the
ground-state geometry (R;(t) — R(ref)).

e RE: the RE descriptor is the R2 vector normalized relative to
the reference geometry (R (ref)/R(t)).

3.1.2 Z-Matrix. The Z-matrix is a structured way to repre-
sent the geometry of a molecule using internal coordinates
rather than Cartesian coordinates. In a Z-matrix, the position of

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

each atom is described by a combination of bond lengths, bond
angles, and dihedral angles relative to other atoms in the
molecule. This format inherently captures the connectivity and
the relative spatial arrangement of atoms, and it naturally
accommodates rotational and translational invariance. Thus, it
is an efficient descriptor for capturing the essential structural
features of molecules. Additionally, it simplifies the specifica-
tion of molecular structures, especially when dealing with large
systems or those with symmetrical properties. ULaMDyn
provides quantities related to distances in angstroms, while
features derived from angles are provided in degrees. Since the
Z-matrix module in ULaMDyn provides separate functions to
compute bond distances, angles, dihedrals, or even bending
angles (six atoms) to describe large out-of-plane motions, the
user has the possibility of augmenting the standard Z-matrix
dataset by including other key variables relevant to the
specific system/dynamics.

In addition to the standard Z-matrix, ULaMDyn also offers
delta Z-matrix. The delta Z-matrix represents the difference
between the Z-matrix of the current geometry at time ¢ and the
Z-matrix of a reference geometry. The delta Z-matrix is partic-
ularly effective for analyzing variations with respect to a refer-
ence geometry, such as the equilibrium geometry. Encoding
deviations from a fixed structure facilitates the detection of
structural distortions and the characterization of dynamic
behaviors. We recommend using it for cases where deviations
from a known equilibrium structure are of primary interest.

In the case of delta Z-matrix, additional non-linear trans-
formations can be applied to the descriptor with the goal of
achieving a better scaling between features while still empha-
sizing relevant structural variations. The available trans-
formations are:

e tanh Z-matrix: it applies a hyperbolic tangent trans-
formation to all features of the delta Z-matrix. This non-linear
transformation is particularly useful to handle angular
features, including bond angles and dihedral angles. Applying
the hyperbolic tangent function ensures that angles and dihe-
drals are scaled smoothly and boundedly. It is well-suited for
machine learning applications where unbounded values could
cause numerical instability. We recommend using it when
angular features play a significant role, particularly in systems
with flexible torsional degrees of freedom.

e Sig Z-matrix: this non-linear transformation uses the
sigmoid function to map distances, angles, and dihedral angles
to a bounded range. This representation emphasizes smaller
structural variations while down-weighting large deviations, as
the sigmoid function compresses extreme values. Use it for
applications requiring bounded feature representations,
particularly when relative changes are more critical than abso-
lute changes.

3.1.3 Smooth overlap of atomic positions (SOAP). Smooth
Overlap of Atomic Positions (SOAP), as implemented in
DScribe*® and utilized by ULaMDyn, is a descriptor that captures
local atomic geometries by expanding a Gaussian-smeared
atomic density using orthonormal functions derived from
spherical harmonics and radial basis functions.” In this
implementation, SOAP requires the atomic coordinates in the

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

form of XYZ data and the corresponding labels for each atom.
Additionally, the SOAP constructor accepts various other
parameters that allow for further customization, with detailed
explanations available in the DScribe library documentation.*®

The SOAP output is represented as the partial power spec-
trum vector p, with its elements defined as follows*

8 *
prm’[ZIZ2 =T \/ WZ(CZ’I”) Cf?m (1)

m

where n and n’ are indices for the different radial basis func-
tions up to nmax, [is the angular degree of the spherical
harmonics up to /ax-Z1 and Z, are atomic species.

The coefficients CZ, are defined as the following inner
products

2 = [wdVeu(r) Y1 (0,0)p.(r) 2)

where p(r) is the Gaussian smoothed atomic density for atoms
with atomic number Z defined as,

L r=rf?

2. G)

i

pz(r) =

In eqn (2), Y;,(0,¢) are the real spherical harmonics, and g,,(7) is
the radial basis function.

3.1.4 Cremer-Pople parameters. Cremer-Pople puckering
parameters provide a mathematical framework to describe the
three-dimensional conformations of non-planar ring systems,
which are particularly useful for cyclic organic molecules. For
an N-membered ring (where N > 3), there are N — 3 ring-
puckering coordinates that quantify deviations from planarity.
For a six-membered ring, these coordinates reduce to three key
parameters: the puckering amplitude Q, which measures the
extent of puckering, and two angular variables, # and ¢, which
describe the degree and type of distortion (e.g., chair, boat, or
twist). This formalism can be generalized to rings of different
sizes, making it a versatile tool for ring
conformations.

In the future, we plan to implement Faber-Christensen-
Huang-Lilienfeld (FCHL),*® and Many-Body Tensor Represen-
tation (MBTR)** descriptors in ULaMDyn.

analyzing

3.2 Data preprocessing

Data preprocessing is a crucial step in any machine learning
pipeline and requires as much attention as model develop-
ment.>> Proper preprocessing converts raw data into a format
suitable for model training, with a key aspect being the
management of features with varying scales. Techniques like
normalization and scaling are essential to address these issues.
Normalization and scaling adjust the range and distribution of
data features to enhance algorithm performance. Standardiza-
tion, or z-score normalization, is a standard method that
transforms data to have a mean of zero and a standard deviation
of one, ensuring that features with different units or scales
contribute equally to the model. The formula for z-score
normalization is:

Digital Discovery, 2025, 4, 666-682 | 669

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

where x is the original value, u is the mean of the feature, and ¢
is the standard deviation of the feature.

Distance-based methods, whether dimensionality
reduction or clustering, are susceptible to feature scales.
Therefore, it is advisable to apply appropriate normalization
techniques before training these models. Another commonly
used method for data rescaling is min-max scaling, which
adjusts data to a fixed range, typically [0, 1]. This is achieved by
subtracting the minimum value from all data points and then
dividing it by the range, which is the difference between the
minimum and maximum values.

For spectral descriptors like SOAP, however, the situation is
different. Each column in the SOAP descriptor represents an
element in a coherent spectral series, where the relative
magnitudes encode critical structural or chemical information.
Applying feature-wise scaling methods such as z-score normal-
ization or min-max scaling can disrupt these relationships,
leading to the loss of physical meaning. Therefore, no scaling
should be applied by default (scaler = none) to preserve the
integrity of SOAP descriptors. Alternatively, dimensionality
reduction methods like Kernel PCA with an RBF kernel can be
employed to reduce descriptor size while retaining the most
relevant spectral features.

for

3.3 Dimensionality reduction

Dimensionality reduction is a data analysis technique that
simplifies complex datasets by reducing the number of features
or variables while retaining essential information. Chemical
systems, like molecules, are inherently high-dimensional due to
the multitude of properties, descriptors, and interactions
involved. For instance, a molecule can be characterized by
features such as bond lengths, angles, dihedrals, and even
electronic properties. When handling such high-dimensional
data, which may include hundreds or thousands of variables,
visualizing and analyzing the information effectively becomes
challenging. Dimensionality reduction is valuable in two key
ways: it helps with data visualization by transforming high-
dimensional data into a more manageable format,* and it
reduces redundancy by removing correlated or redundant
features.> Reducing redundant features can enhance the effi-
ciency and performance of subsequent data use. Below, we
summarize some of the most common dimensionality reduc-
tion methods applied to model chemical systems and available
in ULaMDyn.

3.3.1 PCA (principal component analysis). PCA* is a widely
used linear multivariate statistical technique for dimensionality
reduction, valued for its interpretability.*® As a matrix factor-
ization method, PCA identifies patterns and extracts critical
features from high-dimensional datasets by transforming the
original variables into a new set of orthogonal, uncorrelated
variables known as principal components. This process ach-
ieves a lower-dimensional representation of the data while
retaining as much of the original information as possible. PCA
is particularly effective when the primary variations in the data

670 | Digital Discovery, 2025, 4, 666-682

View Article Online

Paper

are linear, making it a good starting point for exploratory data
analysis.

3.3.2 t-SNE (t-distributed stochastic neighbor embedding).
t-SNE is a nonlinear dimensionality reduction technique used
in various fields, including molecular systems.”” Unlike PCA,
the dimensions obtained with t-SNE do not have a straightfor-
ward interpretation, so it is primarily used for visualization or
exploratory data analysis. t-SNE maps high-dimensional data
into a lower-dimensional space (embedding) based on similar-
ities between data points, calculated using a Gaussian kernel or
a Student's ¢-distribution. It constructs a neighborhood graph
where each node is connected to its nearest neighbors, forming
local relationships. The parameter perplexity controls the
balance between preserving local and capturing global struc-
tures; higher perplexity values capture global relationships,
while lower values emphasize local structure. t-SNE then creates
probability distributions for both high- and low-dimensional
spaces and uses an optimization algorithm, such as gradient
descent, to iteratively adjust the positions of the mapped points
until the divergence between the distributions is minimized or
the maximum number of iterations is reached. The resulting
embedding can be visualized in scatter plots or further analyzed
for insights into the data structure.

3.3.3 ISOMAP (isometric feature mapping). ISOMAP is
a nonlinear dimensionality reduction technique that extends
classical multidimensional scaling (MDS) by incorporating
geodesic distances.”® It is designed to uncover the underlying
manifold structure of high-dimensional data. ISOMAP works by
first constructing a neighborhood graph of data points using
a method like k-nearest neighbors or e-neighborhoods. It then
calculates the shortest paths between all pairs of points in this
graph, approximating the geodesic distances on the manifold.
These distances are used to perform classical MDS, resulting in
a lower-dimensional representation that preserves the intrinsic
geometric structure of the data. ISOMAP is particularly useful
when the data lies on a nonlinear manifold and is effective for
capturing global structures in the data. It provides a way to
visualize complex, high-dimensional data in a more interpret-
able form.

3.4 Clustering

Clustering methods are commonly used to make sense of these
large datasets, helping to organize chemical systems into
subgroups with shared electronic properties or spatial config-
urations. Unlike dimensionality reduction, which compresses
data into a smaller set of critical components and may create
artificial groupings, clustering identifies natural subgroups in
the original data space. This preserves the intrinsic relation-
ships and structures within the data, making it particularly
useful for identifying families of molecules with similar elec-
tronic properties or revealing patterns in chemical composition
and spatial configurations essential for understanding molec-
ular interactions and reactivity. A well-tuned clustering algo-
rithm distills large volumes of data into a manageable number
of qualitatively distinct categories, facilitating data visualization
and exploration. This approach also improves the efficiency of

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

further computational and experimental studies by enabling
a more focused analysis of nonadiabatic dynamics, thereby
enhancing our understanding of excited-state processes and
transitions.

In ULaMDyn, several algorithms are available for clustering
analysis, each differing in its interpretation of what constitutes
a cluster and how clusters are identified. The clustering algo-
rithms provided include:****

e K-Means clustering: this algorithm partitions data into
a predefined number of clusters by minimizing the sum of
squared distances between data points and their respective
cluster centroids.®® Because K-means assumes an isotropic data
distribution per cluster (equal variance in all directions), this
method tends to work better on datasets with inherent globular
or spherical cluster shapes. Each data point is assigned to the
nearest cluster in a rigid, non-overlapping manner, resulting in
distinct Voronoi cells that define the cluster boundaries.

e Gaussian Mixture Model (GMM): this method can be seen
as a generalization of K-means in the sense that each cluster is
described by a Gaussian distribution, allowing for more flexible
cluster shapes, such as ellipses, with varying size, orientation,
and covariance.®** Unlike K-means, which uses hard assign-
ments, GMM employs a soft (probabilistic) approach, where
each data point is assigned a probability of belonging to
multiple clusters. This results in a more flexible clustering
approach, as data points can partially belong to different clus-
ters. GMM is particularly suited for datasets where clusters
overlap or exhibit complex shapes, making it a more versatile
method for capturing non-spherical structures. Because GMM
learns the underlying data distribution, it can also be used as
a generative model to sample geometries from specific regions
of the NAMD trajectory space.

e Hierarchical agglomerative clustering: this method utilizes
a bottom-up approach that starts with each data point as
a separate cluster and iteratively merges the closest pairs of
clusters until a single cluster remains.®® This process creates
a hierarchical structure called a dendrogram, which can be cut
at different levels to obtain clusters of varying granularity.
Therefore, this agglomerative clustering does not require a pre-
determined number of clusters. The method does not assume
any specific cluster shape, making it well-suited for complex
data distributions.

e Spectral clustering (equivalent to kernel K-means): this
method extends K-means by first representing the data as
a graph, where each data point is a node, and edges represent
pairwise similarities between points.®”*® Spectral clustering
then uses the eigenvalues of the graph's Laplacian matrix to
transform the data into a lower-dimensional space, capturing
the critical connectivity patterns in the data. This trans-
formation allows for the identification of complex, nonlinear
clusters that K-means might miss. Unlike K-means, which
operates directly in the original input space and assumes
spherical clusters, spectral clustering leverages the graph
structure to uncover clusters of arbitrary shape. By relying on
a similarity matrix rather than distance measures, spectral
clustering is particularly well-suited for data where distance-
based methods are less effective.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

For dimensionality reduction and clustering, ULaMDyn uses
existing implementations from scikit-learn.

4 Walkthrough example

In this section, a walkthrough example of installing and using
ULaMDyn is provided. The entire clustering or dimensionality
reduction analysis workflow is automated by ULaMDyn, starting
with data collection and the conversion of molecular geometries
into descriptors. The selected unsupervised learning algorithms
are then applied to the descriptor space. Additionally, various
postprocessing statistical analyses are conducted by grouping
the data according to the cluster labels generated by the clus-
tering process. All these steps can be executed via a command-
line interface (CLI) or by customized Python scripts by import-
ing the ULaMDyn modules. In the following subsections, this
pipeline will be broken down, demonstrating how each step can
be carried out within a Python framework using ULaMDyn. A
Python notebook of this example can be found at https://
gitlab.com/light-and-molecules/ulamdyn_paper-2025.

4.1 Installation

ULaMDyn can be conveniently installed from its repository,
along with all necessary dependencies (Fig. 2). Additionally,
several packages are required for visualization purposes,
ensuring comprehensive data analysis and representation.

4.2 NAMD dataset

In this example, fulvene serves as a photoactive molecule
undergoing structural transformation during nonadiabatic
dynamics simulations initiated from the first excited state.*
Fulvene is adopted here because it is a typical test molecule
used for the development of methods and benchmarks in
NAMD.”* 7> The reason for its popularity stems from its small
size (allowing quick simulations even at fully correlated levels)
and ultrafast dynamics (all relevant events are completed in less
than 100 fs).” Fulvene has also been shown to be the multidi-
mensional analogous of the popular Tully III analytical 1D
model.”

Fulvene dynamics is characterized by ultrafast nonadiabatic
processes involving S; <> S, recurrences at an extended conical
intersection seam.” The molecule exhibits fast decay to the
ground state (S,) followed by periodic recurrences to the first
excited state (S;). In fulvene dynamics, the most relevant coor-
dinates include the torsional angle around the C-CH, bond and
the bond length between these carbon atoms. These coordi-
nates are critical because they define the molecule's structural
evolution as it moves toward the conical intersection at different
regions of the crossing seam.

The Newton-X CS (classical series) program was employed to
propagate 200 surface hopping trajectories up to 60 femtosec-
onds with a time step of 0.1 fs. The CAS(6,6)/6-31G* method was
utilized to calculate the quantum chemical properties for the
two electronic states (S, and S;).” The complete dataset can be
downloaded from figshare.com/articles/dataset/Fulvene_DC-
FSSH/14446998?file=27635412. For the sake of time, only

Digital Discovery, 2025, 4, 666-682 | 671

https://gitlab.com/light-and-molecules/ulamdyn_paper-2025
https://gitlab.com/light-and-molecules/ulamdyn_paper-2025
https://figshare.com/articles/dataset/Fulvene_DC-FSSH/14446998?file=27635412
https://figshare.com/articles/dataset/Fulvene_DC-FSSH/14446998?file=27635412
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

Code snippet

$%bash

git clone https://gitlab.

/light-and-molecules/ulamdyn.

pip install ulamdyn/
. Ppip install py3Dmol

Fig. 2 Installation code snippet.

a subset of the trajectories (50 trajectories) was selected for this
example.

After downloading and unpacking the NAMD data, navigate
to the working directory with the 50 TRAJ folders, each con-
taining the simulation results. ULaMDyn will automatically
detect the available trajectories and extract all the necessary
information for further analysis.

4.3 Data import and inspection

The first step in the pipeline for analyzing nonadiabatic
molecular dynamics (MD) data involves gathering relevant
quantities, such as molecular geometries, potential energies for
each electronic state, kinetic energy, energy gradients, and
oscillator strengths, computed for each trajectory. In Newton-X,
this information is typically provided in text files located within
each TRAJ#/RESULTS folder. Built-in classes are included in
ULaMDyn and are specifically designed to aggregate these data,
storing them in Python objects for straightforward manipula-
tion. The usage of these data collection classes within a Python
environment is demonstrated in the following section.

ULaMDyn reads the output of the dynamic only once and
converts it into Pandas data frames, saving it in CSV format for
future analysis. Leveraging the intrinsic parallelization of
Pandas and Numpy, it efficiently processes datasets. Tests with
typical AIMD simulations (100 trajectories, 10k steps, 12 atoms)
indicated memory usage of up to 3 GB and 1 hour for statistical
analyses of all properties. Larger systems (e.g., Rhodamine 110
with 39 atoms) doubled these requirements. While current
analyses are manageable, ongoing efforts aim to further opti-
mize performance and address challenges arising with larger
datasets driven by advancements in machine learning poten-
tials and semi-empirical methods.

4.3.1 Running ULaMDyn as a command-line interface.
Before we get started with the capabilities of ULaMDyn through
Python API, it is important to highlight that ULaMDyn also
provides a set of predefined functions accessible through
a command-line interface. This simplifies workflows and
enhances the overall user experience. Once ULaMDyn is
installed, users can execute the wrapper script, run-ulamdyn,
directly from the Linux terminal. Additional options can be
specified with the command-line parser, which can be viewed by
invoking the -help flag.

The wrapper script is executed from the main TRAJECTO-
RIES (nx_traj_fulv) directory, which must include a reference
geom.xyz file and a Newton-X input file inside the TRAJ1 sub-
directory. By executing the command-line program, ULaMDyn

672 | Digital Discovery, 2025, 4, 666-682

will first generate structured datasets (such as flattened XYZ
coordinates, Z-matrices, and quantum mechanical (QM) prop-
erties) in a CSV file containing all information collected from
the output files of different trajectories. After that, the program
can compute the basic descriptive statistics (mean, median, and
standard deviation) for each dataset and export these results as
separate CSV files. If additional options are specified via the
command line, they will be incorporated into the workflow and
executed accordingly.

4.3.2 Geometries. The data collection process in ULaMDyn
is organized in a modular fashion, with a specific class called
GetCoords() dedicated to reading geometries from Newton-X
trajectories. This class simplifies the process by automatically
extracting all the molecular geometries from the available
trajectories. When executed, it systematically reads all the
geometries provided in the standard Newton-X output (dyn.out
or .h5), ensuring comprehensive data acquisition. In the
subsequent printout (Fig. 3), the GetCoords() object lists all
available trajectories detected in the folder, along with the
corresponding atomic labels, which can be used for the gener-
ation of SOAP descriptors. These labels can be utilized, for
example, to calculate mass-weighted coordinates when neces-
sary. Additionally, the total number of geometries loaded from
all these trajectories is displayed (Fig. 3 bottom).

After running the read_all trajs function (see Fig. 3), the
processed geometries are conveniently stored as an object
attribute, along with their corresponding trajectory and time
step indices, allowing for easy selection of a specific geometry
from a given trajectory at any time step (geoms_loader). This
built-in indexing of the geoms_loader object streamlines
geometry selection for rapid inspection and analysis of the
structures within the simulation data. For example, the XYZ of
trajectory 9 at 10.0 fs can easily accessed for molecular visuali-
zation by passing these two indices as arguments (Fig. 4).

By providing a reference geometry file, geom.xyz, in the
working directory, the software automatically computes the root
mean square deviation (RMSD) between each frame of the
trajectories and this reference geometry, typically the ground
state minimum. In the example above, the resulting RMSD
distribution reveals that most geometries are clustered around
an RMSD value of approximately 0.21 A, indicating significant
deviations from the ground state. A few geometries exhibit even
more significant distortions, as shown by the long tail in the
distribution (Fig. 4).

4.3.3 Energies and other properties. In ULaMDyn, several
utility functions have been designed to enable the consistent
extraction of various properties from Newton-X simulation

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

import numpy as np
import pandas as pd
import ulamdyn as umd

Packages for visualization
import py3Dmol

1

import seaborn as sns
import matplotlib as mpl

| l I

&= 5 L EREA

Columbus.par control.dyn geom liri.inp sh.inp veloc

import matplotlib.pvp! as plt
geoms_loader = umd.GetCoords()
geoms_loader.read a trajs()

print (geoms_loader)

SPER B PRR B

dyn.out endat intec nx.log properties report.ci sh.out tprob typeofdyn.log

¢ dataset -> None

e eq_xyz, array of shape -> (12, 3)

o labels -> ['C', 'C', 'C', 'c', 'C',
e rmsd, array of shape -> (30028,)

e traj_time, array of shape -> (30028, 2)

¢ trajectories -> {'TRAJ1': 60.0, 'TRAJ2': 60.0,
e xyz, array of shape -> (30028, 12, 3)

cr,

output

'TRAJ3': 57.8, 'TRAJ4': 60.0,

Fig. 3 Setup for getting the dataset and extracting geometries from Newton-X trajectories using ULaMDyn. (Left) Directory structure with the
nx_traj_fulv folder containing individual TRAJ# subdirectories. (Right) Code snippets show ULaMDyn's GetCoords class used to load molecular

geometries, displaying the status of class variables.

output files. For instance, energy information can be retrieved
by reading the relevant files and compiling a dataset. Quantum
mechanical quantities, such as potential energies and oscillator
strengths, are collected from the Newton-X outputs using the
GetProperties() class. The properties dataset includes
columns for trajectory identifiers and time steps, which are
essential for uniquely identifying each data point. Consistent
identifiers across different datasets, like those for molecular

geometries or RMSD values, are crucial for accurate data
merging and analysis.

Typically, this dataset includes columns for total energy
(Total_Energy), hopping event from excited to ground state
(Hops_S21), ground state energy (S1), and energy gaps (DE21)
and back hopping event (Hops_S12) between states when
multiple states are considered. It also includes an indicator for
hopping geometries, where a value of ‘0’ denotes a no-hopping

= geoms_loader.rmsd
= plt.hist(rmsd_vals, bins=50, alpha=0.8

‘ 3
I 1
| # select geometry either from trajectory and time indices il h i
! . i ~IDMAD S\ZZGW
| # or by the geometry number in the loaded dataset. iplt (r"RMSD $\RAS") i
| geometry = geoms loader[9,10.0] i plt.ylabel("Frequency") :
X = i show !
! print(geometry) ij pLt.show() !
12 2500
TRAJ = 9 | time = 10.0
C -1.04108537 ©.39497082 0.03064102 2000
C -1.25596310 -1.24557193 -0.05131952
C -0.07134525 -1.66552592 -0.03300498 >
C 1.00918101 -0.58196867 0.05089400 S 1500
C 0.24810232 0.50942902 0.06853013 2
C 0.91058271 1.95719001 ©.08733781 2 1000
H -1.85932628 1.01074471 -0.06895255 =
H -2.07245770 -1.80836479 -0.03161288
H 0.09471855 -2.74239259 0.03521695 500
H 1.98639311 -0.73316306 -0.13853527
H 0.09293532 2.73814602 0.01169130 0
H 1.95826467 2.16650638 ©.03911399 01 02 03 04 05 06 07
RMSD (4)
Fig. 4 (Left panel) Selection of a molecular geometry at a given time using ULaMDyn. The script snippet demonstrates how to access the XYZ

coordinates of a fulvene molecule from trajectory 9 at the 10.0 fs time step. The output shows the atomic coordinates (in A) and a 3D visualization
of the molecule's structure. (Right panel) Histogram of the RMSD of geometries with respect to the equilibrium geometry.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4, 666-682 | 673

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

and ‘1’ indicates a hopping event. This setup facilitates easy
filtering of hopping geometries for further analysis. Addition-
ally, users can extend the dataset by incorporating other
calculated quantities, such as state populations, which are
typical outputs in nonadiabatic molecular dynamics
simulations.

In the case of fulvene dynamics (Fig. 5), the potential energy
of the ground and first excited states, the oscillator strength
corresponding to the transition between these states, and the
MCSCEF coefficients of the CAS wave function are available and
shown in the columns. Additionally, a function is provided to
collect the % of the state's population as computed by Newton-X
(Pop1 and Pop2).

4.4 Generation of geometric descriptors

The geoms_loader() object in Python encapsulates the attri-
butes of the collected geometries from Newton-X outputs. The
‘xyz’ attribute of this object can be accessed to retrieve all stored
geometries. The data is structured as an array, with dimensions
corresponding to the number of samples (representing the total
number of geometries in the simulation), the number of atoms,
and the three spatial coordinates (x, y, and z), thus providing
a comprehensive dataset for further analysis.

As mentioned earlier, ULaMDyn provides three classes of
symmetry-aware descriptors (translational and rotational
invariant) based on molecular geometries: the pairwise atom-
atom distances (R2 family of descriptors) and the Z-matrix
representation. These descriptors are computed by processing
the NAMD molecular geometries stored in the GetCoords()
object. In the example provided below (Fig. 6), the function
build_descriptor() within the R2 descriptor class is used to
return a Pandas data frame object with the descriptor calculated
for all geometries of each NAMD trajectory. Additional flexibility
for representing molecular structures in a manner invariant to
translational and rotational transformations is offered by other
variants of the R2 descriptor supported by this function.

(a)

View Article Online

Paper

An important application of this properties dataset is to
distinguish between hopping and non-hopping geometries. By
filtering the dataset accordingly, the distribution of specific
bond distances (such as the C5;-Cg¢ bond in fulvene) can be
plotted for hopping versus non-hopping geometries. For ful-
vene, the analysis revealed that the distribution of hopping
geometries (represented by red bars) has shifted towards larger
C5—-Ce bond distances (Fig. 6). This observation is aligned with
the understanding that, at the beginning of the dynamics, the
bond stretching in fulvene often leads the system towards
a conical intersection, facilitating nonadiabatic transitions.®
The structural differences between hopping and non-hopping
geometries are underscored by the distinct distributions, with
hopping geometries predominantly concentrated around
a bond distance of approximately 1.55 A.

An alternative method to inspect the dataset and gain
insights into its behavior is by plotting bond distances (y-axis)
as a function of time (x-axis) (Fig. 7). This type of analysis, part
of the standard routine for understanding nonadiabatic
molecular dynamics (NAMD) simulations, helps visualize the
evolution of geometrical features such as bond stretching and
contraction. Additional information, such as hopping geome-
tries, can be overlaid on this plot. Notably, in this analysis, most
hopping points, marked by red indicators, cluster around the
maxima of the oscillations in the bond distance. ULaMDyn
serves as a tool to facilitate this type of interaction with NAMD
simulation results, allowing users to extract and interpret key
information efficiently. While these analyses are routine, they
lay the groundwork for more advanced unsupervised learning
methods, which automate the extraction of deeper insights
from high-dimensional data.

Up to this point, the focus has been on exploring the dataset
to identify key features. This exploratory phase allows for
experimentation and various tests to understand the dataset
better. Depending on the specific requirements of the analysis,
this level of exploration may already provide sufficient insights.

(b)

= umd. 0! = properties loader. 0 '
| df props = properties loader. 0! { df_props = properties_loader.
df props I df props '
L } N —

TRAJ time State Total_Energy Hops_S21 DE21 S1 Hops_S12 Popl Pop2

0 1 00 2 -6271.713990 0 3.852182 -6276.740507 0]10.000000 1.000000e+00

1 1 041 2 -6271.714018 0 3.839637 -6276.777841 0]10.000001 9.999989e-01

2 1 02 2 -6271.714045 0 3.825025 -6276.812753 0]10.000004 9.999964e-01

3 1 03 2 -6271.714072 0 3.808371 -6276.844754 0]10.000006 9.999936e-01

4 1 04 2 -6271.714099 0 3.789650 -6276.873408 0} 0.000008 9.999916e-01

Fig. 5 Example of using ULaMDyn's GetProperties class: (a) code snippet retrieves potential energies and dataset details in the green rectangle

with columns representing the current state (State), total energy (Total_

Energy), hopping event from S2 to S1 (Hops_S21), energy gap (DE21),

ground state energy (S1), and back hopping event (Hops_S12); (b) additional code snippet incorporates state population data with columns
representing ground state population (Popl) and excited state population (Pop2), shown in the blue rectangle, for analyzing nonadiabatic

transitions in fulvene.

674 | Digital Discovery, 2025, 4, 666-682

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
i | = umd.R2(geoms_loader) i
array([[[-1.17011027, ©.32892165, -0.04880431], df_r2 = atom dist. (variant="R2" i
[-1.33595893, -1.10235717, ©.08826031], df r2.] () :
[0.07813233, -1.68450973, 0.08371418], !
f.éfoaanzzz, -0.56710914, ©0.04163883], TRAY time riz ris r23
[0.36090265, 2.80427644, ©.15999523], 0 1 0.0 1447360 2372673 1.529240
[1.87742744, 2.07998925, ©.06344612]], : ’ : ’
[[-1.17009904, ©.32722287, -0.04883062], 1 T 01 1446765 2.372240 1.528449
[-1.3352209 , -1.10354471, 0.08816412],
[0.07797813: -1.68578747; 0.08389662], 2 10 dandily 28 e
T 3 1 0.3 1.445535 2.371200 1.526529
4 1 0.4 1.444908 2.370599 1.525402
5 rows x 68 columns
Hops
12.5 mmm No hops
= df_props. 0 A
510.0 + df_props. 0
c idx no_hops = df props.
g 75 i and Hops_S12 == 0").index.tolist()
o f
E i hl = plt. (df_r2. [idx all hops]['r56’
[5.0 § bins=20, color='red', alpha=0.5, label='Hops')
25 h2 = plt. (df_r2. [idx no hops]['rS56'].sa (len(idx_all hops)),
bins=20, color=' label="No hops')
0.0 plt.x (r"C5-C6é bond di
12 13 14 15 16 17 ey .
Cs-Cg bond length (4) L plt. 0

\.

Fig. 6 Workflow demonstrating the use of ULaMDyn to generate descriptors and visualize results. The left panel shows the raw coordinates
loaded from NAMD simulations. These coordinates are used to build an R2 descriptor (df_r2), as seen in the top-right panel. The bottom-right
panel presents the code to create a histogram comparing Cs—Cg bond distances for geometries with and without hopping events, with the

resulting histogram displayed in the bottom-left panel.

ol e e S
w A U o N

Cs-Cg bond length (4)

=
N

0 10 20 30

Time (fs)

40 50 60

Fig. 7 Stretching of Cs—Cg bond length of fulvene for 50 trajectories.
Points in red indicate the hopping events, which mainly occur at the
maximum bond length.

4.5 Dimensionality reduction

In the R2 dataset of fulvene, which includes all non-equivalent
atom-atom distances, it is noted that 68 columns are initially
present, two of them corresponding to the index tuple of
trajectory number and time. Therefore, the descriptor has 66
variables, with the molecular geometries represented in a high-
dimensional vector format. Direct visualization of this corre-
lated high-dimensional data is not feasible; however, dimen-
sionality reduction techniques can be applied to reduce the 66

© 2025 The Author(s). Published by the Royal Society of Chemistry

columns to two, allowing the representation of the geometry
evolution in a simple 2D scatter plot.

In ULaMDyn, the DimensionReduction() class is used to
perform dimensionality reduction on the descriptor dataset
provided as input. To minimize the correlation between
consecutive geometries, the dataset can be resampled at larger
time intervals. For instance, a time step of 0.5 fs, five times
larger than the time step used to generate the NAMD trajecto-
ries, is employed to reduce temporal correlation, enhancing the
algorithm's ability to identify meaningful patterns. The
DimensionReduction() class provides access to several
methods for dimensionality reduction with ISOMAP,
a nonlinear technique, being utilized here for demonstration.
This method has proven particularly effective in identifying
critical coordinates that dominate photophysical
processes in nonadiabatic simulations of complex molecular
systems.?* The dataset is reduced from 66 dimensions to two by
the ISOMAP method for visualization. A neighborhood graph
with a specified number of neighbors (e.g., 30 Fig. 8a) is con-
structed by the ISOMAP method, and this graph is used to map
high-dimensional data into a lower-dimensional space.

A distribution is revealed by the plot shown in Fig. 8b, where
points with similar properties (e.g., energy gaps) are clustered
together despite this information not being explicitly provided

active

as input to the method. Important geometries and regions of
interest within the dataset are easily identified through this
visualization, which condenses information on independent

Digital Discovery, 2025, 4, 666-682 | 675

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

(a)

Paper

= umd. (data=df r2, dt=0.5, scaler='standard'") i
df isomap = dimred. (n_components=2) i
(b) ISOMAP @ R2 descriptor
KKK KKK KKK K KR KKK KKK KKK KKK KKK KKK KR X
0.6 N
* Starting the Isomap analysis: * 0.4 62
3K RO R RO R K RO KR ROROR 3R R OROROR R OROR ROR R ROR R X ' %
(@]
e 45
The following set of parameters will be used: 0.0 : o
V]
. -0.2 24
n_neighbors = 30 S
radius = None —0.4
-0.50 -0.25 0.00 0.25 0.50
n_components 2 X1
eigen_solver = auto (c)
tol = 0 g7
max_iter = None S16
()]
path_method = auto S1s
neighbors_algorithm = auto %14
n_jobs -1 s
metric = cosine c_:)°1'3
metric_params None 04 —02 00 02 04
X1

Fig. 8

(a) Dimensionality reduction using ISOMAP in ULaMDyn, with the parameters for the ISOMAP analysis; (b) the 2D ISOMAP embedding of

the R2 descriptor, with the So—S; energy gap color-coded; (c) the relationship between the first ISOMAP component and the Cs—Cg bond

distance.

NAMD trajectories. Although the selection of molecules based
solely on properties such as the energy gap is possible, it is
noted that this approach may not always capture nuanced
differences in geometry. A more comprehensive view is
provided by the dimensionality reduction diagram (Fig. 8b),
which highlights distinct regions and aids in the selection of
significant molecular geometries for further analysis.

In nonlinear dimensionality reduction, the relationship
between the embedded dimensions and the original features is
typically complicated in determining their contribution to
clustering patterns. An alternative to gaining intuition about
these relationships is to plot each geometrical feature of the
molecules against the embedded dimensions. For example,
plotting the first reduced dimension, X1, against the Cs-Cg
bond distance reveals a positive correlation (Fig. 8c). In the case
of fulvene, this indicates that the X1 coordinate effectively
captures the bond stretching trend involving the CH, group,
which is expected to be one of the key motions for driving the
system throughout the conical intersection. This interpretation
strategy can be applied to many other quantities to further
explore the relationships between geometrical features and the
reduced dimensions.

Since the analysis performed here is a postprocessing step
on the NAMD simulation data, the analysis is not limited to
examining the molecular geometries. Any quantum chemical
information available from the simulations can be used as
a descriptor for unsupervised learning analysis. For instance,
crucial information on how rapidly geometries can evolve

676 | Digital Discovery, 2025, 4, 666-682

during dynamics is provided by the energy gradient matrices of
each potential energy surface. Fig. 9 shows the difference
between the energy-gradient matrices of the S; and S, states as
an example. Although the ISOMAP diagram derived from the
gradient difference descriptors looks different from the one
obtained with the R2 descriptor (geometry-based), one can
observe that geometries with small and large energy gaps
between the S, and S; states still appear as clearly distinct
groups in the plot.

4.6 Clustering

Up to this point, the focus has been on exploring the dataset to
understand its main features. Now, clustering analysis will be
applied to the features without dimensional reduction.

A common question is whether dimensional reduction
should be performed before clustering. This decision depends
on the specific context. When dealing with large or sparse
vectors representing each molecule, dimensionality reduction
can be advantageous. Reducing dimensions often helps elimi-
nate unnecessary or correlated components, making it easier to
compare data points; it is often used for visualization purposes.
On the other hand, the compact representation resulting from
dimensionality reduction can introduce artificial clusters, as
distances between points may be shrunken compared to the
original space, potentially distorting the true relationships in
the data. In the case of fulvene, the molecule is relatively small,
and the vectors used for representation are not very large.
Therefore, clustering will be applied directly to the descriptors

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

(cc)

View Article Online

Paper Digital Discovery
R - i T A R R R R T e e e e e e S i 0
! loa = umd. () I
igrads_loader 0 i
1
1 I
1 1
idf_gdiff = grads_loader.dat s['S2'] - grads loader.dataset: ['SL']E
idf gdiff. t(0, "TRAJ", df props['?R@J'].‘n. 1€5) :
1 - o S
1df gdiff.insert(l, , df props['time'].values) i
lldf gdiff.head() !
- i
\J
TRAJ time Gx1 Gyl Gzl Gx2 Gy2 Gz2 Gx3 Gy3 .
0 1 00 -3.995985 -3.634359 0102500 -2.309150 5699686 -0.523269 6.311249 2122976
1 1 01 -3992956 -3.643739 0104824 -2.320324 5701558 -0.522106 6.310457 2.122704
2 1 02 -3989125 -3.652717 0107128 -2.332208 5703425 -0.520901 6.310272 2.122282
3 1 03 -3.984472 -3661639 0.109390 -2344914 5705446 -0.519626 6.310493 2121660
4 1 04 -3979005 -3670339 0111612 -2.358433 5707595 -0.518279 6.311152 2.120817
5 rows x 38 columns
e -
| i
idimred = umd.Dimen: n(data=df_gdiff, dt=0.5, scaler='standard'}
] . . -
idf 1somap = dimred. I (n components— , metric='euclidean') i
= i
I

N H
So-S1 energy gap (eV)

Scaling data with standard method \
3K 3 3K 3K 3K K 3K 3K 3K 3K K 3K 3K K 35 3K K 35 K 5 35 K 5 K 3 OK K RO ROk Kk X
* Starting the Isomap analysis: *
3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K K 3K K 3K 3K 3K 3K K 5K 3K K 5K 3K 3K 3K K K K K K KK K X
The following set of parameters will be used: 10
n_neighbors = 30
radius = None ;2
n_components = 2 O
eigen_solver = auto
tol = @
max_iter = None
path_method = auto
neighbors_algorithm = auto —10;
n_jobs = -1
metric = euclidean
p=2
metric_params = None

-10 0
X1

10 20

Fig. 9 Dimensionality reduction performed on the difference between gradients, with a 2D ISOMAP embedding of the gradient differences
shown. Gx1, Gyl, and Gzl represent the differences in gradients along the x, y, and z directions for the first atom, respectively, between the first
excited singlet (S;) and the ground state (Sg) and so on for the subsequent atoms. The So—S; energy gap is color-coded.

without any prior dimensional reduction. Dimensional reduc-
tion can still be used afterward to visualize how the clustering
algorithm identified different groups within the dataset.

The process begins with the creation of our descriptor, the
delta Z-matrix, in this case. This involves subtracting the Z-
matrix of the ground state from the geometry of each frame of
the dynamics. Additionally, a nonlinear function is applied to
focus on points that are not outliers, ensuring that the algo-
rithm identifies those that are more like the ground state. The
geoms_loader object, which contains geometries from different
trajectories, is passed as input. The geometries are read by
ULaMDyn, and the descriptor is created accordingly (Fig. 10a).

© 2025 The Author(s). Published by the Royal Society of Chemistry

Next, geometries are grouped by similarity in the descriptor
space using the clustering module of ULaMDyn (Fig. 10a),
which contains different methods similar to the dimensional
reduction module. The data set, represented by the descriptor,
is provided as input. To reduce the size of the data set and
eliminate some correlations, a specific time slice can be given,
or a fixed number of samples selected randomly (such as 1000
geometries from the original data set) can be specified.

Based on the color pattern of the ISOMAP plot in Fig. 9 (red
for large, green for intermediate, and blue for small energy
gaps), a reasonable guess for the number of clusters in this
demonstration would be three. In cases where this information

Digital Discovery, 2025, 4, 666-682 | 677

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper
(a) #creating ZMatrix descriptor
i zmt = umd. (geoms_loader)
df_dzmt = zmt (delta=True, apply to_delta='sigmoid')
#clustering
clustering = umd. (data=df_dzmt, dt=0.5, scaler='standarc
df_kmeans = clustering. (n_clusters:S)
Scaling data with standard method : b -
() = pd. (df_props, df_kmeans, left_ index=True, right_index=True) :
df cluster
HEEKKEKEKEKEKKEK KK KK KK KKK KKK K KKK KR KKK KR KRR KRR KR KR KK —
* Starting the K-Means clustering analysis: * .
koo K K K K o oo ook ok K K K o K K K KO TRAJ time State Total Energy Hops_S12 DE21 Hops_S21 s1 Popl Pop2 kmeans_labels
0 100 2 -6271.713990 0 3852182 0 -6276.740507 0.000000 1.000000e+00 0
The following set of parameters will be used: 5 105 2 -6271714099 0 3768885 0 6276898361 0.000009 9.999911e-01 0
n_clusters = 3 10 110 2 -6271.714099 0 3635252 0 -6276.962906 0.000002 9.999979e-01 0
init = k-means++ 15 115 2 6271714018 0 3454052 0 -6276.932075 0.000007 9.999926e-01 0
max_iter = 1000 20 120 2 6271713936 0 3229667 0 -6276.831883 0.000010 9.999897e-01 1
tol = le-06
n_init = 100
verbose = @ .
random_state = 51 E(C) = ['time', 'DE2 21", 'Hops S12']
H time', 'I , 'Hops_S12
copy_x = True df cluster. (by=["lar () [select_cols]. 0
algorithm = lloyd — o
kmeans_labels time DE21 Hops_S21 Hops_S12
Numb: 1 tri luster:
umber of geometries per cluster 0 0 37.146128 4.502345 0.000000 0.000000
cluster @ ---> 2686 1 1 20710106 1548206 0.003191 0.001418
cluster 1 ---> 2820
cluster 2 ---> 539 2 2 42723562 1.339882 0.003711 0.000000

Fig. 10

(@) The Z-matrix descriptor is created for geometries, followed by clustering using K-means (with 3 clusters). The parameters for K-

means are detailed, showing the number of geometries in each cluster; (b) the clustered data is then merged with properties data (df_props); (c)
the average values of selected properties (DE21, Hops_S21, Hops_S12) are computed for each cluster.

is not readily available, ULaMDyn offers a built-in function that
combines the Silhouette score” and Calinski-Harabasz’® metric
to determine the optimal number of clusters. This feature can
be accessed by setting the number of clusters parameter to
‘best’.

Once the clustering object is created, the K-means algorithm
is applied using the command ‘clustering.kmeans()’.
Because the data set is stored within the clustering object,
multiple algorithms can be run and easily compared using the
same input data set. In this example, the K-means algorithm is
used for clustering. To switch to a different algorithm, one
needs to change ‘kmeans’ to another algorithm, such as ‘hier-
archical’ for hierarchical clustering.

In this example, the K-means algorithm split the data into
three clusters labeled 0, 1, and 2, where cluster two contains
significantly fewer geometries compared to the others. Upon
closer inspection and analysis, we observe that this smaller
cluster contains geometries related to CH, rotations. This is
consistent with the finding that such rotated geometries are less
frequently visited during the dynamics compared to other
points. Consequently, the smaller cluster size reflects the lower
occurrence of these rotated geometries.

The data set (df_cluster) containing the K-means clustering
labels is straightforward. Each label corresponds to a specific
row in the data set, indicating which cluster the geometry
belongs to. By concatenating the K-means labels with the
properties dataset, it becomes clear which geometries belong to
each cluster, revealing, for instance, that geometry with a large

678 | Digital Discovery, 2025, 4, 666-682

energy gap (around 3.8 eV) belongs to cluster zero, among other
insights (first line of output in Fig. 10b). Python simplifies the
manipulation of this data, allowing for efficient grouping and
analysis of the points within each cluster. Thus, by grouping all
rows corresponding to a given cluster, statistics such as the
mean value of a given property can be calculated (Fig. 10c). For
example, cluster one has an average energy gap of 1.55 eV and
contains many hopping geometries. In contrast, cluster zero has
essentially no hopping points. This type of analysis enables
a deeper understanding of the characteristics within each
cluster.

The distribution of the energy gap for each cluster can be
visualized using a histogram (Fig. 11a). This helps illustrate the
differences in the energy gap across the clusters. Despite the
energy gap not being included in the descriptor used for clus-
tering, its distinct distribution among clusters underscores the
effectiveness of the data partitioning algorithm, which serves as
a validation step, confirming that the clustering results are
meaningful. For example, clusters zero and one exhibit distinct
energy gap distributions, highlighting their unique character-
istics. On the other hand, clusters one and two show some
overlap in the region of small energy gaps. This observation
aligns with the findings, which identified two different types of
geometries associated with hopping events: one related to bond
stretching and another linked to the rotation of the CH, groups.

To further assess the effectiveness of the clustering algo-
rithm, dimensionality reduction was applied to the differential
Z-matrix data set. The two primary components were plotted,

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper
(a) —
400
JE 300 kmeans_labels
3 0
200 =1
— 2
1001 | [[|
(0 s
0.0 2.5 5.0 7.5
So-S1 energy gap (eV)
Fig. 11

View Article Online

Digital Discovery

ISOMAP @ Delta Z Matrix

(b)
3:'.
10 o Tart g
KW
R
5 o
o~
x
0
s

10 15

(a) Histogram displaying the distribution of the So—S; energy gap (in eV) across different clusters identified by K-means clustering. Each

color represents a different cluster label. (b) ISOMAP projection of the delta Z-matrix data, where the points are colored according to their
respective K-means cluster labels, showing the separation of clusters in the reduced dimensional space.

and the points were colored according to their cluster assign-
ments to visually evaluate the clustering results (Fig. 11b).

In K-means clustering, the partitioning is known as a “hard
partition,” meaning each point is strictly assigned to a single
cluster. This method does not allow for probability distribu-
tions across clusters as in the Gaussian Mixture model. As
a result, K-means may struggle with data sets where clusters
overlap significantly, as a straight boundary tends to be drawn
between them. This limitation can lead to less defined clusters,
especially when the clusters are not well-separated in space.
This behavior is evident in the plot shown in Fig. 11b, where
cluster two is distinctly different, but clusters zero and one
could potentially be merged into a single cluster. This ambi-
guity suggests that using a different clustering algorithm, such
as hierarchical clustering, might yield different results, poten-
tially combining these clusters into one. However, with K-
means, the data set will consistently be partitioned into distinct
parts, irrespective of such nuances.

With the cluster labels now established, the next step
involves analyzing what these labels reveal in terms of the
underlying chemistry. To do this, standard Z-matrices without
any difference from the ground state are calculated to obtain
bond lengths, angles, and dihedrals. The objective here is to
investigate whether the clustering correctly distinguishes the

(@) - ! (b)
_ |~ @ cluster0
250 I M ' 125 O cluster1
o @ cluster2
'S 100
E kmeans_labels 1 75 ! -
3150 == 0 J
© == 1 :J 50 X
100 i
= Q25
>0 T K g
mi 1 01 % . e 2 ‘t_fﬁﬁ‘:} »
0712 1.4 1.6 | 1.2 1.4 16) %{
Cs-Ce bond length (4) | Cs-Cg bond length (4)

data according to the two degrees of freedom that are expected
to be most significant. In this particular case, the importance of
these degrees of freedom is already known, simplifying the
analysis. However, in scenarios where the chemistry of the
system is less understood, it would be advisable to spend more
time exploring the data beforehand. This exploration would
help develop an intuition for how the variables are distributed.

Upon calculating the bond lengths and dihedrals, specifi-
cally the Cs-C¢ bond distance, significant differences are
observed between clusters 0 and 1 (Fig. 12). The mean values of
these distributions are noticeably different. Cluster 2 shows
more dispersed values, particularly in the green distribution,
which likely corresponds to the 90° rotation discussed earlier.
The blue cluster primarily consists of geometries with shorter
bond lengths. In contrast, the yellow cluster includes geome-
tries with an extended Cs-Cq bond length. The markers in this
plot correspond to the hopping geometries. It becomes evident
from this analysis that some hopping geometries belong to
cluster 1 (yellow). In contrast, a few others, represented by red
star markers, belong to cluster 2.

By analyzing the hopping geometries within cluster 2, it has
been confirmed that they correspond to the 90-degree rotated
structures. These kinds of structures are responsible for less
than 5% of the decay population of fulvene.*® Meanwhile, the

Fig. 12 (a) Histogram showing the distribution of Cs—Cg bond distances (in A) categorized by K-means cluster labels. Each color represents
a different cluster. (b) Scatter plot of the H;—Cg—Cs—C,4 dihedral angle versus the Cs—Cg bond length, with points colored according to their
corresponding cluster. Representative geometries for each cluster are displayed alongside the plot.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4, 666-682 | 679

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

hopping geometries in cluster 1 are associated with an elon-
gated C5—Cs bond length. Additionally, the ring analysis module
of ULaMDyn can be used to assess the puckering of rings.”

5 Conclusions and outlook

In this work, we introduced ULaMDyn, a robust and flexible
Python package for analyzing nonadiabatic molecular dynamics
(NAMD) simulations using unsupervised learning techniques.
ULaMDyn integrates seamlessly with Newton-X and offers
a complete pipeline for processing, reducing, and clustering
high-dimensional molecular datasets, enabling researchers to
uncover hidden patterns and critical molecular transitions.
Through the case study of fulvene dynamics, we demonstrated
its ability to identify critical geometries and provide insights
into nonadiabatic transitions.

The automated nature of ULaMDyn streamlines the tradi-
tionally manual and labor-intensive task of postprocessing
NAMD data, making it highly scalable for large systems and
long timescale simulations. Beyond its current capabilities, the
package is set to incorporate more advanced descriptors like
MBTR and clustering techniques like DBSCAN, further
enhancing its applicability to diverse molecular systems. With
these upcoming features, ULaMDyn has the potential to
significantly broaden its impact, facilitating the study of
complex excited-state processes in areas ranging from photo-
chemistry to materials science.

ULaMDyn has been designed to be the principal analysis tool
for the many programs composing the Newton-X platform.
However, users of other NAMD programs can also profit from
the ULaMDyn capabilities by simply rewriting their results in
the native Newton-X format, which is a matter of trivial scripting
and postprocessing.

Data availability

The code used for this work is available at https://gitlab.com/
light-and-molecules/ulamdyn.git (tag 1.1.1). This program
version, data, and the notebook used for the walkthrough
example can be downloaded from Zenodo at https://doi.org/
10.5281/zenodo.14624416. The data and the notebook used
for the walkthrough example are also available at https://
gitlab.com/light-and-molecules/ulamdyn_paper-2025. More
information about ULaMDyn, including full documentation,
can be found at https://ulamdyn.com. A video tutorial of
ULaMDyn 1is also available on YouTube at https://
www.youtube.com/watch?v=yMDUKhzipjo0.

Author contributions

Conceptualization: MP], MB; data curation: MP], JMT, SM;
formal analysis: SM; funding acquisition: MB; methodology:
MPJ; project administration: MB; software: MPJ, BCG; supervi-
sion: MB; validation: MTC, JMT, RSM, SM; visualization: BCG;
writing - original draft: MP], MOB, BCG, MB; writing - review &
editing: JMT, SM, MTC, MP], MOB, BCG, MB.

680 | Digital Discovery, 2025, 4, 666-682

View Article Online

Paper

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank the funding provided by the European
Research Council (ERC) Advanced grant SubNano (Grant
agreement 832237). MB received support from the French
government under the France 2030 as part of the initiative
d'Excellence d'Aix-Marseille Université, A*MIDEX (AMX-22-IN1-
48). The authors acknowledge Centre de Calcul Intensif d'Aix-
Marseille for granting access to its high-performance
computing resources. BCG and MB thank funding from the
Sony Research Award Program.

References

1 R. Crespo-Otero and M. Barbatti, Chem. Rev., 2018, 118,
7026-7068.

2 F. Agostini and B. F. E. Curchod, Wiley Interdiscip. Rev.
Comput. Mol. Sci., 2019, 9, e1417.

3 S. Mai and L. Gonzalez, Angew. Chem., Int. Ed., 2020, 59,
16832-16846.

4 B. Lasorne, G. A. Worth and M. A. Robb, Wiley Interdiscip.
Rev. Comput. Mol. Sci., 2011, 1, 460-475.

5 M. Persico and G. Granucci, Theor. Chem. Acc., 2014, 133,
1526.

6 T. R. Nelson, A. J. White,]J. A. Bjorgaard, A. E. Sifain,
Y. Zhang, B. Nebgen, S. Fernandez-Alberti, D. Mozyrsky,
A. E. Roitberg and S. Tretiak, Chem. Rev., 2020, 120, 2215-
2287.

7 C. C. Martens and]J.-Y. Fang, J. Chem. Phys., 1997, 106, 4918-
4930.

8 R. Kapral and G. Ciccotti, J. Chem. Phys., 1999, 110, 8919-
8929.

9 D. Mac Kernan, G. Ciccotti and R. Kapral, J. Phys. Chem. B,
2008, 112, 424-432.

10 G. Stock and M. Thoss, Phys. Rev. Lett., 1997, 78, 578-581.

11 M. Thoss and G. Stock, Phys. Rev. A:At., Mol., Opt. Phys., 1999,
59, 64-79.

12 M. Ben-Nun, J. Quenneville and T. J. Martinez, J. Phys. Chem.
A, 2000, 104, 5161-5175.

13 B. F. E. Curchod and T. J. Martinez, Chem. Rev., 2018, 118,
3305-3336.

14 1. Tavernelli, Phys. Rev. A:At, Mol., Opt. Phys., 2013, 87,
042501.

15 B. F. E. Curchod, I. Tavernelli and U. Rothlisberger, Phys.
Chem. Chem. Phys., 2011, 13, 3231-3236.

16 F. Agostini, S. K. Min, A. Abedi and E. K. U. Gross, J. Chem.
Theory Comput., 2016, 12, 2127-2143.

17 S. Mukherjee, R. S. Mattos, J. M. Toldo, H. Lischka and
M. Barbatti, J. Chem. Phys., 2024, 160, 154306.

18 M. T do Casal,]J. M. Toldo, M. Pinheiro Jr and M. Barbatti,
Open Res. Eur., 2021, 1, 49.

19 Y. Shu, L. Zhang, X. Chen, S. Sun, Y. Huang and
D. G. Truhlar, J. Chem. Theory Comput., 2022, 18, 1320-1328.

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://gitlab.com/light-and-molecules/ulamdyn.git
https://gitlab.com/light-and-molecules/ulamdyn.git
https://doi.org/10.5281/zenodo.14624416
https://doi.org/10.5281/zenodo.14624416
https://gitlab.com/light-and-molecules/ulamdyn_paper-2025
https://gitlab.com/light-and-molecules/ulamdyn_paper-2025
https://ulamdyn.com
https://www.youtube.com/watch?v=yMDUKhzipj0
https://www.youtube.com/watch?v=yMDUKhzipj0
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

20 A. Glielmo, B. E. Husic, A. Rodriguez, C. Clementi, F. Noé
and A. Laio, Chem. Rev., 2021, 121, 9722-9758.

21 M. A. Rohrdanz, W. Zheng and C. Clementi, Annu. Rev. Phys.
Chem., 2013, 64, 295-316.

22 A. Amadei, A. B. M. Linssen and H. J. C. Berendsen, Proteins:
Struct., Funct., Bioinf., 1993, 17, 412-425.

23 S. R. Hare, L. A. Bratholm, D. R. Glowacki
B. K. Carpenter, Chem. Sci., 2019, 10, 9954-9968.

24 P. Das, M. Moll, H. Stamati, L. E. Kavraki and C. Clementi,
Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 9885-9890.

25 T. Tsutsumi, Y. Ono, Z. Arai and T. Taketsugu, J. Chem.
Theory Comput., 2020, 16, 4029-4037.

26 F. Hise, I. F. Galvan, A. Aspuru-Guzik, R. Lindh and
M. Vacher, Chem. Sci., 2019, 10, 2298-2307.

27 L. Chen, D. R. Roe, M. Kochert, C. Simmerling and
R. A. Miranda-Quintana, J. Chem. Theory Comput., 2024, 20,
5583-5597.

28 T. Morishita, J. Chem. Phys., 2021, 155, 134114.

29 F. Perrella, F. Coppola, N. Rega and A. Petrone, Molecules,
2023, 28, 3411.

30 A. M. Virshup, J. Chen and T. J. Martinez, J. Chem. Phys.,
2012, 137, 22A519.

31 A. K. Belyaev, W. Domcke, C. Lasser and G. Trigila, J. Chem.
Phys., 2015, 142, 104307.

32 X.Li,Y.Xie, D. Hu and Z. Lan, J. Chem. Theory Comput.,2017,
13, 4611-4623.

33 X. Li, D. Hu, Y. Xie and Z. Lan, J. Chem. Phys., 2018, 149,
244104.

34 J. Peng, Y. Xie, D. Hu and Z. Lan, J. Chem. Phys., 2021, 154,
094122.

35 G. Capano, T. J. Penfold, M. Chergui and I. Tavernelli, Phys.
Chem. Chem. Phys., 2017, 19, 19590-19600.

36 D. Hu, Y. F. Liu, A. L. Sobolewski and Z. Lan, Phys. Chem.
Chem. Phys., 2017, 19, 19168-19177.

37 Y. Zhu,]. Peng, X. Kang, C. Xu and Z. Lan, Phys. Chem. Chem.
Phys., 2022, 24, 24362-24382.

38 Y. Zhu, J. Peng, C. Xu and Z. Lan, J. Phys. Chem. Lett., 2024,
9601-9619, DOI: 10.1021/acs.jpclett.4c01751.

39 K. Acheson and A. Kirrander, J. Chem. Theory Comput., 2023,
19, 6126-6138.

40 W. B. How, B. Wang, W. Chu, A. Tkatchenko and
O. V. Prezhdo, J. Phys. Chem. Lett., 2021, 12, 12026-12032.

41 S. M. Mangan, G. Zhou, W. Chu and O. V. Prezhdo, J. Phys.
Chem. Lett., 2021, 12, 8672-8678.

42 M. Barbatti, M. Bondanza, R. Crespo-Otero, B. Demoulin,
P. O. Dral, G. Granucci, F. Kossoski, H. Lischka,
B. Mennucci, S. Mukherjee, M. Pederzoli, M. Persico,
M. Pinheiro Jr, J. Pittner, F. Plasser, E. Sangiogo Gil and
L. Stojanovic, J. Chem. Theory Comput., 2022, 18, 6851-6865.

43 P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti,
O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro Jr, Y. Su, Y. Dai,
Y. Chen, L. Zhang, S. Zhang, A. Ullah, Q. Zhang and Y. Ou,
J. Chem. Theory Comput., 2024, 20, 1193-1213.

44 X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith and
A. E. Roitberg, J. Chem. Inf. Model., 2020, 60, 3408-3415.

45 S. De, A. P. Bartok, G. Csanyi and M. Ceriotti, Phys. Chem.
Chem. Phys., 2016, 18, 13754-13769.

and

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

46 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354~
1358.

47 M. Rupp, A. Tkatchenko, K.-R. Miiller and O. A. von
Lilienfeld, Phys. Rev. Lett., 2012, 108, 058301.

48 L. Himanen, M. O. J. Jiger, E. V. Morooka, F. Federici
Canova, Y. S. Ranawat, D. Z. Gao, P. Rinke and
A. S. Foster, Comput. Phys. Commun., 2020, 247, 106949.

49 A. P. Bartok, R. Kondor and G. Csanyi, Phys. Rev. B:Condens.
Matter Mater. Phys., 2013, 87, 184115.

50 A. S. Christensen, L. A. Bratholm, F. A. Faber and O. Anatole
von Lilienfeld, J. Chem. Phys., 2020, 152, 044107.

51 H. Huo and M. Rupp, Mach. Learn.: Sci. Technol., 2022, 3,
045017.

52 A. Geron, Hands-on machine learning with scikit-learn, keras,
and TensorFlow 3e: Concepts, tools, and techniques to build
intelligent systems, O'Reilly Media, Sebastopol, CA, 3 edn,
2022.

53 M. Villares, C. M. Saunders and N. Fey, Artif. Intell. Chem.,
2024, 2, 100055.

54 B. Casier, S. Carniato, T. Miteva, N. Capron and N. Sisourat,
J. Chem. Phys., 2020, 152, 234103.

55 Principal Component Analysis, ed. I. T. Jolliffe, Springer New
York, New York, NY, 2002, pp. 338-372, DOL 10.1007/0-
387-22440-8_13.

56 1. T. Jolliffe and J. Cadima, Philos. Trans. R. Soc., A, 2016, 374,
20150202.

57 L. Van der Maaten and G. Hinton, J. Mach. Learn. Res., 2008,
9, 5.

58 J. B. Tenenbaum, V. d. Silva and]J. C. Langford, Science, 2000,
290, 2319-2323.

59 R. K. Cersonsky and S. De, in Quantum Chemistry in the Age of
Machine Learning, ed. P. O. Dral, Elsevier, 2023, pp. 153-181,
DOI: 10.1016/B978-0-323-90049-2.00025-1.

60 Y. Zhu, J. Peng, H. Liu and Z. Lan, in Quantum Chemistry in
the Age of Machine Learning, ed. P. O. Dral, Elsevier, 2023, pp.
619-651, DOI: 10.1016/B978-0-323-90049-2.00013-5.

61 L. Kaufman and P. J. Rousseeuw, in Finding Groups in Data:
An Introduction to Cluster Analysis, Wiley, New York, 1st edn,
1990, ch. 3, pp. 126-163.

62 R. Scitovski, K. Sabo, F. Martinez-Alvarez and S. Ungar, in
Cluster Analysis and Applications, ed. R. Scitovski, K. Sabo,
F. Martinez-Alvarez and S. Ungar, Springer International
Publishing, Cham, 2021, pp. 31-64, DOI: 10.1007/978-3-
030-74552-3_3.

63 X. Jin and]J. Han, in Encyclopedia of Machine Learning, ed. C.
Sammut and G. I. Webb, Springer US, Boston, MA, 2010, pp.
563-564, DOI: 10.1007/978-0-387-30164-8_425.

64 D. Reynolds, in Encyclopedia of Biometrics, ed. S. Z. Li and A.
Jain, Springer US, Boston, MA, 2009, pp. 659-663, DOI:
10.1007/978-0-387-73003-5_196.

65 J. Licke and D. Forster, Pattern Recognit. Lett., 2019, 125,
349-356.

66 M. L. Zepeda-Mendoza and O. Resendis-Antonio, in
Encyclopedia of Systems Biology, ed. W. Dubitzky, O.
Wolkenhauer, K.-H. Cho and H. Yokota, Springer New
York, New York, NY, 2013, pp. 886-887, DOI: 10.1007/978-
1-4419-9863-7_1371.

Digital Discovery, 2025, 4, 666-682 | 681

https://doi.org/10.1021/acs.jpclett.4c01751
https://doi.org/10.1007/0-387-22440-8_13
https://doi.org/10.1007/0-387-22440-8_13
https://doi.org/10.1016/B978-0-323-90049-2.00025-1
https://doi.org/10.1016/B978-0-323-90049-2.00013-5
https://doi.org/10.1007/978-3-030-74552-3_3
https://doi.org/10.1007/978-3-030-74552-3_3
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-1-4419-9863-7_1371
https://doi.org/10.1007/978-1-4419-9863-7_1371
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

Open Access Article. Published on 08 January 2025. Downloaded on 11/22/2025 6:21:49 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

67 A. Y. Ng, M. 1. Jordan and Y. Weiss, Presented in part at the
Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic,
Vancouver, British Columbia, Canada, 2001.

68 I. S. Dhillon, Y. Guan and B. Kulis, presented in part at the
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, Seattle,
WA, USA, 2004.

69 J. M. Toldo, R. S. Mattos, M. Pinheiro Jr, S. Mukherjee and
M. Barbatti, . Chem. Theory Comput., 2024, 20, 614-624.

70 M. T. do Casal, J. M. Toldo, M. Pinheiro Jr and M. Barbatti,
Open Res. Europe, 2021, 1, 49.

682 | Digital Discovery, 2025, 4, 666-682

View Article Online

Paper

71 L. M. Ibele, A. Memhood, B. G. Levine and D. Avagliano, J.
Chem. Theory Comput., 2024, 20, 8140-8151.

72 S. Gomez, E. Spinlove and G. Worth, Phys. Chem. Chem.
Phys., 2024, 26, 1829-1844.

73 L. M. Ibele and B. F. E. Curchod, Phys. Chem. Chem. Phys.,
2020, 22, 15183-15196.

74 L. Blancafort, F. Gatti and H.-D. Meyer, J. Chem. Phys., 2011,
135, 134303.

75 P. J. Rousseeuw, J. Comput. Appl. Math., 1987, 20, 53-65.

76 T. Calinski and J. Harabasz, Comm. Statist., 1974, 3, 1-27.

77 R.Mansour, S. Mukherjee, M. Pinheiro, J. A. Noble, C. Jouvet
and M. Barbatti, Phys. Chem. Chem. Phys., 2022, 24, 12346-
12353.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00374h

	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning

	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning

	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning
	ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning

