
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
View Journal | View Issue
Large language m
aTheory and Computation of Energy M

Technologies, Forschungszentrum Jülich Gm

dreger@fz-juelich.de
bCentre for Advanced Simulation and Analy

Energy Materials, Forschungszentrum Jülich
cChair of Theory and Computation of Energ

Materials Engineering, RWTH Aachen Unive

Cite this: Digital Discovery, 2025, 4,
1221

Received 9th November 2024
Accepted 28th March 2025

DOI: 10.1039/d4dd00362d

rsc.li/digitaldiscovery

© 2025 The Author(s). Published by
odels for knowledge graph
extraction from tables in materials science

Max Dreger, *a Kourosh Malekab and Michael Eikerling abc

Research in materials science increasingly harnesses machine learning (ML) models. These models are

trained with experimental or theoretical data, the quality of their output hinges on the data's quantity and

quality. Improving data quality and accessibility necessitates advanced data management solutions.

Today, data are often stored in non-standardized table formats that lack interoperability, accessibility and

reusability. To address this issue, we present a semi-automated data ingestion pipeline that transforms

R&D tables into knowledge graphs. Utilizing large language models and rule-based feedback loops, our

pipeline transforms tabular data into graph structures. The proposed process consists of entity

recognition and relationship extraction. It facilitates better data interoperability and accessibility, by

streamlining data integration from various sources. The pipeline is integrated into a platform harboring

a graph database as well as semantic search capabilities.
1 Introduction

Materials science is increasingly implementing data-driven
approaches, marking the much-quoted shi towards the
fourth paradigm.1,2 The use of emerging articial intelligence
(AI) tools in materials research promises to accelerate materials
discovery by guiding efficient and time-saving exploration
through high-dimensional materials parameter spaces.3–7 In the
growing eld of autonomous experimentation, machine
learning models are deployed to plan experiments8–11 while
computer vision tools automate imaging analysis.12–15

The quality and availability of data are crucial in this realm.
Data generation in materials science is frequently tied to short-
term projects and is considered time-consuming and costly,
leading to the creation of many small and scattered datasets.16,17

Data management in research labs typically relies on relational
databases or le systems, predominantly lled with tables.
Those tables are rich data assets; however, information on how
data points across different columns are interconnected is oen
only implicitly provided. The lack of data management stan-
dards, therefore, leaves valuable data silos scattered with very
limited accessibility and interoperability among labs or
institutions.18–20

Several recent papers have emphasized the need for openly
accessible databases; however, data heterogeneity due to
aterials (IET-3), Institute of Energy

bH, 52425 Jülich, Germany. E-mail: m.

tics (CASA), Simulation and Data Lab for

, 52425 Jülich, Germany

y Materials, Faculty of Georesources and

rsity, 52062 Aachen, Germany

the Royal Society of Chemistry
varying length scales and structural complexity of materials
presents intricate technical challenges.21,22 Consequently,
databases are oen limited to single length scales, highly
domain-specic, and focused on chemical elements and
compound properties that do not depend on
microstructure.23–30 Thus, the materials science community is
experiencing a trend toward information silos separated by
domain, design, or exploration space, hindering the full
potential of AI methods.31 This separation complicates nding
answers to generic research questions. Filtering a corpus of
materials for desired properties or identifying processing
conditions associated with desired materials properties oen
requires consulting domain experts or scientic literature.32

Knowledge graphs are promising data structures, respond-
ing to these challenges. They consist of nodes and relationships
forming a network of connected entities.33 These relationships
make information and contextualized data machine-readable,
facilitating the integration of tools to analyze, organize, and
share information. Furthermore, graphs excel in representing
highly heterogeneous data due to their focus on connectivity,
which provides a high degree of exibility.34,35 Materials science
increasingly uses knowledge graphs to integrate and organize
data from literature, databases, and ontologies.35–37 To elevate
them to viable data management solutions on lab-scale and
beyond, these tools need to be broadly appealing to materials
science.

Attractive data management solutions provide intuitive
mechanisms for data storage and retrieval, streamlining the
process for data owners by removing unnecessary complexity.
Moreover, they ought to reduce their usage barrier, ensuring
smooth integration into the user's routine data practices, with
minimal interruption.17 The capacity to mine existing data,
Digital Discovery, 2025, 4, 1221–1231 | 1221

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00362d&domain=pdf&date_stamp=2025-05-09
http://orcid.org/0000-0003-4236-1552
http://orcid.org/0000-0002-0764-8948
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004005

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
derive insights, and integrate them into one's data assets is
a crucial feature of data management systems. Thus, broad
adoption of graph-based data management solutions requires
tools that facilitate the migration from existing tabular data
assets to knowledge graphs. Knowledge extraction is an
emerging eld aiming to extract information from structured
and unstructured sources38 and is increasingly applied in the
materials science domain.39,40 Recent advances in natural
language processing through the availability of Large Language
Models (LLMs) provide novel disruptive tools in this eld.41,42

LLMs excel in inferring context and meaning of unseen data
without the need for expensive training. This eases the imple-
mentation of LLM-enabled knowledge extraction tools, making
them attractive for data management solutions.

In a recent publication, we proposed a data model for graph
databases43 that follows the logic of the Elementary Multi-
perspective Material Ontology (EMMO).44 An ontology is
a structured framework that denes and categorizes the
concepts, entities and their relationships within a specic
domain. The proposed data model is able to represent experi-
mental workows in materials science with any desired degree
of granularity. Entities within the database are labeled via
a semantically connected system of nodes that span a wide
range of processes, matter and quantities (see Fig. 1). These
labels are based on the EMMO and BattINFO, a domain-specifc
EMMO extension focused on batteries and their characteriza-
tion.45 The database aims to help research groups manage their
data assets in an intuitive way while making it interoperable
with other data vendors.

In this study, we introduce a knowledge graph extraction
pipeline to improve the efficiency of populating graph data-
bases with existing table data. The pipeline semi-automatically
transforms tables into connected knowledge graphs that follow
the data model we proposed in Fig. 1. The extraction process
utilizes LLMs to infer meaning from headers and extract
information from tables. We divided the process into four
stages, which can be veried by the user through a graphical
user interface, ensuring the high quality of the knowledge
graph. To enhance the cost efficiency and scalability, we inte-
grated various caching strategies to streamline the extraction
process from known tables.

Comparatively, alternative solutions—such as Microso's
GraphRag46 and manual data transformation approaches—
oen require expertise in database querying languages or
extensive iterative prompt engineering. While these methods
are viable, they tend to be labor-intensive and face scalability
challenges due to their technical complexity. In contrast,
Fig. 1 Schema of the proposed graph data model (a) and example of
the labeling system (b).

1222 | Digital Discovery, 2025, 4, 1221–1231
enterprise cloud data management platforms like Databricks,47

Google Cloud,48 and Splunk49 are designed to integrate seam-
lessly with standard workows, providing streamlined and
robust data operations. However, their architectures are
generally optimized for more homogeneous data, which makes
it difficult for them to natively handle the high complexity and
heterogeneity inherent in scientic data. Consequently, effec-
tive data management in the scientic domain should seam-
lessly integrate into existing data handling routines. Thus, data
management should not impose signicant technical overhead
or require specic expertise from researchers, while allowing
them to accommodate the full complexity and interconnected
nature of their data.

In the following, we thoroughly discuss the methodologies
and metrics of the extraction procedure and its results. This
article is relevant to those interested in using our data
management system or engaging in knowledge extraction in
different scientic domains.
2 Methods

The generation of a knowledge graph involves two key
processes, node extraction and relationship extraction. Node
extraction from tables is a multi-step procedure. Initially, each
column is assigned a node type (e.g., matter, property). Next, the
attribute type of each column is identied (e.g., Name, Value).
Finally, columns representing different attributes of the same
node are aggregated.

The entities extracted through this process are then used to
infer relationships, constituting the build-up of a knowledge
graph. The following sections provide an overview of the data
types encountered in this study, introducing the input and
output and delineating the specics of the extraction pipeline.
2.1 The input: tables

The pipeline is designed to transform tables, which are the
most common format for researchers to store, analyze, and
communicate their data. It accepts CSV les as input and
requires the tables to be at—that is, each row represents a data
record and each column contains specic values (e.g., numbers,
strings, or dates). In contrast, nested tables allow columns to
contain sub-tables or arrays. We tested and validated our
pipeline on a dataset of 15 at tables. We minimized bias in our
test dataset by ensuring high heterogeneity; the dataset
comprises data from various subdomains of materials science,
with data from measurements, syntheses, simulations, prop-
erties, organizational data, and single processing steps. We also
varied the data sources by incorporating tables from self-driving
labs and from different research groups. Table 1 shows an
excerpt of one such table that can be transformed into a graph.
The pipeline was tested on tables with between 4 and 90
columns. Since only the table headers paired with sample rows
are used in the transformation, the total number of rows does
not affect the process. The tables are available in our GitHub
repository.50
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Table 1 Excerpt of a table from the dataset we used to test and
evaluate our pipeline. The whole dataset can be a accessed in our
GitHub repository

Drymilltime
(h)

Drying T
(°C) Catalyst Ionomer Equiv. weight I/C

6 55 F50E-HT Aquivion 790 0.7
24 55 F50E-HT Aquivion 790 0.7
48 55 F50E-HT Aquivion 790 0.7
6 55 F50E-HT Aquivion 790 0.9
24 55 F50E-HT Aquivion 790 0.9
48 55 F50E-HT Aquivion 790 0.9
6 55 F50E-HT Aquivion 790 1.1
24 55 F50E-HT Aquivion 790 1.1
48 55 F50E-HT Aquivion 790 1.1
« « « « « «

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
In materials science, these tables typically describe entities
such as materials, components, devices, chemicals, properties,
measurements, manufacturing steps, and processing condi-
tions. The goal is to extract these entities and contextualize
them by inferring relationships among them.

For example, the excerpt in Table 1 contains a column titled
“Ionomer” immediately followed by a column labeled “Equiv-
alent Weight” that holds numerical values. To retrieve mean-
ingful information, the pipeline must extract a matter node
representing the ionomer cell “Aquivion” and connect it to
a property node labeled “Equivalent Weight”, which carries the
numerical value of 790 and the unit g mol−1. Given the signif-
icant variations in table structures and header terminologies,
our pipeline is designed to be agnostic to both structure and
terminology, enabling it to process a wide range of tables
without prior knowledge of their layout. The pipeline leverages
LLMs to extract data within the domain of materials science,
with a particular focus on energy materials.
Fig. 2 Schematic overview of the extraction pipeline on the example
of a specific table. The pipeline consists of a node type extraction (see
Section 2.3.1), node attribute extraction (see Section 2.3.2), node
extraction (see Section 2.3.3), and relationship extraction (see Section
2.3.4).
2.2 The output: knowledge graphs

The graph model we introduced in a previous publication
follows the logic of the Elementary Multiperspective Material
Ontology (EMMO). The graph model consists of the node types
and relationships shown in Fig. 1.43 These nodes and their
relationships are capable of representing materials and
processes in materials science. To capture domain-specic
terminologies and ensure data interoperability, we introduced
a labeling system for our graph database. This labeling system
comprises classes such as matter, property, parameter,
measurement, simulation, and manufacturing, along with their
subclasses. These tree-like structures were derived from EMMO
and its domain-specic extensions like BattInfo. Each ingested
data point is labeled by linking it to a label node via an IS_IN-
STANCE relation (see Fig. 1(b)). Label nodes are semantically
connected via IS_A relations to indicate parent/child relation-
ships. The label nodes form taxonomies of the matter,
manufacturing, property, and property nodes. This structure
semantically embeds alternative labels in a tree format, as each
node is connected to a specic label node and indirectly linked
to all its sub- and parent classes. The labeling of each node via
© 2025 The Author(s). Published by the Royal Society of Chemistry
a semantically contextualized label is the foundation for
a semantic search functionality that allows for highly specic
and very broad querying of the knowledge graph. Additionally,
we introduce a tool for the dynamic extension of the labeling
system (see Section 2.4). The labeling system is available on our
GitHub repository as .owl les.51
2.3 The pipeline

Transforming table data into a knowledge graph requires
extracting implicit information, which involves domain
knowledge and understanding of table structures. Due to the
variety of table structures, rule-based algorithms are insuffi-
cient. We utilize LLMs for their domain knowledge and ability
to interpret table content and structures. To address scalability,
we implemented caches (look-up tables) for tables and columns
to reduce LLM usage for known data. The latter allows known
table structures to be processed without the use of LLMs.
Feedback loops and validation functions enhance accuracy and
determinism. Our pipeline processes only the table headers and
a sample row with altered numerical data to ensure data secu-
rity while using the APIs of OpenAI. The transformation task is
divided into four sequential steps, each adding context and
information. Fig. 2 provides a schema of the full pipeline.

2.3.1 Node type extraction task. Each table column is
assigned to a specic node type (e.g., matter, property, property)
by converting the header and a sample cell into embeddings.
Embeddings are high-dimensional vector representations of
human language. These embeddings are compared to a static
pool of various examples for the different node types. Non-
classiable or ambiguous headers are agged for user
assignment.

We use the OpenAI embedding generator as it has shown
high accuracy in benchmarking, especially in classication
tasks. To improve the accuracy of this step, the table header of
each validated classication is transformed into an embedding
and added to the pool of node examples. The candidate selec-
tion uses cosine similarities to nd the most similar vector in
the pool of examples.

The process is encapsulated into a classier Python class
that iterates over all table headers, creates embeddings from the
Digital Discovery, 2025, 4, 1221–1231 | 1223

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Fig. 3 Schematic representation of an Extractor, Validator, and
Corrector class.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
table header and the sample cell, identies the best match from
the pool of examples, and returns a dictionary with each header
representing a key with its node type as the value. As the node
type assignment of each header is an isolated task, it can be
easily parallelized.

Fig. 2 presents an example for the node type extraction. The
assignments of the correct node types to the columns that
contain matter nodes are straightforward as they contain
headers that are semantically very close to matter and can
therefore be easily assigned to an example for the node type
matter. A challenge can arise with the heading “Method” as it
has a high semantic overlap with measurement and
manufacturing and could therefore be attributed to both node
types. Since manufacturing steps and measurements have
different methods (e.g., “mixing”, “imaging”, etc.) both node
types show a high semantic overlap with the word “Method”
alone. For that reason, the header and sample cell are trans-
formed into an embedding. The word “mixing” is less ambig-
uous and, therefore, the embedding from the header and the
sample cell can successfully be assigned to the node type
manufacturing.

2.3.2 Attribute extraction task. Aer assigning node types,
the next step identies node attributes in each column. The
AttributeClassier generates embeddings for headers and
sample cells by comparing them to a pool of candidates. The
best match is identied following the same logic as the node
type extraction.

In Fig. 2, we illustrate the attribute extraction process. In the
example, columns containing Identier attributes contain “ID”
in their headers, while those listing material names reference
well-established materials in the cells and headers. Columns
with property and parameter values display numerical entries
that can be directly associated with the corresponding attribute,
value. Because the node type of each column is determined in
the rst step, the range of possible attributes is constrained. For
example, matter, manufacturing, and measurement nodes
include an identier attribute, whereas parameter and property
nodes do not. Thus, knowledge of the node types, along with the
unambiguous headers and cell contents, makes the assignment
of each column to the correct attribute straightforward.

2.3.3 Node aggregation task. The third step aggregates
columns into nodes, combining attributes of the same entities
to form cohesive nodes. We leverage LLMs to overcome limi-
tations of rule-based approaches. We implemented a NodeAg-
gregator, NodeEvaluator, and NodeCorrector class for each
node type, which use Chat-GPT-4-o. The node extraction is
executed in parallel for each node type, with results validated
and corrected iteratively.

2.3.3.1 NodeAggregator. Each NodeAggregator of a specic
node type consists of a prompt generator and an LLM agent.
The NodeAggregator transforms the given table data into a list
of nodes that follow a node-type-specic JSON schema (see
Fig. 3). The prompt generator of a specic NodeAggregator
accepts all table columns that contain attributes of its node
type, along with the context provided by the user and all table
headers as additional context. From this input data, it generates
a prompt that requests transforming the given table headers
1224 | Digital Discovery, 2025, 4, 1221–1231
into a list of nodes while considering the context and the table
structure. The generated prompt is used to initialize an LLM
agent with a node-type-specic setup message.

The agent is given the following information:
(1) Introduction and general task (system message).
(2) Explanation of the expected output (schema).
(3) Context provided by the user (user input).
(4) Examples (few-shot).
Each agent is initiated with a xed system message

explaining the task and providing general input and guidelines.
Additionally, we employ few-shot learning by generating an
articial conversation history in which the agent was given
a table and produced the correct nodes. These examples serve as
valuable guidelines on how to aggregate nodes correctly and
which format to follow. The actual prompt is automatically
generated and contains the table headers, a sample row, and
a string of additional context provided by the user. Fig. 3
represents the general structure of an LLM-enabled pipeline
containing extractor, validator, and corrector classes. Node
aggregation and relationship extraction are implemented
following this general structure and vary only in inputs and
static components.

2.3.3.2 NodeValidator. The NodeAggregator's output is for-
warded to a corresponding NodeValidator instance, which
analyzes the output for logical mistakes. The specic validation
functions depend on the node type and can be checked in the
GitHub project. In general, the validation consists of logic
checks implemented in a rule-based approach that aim to
improve the determinism of the NodeAggregator output. They
check for typical mistakes the LLM agent makes, such as
assigning the same column to attributes of different nodes.
Additionally, the NodeValidator checks for any violation of the
graph data model. For example, a property or quantity node
always needs the attribute name, value, and unit to be non-null.
Each validation function returns the wrongly aggregated nodes
or True, if the agent did aggregate correctly, considering the
specic aspect that the validation function inspects. Aer all
validation functions are executed, the NodeValidator creates
a dictionary containing each validation function and its output.

2.3.3.3 NodeCorrector. These validation results are used by
the NodeCorrector class to rene the NodeAggregator results.
Each validation function is mapped to one correction function
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
that generates a prompt, asking for revision by providing the
incorrectly aggregated nodes along with an explanation of the
error, as well as optional error-specic context. Each mistake
detected by the NodeEvaluator is transformed into a revision
prompt resulting in a list of revision prompts. This list of revi-
sion prompts is merged into a single prompt to the LLM that
lists all mistakes and asks for revision. This prompt is given to
an agent initiated with an identical conversational memory as
the agent of the initial aggregation. The NodeCorrector gener-
ates a revised list of nodes that can be validated and corrected
again in an iterative rening process.

To clarify the node aggregation procedure, we will follow the
aggregation of all matter nodes in the example of Fig. 2. The
agent of the MatterNodeAggregator receives a prompt contain-
ing the table, user context, and instructions to transform
columns 1, 2, 3, and 6 into nodes. The agent should then
correctly assume that the table provides information about the
fabrication of a catalyst ink, and therefore propose the creation
of three matter nodes per row: one for the ionomer, one for the
catalyst, and one for the catalyst ink. The catalyst name and
identier must be extracted from columns 1 and 2. The matter
node representing the ionomer has a name that is taken from
column 3. The node representing the catalyst ink has an iden-
tier in column 6. Since no column provides a name for the
catalyst ink and it is a crucial attribute, the agent needs to infer
it (for example, “catalyst ink”) from the header of column 6.
Each row of the table can thus be transformed into three matter
nodes, with attributes varying by row, except for the name of the
catalyst ink node, which is inferred from the table headers. If
the MatterNodeAggregator does not infer the name “catalyst
ink” for the matter node representing the catalyst ink, the
MatterNodeValidator would detect this during its sanity check.
In that case, the MatterNodeCorrector would be invoked to
correct the error by inferring the missing name attribute.

2.3.4 Relationship extraction task. The current state of the
table transformation represents the table as a list of nodes, with
all columns aggregated into nodes of various types. However, to
form a complete graph, relationships must be inferred from the
table's content. Since most tables contain these relationships
only implicitly, extracting them requires an understanding of
the information hidden within the data. The implementation of
relationship extraction follows the same structure as node
extraction (see Fig. 3).

2.3.4.1 RelationshipExtractor. For each relationship type,
a specic RelationshipExtractor was implemented that extracts
an initial list of relationships from the table. Each instance
consists of an LLM agent and a prompt generator. An instance
of a specic RelationshipExtractor is initialized with two lists of
nodes, the context provided by the user, the table headers, and
a sample row. The prompt generator generates a query that
requests reasonable relationships to connect pairs of nodes. As
each relationship type is extracted separately, only nodes with
the correct types are given as possible candidates. The
“HAS_PROPERTY” relationship connects a matter node with
property nodes, which means that the HasPropertyExtractor
receives a list of matter nodes and a list of property nodes as the
main input. Since a knowledge of the complete table structure is
© 2025 The Author(s). Published by the Royal Society of Chemistry
crucial for a successful relationship extraction, the prompt also
contains the table's header and rst row as well as the context
given by the user. The LLM-agent of each extractor instance is
initiated with a relationship type-specic setup message con-
taining an explanation of the task, the input data, relationship-
specic rules and tips, as well as examples with a chain of
thought to further improve accuracy.

2.3.4.2 RelationshipValidator. For each relationship type,
one RelationshipValidator class was implemented. Depending
on the relationship type, these classes execute a number of
validation functions to check the output for logical errors. These
validation functions check graph logic, such as the connectivity
of the graph or its nodes, or the cardinality of certain relation-
ships. Each validator generates a dictionary containing the
executed validation functions and their results. The classes'
structure is therefore very similar to the NodeValidator, as both
run validation functions and return the results as a dictionary.

2.3.4.3 RelationshipCorrector. Each evaluation function has
a corresponding correction function that generates a prompt
specifying the identied mistakes and requesting a revision.
The RelationshipCorrector uses the output of the validator and
generates a list of prompts that are concatenated into a single
prompt that lists all extraction errors. The corrector then
initializes a new agent with the same conversational memory as
the RelationshipExtractor and requests a revision of the results,
stating all detected errors. The output is a rened list of rela-
tionships that can be evaluated and corrected again.

The relationship extraction in Fig. 2 can be illustrated using
the example of the HasPropertyRelationshipExtractor. This
class extracts the HAS_PROPERTY relationships that connect
matter and property nodes. In this example, the extractor would
receive a list of all matter nodes (e.g., the ionomer, the catalyst,
and the catalyst ink) as well as a single property node (e.g., the I/
C ratio). The agent must then decide to which matter node the
property node belongs. This can be inferred either by recog-
nizing that “I/C” stands for “ionomer to catalyst ratio”—indi-
cating it is a property of the catalyst ink, or by analyzing the
table structure, since the property node's column is directly
adjacent to the catalyst ink node's column.
2.4 Label assignment

To make the data searchable and interoperable, the extracted
nodes need to be labeled correctly. Labeling data means that
each Name attribute within the extracted nodes is processed
and mapped to a label node within the graph database's
labeling system. If no adequate label can be found within the
database, an LLM agent is used to create a new label node and
extend the existing labeling system. This step is essential to
enable effective querying of the database later on. It requires
different instances of the same kind to be assigned the same
label, so that they can be searched and found with the same
queries. To enhance interoperability, the used labels should
follow lingo and terminology that at least parts of the commu-
nity already agreed on.

2.4.1 Generation of the labeling system. As a basic labeling
system, we ingested the matter, Quantity, and Process branches
Digital Discovery, 2025, 4, 1221–1231 | 1225

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Fig. 4 Schematic overview of the labeling workflow.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
of EMMO and its BattInfo extension into the graph database.
These branches form a taxonomy of label nodes that can be
used to classify the extracted data. A branch here is a tree
structure that contains each top-level label node and its
subordinate nodes. For each label node within the branches, we
generated a list of alternative labels as well as a short descrip-
tion. As the three branches contain more than 1000 label nodes,
adding alternative labels and descriptions to each node is done
automatically using the Chat-GPT-4-turbo module of OpenAI.
The label node's name, its alternative labels, and the descrip-
tion are then used to generate embeddings that capture the full
semantic bandwidth of each label node. The embeddings are
generated by the OpenAI API and stored in the graph database
as vector nodes connected to the label nodes.

2.4.2 Similarity-based classication. Finding the appro-
priate label for an extracted node is a classication task and
requires nding the most similar label node within the
taxonomy (e.g., the labeling system). Identifying the correct
label is done using embeddings and Chat-GPT-4-turbo. The
name of the node that needs to be labeled is transformed into
an embedding. The embedding is then compared to the
embeddings stored within the labeling system of the database,
and the best matching label node is identied by calculating
and comparing cosine similarities. If the highest similarity
score does not exceed a threshold value of 0.95, it is very likely
that no label node sufficiently represents the given name.

2.4.3 LLM-assisted extension of the taxonomy. In that case,
we employ an LLM agent with the task of nding a matching
label node or extending the taxonomy dynamically. The agent is
initiated with a node-type-specic setupmessage containing the
task, relevant hints, rules, and examples. Furthermore, the
agent receives the node name that needs to be labeled, as well as
the most similar label nodes as possible candidates. The agent's
task is to identify a label node from among the candidates that
either adequately describes the node or could describe one of its
“child” or “parent” label nodes. This prompt can lead to three
different outcomes:

(1) No match found: if none of the candidates is a suitable
label node, or a child or parent class of the unlabeled node, the
agent is given all possible labels of the given node type. If the
unlabeled node is a matter node, this means all label nodes that
are children of the label node named “matter” are forwarded to
the agent. Among them, the agent chooses a label node that
represents a parent label of the unlabeled node. Then, the agent
is asked to suggest a new label and additional child labels—if
necessary—to seamlessly extend that branch. The output of the
agent is used to create new label nodes within the graph data-
base. They are used to label the unlabeled node and extend the
existing taxonomy.

(2) Adequate match found: if one of the candidates repre-
sents an adequate label for the node, the task ends and the node
gets assigned the label chosen by the agent.

(3) Subclass/parentclass found: if one of the candidates is
a parent or child label of the unlabeled node, the agent is given
all parent or child labels of that candidate. The agent then has
to identify the semantically closest label node and generate
a new label node that adequately represents the extracted node.
1226 | Digital Discovery, 2025, 4, 1221–1231
To improve the quality of the extension, the agent can suggest
additional labels to smooth the branching. The output of the
agent is used to create new label nodes, connecting them to the
existing taxonomy. The unlabeled node is then stored within
the graph database and linked to the newly generated label
node.

The complete procedure is depicted in Fig. 4. As the correct
extension of the labeling system is crucial to make the data
retrievable and interoperable, all newly added label nodes are
agged for curation by the database admins.
2.5 Caching

Currently, using the pipeline is slow and expensive for unseen
tables. To compensate for that drawback, we implemented look-
up tables to allow wide adoption of the pipeline. These look-up
tables are a means to cache graphs for recurring tables or table
parts. If a known table needs to be transformed, the cache can
be used to bypass the LLM usage, which is the time- and cost-
determining part of the graph extraction. Tables and their
parts are only added to the cache and look-up tables if their
transformation has been validated by the user and the admin.

Two ways of caching have been implemented:
Single-column cache: single-column caches contain the

headers of individual columns and the assigned node types and
attributes. Columns that contain already known table headers
can be cached, and the rst two steps of the transformation
pipeline can be skipped. Additionally, table headers with
already correctly extracted labels and attributes are transformed
into embeddings and added to the pool of examples for the
labels and attributes they represent. These additional embed-
dings facilitate type and attribute extraction of headers with
similar wording and therefore help boost the accuracy of the
rst two steps of the pipeline.

Table cache: as researchers or self-driving labs oen
generate the same table structures, caching full graph extrac-
tion is crucial to enhance the scalability of the pipeline. We
implemented look-up tables that store the table headers and the
resulting graph of each validated extraction. If already cached
tables need to be transformed into graphs for ingestion into the
database, the cache is activated and the correct graph can be
directly requested from the look-up table.

All look-up tables are within an SQL database and accessible
via the django-admin user interface. Each transformation
procedure generates one single-column cache for each table
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Table 2 Results of the node type and attribute type classification

Node type Table dataset Articial dataset

Attribute type Precision Recall F1 Precision Recall F1

Matter 0.97 1.0 0.99 0.95 0.98 0.96
Property 0.98 0.90 0.94 0.94 0.99 0.96
Parameter 0.91 0.96 0.94 0.98 0.98 0.98
Measurement 0.88 1.0 0.93 0.96 0.93 0.95
Metadata 0.94 0.94 0.94 1.0 0.92 0.96
Manufacturing 1.0 0.92 0.96 0.99 0.99 0.99
Identier 0.95 1.0 0.97 0.91 0.97 0.94
Value 1.0 0.94 0.97 0.96 0.97 0.97
Name 1.0 0.97 0.98 0.97 0.95 0.96
Unit 1.0 1.0 1.0 1.0 0.97 0.98
Error 0.89 1.0 0.94 1.0 0.96 0.98

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
column and one table cache entry for the full table. These new
cache entries are directly validated by the user through the GUI.
Through the django-admin interface the cached tables can be
checked and validated by the admin. Aer validation by the
database administrator, the columns and tables are fully
cached.

3 Results

The pipeline operates in a semi-automated fashion, requiring
the user to verify the results of each step when the table to be
ingested is unknown. Successful extractions are cached, allow-
ing fully automated graph extraction for known table structures.
The semi-automated approach ensures high-quality graph
extraction, as the transformation from a table to graph can
result in multiple possible graphs if the table headings and
structure are ambiguous. This uncertainty accommodates the
diverse and unrestricted nature of table structures and termi-
nology that we allow as users' inputs.

To set up a robust pipeline, it is necessary to optimize each
step. The rst two steps are classication tasks, to assign a node
type and node attribute to each column. Optimizing node type
and attribute extraction (see Sections 2.3.1 and 2.3.2) requires
optimization of:

� Examples: each column is assigned to a node type and
node attribute by a similarity comparison to a pool of examples
(e.g., examples for the node type Parameter might be: “Oper-
ating Condition”, “Process Parameter”, “Heating Speed”).

� Input: depending on the format and structure of the
examples, the input for the classication can be optimized (e.g.,
Heading:Sample_Cell, Heading, “Key”: Heading, Value:
“Sample Row” are different ways to generate input for a simi-
larity comparison and will lead to different results).

� Matching: the logic of how the correct node type/attribute
is chosen can be varied (e.g., a naive approach is to select the
example with the highest similarity).

The subsequent steps, which extract nodes and relation-
ships, mainly depend on prompt engineering. The accuracy
here was improved by prompt engineering and iterative
tweaking of the input to the LLM agent. Prompt engineering is
very expensive; therefore, we optimized the prompts on tables
with high complexity that contain nodes and relationships of all
types and most labels. Increasing accuracy requires optimiza-
tion of the following:

� System message: the system message contains the general
information and task the LLM Agent is given (e.g., “You are
a world-class node extracting algorithm.”).

� Prompt: the actual prompt the agent is given to extract
nodes/relationships from a given input.

� Examples: examples that are given to the agent that show
how to correctly extract data from a given input.

� Schema: the desired output format that contains small
descriptions of the parts of the output.

� Input data: the input data is part of the prompt. It is
important to include it in a way that is easy to process and
contains exactly the information and context that is needed to
solve the given task.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The nal parameters for every step are made available on our
GitHub repository.52
3.1 Evaluation

3.1.1 Evaluation of the classication tasks. The node type
and node attribute extraction are evaluated using precision,
recall, and the F1 score as metrics:

P ¼ TP

TPþ FP
; R ¼ TP

TPþ FN
; F1 ¼ 2$

P$R

Pþ R
(1)

We evaluated the classication tasks on the headings of all
tables listed in the data repository. Additionally, we created an
articially generated dataset of 100 heading/sample_cell pairs
for each node/attribute type. The accuracy of the classication
task is given in Table 2.

The classication part of the pipeline yields F1 scores from
0.90 to 1.0. Especially, the classication of the node types was
challenging, as the parameter and property types have a high
semantic overlap that complicates distinguishing them.

3.1.2 Evaluation of the node extraction task. Node extrac-
tion involves aggregating the tables' column data into nodes,
with attributes inferred from the context or the entire table.
Evaluating this step requires comparing a list of nodes to the
ground truth. To assess the similarity between two lists of
nodes, we dene a metric that compares each node's attributes
and optimally matches nodes from one list to the other. This
approach has been previously used to evaluate the accuracy of
knowledge graph pipelines.53,54 The steps are as follows:

(1) Pairwise similarity calculation
We compare the attributes of each pair of nodes ni and nj

from the lists L1 and L2. Let Ai and Aj be the attributes of nodes ni
and nj, respectively.

If Ai
k and Aj

k are strings, their similarity Sij
k is computed

using cosine similarity:

Sij
k ¼ cosðqÞ ¼ Ai

k$Aj
k

kAi
kkkAj

kk

If Ai
k and Aj

k are numerical, their similarity Sij
k is:
Digital Discovery, 2025, 4, 1221–1231 | 1227

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Fig. 5 Evaluation of the node extraction segregated by node type.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
Sij
k ¼

(
1 if Ai

k ¼ Aj
k

0 if Ai
ksAj

k

The overall node similarity Sij is the weighted average of
attribute similarities; unpaired attributes are given a similarity
of 0:

Sij ¼ 1

jK j

0
@X

k˛Kij

Sij
k

1
A

where K is the set of all attribute keys, Kij is the set of common
keys in Ai and Aj, and Kmiss is the set of keys missing in either
node.

(2) Optimal matching
The similarity comparison of each possible combination of

nodes from themodel output and the ground truth generates an
n ×mmatrix, with dimensions equal to the number of nodes in
the model output and the ground truth, where each value
represents the similarity of a pair. To yield the overall similarity
between the output and its ground truth, we need to map the
elements of both lists one-to-one while optimizing the overall
similarity of the pairs. This assignment problem can be solved
with the Hungarian method.

The Hungarian method, also known as the Kuhn–Munkres
algorithm, is an optimization technique used to nd the
optimal one-to-one matching in a weighted bipartite graph,
minimizing the total cost.55 It iteratively improves the matching
through augmenting paths until the best possible assignment is
achieved.

(3) Similarity score calculation
The total similarity score S is the sum of the similarities of

the matched pairs Stotal, normalized by the length of the longer
list max(jL1j, jL2j):

S ¼ Stotal

maxðjL1j; jL2jÞ

This evaluation metric ensures a comprehensive comparison
of node lists, optimally matching nodes while accounting for
missing attributes and different data types.

The results of the evaluation are given in Fig. 5, and the
pipeline was tested on a total of 500 columns from various
materials science tables. Additionally, the pipeline was tested
on tables from different scientic publications across different
domains. To test the exibility of the pipeline, tables from
chemistry were used as well.

As can be seen, accuracies range from 0.95 to 1.0. Inaccur-
acies occurred when the table was missing the units of physical
quantities or when a table contained duplicate table headings.
In case of a missing unit, the pipeline tries to infer the unit from
the content of the table and makes an educated guess. Dupli-
cate table headings introduce ambiguity to the table and
therefore uncertainty to its transformation. In both cases, the
LLM agent has to make a guess, which is intrinsically error-
prone.
1228 | Digital Discovery, 2025, 4, 1221–1231
3.1.3 Evaluation of the relationship extraction task. The
evaluation of relationship extraction was conducted using
precision, recall, and F1 score metrics, as detailed in Section
3.1.1. Both the model output and the ground truth contain lists
of relationships that connect the input nodes. Since relation-
ships are dened solely by their type and the source and target
node IDs, their evaluation is binary.

The results are depicted in Fig. 6.
The relationship extraction achieved F1 scores ranging from

0.92 to 1.0. The validation tables contain up to 98 columns and
may list the same fabrication technique multiple times, pre-
senting a signicant challenge for relationship extraction.
Generally, most tables yield high F1 scores, while more complex
tables tend to produce F1 score outliers.
3.2 Qualitative evaluation

Graph extraction works well in principle; however, certain table
headings or structural properties remain especially challenging
for the proposed pipeline. The rst two steps, the assignment of
the correct node type and attribute type, are classication tasks
that employ embeddings.

Analyzing the results of these classication tasks, we realized
that recurring problems could be traced back to the widespread
use of abbreviations in tables. These abbreviations are highly
challenging for embedding-based classication tasks, as they
are oen ambiguous and require context to be understood.
Examples include the name of a commercial catalyst, “F50E-
HT”, the abbreviation for an ionomer, “AQ”, or its equivalent
Fig. 6 Evaluation of the different extracted relationship types.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Fig. 7 This figure shows the table size in columns vs. time (a) and table
size vs. costs (b).

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
weight, “EW”. Such abbreviations demand domain knowledge
as well as an understanding of the general content of the table
and can lead to incorrect classications. Another challenge
arises from inherently ambiguous column headings, such as
“Column1”, which cannot be assigned to the correct node types
or node attributes. A third issue involves column headings
containing too much information, such as “RH sensitivity at
85C”, which implies both a sensitivity measurement and
a specic operating condition—two separate nodes within the
graph. Node extraction uses the table, along with the previously
assigned node and attribute types, to transform the table into
a list of nodes. Similar to the classication tasks, the LLM can
struggle to interpret ambiguous table headings or cell contents,
especially abbreviations. Because the task is handled by Chat-
GPT-4-o and entails providing the full table headings and
sample rows to the LLM, its robustness toward these abbrevia-
tions is somewhat improved. Nonetheless, abbreviations not
well established in the domain, such as “NOC” for normal
operating condition in a fuel cell, may still lead to errors.
Another example is the ambiguous abbreviation “I/C”, which in
the context of fuel cell fabrication oen denotes the ionomer-to-
catalyst ratio, but can also mean ionic conductivity. Beyond
semantics, the structure of tables presents additional hurdles.
Large tables, for instance, inate the number of columns and
broaden the range of possible nodes. Additionally, large tables
necessitate a larger context window for the LLM, which can
invite inaccuracies due to its susceptibility to information
overload.

The nal step, converting a list of disconnected nodes into
a graph, faces the same challenges as the earlier stages.
Furthermore, it requires deep domain knowledge, since rela-
tionships are usually only implicitly present within tables and
must be inferred. In conclusion, the pipeline is a robust tool to
extract information from tables by transforming them into
graphs. It is limited by the content and structure of the given
table and, similarly to a human, it can make errors. These errors
are oen caused by the ambiguity of the table data, as tables are
frequently created and used internally, tying their interpreta-
tion to knowledge about the underlying scientic procedures
they represent.

To conclude, the biggest challenge in table transformation is
dealing with ambiguities in table structures and terminology.
These ambiguities oen arise because researchers typically
imply important context when creating tables. As a result,
achieving a correct transformation may require feedback from
the original data generators. Recognizing that extracting graphs
from tables inherently involves uncertainty, we implemented
the pipeline in a semi-automated way that incorporates feed-
back at every step.
3.3 Cost evaluation

The proposed pipeline transforms a table into a JSON-formatted
graph, ingests the graph into a Neo4j graph database, and
assigns semantically meaningful labels to each node. Perform-
ing these steps manually would require familiarity with the
Neo4j query language and signicant time investment.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Fig. 7 shows the costs of the table transformation. Note that
this gure neglects the rst two steps of the pipeline and
focuses solely on the last two steps, which are the main inu-
ences on overall costs and processing time, while the rst two
steps are negligible in cost and time. Fig. 7(a) illustrates the
time required for both node extraction and relationship
extraction, as well as the combined duration of these steps.
Since the extraction procedures for the different node types and
relationship types are independent, they are executed in
parallel. As a result, the overall time cost is determined by the
extraction process that takes the longest—effectively becoming
the bottleneck of the operation. The costs are calculated as the
sum of all node and all relationship extractions. The error bars
show the standard deviation of the results, as each table was
transformed three times to account for the nondeterministic
nature of LLMs. Large standard deviations arise if the initial
extraction is not correct and the output needs to be corrected. In
that case, the token consumption is increased by a factor of two,
approximately. The number of rows does not affect the trans-
formation as the LLM agents are solely given the table headings
and a sample row. The gure shows that the costs for the node
and relationship extraction increase with an increasing table
size. A contributing factor is the increasing uncertainty, caused
by the complexity introduced by larger table sizes. A clear trend
is difficult to determine, though, as the table size is only one
factor for the duration and costs of the transformation. The
table structure and table lingo also contribute to the complexity
of the task and therefore inuence cost and duration as well.
4 Conclusions

In this article, we have presented a semi-automated table
transformation pipeline designed to extract knowledge graphs
from at tables using LLMs in conjunction with rule-based
Python logic. Integrated within a Django application, this
pipeline actively populates a native Neo4j graph database.
While the extensive use of LLMs for graph extraction and logic
application results in higher costs and reduced speed, the
pipeline's caching capabilities help minimize redundant LLM
usage.

This pipeline, coupled with semantic search capabilities and
integrated within a user-friendly graphical interface, signi-
cantly enhances data management for small research groups or
within research projects. It simplies complex data manage-
ment tasks, making data ingestion and transformation intui-
tive. By extracting relationships and adding valuable context, it
increases the overall value of the data.
Digital Discovery, 2025, 4, 1221–1231 | 1229

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
LLMs have proven to be valuable tools in data extraction and
graph construction, as they do not require intensive training.
The rapid advances in the eld of LLMs imply that our pipeline
will continue to improve in accuracy, speed, and cost-efficiency
by incorporating the latest models. Currently utilizing GPT-4,
our evaluation shows that it extracts graphs with high accu-
racy. The nondeterministic nature of the output can be mini-
mized through validation functions.

In future works, the proposed pipeline will be integrated into
a comprehensive data management system. Specic tasks will
focus on testing it as a data management solution for research
groups, which will involve adding additional interfaces and
enhancing user management capabilities.
Data availability

The datasets and code supporting the conclusions of this article
have been deposited in https://github.com/MaxDreger92/
MatGraph/tree/enhancement/publication and are available via
the DOI: https://doi.org/10.5281/zenodo.15094951. This
repository includes all materials necessary for the
reproduction of the results presented in this study.
Author contributions

Performed the research and draed the manuscript: Dreger
Max revised and nalized the manuscript: Dreger Max, Eikerl-
ing H. Michael, Malek Kourosh.
Conflicts of interest

All authors declare that there are no conicts of interests.
Acknowledgements

The authors gratefully acknowledge the nancial support
provided by the Federal Ministry of Science and Education
(BMBF) under the German-Canadian Materials Acceleration
Centre (GC-MAC) grant number 01DM21001A and the HITEC
fellowship. Additionally, the authors are thankful for the use of
the data shared with them. In particular, they wish to thank
Jasna Jankovic (University of Connecticut), Jens Hauch (For-
schungszentrum Jülich), and Fabian Tipp (Forschungszentrum
Jülich) for their generous contribution of data.
Notes and references

1 A. Agrawal and A. Choudhary, APL Mater., 2016, 4(5), 053208.
2 L. Himanen, A. Geurts, A. S. Foster and P. Rinke, Adv. Sci.,
2019, 6, 1900808.

3 S. M. Moosavi, K. M. Jablonka and B. Smit, J. Am. Chem. Soc.,
2020, 142, 20273–20287.

4 H. Wang, Y. Ji and Y. Li, Wiley Interdiscip. Rev.: Comput. Mol.
Sci., 2020, 10, e1421.

5 R. Vasudevan, G. Pilania and P. V. Balachandran, J. Appl.
Phys., 2021, 129(7), 070401.
1230 | Digital Discovery, 2025, 4, 1221–1231
6 Y. Liu, B. Guo, X. Zou, Y. Li and S. Shi, Energy Storage Mater.,
2020, 31, 434–450.

7 Y. Liu, O. C. Esan, Z. Pan and L. An, Energy AI, 2021, 3,
100049.

8 J. Wagner, C. G. Berger, X. Du, T. Stubhan, J. A. Hauch and
C. J. Brabec, J. Mater. Sci., 2021, 56, 16422–16446.

9 J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer,
V. R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha and
T. Buonassisi, Joule, 2018, 2, 1410–1420.

10 E. Stach, B. DeCost, A. G. Kusne, J. Hattrick-Simpers,
K. A. Brown, K. G. Reyes, J. Schrier, S. Billinge,
T. Buonassisi, I. Foster, et al., Matter, 2021, 4, 2702–2726.

11 H. S. Stein and J. M. Gregoire, Chem. Sci., 2019, 10, 9640–
9649.

12 E. A. Holm, R. Cohn, N. Gao, A. R. Kitahara, T. P. Matson,
B. Lei and S. R. Yarasi, Metall. Mater. Trans. A, 2020, 51,
5985–5999.

13 M. J. Eslamibidgoli, K. Malek and M. Eikerling, ECS Meet.
Abstr., 2022, 241, 1908.

14 A. Colliard-Granero, K. A. Gompou, C. Rodenbücher,
K. Malek, M. Eikerling and M. J. Eslamibidgoli, Phys.
Chem. Chem. Phys., 2024, 26(20), 14529–14537.

15 A. Colliard-Granero, M. Batool, J. Jankovic, J. Jitsev,
M. H. Eikerling, K. Malek and M. J. Eslamibidgoli,
Nanoscale, 2022, 14, 10–18.

16 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and
A. Walsh, Nature, 2018, 559, 547–555.

17 L. Banko and A. Ludwig, ACS Comb. Sci., 2020, 22, 401–409.
18 T. Wuest, R. Tinscher, R. Porzel and K.-D. Thoben, 2015,

preprint, arXiv:1501.01149, DOI: 10.5121/ijait.2014.4601.
19 T. Wuest, J. Mak-Dadanski and K.-D. Thoben, Advances in

Production Management Systems, Innovative and Knowledge-
Based Production Management in a Global-Local World: IFIP
WG 5.7 International Conference, APMS 2014, Ajaccio,
France, September 20-24, 2014, Proceedings, Part I, 2014, pp.
42–49.

20 T. J. Oweida, A. Mahmood, M. D. Manning, S. Rigin and
Y. G. Yingling, MRS Adv., 2020, 5, 329–346.

21 N. Science and T. C. (US), Materials genome initiative for
global competitiveness, Executive Office of the President,
National Science and Technology Council, 2011.

22 N. R. Council, D. on Engineering, P. Sciences, N. M. A. Board
and C. on, Integrated Computational Materials Engineering,
Integrated computational materials engineering:
a transformational discipline for improved competitiveness
and national security, National Academies Press, 2008, pp.
83–90.

23 Citrine Informatics, Citrine Informatics, 2014, http://
www.citrination.com, Accessed: [2024-04-05].

24 Clean Energy Project, 2014, http://
cleanenergy.molecularspace.org.

25 The Materials Project, 2014, http://
www.materialsproject.org.

26 Automatic-FLOW for Materials Discovery, 2014, http://
www.aowlib.org.

27 CALPHAD (Computer Coupling of Phase Diagrams and
Thermochemistry), 2014, http://www.calphad.org.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/MaxDreger92/MatGraph/tree/enhancement/publication
https://github.com/MaxDreger92/MatGraph/tree/enhancement/publication
https://doi.org/10.5281/zenodo.15094951
https://doi.org/10.5121/ijait.2014.4601
http://www.citrination.com
http://www.citrination.com
http://cleanenergy.molecularspace.org
http://cleanenergy.molecularspace.org
http://www.materialsproject.org
http://www.materialsproject.org
http://www.aflowlib.org
http://www.aflowlib.org
http://www.calphad.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
A

pr
il

20
25

. D
ow

nl
oa

de
d

on
 2

/1
3/

20
26

 4
:5

1:
37

 P
M

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
28 Open Quantum Materials Database, 2014, http://oqmd.org.
29 NIST (National Institute of Standards and Technology) Data

Gateway, 2014, http://srdata.nist.gov/gateway/gateway?
dblist=1.

30 NIST Material Measurement Laboratory, 2014, http://
www.ctcms.nist.gov/potentials/.

31 A. White, MRS Bull., 2012, 37, 715–716.
32 V. Venugopal and E. Olivetti, Sci. Data, 2024, 11, 217.
33 A. Hogan, E. Blomqvist, M. Cochez, C. d'Amato, G. D. Melo,

C. Gutierrez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier,
et al., ACM Comput. Surv., 2021, 54, 1–37.

34 X. Wilcke, P. Bloem and V. De Boer, Data Sci., 2017, 1, 39–57.
35 M. J. Statt, B. A. Rohr, D. Guevarra, S. K. Suram,

J. M. Gregoire, et al., Digital Discovery, 2023, 2, 909–914.
36 E. Blokhin and P. Villars, in The Pauling File Project and

Materials Platform for Data Science: From Big Data Toward
Materials Genome, 2020, pp. 1837–1861.

37 D. Mrdjenovich, M. K. Horton, J. H. Montoya, C. M. Legaspi,
S. Dwaraknath, V. Tshitoyan, A. Jain and K. A. Persson,
Matter, 2020, 2, 464–480.

38 J. Unbehauen, S. Hellmann, S. Auer and C. Stadler, Search
Computing: Broadening Web Search, 2012, pp. 34–52.

39 N. Wadhwa, S. Sarath, S. Shah, S. Reddy, P. Mitra, D. Jain and
B. Rai, Proceedings of the AAAI Conference on Articial
Intelligence, 2021, pp. 15416–15423.

40 L. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova,
A. Trewartha, K. A. Persson, G. Ceder and A. Jain, J. Chem.
Inf. Model., 2019, 59, 3692–3702.

41 J. Dagdelen, A. Dunn, S. Lee, N. Walker, A. S. Rosen,
G. Ceder, K. A. Persson and A. Jain, Nat. Commun., 2024,
15, 1418.

42 H. Cai, X. Cai, J. Chang, S. Li, L. Yao, C. Wang, Z. Gao, Y. Li,
M. Lin, S. Yang, et al., arXiv, 2024, preprint,
arXiv:2403.01976, DOI: 10.48550/arXiv.2403.01976.
© 2025 The Author(s). Published by the Royal Society of Chemistry
43 M. Dreger, M. J. Eslamibidgoli, M. H. Eikerling and
K. Malek, Synergizing ontologies and graph databases for
highly exible materials-to-device workow
representations, J. Mater. Inf., 2023, 3(1), DOI: 10.20517/
jmi.2023.01.

44 The EMMC Consortium, The European Materials Modeling
Ontology, 2021, https://emmc.info/emmo-info/, Accessed:
2024-04-05.

45 S. Clark, F. Bleken, J. Friis and C. Anderson, Battery INterFace
Ontology (BattINFO), 2021.

46 Microso, Microso GraphRag, https://github.com/
microso/GraphRag, 2025, [Online; accessed 7-February-
2025].

47 Databricks, Databricks Unied Analytics Platform, https://
databricks.com/, Accessed: 2025-02-13.

48 G. Cloud, Google Cloud Platform, https://cloud.google.com/,
Accessed: 2025-02-13.

49 S. Inc., Splunk: The Data Platform for Machine Data, https://
www.splunk.com/, Accessed: 2025-02-13.

50 M. Dreger, MatGraph Repository, https://github.com/
MaxDreger92/MatGraph/tree/enhancement/publication,
GitHub repository, 2023 (accessed: 2025-02-18).

51 M. Dreger, MatGraph Ontology, https://github.com/
MaxDreger92/MatGraph/tree/enhancement/publication/
Ontology, 2021, Accessed: 2025-02-23.

52 M. Dreger, MatGraph: A Framework for Converting Tables to
Graphs, https://github.com/MaxDreger92/MatGraph, 2024,
Accessed: 2024-06-06.

53 M. Schuhmacher and S. P. Ponzetto, Proceedings of the 7th
ACM international conference on Web search and data
mining, 2014, pp. 543–552.

54 Z. Hussain, J. K. Nurminen, T. Mikkonen and M. Kowiel,
10th Symposium on Languages, Applications and Technologies
(SLATE 2021), 2021.

55 H. W. Kuhn, Nav. Res. Logist. Q., 1955, 2, 83–97.
Digital Discovery, 2025, 4, 1221–1231 | 1231

http://oqmd.org
http://srdata.nist.gov/gateway/gateway?dblist=1
http://srdata.nist.gov/gateway/gateway?dblist=1
http://www.ctcms.nist.gov/potentials/
http://www.ctcms.nist.gov/potentials/
https://doi.org/10.48550/arXiv.2403.01976
https://doi.org/10.20517/jmi.2023.01
https://doi.org/10.20517/jmi.2023.01
https://emmc.info/emmo-info/
https://github.com/microsoft/GraphRag
https://github.com/microsoft/GraphRag
https://databricks.com/
https://databricks.com/
https://cloud.google.com/
https://www.splunk.com/
https://www.splunk.com/
https://github.com/MaxDreger92/MatGraph/tree/enhancement/publication
https://github.com/MaxDreger92/MatGraph/tree/enhancement/publication
https://github.com/MaxDreger92/MatGraph/tree/enhancement/publication/Ontology
https://github.com/MaxDreger92/MatGraph/tree/enhancement/publication/Ontology
https://github.com/MaxDreger92/MatGraph/tree/enhancement/publication/Ontology
https://github.com/MaxDreger92/MatGraph
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00362d

	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science

	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science

	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science
	Large language models for knowledge graph extraction from tables in materials science

