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We present an improved high-throughput proxy viscometer based on the Opentrons (OT-2) automated
liquid handler. The working principle of the viscometer lies in the differing rates at which air-
displacement pipettes dispense liquids of different viscosities. The operating protocol involves measuring
the amount of liquid dispensed over a set time for given dispense conditions. Data collected at different
set dispense flow rates was used to train an ensemble machine learning regressor to predict Newtonian

liquid viscosity in the range of 20—-20 000 cP, with ~450 cP error (~8% relative to sample mean). A
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Introduction

With the advent of lab automation and artificial intelligence
(AI), there has been a drive to accelerate materials discovery and
development by moving towards closed-loop, autonomous
experimentation.” Lab automation streamlines the experi-
mentation process, while machine learning algorithms assist in
analyzing data and suggesting the next set of experiments based
on performance predictions. The successful coupling of robotic
experiments and AI enables data collection and decision
making to occur without human intervention. This approach
can be used to explore large experimental design spaces in
a time- and resource-efficient manner.

Viscosity is a key physical property of many products, hence
the measurement of viscosity plays a critical role in a wide range
of industries, from pharmaceuticals®* to cosmetics>® and food
production.” The traditional methods of measuring viscosity are
typically time-consuming and labor-intensive. For example,
a single run on a rotational rheometer requires careful sample
loading and instrument calibration, followed by thorough
cleaning after the measurement. High-throughput is becoming
a priority for rapid screening purposes, particularly with many
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industries looking to re-formulate their portfolio of products to
meet sustainability and regulatory pressures.®*' Alternate
methods for measuring viscosity have been developed, such as
microfluidic-based rheometers.”>** However, such techniques
cannot attain the degree of throughput and automation
required for screening large numbers of samples. Automated
rheometers are available commercially, but these are expensive
and difficult to integrate into larger workflows. There remains
a need for an easily accessible solution to automated, high-
throughput viscometry.

In this paper, we extend prior work' on an automated and
high-throughput method of measuring viscosity based on the
Opentrons (OT-2) pipetting robot. The key extensions are an
increase in applicable viscosity range for Newtonian liquids
through implementation of real-time mass measurements and
the integration of an analytical model to extend the proxy
viscometer to non-Newtonian liquids. These improve the
versatility of the platform, for example by enabling the
screening of low-viscosity fluids, and represent a significant
stride towards a more general-use proxy viscometer. The
working principle of the proxy viscometer leverages the
differing ability of air-displacement pipettes in dispensing
liquids with varying viscosities. Under given dispense condi-
tions, the actual amount of liquid dispensed depends on the
liquid viscosity. We measure the amount of liquid dispensed
over time for a range of dispense flow rates and liquid viscosi-
ties (for Newtonian fluids) and train a regression model to
predict liquid viscosity within the range of 20 to 20 000 cP. We
develop an analytical model to describe the experimental results
and extend the model to a simple non-Newtonian (power-law)
liquid, demonstrating proof-of-concept cases on molasses and
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a surface cleaner. A single viscosity measurement on our proxy
viscometer takes ~1.5 minutes and requires minimal human
intervention. Moreover, the Opentrons is cost-effective, readily
integrated into workflows and uses open-source software, all of
which have resulted in its widespread use in automated

workflows. 68

Methods and materials

Proxy viscometer setup

The operating platform of the proxy viscometer is the Open-
trons (OT-2), an affordable and open-source automated pipet-
ting robot (Fig. 1). One of the deck slots on the OT-2 was
removed to allow a precision balance (Mettler Toledo MS303TS/
00) to be incorporated in the setup.* The pipette tips used for
measurements are 1000 pL wide bore tips (Fisher Scientific). A
technical drawing of the tips is provided in the ESIf The
working principle of the proxy viscometer has been described in
detail previously.*® Briefly, air-displacement pipettes operate by
maintaining an air cushion between the plunger and fluid. The
cushion volume is sensitive to the fluid's physical properties,
especially viscosity, and therefore, liquids of different viscosi-
ties will be dispensed differently under the same dispense

Fig. 1 Experimental setup for the high-throughput viscometer:
automated liquid handling robot Opentrons (OT-2) with a precision
balance fitted beneath the dispense plate.
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conditions. This difference in measured dispense behavior
serves as a proxy for viscosity.

Proxy viscometer operation

The protocol for a single measurement involves two stages:
aspiration and dispense (Table 1). During the aspiration stage,
the pipette tip is lowered into the liquid reservoir and liquid is
aspirated at a set aspiration flow rate, here 100 pL s~ '. The
amount of liquid aspirated is calculated based on the expected
amount of liquid to be dispensed over 10 s. For example, a total
of 100 uL is aspirated for a set dispense flow rate of 10 uL s %,
while a total of 800 pL is aspirated for a set dispense flow rate of
80 puL s~ . A delay of 30 s is included to allow for the air pocket
between the plunger and the liquid to reach equilibrium, a step
that enables accurate aspiration of viscous liquids. After the
pipette is charged, the pipette tip is touched to the four sides of
the reservoir to remove trailing liquid on the outside of the tip
(touch tip). This step is repeated at three different heights to
remove liquid at different positions along the tip exterior. The
pipette tip is then moved to the dispense plate for the start of
the dispense stage.

For a given set dispense flow rate, the liquid is dispensed for
10 s and the amount of liquid collected on the plate is measured
atintervals of 0.2 s. After 10 s, there is a delay of 30 s to allow any
remaining droplets to fall onto the dispense plate. The pipette
tip is then disposed of and a single measurement is concluded
within 1.5 minutes. Five replicates were carried out for each
fluid tested. The pipette tip was changed between each repli-
cate. The key difference in measurement protocols between this
work and previous work lies in the measurement of the mass of
fluid. Previously, the mass of fluid dispensed was measured at
a single time point, at the end of the dispensing step;" in this
work, the mass of fluid dispensed is measured in real time,
providing higher-fidelity information about the dispensing
process and thus enabling us to extend the viscosity range of the
proxy viscometer.

Liquids

The Newtonian liquids tested consisted of a range of general
purpose mineral oil viscosity standards (Paragon Scientific) and
their mixtures under ambient lab temperature conditions. The
viscosities of mixtures of standards were determined by a rota-
tional rheometer using parallel plates (TA Instruments DHR-3).

Table 1 Operating protocol for a single measurement of fluid viscosity using the Opentrons

Stage Step Description
Aspiration Pick up pipette tip Begin a run
Aspirate fluid at 100 pL s~ Withdraw fluid from reservoir
Delay for 30 s Allow for equilibration of air pressure
Touch pipette tip to four sides of the well, Remove droplets on various locations of pipette
performed at three different heights tip exterior
Move pipette tip to dispense plate Aspiration stage complete
Dispense Dispense fluid at set flow rate for 10 s Weigh fluid dispensed from pipette tip

Delay for 30 s
Dispose pipette tip

712 | Digital Discovery, 2025, 4, 711-722

Allow remaining fluid to drip
Dispense stage complete

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The densities of mixtures were measured by aspirating a known
volume of liquid with a positive displacement pipette and
dispensing onto a precision balance. A total of 40 Newtonian
liquids were tested. The Newtonian standards used in the
experiments are listed in Table S1 in ESI.{

Two non-Newtonian liquids tested for proof-of-concept
purposes were molasses (Brer Rabbit) and Cif cream surface
cleaner (Unilever). Cif is a non-colloidal suspension of non-
spherical calcium carbonate particles (average size around 50
pm) in a viscous binder. The rheological behavior of each fluid
was measured at 25 °C using steady state shear rate sweeps on
a rotational rheometer with parallel plates. Three replicates
were performed for each fluid and the average values are re-
ported. The densities were measured as described for the
Newtonian standards.

Results and discussion
Dynamic fluid dispense curves

Fig. 2 shows the measured volume of liquid dispensed, V, as
a function of time, ¢, for ten selected Newtonian standards at
five different set dispense flow rates, where ¢t = 0 corresponds to
the start of the dispense stage. Generally, liquids with lower
viscosities are dispensed at a faster rate compared to liquids
with higher viscosities. For the slowest dispense flow rate, of 10
uL s, the liquid tends to be dispensed intermittently as
discrete droplets due to the balance between surface tension
and gravity, resulting in a stepped dispense profile. At higher
flow rates, the liquid is dispensed as a stream, resulting in
continuous collection profile after an initial delay correspond-
ing to the formation of the initial droplet.

For each dispense profile, we fit the following sigmoid
function to the data:

(a)
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where V4 is the volume dispensed at long times, and m and s
are positive constants with units of time. When ¢t = m, V= Vpa/
2, therefore m is a characteristic timescale associated with
reaching half the final dispensed volume. In Fig. 3(a), we show
dispense profiles for five replicates of the measurement
protocol with a Newtonian standard (6033 cP) at a set dispense
flow rate of 80 pL s~ ', alongside fits to eqn (1). The sigmoid
function fits the data well and there is good repeatability
between the five replicates. The experimental data show a sharp
transition after 10 s, corresponding to the cessation of piston
motion, which the sigmoid function cannot reproduce.

The fitted parameters Vpa, m and s for the Newtonian
liquids are plotted as a function of viscosity in Fig. 3(b)-(d). We
observe strong relationships between the fitted parameters and
viscosity, especially for Vo, suggesting that regression models
can be trained to predict liquid viscosity. Generally, with an
increase in viscosity, Vpi,: decreases and m increases. This
corresponds to smaller final dispense volume for liquids with
higher viscosities and the liquids being dispensed at a slower
average rate.

V(1) (1)

Regression model for Newtonian liquids

To build a tool for viscosity prediction of Newtonian liquids, we
trained several models on the data for each set dispense flow
rate. Specifically, we trained linear regression, support vector
regression, ridge regression and Gaussian process regression
models (see ESIT for more details). These models were selected
for their simplicity and flexibility in modelling low-dimensional
data spaces well. The input variables to the models were the
fitted parameters V., m and s, and the target variable was
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Fig. 2 Volume of Newtonian liquid dispensed with time during the proxy viscometer measurement protocol for select liquid viscosities and
a range of set dispense flow rates: (a) 10 pL s, (b) 20 uL s %, (c) 50 pL s, (d) 65 uL s *and (e) 80 uL s~ %
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Fig. 3 Sigmoid fits to the dispense curves. (a) Five replicates of the measurement protocol for a Newtonian standard with viscosity of 6033 cP at
a set dispense flow rate of 80 pL s~ The black lines are fits of eqn (1) to the red experimental data points. The fit parameters to eqn (1) for all
measured viscosities and set dispense flow rates are plotted: (b) Vo, (c) m and (d) s.

liquid viscosity. The dataset collected at each dispense flow rate
was split into training and testing sets using a stratified 75-25%
split. We optimized the models by tuning the hyperparameters
and evaluated the root mean squared errors (RMSE) for the train
and test sets, based on which we selected the best performing
regression models. For every set dispense flow rate, we found
support vector regression (SVR) with RBF kernel to give the
smallest errors (Fig. 4). Therefore, a support vector regression
model was used to train the datasets at each set dispense flow
rate. The model trained on data from higher set dispense flow
rates tended to give more accurate predictions, evident from the
smaller train and test RMSE values. This is attributed to the
more continuous dispense profiles and better fits to a sigmoid
function.

Since the viscosity of a Newtonian liquid is independent of
the applied shear rate, we expect the regression model trained
on different set dispense flow rates to predict similar viscosities.
As such, we developed an ensemble model by taking a weighted
average of the viscosity predictions from the models at different
flow rates, where the weighting was based on the train RMSE

714 | Digital Discovery, 2025, 4, 711-722

values, i.e., individual model accuracies. As seen from Fig. 4(f),
the weighted ensemble model outperforms the model trained
on the individual flow rate datasets, with train and test RMSE
values of ~450 cP (~8% relative to sample mean). We note that
the ensemble model presents only a marginal improvement in
accuracy over the model trained on the individual flow rate
datasets (for dispense flow rates larger than 10 uL s~ ). Hence,
the ensemble model can be employed if a user prioritizes
accuracy over speed. Otherwise, the user can run the measure-
ment protocol at only one set dispense flow rate (=20 uL s )
and use the model trained on a single flow rate to obtain a less
accurate prediction. This might be desirable for the rapid
screening of many samples.

Analytical model

The prediction of viscosity for non-Newtonian liquids is
complex because of the shear rate dependence. We can envision
extending the regression model for Newtonian liquids to esti-
mate a rheological curve for non-Newtonian liquids through
a proxy steady-state shear rate sweep. For example, we can

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and (e) 80 pL s~*. Predictions from the model trained on datasets collected at each set dispense flow rate are weighted by the train RMSE value

and averaged to produce an ensemble model.

calculate the shear rates associated with different set dispense
flow rates, train Newtonian models for the dispense flow rates
that correspond to the shear rates of interest, then predict the
viscosity at the selected flow rates. This is similar to the meth-
odology outlined by Deshmukh et al.>® However, this approach
is dependent on the model trained for each dispense flow rate
being accurate. For low set dispense flow rates that correspond
to small shear rates, the model might not be accurate enough
for a reliable viscosity prediction.

(a) (b)

Vair' Pin

59

Fig. 5 Experimental setup (a) schematic of pipette tip and (b) photo-
graph of Thermo Scientific 1000 pL wide bore pipette after the aspi-
ration stage. Diameter of the duct at locations AA’, BB'/CC’ and DD’
and distances AB, BC and CD indicated, all dimensions in mm.

© 2025 The Author(s). Published by the Royal Society of Chemistry

To circumvent this, we develop a phenomenological model
that can be applied to non-Newtonian liquids. Consider the
pipette tip in Fig. 5: the pipette operates by firstly immersing the
tip below the surface of the sample liquid. The plunger motion
initially expels air through the tip and then draws liquid up as
the plunger withdraws and creates suction in the tip cavity. The
pipette tip is then moved out of the liquid. Fig. 5(a) shows the
configuration: V,;, is the volume of air in the cavity at internal
pressure P;,. During the dispense stage, the plunger moves
downward, its motion occupying volume at a rate Qp. The air in
the cavity is compressed, increasing P;, and this causes the
liquid to leave through the tip at volumetric flow rate Qy,: Qy, is
determined by the geometry of the pipette tip, the rheology of
the liquid and the instantaneous pressure difference P;,
where P, is the pressure of the surroundings.

Assuming that the tip walls are rigid and the liquid is both
involatile and incompressible, a volume balance on region
ADD'A' yields

- Patmy

d Vair
dt

O, + -0L=0 (2)

where t is time. Treating the air as an ideal gas and assuming
isothermal compression,

dVair _

dt Pinz

PyVy dPy,

where V,, and P, are the initial air volume and internal pressure,
respectively. These quantities were not measured in tests and
are also expected to depend on the liquid. The values of P, are
likely to lie below atmospheric (around 101 kPa, subject to
variation), as the sum of P, the capillary pressure jumps across
the interfaces and the hydraulic head of liquid in the pipette tip
is equal to atmospheric pressure on that day. The pipette tip
dimensions set an upper limit on V;, of 5000 puL, and measure-
ments by Deshmukh et al?® indicate P, of order 10 kPa

(gauge).

Digital Discovery, 2025, 4, 711-722 | 715


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00368c

Open Access Article. Published on 05 February 2025. Downloaded on 2/13/2026 3:39:16 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Contributions from gravity and capillary action are neglected
in the flow model. The pressure difference associated with
a drop at the pipette tip is of order 2I'/Rs, where I' is the
surface tension and Ry, is the radius of the duct at the tip exit
(of order 1 mm). For water at 20 °C, this gives a pressure
difference of order 150 Pa for a hemispherical drop, which
would halve if the liquid leaves as a cylindrical thread. These
differences are small when compared to the pressure required
to expel a viscous liquid (see below), but capillary action could
impose an initial lag before the first drop is collected.

Inertia and transients in flow are neglected and Q@ is
modelled assuming instantaneous steady state, with the pres-
sure drop dominated by that required to pass through the
converging conical duct ABB'A’. The Cogswell result** for
converging flow of a power-law fluid with shear stress o related
to shear rate y by

=K' (@)

in which K is the consistency and 7 the flow index, is
2K

(a0 \ a1y LVOR
Py — Py = <7cR3 /> ( 4n ) 3ntana ! (RBB’ ©)
AA

where « is the half angle of the conical duct. For the wide bore

pipette tip in Fig. 5, with & = 6.1°, this reduces to

3n+1\" K
4n 0.16028n

(1-0.0328")

(6)

Py — Py = (175 x 109QL)”<

The first term on the RHS is the apparent shear rate, Yapp,
and the flow rates studied by Soh et al.,** of 5-100 uL s, in the
pipette tip in Fig. 5 correspond to shear rates of 9-175 s~ *. Eqn
(6) can be written as

Py — Pam = BQLn (7)

yielding the governing equation

1

VoP()dPin Pin_Palm;
— —[————) =0 8
B ®)

Peoopy? de
Introducingm=n""and p = P;,
as in the tests)

— Paem, gives (with Q,, constant

Vo Py dp P\
O (P + Pum)” dt <B> -0 ©)

Rearranging gives

dp P+ Pun)’ (Qp B (p>>

dt VP, B

; (10)

Since p(¢t = 0) ~ 0, this predicts that p (and P;,) will initially
increase and approach a limit asymptotically, where pj, =
BQy", i.e. Qu = Qp: the air in the cavity undergoes compression

716 | Digital Discovery, 2025, 4, 711-722
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until the pressure is sufficiently high to drive the liquid out at
the rate set by the piston.

The instantaneous liquid flow rate is set by p and the volume
dispensed after experiment duration ¢ is

E

V(te) :J 0. (1)dr (11)

0
If m is integral, one could evaluate eqn (8) using Laplace
Transforms. This was not attempted here and eqn (11) was
evaluated numerically (see ESIT).

Newtonian liquids

For Newtonian liquids, n = 1 and eqn (9) yields an analytical
result relating the flow rate ratio § = 1 — Q;/Q, and dimen-
sionless time t = t/t¢ (Where tc = VoPo/fuQp’, see ESIY)

i{ln -0 B ¢ B I }
a2l e0-1) -6 -1
Here ¢/ = 1 + Pym/BuQp, u is the liquid viscosity and the product
Bu corresponds to B in eqn (7) for the Newtonian case. Whilst
this result allows the instantaneous flow rate to be evaluated
directly, V(t) requires numerical integration.

For the pipette tip in Fig. 5, 8 = 15 x 10° Pa s m . Taking P,
=101 325 Pa, V, = 2000 uL and a set dispense rate, Qp, of 80 pL
s, tc is given by 2083/u and ¢’ = 1 + 83.3/u. The characteristic
timescale in eqn (12) is then ¢c/c’*. For a 6 Pa s liquid, repre-
sentative of those considered by Soh et al.,’* ¢ = 14.9 and ¢ is
347 s, giving a characteristic timescale of 1.6 s, which is
comparable with the length of the dispense times (5-10 s): the
flow rate will change noticeably over the duration of a test with
a viscous liquid due to air compression. For less viscous solu-
tions, assuming P, ~ P,m, the characteristic time scale will be
approximately BuV,/P,: for aqueous solutions, with 4 ~ 1 mPa s,

T =

(12)

1.00 T =" 900
0.90 + L 800
080 ¢ L 700
0.70 +
r 600
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& L 500 3
<,050 + =~
<
(€] F 400 X7
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r 300
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V(t) approx
0.00 = t t t t 0
0 2 4 6 8 10

t/s

Fig. 6 Predicted evolution of scaled flow rate and volume dispensed
from the pipette tip in Fig. 5 for a 6.08 Pa s Newtonian liquid with Q, =
80 uL s7%, Py = 101325 Pa and Vo = 2000 pL.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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this is of order milliseconds and the pipette will dispense
accurately.

For the 6 Pa s liquid, the ratio of the pressure drop across the
pipette tip to that across Section BC is >40, justifying neglecting
the contribution from above BB’ for this and other liquids
tested by Soh et al.** Fig. 6 presents a series of model predictions
for Newtonian liquids with viscosity 6.08 Pa s at a set dispense
flow rate of 80 uL s~'. The numerical integration of eqn (10)
matches eqn (12). The flow rate approaches Q, after 6 s, so the
volume collected after 5 s or 10 s (as used by Soh et al.**) will be
noticeably less than Qg in both cases for this viscous liquid.

Soh et al.* tested 33 Newtonian viscosity standards and re-
ported the amount of liquid collected over time ¢ as the aver-
aged flow rate, Q = V(tg)/tg- They found that Q varied
systematically with viscosity as Q o« w3, thereby offering
a simple method of estimating the liquid viscosity. We
demonstrate here that this result can be predicted by the model.
For a Newtonian liquid, for large values of ¢’ (as in their tests),
an approximate form of eqn (12) is (see ESIt)

OL= QP{1 —CXP(— P f)}

BuVy
This can be integrated analytically to obtain the volume
dispensed, giving the profile in Fig. 6 which follows the exact
result closely. Writing the reciprocal of the characteristic time
as ¢, the analytical result for Q is

(13)

- P
0= <pQ_t (e + o —1} (14)
E
12000
----2500
—1000
® Data
8000 +
o
[&]
S
4000 +
..
0 t t t
15 25 45 55

_ 35
Q /uLs™*

Fig. 7 Comparison of predicted effect of viscosity on average flow
rate for Newtonian viscosity standards reported by Soh et al. (2023) for
tests with dispense period of 5 s and Q, = 50 pL s~1 Error bars indi-
cated 95% confidence interval from 9 repeats. Loci show predictions
of simplified model, egn (14), with parameters Py = 101325 Pa, Vg
values indicated. Inset shows the data in the linearized form reported
by Soh et al.
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Fig. 7 shows eqn (14) predicts the form of the experimental
results reported by Soh et al.*® and gives good agreement with
the Q « u™* relationship they obtained by a regression fit to
their data set. Better agreement could be obtained by adjusting
the model parameters P, and V, for each case, but the uncer-
tainty regarding the effect of capillarity and flow onset would
remain. Soh et al.*® presented a scaling argument explaining the
Q o« u ' relationship which did not consider the role of air
compression in the flow mechanism. This model corrects that
oversight and demonstrates the importance of air compression
by analyzing V(¢) data series collected in related experiments.

Soh et al.*®* also demonstrated that the pipette tip design
affected the volume of liquid collected (and hence Q). Their
data, reproduced in Fig. 8, showed that a standard pipette tip
(see ESIt), with smaller exit orifice, was more sensitive to liquid
viscosity than the wide-bore tip in Fig. 5. A custom pipette
geometry gave an intermediate response which was almost
linearly sensitive to viscosity. Fig. 8 shows that these behaviors
can be predicted by eqn (14). A single set of model parameters
was used in the simulations in this case; better agreement could
be obtained by matching these to the individual pipette tips as
they have different filling characteristics.

Newtonian liquids: comparison with experimental results

To demonstrate the robustness of the model, we can compare
the analytical solution, as presented in eqn (12), to experimental
results. Setting V, = 8000 pL and P, = 95 kPa, we solve the
analytical model for Newtonian fluids with a range of viscosi-
ties. Fig. 9 shows the solution to the analytical model for a set
dispense flow rate of 80 uL s~ ' alongside experimental dispense
curves, from which we observe good agreement. While the

60

50

40 T+

1

30 +

Q /uLs~

e Standard
® Wide bore
® Custom
10 4 —Standard nozzle
—Wide bore tip
——Custom tip
0 A L
0 1000 2000 3000
u/cP

4000 5000

Fig. 8 Effect of Newtonian viscosity on predicted average flow rate
(eqn (14)) for different tip designs, Q, = 50 uL s~ ! 55 dispense period.
Points — experimental data, error bars indicated 95% confidence
interval from 9 repeats. Loci — model predictions, with Po = 101325 Pa
and Vg = 2000 pL for both nozzles. 8 values — standard, 13.6 x 10%°
m~3; custom, 6.2 x 10'° m~3; wide bore 1.5 x 10° m~>.
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Fig.9 Comparison between analytical model and experimental data for Newtonian fluids with different viscosities at a set dispense flow rate of
80 pL s Points — experimental data. Dotted lines — model predictions, with Py = 95 kPa and Vo = 8000 pL.

trained support vector regression model gives reasonable
predictions of liquid viscosity for Newtonian fluids, having an
accurate analytical model paves the way for extending the proxy
viscometer to non-Newtonian liquids. In selecting the values of
Vo and Py, we first set P, based on the range of values reported by
Deshmukh et al.,*® then determined the value of V,, that resulted
in the best fits. We recognize that the value obtained is greater
than the limit set by the pipette geometry, and note that the
choice of V, also depends on P,;, which was not measured in
these experiments.

Power-law fluids

The scope for studying non-Newtonian liquids using the
pipetting system is investigated conceptually here for the

(a)

200

n=1 L,
180 + n=4i5 R

n=23 Pl
n=172 .

160 +

140 +

120 4

100 +

VL

80 +

60 +

40 1

20 +

(b)

simplest case of a time-independent (Generalized Newtonian)
fluid, the power-law fluid, eqn (4). The numerical model, eqn
(10) was used to predict the instantaneous flow rate and volume
discharged for shear-thinning fluids with n in the range 0.5-1.0.
To facilitate comparisons, the value of the consistency factor K
was adjusted to give an apparent viscosity of 6 Pa s at a shear
rate of 99 s~ * corresponding to the exit conditions when Q, = 40
pL s~ ). Fig. 10(a) shows that compression of the air pocket has
a significant effect at this flow rate for these viscous liquids. The
effect is stronger for shear-thinning fluids as the initial increase
in pressure induces a low flow rate (and apparent shear rate),
giving rise to a high apparent viscosity. At the end of the
dispense period, the volume collected increases with n.
Fig. 10(b) shows that the difference between the fluids decreases
at higher dispense rates, as the apparent viscosity of the fluids is

400

300 T

2200 1
>

100 +

0 } ! } !
0 20 40 60 80
Qp /UL s

100

Fig.10 Predicted volume dispensed during a 5 s dispense period for power-law fluids with 0.5 = n =< 1in the wide bore tip. Model parameters Pg
=101325 Pa and V, = 2000 pL. The power-law consistency was adjusted such that each liquid had the same apparent viscosity, or 6 Pa s, at the
apparent shear rate in the pipette tip at Q, = 40 uL s~ (indicated by vertical dot-dashed line), of 99 s~*. (a) Dispense profile for Qp =40 puL st

dashed line shows ideal case, V = Q.t; (b) effect of set dispense rate.
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decreased by the higher flow rates. The difference in measured
volumes has already been shown to reflect a difference in
viscosity for Newtonian liquids, and that difference will depend
on tx (eqn (14)).

Power-law fluids: comparison with experimental results

The power of the analytical model is that it enables us to extract
the non-Newtonian fluid parameters, n and K, from the liquid
dispense curves. The range of dispense flow rates used in the
experimental setup generates apparent shear rates at the pipette
tip exit between 18 s~ ' and 140 s~ ' (see first term on RHS of eqn
(6)); the ability to study a non-Newtonian fluid is dependent on
whether the fluid viscosity changes noticeably over this range of
shear rates. Given that the tests involve two quantities (volume
and time) over one decade of shear rate, a constitutive model
with only two degrees of freedom is appropriate. As proof-of-
concept, we demonstrate the approach on molasses and
a surface cleaner (Cif), both shear-thinning liquids that can be
described as power-law fluids.”* The rheological behaviors of
molasses and Cif were characterized using a rotational rheom-
eter and the viscosity-shear rate curves were fitted to a power-
law relation to obtain K and n (Fig. 11(a) and (c)). Specifically,
we fitted the logarithm of viscosity versus logarithm of shear rate

0 2 4 6
Iny/s™t)
(c)
10
9
w 8
— ©
- — o
37
£ 6
5
4
0 2 4 6
Iny/s)
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to a linear equation of form In (1) = aln (y) + b, wheren=a + 1
and K = exp(b).

The dispense profiles were obtained by running the
measurement protocol on power-law fluids at different set
dispense flow rates. We used differential evolution to minimize
the mean squared error between the numerical model and
experimental data, with In(K) and n as the fitted parameters.
Due to the disparity in scales of K and n, we optimized over In(K)
instead of K to ensure better convergence. Furthermore, we
applied L2 regularization terms to K and n, which penalize
excessively large parameter values and help to balance the
optimization between the fitted parameters. We imposed the
following bounds for the fit: 0.001 Pa s” = K < 10 Pa s” and 0.1
=n=1formolasses; 1 Pas”"<=K=30Pas"and 0.1 =n =1 for
Cif. We note that the regularization terms and bounds should
be adjusted for optimal fits depending on the fluids of interest.
For the model, we selected values of P, = 95 kPa and V,, = 8000
pL. Sensitivity analysis was conducted to calculate the 95%
confidence intervals using a perturbation method, ie. by
systematically perturbing the best-fit parameters in small
increments and recalculating the loss function until it exceeded
a given threshold value.

Fig. 11(b) and (d) show the experimental dispense profiles
and fitted solutions for several set dispense flow rates,

5001 Flowrate = 50 uL s~ V:J
n=0.99+0.05 v
400 K=5%x048 "’
Flowrate = 65 uLs™*:
. n=0.94+0.05 v"
S 3001 Kk=7.30%073
B~

o
S~ Flowrate = 80 uLs™*: ,' y”d
500 n=086=0.04 o

K=6.67+0.63 f

100 4

8001 Flowrate = 50 L s:
n=0.32+0.02
K=23.18 +3.66
Flowrate = 65 uLs™%:
n=0.38£0.02
K=2.69%0.13

600 1

Flowrate = 80 uLs™*: A
n=0.12+0.01 v
K=1.65+0.04

-

0 2 4 6 8
t/s

® 50puLs™!-Experimental == 65puLs™-Fitted

= = 50 uL s~ - Fitted

W 65 puLs™! - Experimental

¥ 80 pLs~!- Experimental
= = 80 uLs™!-Fitted

Fig. 11 Fitting of analytical model to experimental data for power-law fluids to estimate rheological parameters. (a) and (c) Plot of viscosity as
a function of shear rate of molasses (a) and Cif cream surface cleaner (c), as measured by a rheometer. The red lines are linear fits to the black
experimental points, from which the power-law fluid parameters n = 0.96 and K = 5.48 Pa s for molasses and n = 0.13 and K = 20.69 Pa s for Cif
can be calculated. (b) and (d) Fits of the analytical model to experimental data for molasses (b) and Cif (d) at different set dispense flow rates.
Points — experimental data. Dotted lines — fitted model with Py = 95 kPa, and Vy = 8000 pL. The extracted parameters n and K from each fit and
associated 95% confidence intervals (estimated from sensitivity analysis) are annotated.
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displaying good fits to the data. We consider only the dispense
profiles at high set dispense flow rates (=50 uL s~ ') because the
stepped profiles at low flow rates result in unreliable fits.
Despite the underlying assumptions of the analytical model, the
extracted values of K and n are usefully close to the actual
values. For molasses, the errors for the fitted K values are
between 2% and 33% and for the fitted n values are between 2%
and 10% across the three set flow rates; for Cif, the errors for the
fitted K values are between 7% and 92% and for the fitted n
values are between 8% and 192% across the three set flow rates.
We acknowledge that the errors arising from the fits can be
large and there is room for improvement through refinement of
the model. Nevertheless, considering the wide, general bounds
for Kand n implemented for the fits, these results show promise
in the proxy viscometer being used to screen rheological
behavior in simple non-Newtonian liquids.

The following workflow would be used to characterize a fluid
anticipated to exhibit power-law behavior:

(1) Run the experimental protocol at a high, low and inter-
mediate flow rate.

(2) Compare the apparent viscosity obtained for the three
flow rates. If these differ within the bounds of measurement
uncertainty, and show a systematic change with increasing flow
rate, run the protocol for further flow rates to collect a larger
data set (in this work, five were used).

(3) Select bounds for n and K. Prior approximation of the
fluid flow behavior would be useful, for example, shear-
thinning or shear-thickening, and expected broad range for
the consistency coefficient.

(4) Select regularization terms for n and K. The terms can be
tuned algorithmically for best agreement across fits from the
different flow rate data and to avoid being stuck at the imposed
bounds.

(5) Perform the fits and average extracted parameters across
different flow rate data.

It should be noted that many non-Newtonian fluids exhibit
constant viscosity at low shear rates, and the ability to capture
this behavior depends on the ability to access a wide window of
shear rates.

Discussion

The proxy viscometer outlined in this work enables fast and
automated measurement of liquid viscosity (1.5 minutes per
run). Depending on purpose, the user can decide on the
number of set dispense flow rates to run per sample. If speed in
testing is priority, the user can run the measurement protocol at
a high set dispense flow rate and use the prediction from the
model trained on an individual flow rate dataset; if accuracy is
prioritized over speed, the user can run the protocol at all set
dispense flow rates and use the weighted ensemble model.
While more time is required to measure viscosity if a user
decides to run all set dispense flow rates, it is important to note
that there is no human intervention or cleanup required
between measurements on the proxy viscometer. This is in
contrast to using the rheometer, which requires an active user
to clean the plates, zero the gap between the plates and load the
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sample between runs. Furthermore, there is strong repeatability
between replicates for the same liquid and set dispense flow
rate, hence repeated measurements are not necessary on the
proxy viscometer.

The principal advantage of the proxy viscometer is that it is
based on an affordable and easily accessible platform. The OT-2
is inexpensive compared to other automated liquid handlers
and uses open-source Python API, hence it has gained traction
in laboratories globally.*®>* As a pipetting robot, the OT-2
facilitates a variety of sample preparation tasks. This enables
the proxy viscometer to be seamlessly integrated into fully
automated workflows for high-throughput screening purposes
and closed-loop experimentation.'*™® Additionally, the proxy
viscometer can be incorporated into more complex workflows
involving external operations beyond the OT-2 platform, for
example via a robotic arm that transfers samples to and from
the OT-2.

Several other high-throughput viscosity screening systems
have been described in the literature. Walker et al.*® trained
a convolutional neural network on video data of fluid motion
and used the model to identify solvents and estimate sample
viscosity. The methodology is fast and non-invasive, but is more
suited for the coarse classification of viscosity within pre-
determined ranges. Furthermore, the approach is not extend-
able to non-Newtonian liquids. Deshmukh et al.** proposed
a viscometer based on the Hamilton Microlab Star liquid
handling workstation, using calibration curves constructed
from dispensed liquid mass and measured pressure to deter-
mine the viscosity of Newtonian liquids. The pressure profile in
the pipette tip during transient flow was analyzed numerically
and used to calculate viscosity as a function of shear rate for
non-Newtonian liquids. While fast and reasonably accurate, the
viscometer requires a costly liquid handling system with pres-
sure measurements.

The proxy viscometer presented here exhibits several key
improvements over our previous work.”® The real-time
measurement of fluid mass dispensed provides crucial infor-
mation about the dispense process, which we quantify via the
parameters Vpo., m and s. The previous work relied only on the
mass of fluid collected at the end of the dispense process,
equivalent to V... Here, the additional parameters m and s
allow us to discern between fluids of lower viscosity, hence
extending the lower viscosity limit of the proxy viscometer from
1500 cP to 20 cP. Furthermore, we introduce an analytical model
to describe the dispense process. With the incorporation of this
model, the proxy viscometer can be applied to characterize non-
Newtonian liquids. Given the ubiquity of non-Newtonian
liquids in industrial applications, this presents an exciting
development towards practical implementation.

There is room for further development of the proxy viscom-
eter. Firstly, the amount of liquid dispensed depends signifi-
cantly on its viscosity, but is also influenced by other material
properties, such as surface tension and wetting behavior.>” To
improve the generality of the prediction model, we can run the
measurement protocol on Newtonian liquids with a wider range
of material properties and train the model with the properties
as inputs alongside viscosity. Secondly, the analytical model

© 2025 The Author(s). Published by the Royal Society of Chemistry
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approach has demonstrated promising results with power-law
fluids. The model can be tested more rigorously with varying
types of time-independent non-Newtonian liquids and extended
beyond power-law fluids. Visualization of the charged pipette
would help to eliminate variation between replicates and esti-
mation of V,. Thirdly, temperature is a key determinant of
viscosity and its effect has yet to be accounted for. Given the
flexibility of the Opentrons platform and availability of
temperature control solutions, it is feasible to extend the proxy
viscometer to operate across a temperature range.

Conclusions

We present an enhancement of the automated viscometer
based on the Opentrons liquid handling robot. The protocol
involves dispensing liquids at different set dispense flow rates
and measuring the actual amount of liquid dispensed in time.
For a given set dispense flow rate, liquids with higher viscosity
dispense at a slower rate and lower overall volume, hence the
volume of liquid collected with time provides information
about the liquid viscosity. The dispense profiles for Newtonian
standards with viscosities between 20 and 20 000 cP were used
to train a regression model at each set dispense flow rate and
the weighted ensemble model can predict liquid viscosity with
an error of ~450 cP (~8% relative to sample mean). A
phenomenological model was developed to describe the
dispense process and showed good agreement with experi-
mental data. The model can be applied to non-Newtonian
liquids and proof-of-concept use cases were demonstrated to
extract the power-law fluid parameters of molasses and surface
cleaner Cif. The proxy viscometer described in this work is fast
(~1 minute per run) and requires little human intervention. The
affordability and open-source nature of the Opentrons robot
makes the viscometer highly suited for integration into auto-
mated workflows for high-throughput viscosity screening.
Future work to extend the performance of the viscometer for
different fluid types, more general non-Newtonian fluids and
different operating conditions will further improve the robust-
ness of the viscometer.
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