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The computational prediction of equilibrium constants is still an open problem for a wide variety of relevant
chemical systems. In particular, acid dissociation constants (pK,) are an essential asset in biological,
synthetic and industrial chemistry whose prediction encounters several difficulties, requiring the
development of novel strategies. The self-assembly of polyoxometalates (POMs) is another complex
problem where acid-base reactions play a central role; the successful prediction of the formation
constants of these structures is intimately linked with the limitations of pK, determination. Our
methodology POMSimulator enables the prediction of these polyoxometalate formation constants from
Density Functional Theory (DFT) calculations, using the experimental K; values available in the literature
to fit the resulting predictions. In this work, we carry out a systematic analysis of a very large number of
POM formation constants already predicted through the application of POMSimulator. We then propose
a universal scaling scheme for the adjustment of the DFT-based formation constants of POMs, relying on
a linear scaling of the form y = mx + b. Here, the slope (m) is a constant parameter — hence, universal
towards the nature of the polyoxometalate and the calculation method. The intercept (b), in contrast, is
a system-dependent parameter that can be predicted with a multi-linear regression model trained with
statistical aggregates of the non-scaled formation constants. Thus, we are able to successfully predict
the speciation and phase diagrams of POM systems for which available experimental data are minimal, as
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1 Introduction

Chemical equilibrium is a ubiquitous concept in chemistry.
Defined as the point where the rates in both chemical reactions —
direct and reverse — are identical," it was first revealed by Ber-
thollet two centuries ago.” Because realistic chemical systems
may regard countless simultaneous reactions, it is crucial to
utilize computational methods to solve and analyze the resulting
systems of coupled chemical equations.* Current examples are
found in a broad range of disciplines: atmospheric chemistry,*
chemical oceanography,® electro-chemistry® and geochemistry.”

Although equilibrium data are commonly measured from
experiments, the steady development of quantum mechanical
methods in chemistry has also unlocked the possibility of
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well as provide a general scaling scheme that might be extended to other kinds of chemical systems.

predicting equilibrium constants.*'* However, the main theo-
retical obstacle is the assessment of the free energy for small
solvated ions - in specific, the proton, whose characterization is
a centerpiece of acid-base chemistry.” The nature of protons in
solution has been widely discussed, proposing structures such as
the hydronium (H;0"), Zundel (HsO,") or Eigen (Ho0,")
cations."™* Choosing a proper proton model is essential for
computational chemistry, as the bare H' cation, devoid of elec-
trons, cannot be characterized with ab initio or DFT methods. In
the determination of dissociation acid constants (pK,), a devia-
tion of just 1.36 kcal mol " in the reaction free energy leads to an
error of one order of magnitude in the resulting constant.’® To
mitigate this issue, there are two main strategies: (i) setting up
a thermodynamic cycle in gas and solvent phases and (ii) vali-
dating a regression model using experimental data. Relying on
these two approaches, it has been possible to predict pK, values,
both in aqueous'** and non-aqueous' solvents, below the one
logarithmic unit error. The success in predicting equilibrium
constants for organic systems is in stark contrast with the scarcer
developments in the domain of inorganic chemistry.* This
distinction can be attributed to the highly anionic nature of
metallic compounds, which increases the weight of the solvation
model in the total free energy. The accuracy of solvation models
is a core aspect of computational chemistry and plenty of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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approaches are available, ranging from implicit, continuum-
based models (PCM,*** SMD,* and COSMO*) to the more
costly explicit modeling®®*” of solvent molecules. Notorious
examples of inorganic compounds are polyoxometalates (POMs),
which consist of molecular metal-oxo clusters formed by transi-
tion metals in high oxidation states linked by oxygen atoms.
POMs are pH dependent, with very rich yet complex speciation in
solution,*®?® which represents a limitation for developing novel
POM-based technologies in catalysis®** and energy materials.**

In our group we have developed a methodology which simu-
lates the aqueous speciation of polyoxometalates from first-
principles calculations.®® The methodology has been success-
fully applied to isopolyoxometalates®*** and hetero-
polyoxometalates.>® Furthermore, we have recently released
a polished and open-access version of the source code.***” The
workflow of POMSimulator proceeds as follows: once the opti-
mized molecular structures and Gibbs free energies of the
building blocks and POMs understudy have been gathered, the
methodology starts by automatically generating the chemical
reaction network (CRN). Then, the CRN (plus the mass balance
equation) is expressed as a complex system of non-linear equa-
tions, which leads to an overdetermined system, given that there
are more reactions (equations) than compounds (dependent
variables). To address this issue, we defined the so-called
Speciation Models (SMs), which consist of subsets of chemical
reactions that conform to determined solvable systems of equa-
tions. The construction of SMs is based on two main hypotheses:
(1) all acid-base reactions must be included in the system, due to
the importance of pH in the self-assembly processes of POMs
and (2) there must be a nucleation reaction for each nuclearity of
the molecular set to ensure that all states are accessible.

Solving the SMs delivers the concentrations of all species in
the CRNs, which can then be employed to calculate the
formation constants for every compound in the network. This
procedure ensures that the actual reaction mechanism and pH
influence are properly considered in the determination of
formation constants. However, these formation constants have
proven to be overestimated when compared to experimental
values, in line with the pK, problem mentioned before. In fact,
the pK, issue was also observed when applying POMSimulator
to the microkinetic modeling of polyoxotungstates, where the
linear scaling of the acid-dissociation constants was crucial to
obtain accurate results.*® Furthermore, the fitting between
experimental and theoretical pK, is demonstrated to be
dependent on the quantum method of choice.*

Even so, our previous studies showcased some evidence of
universality in the scaling parameters. Consequently, in this
work we explored this key feature, and we ultimately developed
a protocol to streamline the application of POMSimulator to
POM systems where only scarce experimental data are available,
overcoming previous limitations in the range of applicability of
the methodology.

2 Expanding POMSimulator

So far, the application of POMSimulator has relied on con-
ducting a linear scaling between the experimental formation

© 2025 The Author(s). Published by the Royal Society of Chemistry
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constants reported in the literature and the DFT-based forma-
tion constants obtained through this methodology. These
formation constants consider the production of a given mole-
cule starting from one or several reference species, usually the
monomers, in an acidic medium (eqn (1)). When the hetero-
atom (X) is not present, as is the case for isopolyoxometalates,
r=0.

X0y ] + pMO," "] + gH' — [H.X,M, 0414, ] + wH,0
w=(q-2)/2

Initially, this approach selected the speciation model with
the lowest Root Mean Squared Error (RMSE) compared to the
reported experimental constants. More recently, we upgraded
the methodology by relying on the average scaling parameters
(slope, m and intercept, b) of the whole set of SMs, thus making
the overall process more robust.

We observed that the slopes of the linear regressions
appeared to be constant (=0.3) across all isopolyoxometalates
(Mo, W, V, Nb, and Ta) and heteropolyoxometalates (PMo). In
the ESIt we address a minor issue concerning the experimental
formation constant of {Mo;e}, which at first caused the devia-
tion of the universal slope value. We disregarded the experi-
mental formation constant of {Moze} for linear scaling, as the
leave-one-out methodology identified this constant as an outlier
(Fig. S1 and S2%). Considering these pieces of evidence, we
sought to study the possible universality of the linear scaling,
which would indeed suppose a change of paradigm, practically
removing the dependency of POMSimulator on experimental
data. In this manner, we would be able to scale DFT-based
formation constants without having specific experimental
formation constants for a given target system. Combining this
with our previously reported statistical pipeline,* we would be
able to explore the speciation and phase diagrams for a much
wider set of POM systems for which formation constants might
not be available. In this sense, we could invert the way in which
POMSimulator is used, by not simply reproducing experimental
results, but also releasing new data for guiding further experi-
ments in unknown territory.

2.1 Dependence on the POM system

To further analyze this universality feature, we selected the
species for which experimental formation constants were
available. We have represented the box-and-whisker plots of the
six previously studied systems to characterize the distribution of
the computed constants (see Fig. 1). Herein, instead of per-
forming individual regressions for every single speciation
model - as in previous studies — we decided to consider the
median value for each species as the log(Kpgr) term entering the
regression. This does not only reduce the computational cost
associated with performing the regressions, but it is also in line
with our current statistics-based paradigm, targeting the
ensemble of constants instead of individual models. The
residuals of the regression are also used to compute error esti-
mates for both m and b, thus defining error bars for the
regression line of the form y = (m + 0,,)x + (b + 05).
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As mentioned before, all the explored systems show very
similar slope values, in the range of: 0.25 < m < 0.33. This hints
that, regardless of the specific chemical behavior of each POM
family, DFT formation constants are overestimated by the same
factor in all cases.

Fig. 2 considers a unique regression where all six systems are
considered, leading to a single set of linear scaling parameters:
m = 0.29 and b = 1.33. As illustrated in Fig. 2, the linear trend is
maintained when all compound families are brought together
(r* = 0.9635), enabling us to propose a single equation to scale
formation constants (eqn (2)).

Kexp = 0.29Kppr + 1.33 )

The error bar estimates show a relatively narrow error band,
hinting at the robustness of the approach. Moreover, high-
lighting the distribution of the constants for each complex
demonstrates that for most of the compounds the regression
line passes through the central box of the corresponding box
plot (that is, the predictions from the linear model are between
the 1st and 3rd quartiles).

2.2 Dependence on the DFT functional

Another fundamental question is how the scaling parameters
depend on the DFT method used to compute Gibbs free ener-
gies. Hitherto, all the systems studied in our group have used
the PBE functional. Thus, the values of m and b might be
functional-dependent. To explore this effect, we considered all
six POM systems that we regarded in previous studies (Mo, W, V,
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Fig. 2 Linear regression of Box-and-Whisker plot representation
considering the formation constants in Mo, W, V, Nb, Ta and PMo
systems. The Y-axis corresponds to experimental values reported in
the literature*®—** and X-axis corresponds to the formation constants
predicted with our methodology.

Nb, Ta and PMo) and carried out single-point energy calcula-
tions with another GGA functional (BP86), a meta-GGA (MO6L)
and a hybrid (B3LYP). We calculated the Gibbs free energies by
adding the free energy correction term from the PBE results,
thus reducing the overall computational cost and adding the
electronic energy contribution from a second functional (func)
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Fig. 3 Regression lines for computed and experimental formation
constants extracted from the literature*®=** throughout the four tested
functionals: PBE, BP86, B3LYP and MO6L.

as described here: G(func) = E(func) + AGo(PBE). Then, we
employed POMSimulator to determine the formation constants
of the six systems with each of the three new functionals, in
order to compare them with the experimentally reported values.
Regression lines collating all systems together for the four
methods are depicted in Fig. 3: boxplot representations-
analogous to Fig. 1 and 2- are shown in Fig. S3.t

The most striking aspect arising from this analysis is, again,
the consistency of the slopes for all the regressions, only
ranging from m = 0.28 (MO06L) to m = 0.31 (BP86). Independent
of the functional, the overestimation of the DFT formation
constants is approximately the same. This finding hints again at
a certain degree of universality in our approach. Furthermore, it
also reduces the relevance of functional choice, enabling us to
proceed with less computationally demanding calculations
(such as PBE) instead of having to resort to more expensive
hybrid functionals. This aspect is especially relevant when using
the ADF software.*® The latter uses Slater-type Orbital (STO) fit
functions to speed up the calculation of one-center integrals for
GGA," but it performs significantly slower for exact exchange
functionals such as Hybrids.

2.3 Validation with an AsMo system

To validate the adequacy of these universal scaling factors, we
decided to test them against a new heteropolyoxometalate,
aiming to characterize the speciation from the constants scaled
by applying eqn (2). As a target system, we selected arsen-
omolybdates (AsMo), reported by Pettersson,*® for which both
speciation diagrams at different Mo:As ratios, as well as
formation constants, were available. Having a set of experi-
mental formation constants also enabled us to compute the
actual scaling parameters of the AsMo system, to compare them
with the predicted values. From these previous studies, we
generated the corresponding molecular set, composed of 44
metal-oxo compounds, including key species in arsen-
omolybdate chemistry, such as the {As,Mos} cluster, which does

© 2025 The Author(s). Published by the Royal Society of Chemistry
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not form in the analogous PMo system. It is also remarkable
that key species for PMo, like the Keggin {PMo,,} and lacunary
{PMo,,} anions, are not reported for AsMo, and therefore were
omitted from the molecular set for simplicity. Then, we fol-
lowed the same protocol as that in our study for phosphomo-
lybdates,* selecting a random sample on the large set of
speciation models produced from the chemical reaction
network and computing the formation constants. We applied
the scaling equation (eqn (2)) to adjust the formation constants,
and then we used them to calculate the speciation diagram of
every model. Next, we employed the statistical pipeline to group
similar models and select the most adequate average speciation
diagrams.

The initial results on the speciation of arsenomolybdates
were very poor, as a large fraction of the obtained diagrams only
showcased the protonation of arsenates and molybdates, with
minimal nucleation (Fig. S4t). Moreover, none of the groups
showed any evidence of the major species proposed by Pet-
tersson: {AsMoo} and {As,Mog}, depending on ratios. To deduce
the reason behind these poor results, we determined the
specific scaling parameters for the AsMo system from the
available experimental constants (see Fig. 4).

While m is consistent with the one obtained in the general
regression, Fig. 2, and with the variability observed across
systems, Fig. 1, the value of b is inaccurate.

The universal scaling predicts a positive term of b = 1.33,
while the actual value for arsenomolybdates is negative b =
—7.99. Although a deviation of nine units may not seem con-
cerning, the fact that the intercept is in logarithmic units has
a critical effect. In particular, small formation constants are
strongly influenced by the intercept, as it contributes more
significantly to the scaling than the slope. According to the
standard convention for formation reactions, non-scaled
formation constants for monomers are either zero (for the
non-protonated reference) or close to zero, making them highly
sensitive to changes in the intercept. Consequently, the
substantial negative shift in the intercept, b = —7.99, is expected
to result in smaller formation constants for the monomers,

120
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60 - el —

40 -

20 A

Experimental Constants (log KF?)

r?2 =0.9621
y = 0.33x + -7.99 (+- 0.02, 6.21)

—20 -

0 100 200 300 400 500 600 700
DFT Constants (log K™)

Fig. 4 Box-and-Whisker plot representation for formation constants
in AsMo. The Y-axis corresponds to experimental values reported in
the literature®® and X-axis corresponds to the formation constants
predicted with our methodology.
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indicating reduced thermodynamic stability. Consequently,
employing the universal scaling equation with a positive inter-
cept artificially stabilizes these same monomers, explaining the
poor agreement between the simulated speciation and the
experimental results.

Considering these findings and revisiting the disparity
between the b values determined for each metal system in Fig. 1,
the universality precept for the slope does not seem applicable
to the intercept. Thus, another strategy is required to actually be
able to successfully apply POMSimulator to systems lacking
experimental formation constants. While we may still use
a constant slope value, there should be a protocol capable of
predicting the system-dependent intercepts without resorting to
experimental data - hence, only using information derived from
the application of our method. We hypothesized that relying on
the non-scaled formation constants would serve as the actual
input for determining the value of the intercept. Considering
the availability of the formation constants for our six initial
systems and the AsMo under validation, we collected a set of

Summarized desc.
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simple system-wide statistical descriptors across all models,
namely: mean, standard deviation, median, quartiles,
maximum, minimum, and min-max range. The median value
through all species was computed for every descriptor, obtain-
ing a single set of features for every system. From these values,
we aimed to identify linear relationships between different
feature combinations and the target intercept (Fig. 5).

It is important to note that, due to the small number of data
points (seven IPA/HPA systems), we should be extremely
cautious with the overfitting, especially when considering
multiple features at once. Consequently, the evaluation stage is
particularly important to determine if a good-performing
regression model can provide any kind of generalization.
Initially, the AsMo system was employed as a test set, leaving the
other six as the training set. Thus, we proceeded to evaluate all
regression models in terms of the quality in the prediction of
basmo- The ten best MLR models, according to the quality of the
prediction of the target intercept, are collected in the ESI
(Table S1).+ We selected the two well-performing combinations

=1

System-wide

species

AllKT \I/Olues across models descriptors
\
=Dd +E
, D=Dd+F «

=Dd +Ee +F
Regression Multi-linear Descriptor
parameters regression combinations
(target datq) |

v

R2score  Npaams

b [test] — Lb=Clx] +C2x2...
Cross-validation

Evaluation Best prediction
procedures for

Fig. 5 Schematic depiction of the proposed multi-linear regression protocol for predicting the scaling intercept basmo Value.
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with only three features, corresponding to (Qs, max, range) and
(mean, max, range), with the goal of minimizing the number of
required descriptors. Both of them show reasonable r scores
(0.967 and 0.948) and good predictions of by (—7.29 and
—8.72, respectively). Considering our limitations in terms of
acquiring more data (which would require full characterization
of molecular sets, application of POMSimulator, and availability
of experimental data to perform scalings), we followed with
a cross-validation strategy, applying a leave-two-out approach.
In this way, for every feature combination we select a two-system
validation set, with the other five (including AsMo) being used
for training, and then explore the distribution of the obtained
predictions. A heatmap representation of these results is
showcased in Fig. 6.

The cross-validation approach confirms the adequacy of the
two aforementioned combinations of three features, which show
quite low errors for all seven systems. While in principle both of
them should be similarly adequate, for consistency we selected
(Qs, max, range) for further application, due to having slightly
better r* and cross-validation RMSE parameters. An interesting
observation arising from the cross-validation strategy is the
identification of the train/test set combinations leading to larger
errors. While in general the dispersion of the predicted intercepts
is not too large, the situation where the test set contains both
PMo and AsMo leads to important mispredictions in both inter-
cepts (Fig. S5-S77). This, indeed, showcases how the data-driven
strategy is including a certain degree of chemical knowledge
about our target systems: if no HPAs appear on the training set,
the regression model cannot properly predict their intercepts.
However, adding a single representative system to the training
(e.g., PMo) already steers the multi-linear regression to reasonable
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POMSimulator to more complex systems (e.g, trimetallic struc-
tures such as PMoW) would require inexpensive re-fits of the
multi-linear regression model with at least one set of experi-
mental constants for the new system type.

As a result, we can propose an expression for the prediction
of the intercept from the model trained with the six initial metal
systems (without AsMo): eqn (3). In order to scale the formation
constants of any given POM-based system, we can then consider
the slope resulting from the general scaling in Fig. 2, m = 0.29,
and then determine the intercept through eqn (3).

b=Cixi+Cx, + CGixs + Gy

Cy =+0.195, x; = O3(Kprr)
C2 = —0216, Xy = max(KDFT) (3)
C3 = +0070, X3 = range(KDFT)
Cy = +12.20

In our case study on arsenomolybdates, this leads to
a scaling expression in the form of

Kscaled = 0~29KDFT - 7.29 (4)

Eqn (4) can be used to characterize the speciation across the
~1.5 x 10° models, for which we had determined formation
constants. After applying the K-Means-based clusterization
strategy that we previously reported for PMo, we obtained the
following speciation diagrams for the 1:9 and 1:1 ratios (As:
Mo) studied by Pettersson.

The speciation diagrams collected in Fig. 7 also depict the
uncertainty error of our prediction, in line with our latest
improvement reported for phosphomolybdates.** In general,
our predictions are in very good agreement with the experi-

predictions. In this way, we expect that extensions of mental diagrams reported by Pettersson (r* = 0.9621, Fig. 4). For
Leave-two-out validation b error
(mean, Q3, max, range) - -0.5 (0):23t -0.043 0.13 -1.7 0.57 -0.52
(min, Q1, 50%, max) - -1.5 0.39 -0.31 0.88 0.03 1.4 -1.2
(Q3, max, range) - 0.69 0.26 1.3 -0.19 -1.8 0.91 -0.76 7.5
(50%, Q3, max, range) - 0.69 1.2 0.89 -0.7 -2 151 -0.44
(mean, max, range) - -0.71 -0.6 -1.9 0.83 1.9 -0.11 -0.98 5.0
(min, Q3, max, range) - 0.2 -1.6 nlal (0)117/ -1.7 -3.1 (0 7/
(50%, max, range) - 2.5 0.92 -3.7 -1 2.5 0.32 -1.7
(Q1, Q3, max, range) - 0.049 -4.3 1155 0.96 -1.7 -3.8 0.11 -2.5
= (std, Q3, max, range) - 0.73 3 2 -0.23 -1.8 -1.2
; (mean, 50%, max, range) - 2.4 -3 3.6 1.8 0.9 -0.39 | o0
% (mean, min, max, range) - -0.43 1125 -1.6 0.8 2.4 “ 2.2 '
2 (min, Q3, max) - 3.4 3.8 2 -0.49 -4.4 6.2 -4.2
(std, 50%, Q3, iqr) - -2.7 4.9 -0.3 213 -4.9 -3.6 - —2.5
(mean, std, max, range) - 0.87 -7 2.3 12 1.9 1.8
(min, Q1, max, iqr) - -4.1 0.68 2.8 -0.24 -4.2
(mean, min, max, iqr) - 0.92 3.7 1.9 -0.23 -1.8 -2.1 [0
(mean, std, min, max) - 2.8 4.5 0.21 -2.8 -2.4
(std, min, Q1, max) % -7.6 -1.3 30 ijATS -3.4 -7.5
(min, Q1, Q3, max) - -2.2 -10 2.8 4.1 1.9
(mean, min, Q3, max) - 2.3 6.4 -2 1.4 -4
AsiVIo Nio Nlb PI\I/Io Ta \ \IIV
System

Fig. 6 Heatmap representation of the leave-two-out validation. The Y-axis corresponds to the feature sets, and X-axis to the POM systems
included in the study. The color scale and numeric values correspond to the difference between the median b value for every instance where
a system is part of the test set and the actual values from individual regressions.
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Fig.7 Speciation diagrams predicted for AsMo self-assembly reaction
networks in 1:9 (top) and 1:1 (bottom) As: Mo ratios. Shading indi-
cates the uncertainties in the concentration of the corresponding
species.

the 1:9 ratio, {AsMoo} species (orange and brown lines) are
clearly dominant at acidic pH, with the fraction of the monomer
growing quickly later on. We identify a remarkable coexistence
between [AsM0,03;]>” and [AsMo0,034]°" clusters, associated
with hydration/dehydration processes, reaching an approxi-
mate 50/50% split around pH = 2. Smaller peaks for the dia-
rsenates {As,Mos} (turquoise) and {As,Mog} (purple) are also
observed in the pH range = 4-5. Moreover, we report the
formation of the previously unidentified {AsMog} cluster (in
dark grey), right between the diarsenates and the {AsMoo}
species. The 1:1 ratio, corresponding to concentrations of
0.04 M for both monomers, showcases a clear dominance of the
characteristic {As,Mo¢} anion in the pH range = 0-4, which
transforms into the Strandberg anion {As,Mos} in the 4-6
region. From there on, only monomers are observed. We can
also identify quite clearly the deprotonation processes of both
clusters as pH becomes more alkaline: 2H to 1H for {As,Mog}
and 1H to OH for {As,Mos}. Additionally, we also report the
corresponding speciation phase diagrams in Fig. S8,T
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completing the analysis of our target system and further proving
the power of the universal scaling.

Overall, the results in Fig. 7 confirm the adequacy of the
proposed universal scaling scheme, combining the constant
slope (m = 0.29) and the system-dependent, MLR-predicted
intercept value (b = —7.29). This paves the way for the further
application of POMSimulator to different polyoxometalate
systems which were not accessible until now due to the lack of
accurate experimental formation constants. Nonetheless, it is
worth noting that the construction of the molecular set still
requires some caution and chemical knowledge. Designing and
calculating which building blocks should be included in the
simulation is still beyond the scope of POMSimulator. The user
should gather experimental evidence of important species (such
as {As,Mog} in the current example) and/or apply automated
reaction exploration strategies, such as AutoMeKin*® or Che-
moton,* to ensure that all necessary building blocks and
products are taken into account.

3 Conclusions

In this work we addressed one key limitation of POMSimulator's
workflow related to the dependence on linearly scaling the DFT
formation constants with experimental data. To determine
whether a constant scaling could be found, we have analyzed the
behavior of the two linear scaling parameters (slope and inter-
cept) for six polyoxometalate systems and three DFT functionals.
Our study indicates that the slope is consistently close to m = 0.3,
as observed in all our previous publications. Therefore, we can
conclude that DFT formation constants are overestimated by the
same factor, regardless of the specific POM system and DFT
functional. In contrast, the intercept has a greater variability than
the slope, and when the median value was employed, the result-
ing speciation diagrams were chemically inaccurate. We attribute
this behavior to the fact that the intercept units are also in loga-
rithmic units, thus causing large deviation errors in the speciation
results. Considering that the intercept value is not constant for all
the POM systems, we have developed a multi-linear regression
protocol to predict system-characteristic intercepts only using
computed formation constants as input. Coupling this regression
protocol with our recently developed statistical treatment of
speciation diagrams, we have been able to predict the speciation
of arsenomolybdates at different As: Mo ratios with a very good
agreement with available experimental results.

In conclusion, the proposed universal scaling protocol
supposes a decisive improvement of POMSimulator's applica-
bility, removing the strong dependence on experimental
formation constants. Thus, our methodology can be extended to
POM systems where no prior experimental data are available.
Moreover, we report a statistical scheme to treat other proper-
ties requiring scaling strategies, such as the characterization of
accurate pK, values.

4 Computational details

The molecular geometries of all oxo-clusters were fully opti-
mized employing the ADF software package (SCM ADF version

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2019.1),* using the PBE functional,*** with the relativistic
corrections related to the scalar-relativistic zero-order regular
approximation (ZORA),”*** using a TZP basis set level. Solvation
effects were introduced by means of the continuous solvent
model COSMO with Klamt radii for water.® Stationary points
were characterized with analytic frequency calculations. All
Gibbs free energies were computed at 298.15 K and 1 atm, using
the ideal gas-rigid rotor-harmonic oscillator (IGRRHO) model.
Single point energy calculations using the BP86,°"**% B3LYP***”
and MO6L*® functionals were also computed from the PBE
optimized geometries. PBE thermochemical parameters were
also employed to compute Gibbs free energies.

Data availability

A dataset collection including all DFT calculations is available in
the ioChem-BD repository® via the following link: http:/
dx.doi.org/10.19061/iochem-bd-1-346. Additionally, all PBE
formation constants computed with this data and used
throughout this work have been included in a GitLab repository
https://gitlab.com/dgarayr/pomsimulator_universal_scaling,
together with the code employed to develop and validate the
multi-linear regression model.

Author contributions

All authors contributed to the conceptualization of the project,
which originated from an initial idea by CB and EP. DGR
designed the statistical procedures and validation used in this
work. JB carried out the DFT calculations. JB and DGR per-
formed curation and formal analysis of the data, under the
supervision of MSC, EP and CB, who were also responsible for
funding acquisition. DGR and JB created the original draft,
which was subsequently edited and reviewed by all authors.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We acknowledge the Spanish Ministry of Science, Innovation
and Universities MCIU/AEI/10.13039/501100011033 (PID2023-
153344NB-I00 and CEX2019-000925-S), the European Union
NextGeneration EU/PRTR (TED2021-132850B-100), the ICIQ
Foundation and the CERCA program of the Generalitat de
Catalunya for funding.

Notes and references

1 IUPAC Gold Book: Chemical Speciation, 2023, https://
goldbook.iupac.org/terms/view/C01023, Accessed: 2024-08-
31.

2 C. Berthollet, Essai de Statique Chimique (Ed.1803), Hachette
Livre, 2012.

3 A. M. M. Leal, D. A. Kulik, W. R. Smith and M. O. Saar, Pure
Appl. Chem., 2017, 89, 597-643.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

4 J. W. Stock, D. Kitzmann and A. B. C. Patzer, Mon. Not. R.
Astron. Soc., 2022, 517, 4070-4080.

5 M. P. Humphreys, E. R. Lewis, ]J. D. Sharp and D. Pierrot,
Geosci. Model Dev., 2022, 15, 15-43.

6 S. Haghighi, K. Askari, S. Hamidi and M. M. Rahimi, J. Open
Source Softw., 2018, 3, 676.

7 A. M. Leal, Reaktoro: a unified framework for modeling
chemically reactive systems, 2015, http://www.reaktoro.org/.

8 P. M. King, C. A. Reynolds and W. Richards, J. Mol
Struct.: THEOCHEM, 1990, 208, 205-221.

9 M. Schmidt am Busch and E.-W. Knapp, ChemPhysChem,
2004, 5, 1513-1522.

10 P. G. Seybold and G. C. Shields,
Rev.:Comput. Mol. Sci., 2015, 5, 290-297.

11 E. Wicke, M. Eigen and T. Ackermann, Z. Phys. Chem., 1954,
1, 340-364.

12 G. Zundel and H. Metzger, Z. Phys. Chem., 1968, 58, 225-245.

13 O. F. Mohammed, D. Pines, J. Dreyer, E. Pines and
E. T. J. Nibbering, Science, 2005, 310, 83-86.

14 P. B. Calio, C. Li and G. A. Voth, J. Am. Chem. Soc., 2021, 143,
18672-18683.

15 Y. Tian, J. Hong, D. Cao, S. You, Y. Song, B. Cheng, Z. Wang,
D. Guan, X. Liu, Z. Zhao, X.-Z. Li, L.-M. Xu, J. Guo, ]J. Chen,
E.-G. Wang and Y. Jiang, Science, 2022, 377, 315-319.

16 M. D. Liptak and G. C. Shields, J. Am. Chem. Soc., 2001, 123,
7314-7319.

17 E. Selwa, I. M. Kenney, O. Beckstein and B. I. Iorga, J.
Comput. Aided Mol. Des., 2018, 32, 1203-1216.

18 B. A. Caine, M. Bronzato, T. Fraser, N. Kidley, C. Dardonville
and P. L. A. Popelier, Commun. Chem., 2020, 3, 21.

19 J. Zheng, E. Al Ibrahim and W. H. Green, ChemRxiv, 2024,
preprint, DOI: 10.26434/chemrxiv-2024-vx797-v2.

20 P. G. Seybold, Mol. Phys., 2015, 113, 232-236.

21 S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55,
117-129.

22 S. Miertus and J. Tomasi, Chem. Phys., 1982, 65, 239-245.

23 J. L. Pascual-Ahuir, E. Silla and I. Tufion, J. Comput. Chem.,
1994, 15, 1127-1138.

24 A.V.Marenich, C.J. Cramer and D. G. Truhlar, J. Phys. Chem.
B, 2009, 113, 6378-6396.

25 A. Klamt, J. Phys. Chem., 1995, 99, 2224-2235.

26 J. Zhang, H. Zhang, T. Wu, Q. Wang and D. Van Der Spoel, J.
Theor. Chem. Comput., 2017, 13, 1034-1043.

27 G. Norjmaa, G. Ujaque and A. Lledos, Top. Catal., 2022, 65,
118-140.

28 N. I. Gumerova and A. Rompel, Chem. Soc. Rev., 2020, 49,
7568-7601.

29 N. I. Gumerova and A. Rompel, Sci. Adv., 2023, 9, eadi0814.

30 K. Azmani, M. Besora, ]. Soriano-Lopez, M. Landolsi,
A.-L. Teillout, P. de Oliveira, I.-M. Mbomekallé, J. M. Poblet
and J.-R. Galan-Mascaroés, Chem. Sci., 2021, 12, 8755-8766.

31 M. Han, W. Sun, W. Hu, Y. Liu, J. Chen, C. Zhang and J. Li,
Energy Storage Mater., 2024, 71, 103576.

32 E. Petrus, M. Segado and C. Bo, Chem. Sci., 2020, 11, 8448-
8456.

33 E. Petrus and C. Bo, J. Phys. Chem. A, 2021, 125, 5212-5219.

Wiley Interdiscip.

Digital Discovery, 2025, 4, 970-978 | 977


http://dx.doi.org/10.19061/iochem-bd-1-346
http://dx.doi.org/10.19061/iochem-bd-1-346
https://gitlab.com/dgarayr/pomsimulator_universal_scaling
https://goldbook.iupac.org/terms/view/C01023
https://goldbook.iupac.org/terms/view/C01023
http://www.reaktoro.org/
https://doi.org/10.26434/chemrxiv-2024-vx797-v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00358f

Open Access Article. Published on 14 February 2025. Downloaded on 10/30/2025 12:08:03 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

34 E. Petrus, M. Segado-Centellas and C. Bo, Inorg. Chem., 2022,
61, 13708-13718.

35 J. Buils, D. Garay-Ruiz, M. Segado-Centellas, E. Petrus and
C. Bo, Chem. Sci., 2024, 15, 14218-14227.

36 E. Petrus, J. Buils, D. Garay-Ruiz, M. Segado-Centellas and
C. Bo, petrusen/pomsimulator: Release 1.0.0, 2024, DOI:
10.5281/zenodo0.10689769.

37 E. Petrus, ]. Buils, D. Garay-Ruiz, M. Segado-Centellas and
C. Bo, J. Comput. Chem., 2024, 45, 2242-2250.

38 E. Petrus, D. Garay-Ruiz, M. Reiher and C. Bo, J. Am. Chem.
Soc., 2023, 145, 18920-18930.

39 P. Pracht, R. Wilcken, A. Udvarhelyi, S. Rodde and
S. Grimme, J. Comput. Aided Mol. Des., 2018, 32, 1139-1149.

40 J. Cruywagen, Advances in Inorganic Chemistry, Elsevier, 1999,
vol. 49, pp. 127-182.

41 G. M. Rozantsev and O. 1. Sazonova, Russ. J. Coord. Chem.,
2005, 31, 552-558.

42 K. Elvingson, A. Gonzalez Bar6 and L. Pettersson, Inorg.
Chem., 1996, 35, 3388-3393.

43 N. Etxebarria, L. A. Fernandez and J. M. Madariaga, J. Chem.
Soc., Dalton Trans., 1994, 3055-3059.

44 G. ]J.-P. Deblonde, A. Moncomble, G. Cote, S. Bélair and
A. Chagnes, RSC Adv., 2015, 5, 7619-7627.

45 L. Pettersson, I. Andersson and L. O. Oehman, Inorg. Chem.,
1986, 25, 4726-4733.

978 | Digital Discovery, 2025, 4, 970-978

View Article Online

Paper

46 G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca
Guerra, S. J. van Gisbergen, J. G. Snijders and T. Ziegler, J.
Comput. Chem., 2001, 22, 931-967.

47 E. Baerends, D. Ellis and P. Ros, Chem. Phys., 1973, 2, 41-51.

48 L. Pettersson, B. Carlsson, S. Rundqvist, A. F. Andresen and
P. Fischer, Acta Chem. Scand., 1975, 29a, 677-689.

49 E. Martinez-Nufiez, G. L. Barnes, D. R. Glowacki, S. Kopec,
D. Pelaez, A. Rodriguez, R. Rodriguez-Fernandez,
R. J. Shannon, ]J. J. P. Stewart, P. G. Tahoces and
S. A. Vazquez, J. Comput. Chem., 2021, 42, 2036-2048.

50 J. P. Unsleber, S. A. Grimmel and M. Reiher, J. Chem. Theory
Comput., 2022, 18, 5393-5409.

51 J. P. Perdew, Phys. Rev. B:Condens. Matter Mater. Phys., 1986,
33, 8822-8824.

52 J. P. Perdew, Phys. Rev. B:Condens. Matter Mater. Phys., 1986,
34, 7406.

53 E. Van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem.
Phys., 1993, 99, 4597-4610.

54 E.Van Lenthe and E. J. Baerends, J. Comput. Chem., 2003, 24,
1142-1156.

55 A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.

56 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B:Condens. Matter
Mater. Phys., 1988, 37, 785-789.

57 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

58 Y. Zhao and D. G. Truhlar, . Chem. Phys., 2006, 125, 194101.

59 M. Alvarez-Moreno, C. De Graaf, N. Lopez, F. Maseras,
J. M. Poblet and C. Bo, J. Chem. Inf. Model., 2015, 55, 95-103.

© 2025 The Author(s). Published by the Royal Society of Chemistry


https://doi.org/10.5281/zenodo.10689769
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00358f

	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f

	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f
	Towards a universal scaling method for predicting equilibrium constants of polyoxometalatesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00358f


