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Chemical shifts are crucial parameters in protein Nuclear Magnetic

Resonance (NMR) experiments. Specifically, the chemical shifts of

backbone atoms are essential for determining the constraints in

protein structure analysis. Despite their importance, protein NMR

experiments are costly and spectral analysis presents challenges due

to sample impurities, complex experimental environments, and

spectral overlap. Here, we propose a chemical shift predictionmethod

that requires only protein sequences as input. This low-cost chemical

shift predictor provides a chemical shift corresponding to each

backbone atom, offers valuable prior information for peak assignment,

and can significantly aid protein NMR spectrum analysis. Our approach

leverages recent advances in pre-trained protein language models

(PLMs) and employs a deep learning model to obtain chemical shifts.

Different from other chemical shift prediction programs, our method

does not require protein structures as input, significantly reducing

costs and enhancing robustness. Ourmethod can achieve comparable

accuracy to other existing programs that require protein structures as

input. In summary, this work introduces a novel method for protein

chemical shift prediction and demonstrates the potential of PLMs for

diverse applications.

Introduction
Proteins are essential in biological systems, and understanding
the structure of proteins is instrumental in comprehending
their function. Nuclear Magnetic Resonance (NMR) spectros-
copy serves as a complementary tool for studying proteins in
their native environment, offering unique insights into their
dynamics and interactions alongside the high-resolution
rovincial Key Laboratory of Plasma and
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structural information provided by X-ray crystallography and
cryo-EM.1,2 Chemical shis encode the local chemical environ-
ment around atoms and contain detailed information about
protein structures. For instance, the chemical shis of back-
bone atoms can be used to determine the internal restraints of
a protein3 or serve as information for calculating the structural
parameters.4,5 Despite these merits, NMR spectra of proteins are
oen intricate, and the spectral analysis is time-consuming,
even for experienced researchers, owing to factors such as
sample impurities and complex experimental conditions.

To assist the process of protein structure determination via
NMR, some chemical shi prediction programs based on
machine learning have been proposed. These programs typi-
cally involve calculating expert-selected structural features such
as amino acid type, f/j/c1 torsion angle, and other factors
believed to inuence chemical shis. A model is then trained to
map these features to chemical shis. For example, PROSHIFT6

uses a comprehensive 350-dimensional feature set derived from
protein structures, while SPARTA+7 and SHIFTX+8 utilize 113-
dimensional and 97-dimensional feature sets, respectively.
Some approaches do not rely on expert-selected features.
Methods using graph neural networks, for instance, automati-
cally extract features from protein structures.9 Additionally,
sequence-based methods such as SPARTA10 and UCBShi-Y11

provide chemical shi predictions without requiring protein
structures. These methods search databases for sequence
fragments that match the local sequence of the target protein
and use sequence homology assessments for predictions.
However, these methods heavily rely on database search results
and may fail when no suitable sequence match is found,
reducing their robustness. Consequently, they are oen
combined with structure-based methods to create integrated
models, exemplied by models like SHIFTX2 (ref. 8) and UCB-
Shi.11 Beyond chemical shi prediction, some methods
employ protein structure or statistical analysis to provide
broader insights. These methods may offer rough chemical
shi intervals to correct potential inaccuracies in chemical shi
assignments. This holistic approach underscores the
Digital Discovery, 2025, 4, 331–337 | 331
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integration of various computational techniques to improve the
reliability and accuracy of NMR-based protein studies.12,13

The majority of the aforementioned methods are effective
only in the presence of high-quality protein structures, which
are oen unavailable as prior information in many NMR
experiments. Notably, structure-based chemical shi prediction
algorithms require high-quality protein structures, typically
derived from crystallography, for their training sets. Herein lies
a controversy: although the labels (chemical shis) in these
training sets originate from NMR experiments, the structures
used for training are primarily from X-ray crystallography. This
discrepancy raises concerns, as notable differences have been
observed between crystal structures and solution-state NMR
structures.14,15
Method

We introduce a method for predicting protein chemical shis
using only amino acid sequences, called PLM-CS (protein-
language-model-based chemical shi prediction). This
approach offers rapid inference speeds and remarkably
simplies the prediction process by eliminating the need for
protein structure information. Central to inferring chemical
shis from protein sequences is the freeze ne-tuning16 applied
to the protein language model. By treating the amino acid
sequence like a language, the protein language model extracts
semantic information from each amino acid sequence, encod-
ing features that can be projected onto chemical shis aer
training. This research not only presents a novel methodology
for chemical shi prediction but also explores the potential
applications of protein language models in a multitude of
subsequent tasks.
Protein language models

Protein language models initially gained prominence for their
ability to infer the 3-dimensional structure of proteins from
their sequences, addressing the longstanding protein folding
problem.17 Understanding protein folding requires extracting
co-evolutionary information from amino acid sequences.
Unlike multi-sequence alignment (MSA) based methods, such
as AlphaFold,18 protein languagemodels eliminate the necessity
for homologous sequences, enabling the extraction of evolu-
tionary information from a single sequence and thus signi-
cantly reducing computational consumption. Protein language
models treat protein sequences as sentences composed of 20
common amino acids as words. For instance, Evolutionary Scale
Modeling (ESM)19 is a language model similar to BERT (Bidi-
rectional Encoder Representations from Transformers)20 but
tailored for proteins. It is trained to predict the types of amino
acids that are randomly masked during the pre-training
process, forcing it to learn the latent feature information
embedded in the sequence. Aer pre-training, the model can
transform each amino acid in the input protein sequence into
a high-dimensional feature representation, encoding latent
information in the sequence. This capability can be applied to
various downstream tasks such as protein structure
332 | Digital Discovery, 2025, 4, 331–337
prediction,21–23 secondary structure prediction,24 and intrinsic
protein disorder prediction.25

By introducing the protein language model into chemical
shi prediction, we eliminate the need for explicit protein
structure information, unlike other chemical shi prediction
programs. Our approach leverages the embedded structural
information implicitly derived through the language model,
which has proven effective in predicting chemical shis
through subsequent experiments.

Model

Our method combines a pre-trained ESM encoder (ESM2-
650M21) with a transformer predictor, as illustrated in Fig. 1.
The ESM2-650M model converts protein sequences into vector
representations at the amino acid level. Using these vectors, the
predictor calculates chemical shis for each type of atom.
Specically, the ESM module treats each protein sequence as
a sentence and functions as a semantic analyzer to extract
intrinsic evolutionary information, which is then implicitly
embedded in the output vector. In order to extract the infor-
mation corresponding to chemical shis in the embedding
features obtained by ESM, we employ a predictor, which
features two transformer encoders,26 with 8 attention heads and
a 512-dimensional attention matrix. Before entering the
encoder, the data are projected from 1280 to 512 dimensions via
a linear layer, and positional encoding is added to capture
sequential relationships among amino acids. We use the
Gaussian Error Linear Unit (GELU)27 as the activation function
in our model. The predictor takes these embeddings and
outputs the chemical shis for the backbone atoms of the
corresponding amino acid. Detailed model structures of the
multi-head attention module and feed-forward modules are
shown in the ESI.†

Data preparation

To develop an accurate protein chemical shi predictor, a high-
quality training set is essential. Advanced programs like
SHIFTX2 and SPARTA+ achieve precise prediction results by
carefully selecting the proteins with high-quality X-ray resolved
crystal structures for their training sets. In contrast, our method
does not require known high-quality protein structures, as it only
uses protein sequences as input. Our training set includes 2429 re-
referenced protein chemical shi les from RefDB.28 This dataset
includes protein chemical shis processed using the corre-
sponding protein structure coordinate data via SHIFTX. This
dataset has previously served as a sequence query database for
SHIFTY8 and UCBShiy.11 While processing these data, we focus
solely on the corrected Biological Magnetic Resonance Data Bank
(BMRB)29 les from the RefDB dataset, as our method does not
need protein structure information. For input sequences, we
utilized those extracted from BMRB les to ensure that they
correspond to actual protein sequences in NMR experiments,
rather than relying on sequences from Protein Data Bank (PDB)30

les. This approach differs from structure-based chemical shi
prediction methods that depend on structures and sequences in
the PDB les. The sequences consist of the 20 common amino
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) The complete block diagram of PLM-CS. (b) The pre-training process of ESM2-650M. (c) The structure of the transformer predictor.
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acid abbreviations, with other types of amino acids coded as
‘hmaski’ and excluded from training. The chemical shi distri-
bution of each backbone atom for RefDB is illustrated in Fig. 2.

To facilitate parallel training, sequences longer than 512
were removed, with only one protein (BMRB ID 5471) excluded
from the dataset. Shorter sequences were padded to a uniform
length of 512, resulting in a dataset of 2359 proteins. Each type
of atom has its own label, necessitating the training of a sepa-
rate model for each atom type. It should be noted that if longer
sequences need to be processed, the network architecture may
need to be modied, and a signicant number of longer
sequences (over 512 residues) should be included to improve
performance.

Training

While training the model, we use Root Mean Square Error
(RMSE) as the loss function. The ESM2-650M module is frozen
during the training process, while parameters of the chemical
shi predictor were initialized by the “Kaiming” initialization
Fig. 2 Chemical shift distributions of 6 backbone atoms in the RefDB
database.

© 2025 The Author(s). Published by the Royal Society of Chemistry
method31 and updated using the Adam optimization algorithm.
It takes about 8 hours to train a single model on a GTX 3090
GPU. The hyperparameters for training the model of each atom
type exhibit minor variations.

Results

For consistency with other chemical shi prediction programs,
we used the SHIFTX test dataset,8 which contains 61 proteins
selected in consideration of whether they have a high-quality
PDB structure solved by X-rays. These proteins were excluded
from the training set to ensure unbiased test results. We refer to
this as the SHIFTX test set.

Fig. 3 illustrates the prediction results of our model on the
SHIFTX test set. The Root Mean Square Error (RMSE) between
the predicted values and actual labels is computed as ametric to
evaluate the performance of the model, as shown in Table 1.
The table also includes results from several state-of-the-art
chemical shi prediction programs on the SHIFTX test set.
The results of GNN are cited from ref. 9, while the results of the
remaining programs are sourced from the SHIFTX2 website:
https://www.shix2.ca/. The performance of UCBShi is not
included because the SHIFTX test set was part of its training set.

It is crucial to highlight that the performance comparison
between our model and existing chemical shi prediction
programs is not conducted under identical conditions. Unlike
our model, which uses protein sequences as the only input,
other programs rely on protein structures and some also require
additional experimental parameters such as PH and
temperature.

As evident from the table, SHIFTX+ and the integrated model
SHIFTX2, which extract expert-selected features based on
Digital Discovery, 2025, 4, 331–337 | 333
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Fig. 3 The predicted results of six models on their respective atoms
after training. r stands for the correlation coefficient.

Table 1 Errors (RMSE in ppm) of prediction results on the SHIFTX test
set

Method Ca Cb C Ha H N

PLM-CS 1.10 1.16 1.06 0.30 0.40 2.48
GNN 1.26 1.76 1.28 0.29 0.53 2.75
SHIFTX+ 0.77 0.86 0.87 0.20 0.38 2.09
SHIFTX2 0.38 0.53 0.51 0.11 0.24 1.23
PROSHIFT 2.55 2.64 2.30 0.33 0.55 3.02

Fig. 4 Predicted results of SHIFTX2 and PLM-CS on the solution-NMR
test set, presented as RMSE (ppm).
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protein structures, have state-of-the-art performance on the
SHIFTX test set, surpassing the GNN-based method that does
not rely on expert-selected features. This indicates that features
selected by experts still outperform those automatically extrac-
ted by the network in predicting protein chemical shis. Our
model, which only uses sequence input, achieves better
performance than the GNN method but still does not reach the
precision of SHIFTX2. This demonstrates the potential of the
sequence-based protein chemical shi prediction method.
However, this also highlights the limitations of PLM-CS:
without sufficient prior knowledge, such as experimental
conditions, the chemical shi information inferred from
sequences alone still carries a certain degree of uncertainty.

Results on the custom dataset

In practical applications, protein crystal structures are not
always available. Therefore, the structure-based approach needs
to take into account the scenario when dealing with NMR-
determined solution structures. Unlike methods like SHIFTX2
that rely on PDB structures for prediction, our approach does
not require structure information, making it potentially more
robust in cases where there are some differences between
solution and solid-state protein structures. To verify this, we
collected a dataset of 76 sequences, each with the correspond-
ing chemical shis from BMRB and structures from PDB. All
structures in this dataset are solution structures determined by
NMR. This custom test set allowed us to compare SHIFTX2's
performance across different structural types and, moreover, to
evaluate both SHIFTX2 and PLM-CS on previously unseen data,
334 | Digital Discovery, 2025, 4, 331–337
as none of these proteins are in RefDB. In selecting these
sequences, our primary objective was to ensure a broad distri-
bution of sequence diversity and corresponding protein struc-
tures, while also ensuring high-quality chemical shi
assignments in BMRB. We refer to this as the solution-NMR test
set. The PDB and BMRB information for the solution-NMR test
set is all included in the ESI.†

We tested the performance of SHIFTX2 and PLM-CS on the
solution-NMR test set, as shown in Fig. 4 and Table 2. During
evaluation, samples with RMSE values exceeding 3 times the
mean for both SHIFTX2 and PLM-CS were treated as outliers
and excluded from the results. During evaluation, samples with
RMSE values exceeding 3 times the mean for both SHIFTX2 and
PLM-CS were treated as outliers and excluded from the results.
These samples contain a number of obvious or possible mis-
assignments of chemical shis, which are discussed in detail in
the ESI.† Compared to its performance on the SHIFTX test set,
the predictions of SHIFTX2 on the solution-NMR test set have
a larger deviation from the reference values, resulting in higher
RMSE values. This suggests that SHIFXT2, trained on crystal-
structured proteins, gives a decreased prediction accuracy for
proteins with solution structures, which are the focus of real
solution NMR experiments. In contrast, our sequence-based
PLM-CS demonstrates stable performance and robustness.

We also consider scenarios where proteins lack experimen-
tally determined crystal structures but can be modeled using
tools like Alphafold (AF). To assess SHIFTX2's performance in
such cases, we conducted tests using AF-predicted structures
instead of the solution-NMR structures within the solution-
NMR test set. As shown in Table 2, AF-SHIFTX2 outperforms
SHIFTX2 with solution-NMR structures from PDB les, sug-
gesting that Alphafold can supplement the protein structure
information required by SHIFTX2. This is likely because AF-
predicted structures are generally closer to crystal structures15

and thus align better with SHIFTX's training dataset. Compared
to the proposed PLM-CS, AF-SHIFTX2 is slightly less accurate
for most atoms but performs better on Ha atoms. Additionally,
PLM-CS, which is based on a completely different framework,
offers efficiency advantages, requiring only seconds to predict
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Comparison of PLM-CS and SHIFTX2 on two test sets; AF-
SHIFTX2 uses AF-predicted structures instead of the PDB structures in
the dataset (RMSE in ppm)

Method Test set Ca Cb C Ha H N

PLM-CS SHIFTX 1.10 1.16 1.06 0.30 0.40 2.48
Solution-NMR 1.32 1.39 1.28 0.31 0.41 2.71

SHIFTX2 SHIFTX 0.38 0.53 0.51 0.11 0.24 1.23
Solution-NMR 1.32 1.43 1.29 0.32 0.54 3.01

AF-SHIFTX2 Solution-NMR 1.36 1.40 1.37 0.27 0.46 2.92

Table 3 RMSE values of three models in the ablation experiment. ESM
+ Predictor denotes our complete model, and ESM + Linear and One-
hot + Linear represent two ablation models, respectively

Method Ca Cb C Ha H N

ESM + Predictor (PLM-CS) 1.10 1.16 1.06 0.30 0.40 2.48
ESM + Linear 1.79 3.55 1.89 0.38 0.56 3.55
One-hot + Linear (baseline) 2.21 2.81 2.25 0.49 0.67 4.28
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a protein's chemical shi, compared to the up to ten minutes
Alphafold may take to predict a protein structure.

Ablation experiment

As aforementioned, the proposed method employs a dual-
module design, utilizing the evolutionary information encap-
sulation capability of the ESM encoder and the advanced
sequence-to-sequence transformation of the transformer, to
provide a robust solution for protein chemical shi prediction.
To assess the effects of these two modules, two ablation
experiments were conducted as shown in Fig. 5. In the rst
ablation model, we replaced the transformer predictor with
a linear layer, naming it ESM + Linear. Unlike the complete
model, ESM + Transformer, ESM + Linear lacks crucial
sequence-processing modules, such as the attention mecha-
nism block, signicantly limiting its ability to fully capture the
internal correlations between the ESM output embeddings. As
a result, the performance of this prediction model reects the
direct correlation between the ESM output embeddings and the
chemical shis. This ablation model enables us to contrastively
verify the effectiveness of the transformer predictor in further
extracting features from the ESM output embeddings.

In the second ablation model, termed One-hot + Linear, the
ESM module is replaced with a one-hot encoder that converts
amino acids into distinct vectors. This model serves as a base-
line, allowing us to assess how effective the features extracted by
the pre-trained ESM models from amino acid sequences are for
predicting chemical shis. ESM + Linear and One-hot + Linear
are optimized using LinearRegression in sklearn.32

Table 3 presents the results of the ablation experiment. The
One-hot + Linear (baseline) model directly maps amino acid
types to chemical shis. A method can surpass this baseline
only if it integrates feature representations beyond the amino
Fig. 5 The structures for the ablation experiments. (a) ESM encoder
combined with a linear layer as the predictor. (b) One-hot encoder
with the linear-layer predictor.

© 2025 The Author(s). Published by the Royal Society of Chemistry
acid level. As can be seen from the table, the prediction RMSE of
the ESM + Linear model is better than the baseline on most
atom types. This indicates that the amino-acid-level represen-
tation obtained by the ESM2-650M model not only contains
sequence-level information but also includes higher-level
features such as structure information, which can be used to
make more accurate predictions of chemical shis. Nonethe-
less, the prediction RMSE for the Cb atom is worse than that of
the One-hot + Linear model. One possible reason for this is that
the Cb atom is located within the side chain of the amino acid,
causing its chemical environment to be more inuenced by the
specic type of amino acid, as opposed to the more uniform
environment experienced by other backbone atoms. As we can
see from Fig. 2, the distribution of Cb is more heterogeneous,
with multiple distinct clusters related to specic amino acid
types.

The results of ablation experiments also demonstrate that
our model (PLM-CS) outperforms ESM vector projection (ESM +
Linear), indicating the effectiveness of our model in further
extracting protein sequence information for predicting chem-
ical shis based on ESM vector representations.

Potential applications of PLM-CS

Comparing experimental data with prediction results can
provide valuable insights for spectral interpretation, experi-
mental guidance, and protein property analysis. For instance,
a large discrepancy between predicted values and experimental
assignments may indicate misassignments or inherent sample
exibility that causes structural uncertainty (see S2 in the ESI†).
Additionally, PLM-CS can assist in the peak assignment for raw
experimental data by estimating the likelihood of assigning
each experimental peak to specic residues based on predicted
chemical shis (see S3 in the ESI†). However, it should be noted
that this peak assignment approach, based on predicted
chemical shis, may only address a limited subset of peaks in
experimental data due to relatively high prediction uncer-
tainties and spectral crowding. Exploring the applications of
PLM-CS will also be a focus of our future research.

Discussion

Overall, the results highlight the potential of the protein
language model for predicting chemical shis. To our knowl-
edge, this is the rst method for predicting chemical shis of
protein atoms that requires only sequence information as
input. The ndings demonstrate that the ESM vector from the
pre-trained ESM module contains rich information about the
Digital Discovery, 2025, 4, 331–337 | 335
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correlations within the protein sequence, making it suitable for
obtaining chemical shi values. Although our method may not
be as accurate as SHIFTX2, it offers a promising approach to
predicting chemical shis using only sequence information
with minimal loss in accuracy. Comparisons with other state-of-
the-art methods indicate that our approach provides a viable
alternative when structural information is not available. The
ablation experiments conrm that the ESM module plays
a crucial role in this prediction task. However, incorporating
a well-designed predictor can further enhance accuracy.

Conclusions

This PLM-CS prediction method could be useful in scenarios
where structural data are incomplete or unavailable. For
instance, it can be used in the early stages of protein structure
determination or high-throughput protein analysis. This
approach could also be integrated into the analysis or pro-
cessing of complicated NMR data, where accurate prediction of
chemical shis can effectively guide spectrum reconstruction or
peak assignment.

Data availability

All the training and data processing code is available at: https://
github.com/doorpro/predict-chemical-shis-from-protein-
sequence [https://doi.org/10.5281/zenodo.14546356]. The
training set and the two test sets can be found at: https://
github.com/doorpro/predict-chemical-shis-from-protein-
sequence/tree/main/dataset [https://doi.org/10.5281/
zenodo.14546356].
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