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discover donor molecules for organic solar cells
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Roberto Bondesan, c Martijn A. Zwijnenburg d and Kim E. Jelfs *a

Identifying organic molecules with desirable properties from the extensive chemical space can be

challenging, particularly when property evaluation methods are time-consuming and resource-intensive.

In this study, we illustrate this challenge by exploring the chemical space of large oligomers, constructed

from monomeric building blocks, for potential use in organic photovoltaics (OPV). For this purpose, we

developed a python package to search the chemical space using a building block approach: stk-search.

We use stk-search (GitHub link: STK_search) to compare a variety of search algorithms, including those

based upon Bayesian optimisation and evolutionary approaches. Initially, we evaluated and compared

the performance of different search algorithms within a precomputed search space. We then extended

our investigation to the vast chemical space of molecules formed of 6 building blocks (6-mers),

comprising over 1014 molecules. Notably, while some algorithms show only marginal improvements over

a random search approach in a relatively small, precomputed, search space, their performance in the

larger chemical space is orders of magnitude better. Specifically, Bayesianoptimisation identified

a thousand times more promising molecules with the desired properties compared to random search,

using the same computational resources.
1 Introduction

Organic semiconductors have emerged as a versatile class of
materials, holding promise for various optoelectronic applica-
tions, including in exible screens, electronic devices, and
transparent, lightweight photovoltaic systems.1,2 However, the
successful adoption and integration of organic molecules into
targeted devices heavily relies on the discovery of newmolecules
with optimal optical and electronic properties, as well as
considerations of their synthesis cost, solubility in green
solvents, and chemical and physical stability.3

Exploring the vast chemical space of molecules for organic
electronics presents a signicant challenge. With an abundance
of different molecular structures available for investigation,
even slight changes in the chemical composition can
profoundly impact the properties of these materials. Among the
various approaches to explore this chemical space, a building
block strategy is highly attractive.4,5 By constructing larger
molecules from smaller building blocks, we gain the ability to
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dene a chemical space solely based upon combinations of
these building blocks.6 This combinatorial denition of the
chemical space renders it more manageable for exploration.
Thus, the chemical space can be enumerated and is constrained
by the size of the building block library and the number of
building blocks in the oligomer molecule. With the dened
chemical space, the next step is to evaluate the potential of the
molecules for the targeted application. Ideally, we would
determine a molecule's properties by synthesising the molecule
in the laboratory and measuring its characteristics. This step is
time and resource expensive, and unfeasible at a large scale
considering the size of the chemical space. To reduce the cost of
the search, we can use computational evaluation to determine
a smaller number of potentially promising molecules.

A computational evaluation requires two steps: assembling
the building blocks to construct a molecular model, and
a second step in which the properties of the molecule are pre-
dicted using computational chemistry methods. Several tools
are available to build molecules from building blocks, offering
good starting geometries for the constructed molecules.7

Specically, we consider in this work for this purpose our
soware package stk, which offers automated assembly and
geometry optimisation.8 The next step is to evaluate the
potential of the molecule for the target application. In the
literature we can distinguish between property based evaluation
functions, which directly relate to relevant properties of the
molecule such as optoelectronic properties (e.g., excited state
Digital Discovery, 2025, 4, 2781–2796 | 2781
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energy, ionisation potential),9 and accessibility based evalua-
tion functions,10 that focus on the synthesisability of the
molecule and its ease of use for the application of interest. For
example, in the case of organic electronics, we are interested in
how easily we can deposit the molecule on a surface to form
a lm.

Evaluating optoelectronic properties typically requires
computationally expensive quantum chemistry calculations
that can take hours to days.11 Consequently, a brute force search
of the entirety of the possible chemical space quickly becomes
unfeasible. We therefore require efficient search strategies for
navigating the vast chemical space to nd the most promising
systems. One approach that has been explored is the develop-
ment of machine learning models that alleviate the use of
expensive quantum chemical calculations.12–16 These models
can be used as an initial lter in a high-throughput approach to
reduce the size of the chemical space of interest to a more
manageable size.14,17 The application of statistical models for
molecular discovery is, however, limited by the availability of
representative datasets upon which to build the statistical
model. This limitation can result in statistical models with low
accuracy and biased predictions, which could hinder the
discovery effort. Another approach relies on the use of adaptive
strategies, which selectively explore the search space, and
suggest the most promising candidates based on prior knowl-
edge.18 These adaptive strategies oen incorporate domain-
specic information, historical data, or heuristics to guide the
search process effectively. Evolutionary algorithms, as an
example, demonstrate the power of adaptation in optimisation.
These algorithms mimic the process of natural selection, iter-
atively improving candidate solutions to complex problems. By
combining variation, selection, and adaptation, they explore the
search space effectively.19,20 For instance, Greenstein et al.
employed an evolutionary algorithm, leveraging specied
building blocks, to computationally explore the space of
potential organic molecular acceptors and donors specically
for organic solar cell applications.5

Bayesian optimisation (BO) is another powerful approach for
optimising complex, expensive-to-evaluate functions. Unlike
evolutionary algorithms, which explore the search space
through variation and selection, BO leverages probabilistic
models to guide the search efficiently. Specically, it employs
a cheap-to-evaluate surrogate model that approximates the
target property of the search strategy and encodes uncertainty
about it. Leveraging this information, the system identies the
next optimal candidate for evaluation based on user-dened
criteria. BO has gained prominence as an effective approach
for guiding chemical and material discovery. BO's advantages
lie in sample efficiency, exibility, and versatility.21 For example,
Strieth-Kalthoff et al. recently used BO to explore an enumer-
ated space of organic molecules for laser applications, showing
a considerable improvement in the search efficiency compared
to other approaches.22–24 When implementing BO for chemical
or molecular discovery, the user faces considerable challenges
related to the choice of different molecular representation
options and the high dimensionality of the representation
space. Molecular representations vary widely, from traditional
2782 | Digital Discovery, 2025, 4, 2781–2796
descriptor-based vectors and molecular ngerprints (e.g., Mor-
dred, ECFP) to string-based formats like simplied molecular
input line entry system (SMILES), graph-based embeddings
used by graph neural networks (GNNs), and even grid or image-
based 3D encodings, and each representation comes with
distinct trade-offs in terms of interpretability, invariance prop-
erties, and computational cost.25 Moreover, in BO we dene
a decision criterion in the form of an acquisition function to
determine which point in the search space should be evaluated
next. The acquisition function balances the exploration-
exploitation trade-off: exploring regions of uncertainty (where
the surrogate model is uncertain about the tness), while also
exploiting promising areas (where the surrogate model predicts
high tness).26 The optimisation of the acquisition function
over the discrete spaces that are particularly relevant in chem-
ical discovery is very challenging.21,27

Here, we introduce a Python package, stk-search, that can
execute a variety of search algorithms within a molecular
chemical space. We explored the application of this package
and different search algorithms for a use case targeting organic
molecules for application in OPVs. We rst evaluated and
compared the performance of the different search algorithms
on a benchmark dataset in the form of a precomputed search
space (comprising 30 000 different oligomers) using a variety of
metrics. Then, we investigated how the performance extends to
searching across the vast chemical space of 6-mers (comprising
over 4× 1014 oligomers built from 6 constituent building blocks
taken from a library of 274 building blocks). Finally, we ana-
lysed the new oligomers and compared them to oligomers
present in the benchmark dataset.
2 Methods

We rst summarise here the overarching search strategy
employed in stk-search, followed by a description of the distinct
search algorithms implemented in the package.
2.1. stk-search overview

We developed stk-search, an open-source Python package, to
efficiently search the chemical space of molecules constructed
from smaller building blocks. The package leverages our exist-
ing stk soware, used to assemble the models of the molecules,8

along with the BoTorch package28 for Bayesian optimisation and
PyTorch29 in combination with Torch Geometric for neural
network models.30 stk-search offers Python functions to facilitate
the calculation of the molecules' properties using quantum
chemistry calculations. The resulting molecular geometries or
position matrices are stored in a MongoDB database, alongside
the results of the property predictions.

The approach used to search the chemical space within stk-
search can be summarised by the following steps (Fig. 1):

1. Denition of the chemical search space of the constructed
molecules to be explored through the choice of building blocks,
the number of building blocks, as well as connection rules for
the formation of the larger molecules. Here, the building blocks
are molecular fragments with predened connection points and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of stk-search. Summary of the procedures implemented in stk-search to explore the chemical space of molecules constructed
from building blocks. Starting from a fragment database, we first define the chemical space by generating building blocks with specific
connection points, and then establish the size and the connection rules to build the molecules (1). Next, we define an evaluation function where
we build the molecules and evaluate their properties using quantum chemistry methods (2). Finally, using an appropriate search algorithm, we
can explore the chemical space (4–5) and find molecules with the desired property.
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connection rules (SI 1.a for more details on the search space
denition).

2. Establishing an evaluation function that the search algo-
rithm will seek to maximize or minimize in a target molecule.
This function can be either a single property, or a combination
of properties.

3. Selecting an initial population of candidate molecules
from the dened chemical space, using user-dened criteria or
random or pseudo-random sampling.

4. Constructing the molecules and evaluating their proper-
ties before adding predicted structural and property informa-
tion for these molecules to the stored database.

5. Using a search algorithm to suggest new molecule(s) to
evaluate.

6. Repeating steps 4 and 5 for a user-dened number of
iterations or until the computational budget has been
exhausted.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2.2. Background of the implemented search algorithms

For the four specic types of search algorithms implemented in
stk-search, we distinguish rst between model-free methods and
methods that rely on the use of a surrogate model.

In the case of the model-free methods, we considered two
examples.

2.2.1 Random grid search (Rand). A simple approach
where the molecules evaluated are randomly selected without
replacement from the dened searched space. Without
replacement here means that once amolecule has been selected
it cannot be selected again.

2.2.2 Evolutionary algorithm (EA). A derivative-free opti-
misation approach, which explores the vast chemical space
following rules that mimic the principles of evolution. One
iteration of the EA algorithm consists of, as shown in Fig. 2, the
following steps: (i) we select an initial population of pre-
evaluated parent molecules based on their evaluation function
Digital Discovery, 2025, 4, 2781–2796 | 2783
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Fig. 2 Diagram representation of the different search algorithms implemented in stk-search. The different search algorithms include an
evolutionary algorithm (EA), surrogate EA (SUEA), and Bayesian optimisation (BO).
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(oen referred to as a ‘tness function’ in the context of EAs);
(ii) from this parent population, a new population of offspring
molecules is generated using mutation and crossover opera-
tions involving the building blocks; (iii) one or several candi-
dates are randomly selected for evaluation from within the
population of offspring molecules. These steps are then
repeated for a set number of iterations or until a predened
convergence criteria is reached. While EAs can be powerful
approaches to signicantly reduce the number of molecules
that need to be evaluated before identifying optimal molecules,
optimisation of the EA's parameters to increase its efficiency
involves adjusting many parameters, including the number of
crossovers, mutations, parents, and the number of molecules
suggested for evaluation aer each iteration.5,20,31,32 This
parameter optimisation is particularly challenging when the
evaluation function is expensive to evaluate, as in the cases
relevant to chemical discovery. For this reason, model-based
methods are more attractive.

For the model-based methods, we considered two different
approaches: methods that use the prediction of a surrogate
model without information related to the uncertainty (this is
considered a greedy approach), and methods that incorporate
a measure of uncertainty in their approach.33 Here, uncertainty
refers to the variability and potential error associated with the
prediction made by the surrogate model. The two model-based
methods are:
2784 | Digital Discovery, 2025, 4, 2781–2796
2.2.3 Surrogate evolution algorithm (SUEA). A greedy
approach that uses efficient surrogate models to approximate
the evaluation function and improve the performance of the
EA.34 We use a surrogate model trained on previously evaluated
molecules (before the start of the search campaign) to select
a molecule in the offspring population to be evaluated. At each
iteration of the search algorithm (Fig. 2), a new parent pop-
ulation is chosen, and the pretrained surrogate model is used to
identify the most promising molecule in the offspring pop-
ulation. The molecule with the best predicted property (evalu-
ated using the pretrained surrogate model), will then be
evaluated using the chosen evaluation function (expensive
evaluation function, e.g., quantum chemistry calculation) and
will be added to the population of potential parents.

2.2.4 Bayesian optimisation (BO). The second category of
model-based methods are methods that use the uncertainty of
the value predicted by the surrogate model to guide the selec-
tion of molecules to evaluate. In this context, the surrogate
model provides an estimate of the evaluation function and
predicts the uncertainty associated with that estimate. BO
transforms the optimisation problem from a costly-to-evaluate
black-box function to an acquisition function that is easier to
optimise. An example of an acquisition function is the sum of
the predicted value and its uncertainty (usually a multiple of the
standard deviation or variance of the predicted value), known as
the upper condence bound (UCB). When the UCB serves as the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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acquisition function, selecting a potential molecule depends
not only on the predicted evaluation function but also on our
condence (or uncertainty) in that prediction. One iteration of
BO within stk-search consists of the following steps: (i) train
a surrogate model using Gaussian processes on all or a subset of
the evaluated molecules in the search space; (ii) nd the
molecule(s) in the search space with the highest acquisition
function; (iii) evaluate the molecule(s) and add them to the list
of molecules the Gaussian process will be trained on. The
search algorithm is run for a set number of iterations or until
the computation budget is exhausted. For the acquisition
function, we can use several acquisition functions implemented
in BoTorch, such as expected improvement and UCB. The ex-
pected improvement (EI) acquisition function measures how
much better a potential solution is expected to perform
compared to the current best solution. The optimisation of the
acquisition function over the space of molecules is a chal-
lenging endeavour. As the acquisition function is a quick to
evaluate function, we use an EA to optimise it. In each iteration
of the BO search algorithm, we optimisize the acquisition
function using an EA. The EA runs for multiple iterations until it
converges, and we consider many (in the order of thousands)
molecules per generation. The use of the EA here avoids the
need to evaluate the acquisition function across the entire
chemical space, which is infeasible due to the vast number of
molecules.
2.3. Surrogate models

For the two model-based methods, we consider models that
relate a mathematical representation of molecules to their
desired property. The model is trained on prior evaluation of
the molecules in the search space. For SUEA, since the model is
pretrained before the search process, we can utilize any avail-
able model if the inference cost is manageable. This means we
can employ traditional machine learning models like random
forests for specic molecular representations, or graph neural
networks that leverage the position and nature of atoms to
construct a representation.35,36

For BO, it is essential to use a surrogate model that can be
trained quickly and provides an uncertainty measure. There-
fore, Gaussian processes are commonly preferred for BO.21 The
use of Gaussian processes for molecular systems requires the
representation of molecules as mathematical objects, such as
arrays or graphs.37–39 The choice of such representation can
strongly inuence the performance of the search algorithm, and
this choice can be done prior to the search by analysing the
existing data we have for the search space. We distinguish here
between constructed molecular representations built from
a chosen set of properties or molecular descriptors of a mole-
cule's building blocks and learned molecular representations
from data available prior to the search campaign. Apart from
the choice of representation, for the Gaussian process, the user
needs to choose among different kernels that dene how the
similarity between two molecules relates to the target property.
The similarity between two molecules is a function of the
representation used, which in this case is oen an array
© 2025 The Author(s). Published by the Royal Society of Chemistry
representation of the molecules. The different kernels currently
implemented in stk-search are Mattern, Tanimoto and radial
basis function.39,40

In stk-search, we have incorporated the ability to train and
utilize surrogate models based on GNNs. GNNs are powerful
models for learning representations from graphical data,
making them well-suited for modelling molecular systems.
GNNs operate by iteratively updating node features using
message-passing operations within the graph structure. The
models considered here are 3D based models such as SchNet
that take the position matrix of the atoms forming the mole-
cules as input and predict a scalar property of the mole-
cule.12,15,41,42 Our implementation relies on the implementation
of a graph neural network by Liu et al. in their package
Geom3D.15 Since molecules are dened by building blocks and
assembly constraints, their atom position matrix is not imme-
diately accessible. To address this, we employ stk to assemble
the molecules and create an initial geometry. We then use this
generated position matrix as input for our model. The initial
geometry step is efficient and parallelizable, ensuring it does
not impact the search algorithm's performance. Additionally,
when molecular geometry signicantly inuences the evalua-
tion function, we incorporate a training step that relates the
specic quantum calculation's geometry to the one initially
generated by stk.

3 Results and discussion
3.1. Search space denition

We used stk-search on a specic use case; exploring the chemical
space of oligomers formed of 6 building blocks, representative
of the oligomers and polymers in organic semiconductor
applications.5 For example, the non-fullerene acceptors used in
OPV applications can be split into 3 to 5 different constituent
building blocks: ADA or ADA’DA, where A is an electron de-
cient unit and D an electron rich unit.43 For the donor mole-
cules, they can be complex copolymers for which the unit cells
can be split into 4 to 6 building blocks.44 The chemical space
considered here would cover both the space of donors and
acceptors currently used and much more. Without introducing
any conditions on the building blocks and their positions in the
molecule, the number of molecules in the chemical space is N6,
where N is the number of unique building blocks considered.

As a test case with relevance to the broader organic elec-
tronics eld, we specically sought donor oligomers that would
work efficiently in a single layer bulk-heterojunction device with
the most efficient acceptor in the eld (namely Y6 (ref. 44)). We
chose here to focus on donor oligomers formed of 6 building
blocks as a compromise between loss of accuracy in shortening
the oligomer, and the increased cost of screening larger
systems. Prior work by some of us showed that the optoelec-
tronic properties of interest here converge with oligomer chain
lengths of 6 monomers.45 Hence the properties of an hexamer
are representative of those of longer oligomers.The compati-
bility of the polymer with Y6 requires the donor oligomer to
have an ionisation potential (IP) 0.1 to 0.2 eV higher than Y6
(which is around 5.65 eV relative to vacuum as experimentally
Digital Discovery, 2025, 4, 2781–2796 | 2785
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measured46) to reduce the energy losses related to the exciton
dissociation process and ensure high charge generation yield.47

The donor should also absorb strongly in the spectral region
where Y6 absorbs little or no light (in the spectral region from
400–550 nm). These oligomer properties can be calculated
using density functional theory (DFT), and time-dependent
density functional theory (TD-DFT).48,49 Specically, we can
calculate the vertical ionisation potential of a single oligomer in
vacuum as the difference in ground state energy between the
neutral oligomer and its positively charged version. For the
optical properties, we limit our calculation to the properties of
the rst vertical excited state using TD-DFT calculations. We
calculate the energy of the rst excited state (ES1) as a proxy for
the spectral region where the molecule would absorb, and the
oscillator strength of the transition from ground state to rst
excited state (fosc,S1) as a proxy for the strength of the transition
(i.e. the absorption coefficient).50

We used the stk-generated geometries as initial input, then
used the Experimental-Torsion basic Knowledge Distance
Geometry (ETKDG) approach in stk/RDKit to generate a rst
geometry.51 Next, we optimised the geometry to the lowest
energy conformer using GFN2-xTB52 and calculated the vertical
ionisation potential and electron affinity using the IPEA option
in xTB. The optical properties of the oligomers were calculated
using sTDA-xTB.53 The properties calculated using this combi-
nation of methods can be related to the experimentally
measured properties using a linear transformation.54 Hence
this method combination was chosen because it provides
a good balance between computational efficiency and accuracy,
making it suitable for the high-throughput screening of
potential donor molecules for OPV applications.45 Inherently
more accurate but expensive methods or, indeed, experiments
can be used to evaluate the most promising candidates further,
but this is out of the scope of the paper, as our main focus is on
the comparison between the different search approaches.

To create an evaluation of potential oligomeric molecules
that considers the factors mentioned above, we used the
following evaluation function that is a combination of the three
properties (IP, ES1, fosc,S1):

Fcomb = −jES1 − 3j − jIP − 5.5j + log10(fosc,S1) (1)

We will refer to the value of the evaluation function (eqn (1))
for a molecule as the combined property function (Fcomb) of the
molecule. The ideal IP is set to 5.5 eV, and the target excited
state energy to 3 eV (∼410 nm). The oscillator strength in this
case should be maximised. A value of Fcomb above zero means
that we have molecules with IP and ES1 close to the target, and
an fosc,S1 above 1. An oscillator strength above 1 can be related to
an absorption coefficient of the lm of a value ∼0.02 nm−1

(depending on the arrangement of the molecules and other
parameters), meaning a lm of a thickness of ∼50 nm would
absorb all the light at that wavelength.55 In the case where fosc,S1
is zero, indicating a dark rst excited state which is detrimental
for the use of the molecule as donor in an organic solar cell; the
overall score of the molecule in this case is set to a low value of
2786 | Digital Discovery, 2025, 4, 2781–2796
−10. We provide in the SI 1.e details on the computational
implementation of the evaluation function.

The chemical space considered in this example, consists of
131 different fragments from the library of Greenstein et al.,5

these are shown in Fig. S1. We limited the number of atoms per
fragment to 30 non-hydrogen atoms. The library of fragments
can be combined into building blocks and becomes a library of
N = 274 different building blocks when all possible routes to
combining the fragments are considered. We manually clus-
tered these building blocks by chemical similarity and repre-
sentative molecules for each cluster are shown in Fig. 3a (Fig. S9
shows the different clusters in 2-dimensional space). These
clusters would help us analyse the overall performance of the
molecules suggested by the different search algorithms. Cluster
0, for example, is formed of building blocks similar to 3-
(dicyanomethylidene)indan-1-one (2HIC), which is an electron
withdrawing end-group commonly used to prepare non-
fullerene acceptors.56 Whereas cluster 4 is formed of three
fused-ring building blocks such as uorene derivatives, which
are commonly used in polymer semiconductors.

All ways of combining the 274 building blocks presented
above creates a chemical space of N6 > 1014 different 6-mers. In
what follows, we rst assess the performance of 6 different
search algorithms on a constrained chemical space limited to
30 000 randomly precalculated 6-mers from this chemical
space. Subsequently we used the different search algorithms to
search the larger full 1014 chemical space.
3.2. Implemented search approaches

Using the four distinct search algorithms described in Section
2, we applied them here with different implementations to
create six distinct search approaches. These include the four
search algorithms Rand, EA, BO and SUEA. For the BO we
consider three different implementations that differ in the
representation and surrogate model considered. Here, we
consider three different representations to investigate the
impact of choosing a molecular representation on the search
algorithm performance. Specically, the six search approaches
considered are:

1. Random search (Rand): used as our baseline case.
2. Evolutionary algorithm (EA); we applied a simple case

where ve parents are chosen for each generation. Two of the
parents are chosen randomly, and the other three are taken as
the molecules with the highest Fcomb in the current population.
Next, we consider all the mutation and crossover operations
possible to generate an offspring population and randomly
select a molecule in the offspring population to evaluate. See SI
1.d for more details.

3. Surrogate EA (SUEA); We used the same approach as the
EA in (2) but using a pretrained model to select the best mole-
cule in the offspring population, rather than randomly choosing
one. The pretrained model used here is a deep neural network
that relies on the architecture of SchNet.12 SchNet was selected
due to its well-demonstrated balance between computational
efficiency and representational power, making it a practical yet
effective choice for large-scale screening tasks. We use SchNet to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Features of the precalculated search space of 30 000 6-mer molecules; (a) different representative building blocks for 6 different clusters
of oligomers; (b) Violin representation of the distribution of Fcomb values of the oligomers with dominant building blocks from different clusters.
Here we defined the “dominant building block cluster” as the most frequent building block in the molecule, and when there is no dominant
building block cluster, we classify the constructed molecules as “mixed”; the dashed lines split the distribution into 4 quartiles. (c) The frequency
of molecules in each cluster of dominant building block clusters.
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generate an array representation of the molecules that takes as
input the atom types and their coordinates in a specic geom-
etry. This representation is then passed through a feed forward
neural network to predict Fcomb. Since the properties considered
here are strongly affected by the geometry of the molecules
considered, we aim to generate a representation of the molecule
that is related to their optimised geometry in the ground state at
0 K, i.e. the geometry generated following the optimisation
using xTB. However, we want to avoid running relatively
expensive xTB geometry optimisations to predict the property of
interest using the surrogate model. Hence, we include a simple
neural network in the training process to map the representa-
tion generated using SchNet with the position matrix of the
molecules from the stk-generated geometry to the representa-
tion generated with the xTB optimised geometry. The model is
trained on a subset of the precalculated molecules in the
database. See SI 1.d more details about the SUEA implementa-
tion, and SI 1.e for details on the implementation of the
surrogate model used.

4. Bayesian optimisation with a representation generated
using the optoelectronic properties of the molecules building
blocks (BO-Prop). We considered this representation to have
potential benet given that the optoelectronic properties of the
larger molecules are related to optoelectronic properties of the
building blocks.25 Here, we specically consider a list of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
properties of the building block calculated using xTB and sTDA-
xTB; IP, fosc,S1 and ES1.52,53

5. Bayesian optimisation with Mordred descriptors of the
building blocks (BO-Mord). This considers more general
descriptors that are not limited to optoelectronic properties of
the building blocks. We built a lower dimensionality represen-
tation of the 1200 descriptors available in the Mordred program
for each building block and concatenated them to form an array
representation of the molecule.57

6. Bayesian optimisation with a learned representation (BO-
Learned), where we used a data driven approach to learn a rele-
vant representation for the property of interest using prior
generated data (i.e. data generated from previous exploration of
the search space and stored in the database). We used the same
neural network as for the surrogate model presented in the
SUEA in (3) to generate a representation of the molecule. This
approach is similar to using a deep kernel to describe the
similarity between the molecules for the Gaussian process.58

Using this learned representation, we aimed to investigate how
the search algorithm would be affected if we used a represen-
tation inferred from tting prior data. Further details are in SI
1.d and 1.e. This approach addresses the limitation of Gaussian
processes when dealing with large datasets. It achieves this by
using a molecular representation that has been learned from
a larger number of training molecules. This representation
Digital Discovery, 2025, 4, 2781–2796 | 2787
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improves the performance of the Gaussian processes without
them needing to be trained on the same number of molecules.59

The selection of parameters for various search algorithms
can introduce considerable bias, affecting the performance and
outcomes in molecular discovery. For example, in an EA, the
choice of parents and the types of mutation and crossover
operations can direct the search towards specic regions of the
chemical space, potentially neglecting other promising areas.
Similarly, in BO, the selection of surrogate models and molec-
ular representations can result in biased predictions. Further-
more, the use of pretrained models in SUEA and BO-Learned
involves another set of hyperparameters that can signicantly
inuence the search results. Given the complexity of evaluating
the overall performance of a search algorithm for a particular
task, as discussed in more detail in the following section, we
limited our choice of search algorithm parameters to a specic
set established through a non-exhaustive parameter
exploration.
3.3. Assessing the performance of the search algorithms

Assessing the performance of a search algorithm and approach
on unknown chemical space is challenging due to the consid-
erable number of parameters to consider. Different search
algorithms can perform better or worse for different tasks, and
it is oen hard to predict their performance on an unknown
space a priori.60–62 Here, the aim of our search campaign was to
nd new molecules with target properties above a threshold
with the least number of quantum chemical calculations having
to be performed, given that the quantum chemical calculations
are the bottleneck for the high-throughput exploration, and
have the largest resource cost.

We rst describe the performance of the search algorithm on
a restricted benchmark space where we limit the chemical space
to 30 000 molecules the properties of which we had previously
calculated. Running the search on a benchmark where we know
the best solutions helps us to assess how well the search
approaches perform. Subsequently we assess the performance
of the search algorithm when run over the space with more than
1014 molecules.

3.3.1 Benchmark comparison of search algorithm perfor-
mance. The initial precalculated benchmark space, comprising
30 000 molecules, was selected randomly from the total search
space of >1014 molecules. Fig. S12 shows a 2D projection of the
chemical space using principal component analysis (PCA) and
demonstrates that the precalculated chemical space is diverse
and samples across the total search space. Fig. 3b shows that no
particular building block cluster dominates for either high or
low Fcomb values. This is expected as the link between the olig-
omers structure and these properties is more complex than
that.45,49

We ran each of the six different search approaches described
above (Rand, EA, SUEA, BO-Prop, BO-Mord and BO-Learned) for
400 iterations with an initial random population of 50 mole-
cules. We limited the search to a specic number of iterations to
mimic the case where we are constrained by computational
resources and can only evaluate a limited number of molecules
2788 | Digital Discovery, 2025, 4, 2781–2796
using the expensive evaluation function.61 We are interested in
evaluating how fast the search algorithms nd the top 1% of the
molecules in the dataset (300 molecules in our case). For the
search algorithms that required pretraining (of the represen-
tation for BO-Learned and of the surrogate model for SUEA), we
hid this top 1% molecules from the training and validation
datasets, and then pretrained on a random selection of 20 000
of the remaining 27 700 molecules in the dataset (performance
of the surrogate model is presented in Section S5). A compar-
ison between the performance of the search algorithm with
a smaller training set of 10 000 molecules is shown in the SI
Section 5. To take into consideration the stochastic nature of
the search algorithms, we averaged our results over 25 separate
runs starting with different initial populations.

The results are shown in Fig. 4. For the six different search
approaches, we analysed the best (highest) value of Fcomb found
for any oligomer evaluated up to the current iteration (Fig. 4a)
and the mean Fcomb for the oligomers at each iteration up to the
current one (Fig. 4b). The rst metric (shown in Fig. 4a) shows
how fast the algorithm nds the molecules with the best
properties. The second metric (Fig. 4b) assesses the overall
performance of the search algorithm in suggesting molecules
that are better than the average molecule in the search space
when compared to the baseline. Compared to the baseline
Rand, the other ve search methods consistently identied
molecules with a higher Fcomb value aer only 100 iterations,
outperforming the best result obtained by Rand aer 400 iter-
ations. SUEAmanages to consistently ndmolecules among the
top 30 molecules (top 0.1% in the dataset) aer less than 100
iterations. BO-Learned is the second best and shows a similar
rise in maximum Fcomb to SUEA in the rst iterations, however it
only reaches the same maximum value as SUEA aer 300 iter-
ations. The use of the pretrained representation/model speeds
up the performance of the search approaches in nding the best
molecules in the dataset. The pretraining also helps the
approaches choose molecules with a higher Fcomb in individual
iterations. Examination of the molecules selected in the
different runs shows that very similar molecules are being
selected across different runs of both BO-Learned and SUEA for
the rst 50 to 100 iterations (Fig. S18).63 Aer the rst 100
iterations, BO-Learned started suggesting more diverse mole-
cules. For the other search algorithms, EA performs better than
BO-Mord and BO-Prop in the rst iterations, but then gets stuck
in a region of lower performing molecules and fails to consis-
tently nd the top 30 molecules aer 400 iterations. BO-Mord
and BO-Prop show a slow but consistent Fcomb improvement
over the full 400 iterations, as the surrogate model better learns
the search space and begins to perform similarly to SUEA and
BO-Learned aer 350 iterations.

Fig. 4c and d focus on exploring how well the search
approaches performed at nding the top 1% (300) of molecules,
with Fig. 4c showing the number of top 1%molecules found up
to a given iteration and Fig. 4d showing the discovery rate of the
top 1% of molecules, which we calculate as (number of top
molecules found)/(number of iterations). All other search
approaches outperform Rand by these metrics, as expected. BO-
Learned performed the best in nding the highest number of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Performance of the six different search approaches on the precalculated benchmark dataset of 30 000 molecules. The solid-coloured
lines show the mean Fcomb over 25 runs with different initial populations and the coloured shaded area shows the variance of the Fcomb over
those different runs; (a) maximum Fcomb found for an oligomer up to the current iteration. The histogram on the right shows the distribution of
the oligomers in the benchmark dataset; (b) mean Fcomb of the oligomers found up to the current iteration; (c) number of oligomers in the top 1%
found up to the current iteration (top 1% is 300molecules); (d) discovery rate of the top 1% oligomers in the dataset, calculated as the (number of
top molecules found)/(number of iterations).
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top molecules aer 400 iterations, approximately 35 top mole-
cules found on average. The discovery rate of top molecules was
particularly high in the early iterations for both SUEA and BO-
Learned, before falling over the course of the searches, sug-
gesting the learned representation/model were performing well
from the outset. For BO-Prop and BO-Mord, the discovery rate
increases slowly in the rst 100 iterations, then it drops slightly
later. By the end of 400 iterations, BO-Mord and BO-Prop nd as
many top molecules as SUEA.

Ideally, you would be able to complete a search such that the
top solutions were found regardless of the initial population.
This is not yet the case for the 400 iterations here, and some
search approaches, in particular EA, show much greater vari-
ance of outcome dependent on the 25 different initial pop-
ulations (as exemplied by wider shaded areas in Fig. 4). This
emphasises how more effective methods to seed the initial
population could signicantly improve the search performance.

We extended the evaluation of the search strategies to 800
iterations, allowing each algorithm to explore a larger portion of
the chemical space: exceeding 2% of the total benchmark.
Compared to the 400-iteration results, a key difference emerged:
the random search (Rand) consistently outperformed the
model-based approaches aer around 700 iterations,
© 2025 The Author(s). Published by the Royal Society of Chemistry
identifying molecules with higher Fcomb scores (see SI Section
4.b). This outcome underscores the growing impact of dataset-
induced biases over longer search horizons. In particular,
model-based algorithms such as SUEA and BO are increasingly
constrained by the structural biases in the dataset, favouring
molecules composed of frequently occurring building blocks.
These biases limit the algorithms' ability to explore under-
represented regions of chemical space, especially when the
surrogate models and acquisition functions (e.g., Expected
Improvement) prioritize candidates that are structurally similar
to the majority of the dataset.

Next, we examined the transferability of these observations
to the muchmore demanding task of searching the unrestricted
space of more than 1014 different 6-mer molecules.

3.3.2 Performance of the search algorithms over the full
search space. To compare the six different search approaches
over the full search space, we ran each approach with a time
restriction of 8 hours for a single run, and with the same
computational constraints (30 CPUs and 50 GB of memory). The
number of iterations performed by each search run depended
therefore on the computational time for calculation of Fcomb for
molecules, as well as the computational time needed to suggest
new molecules to evaluate. We considered 50 independent runs
Digital Discovery, 2025, 4, 2781–2796 | 2789
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(with different initial populations) using the same six algo-
rithms used in the benchmark. For SUEA and BO-Learned, the
trained model/representation was the same as for the bench-
mark study. For each search run, we started from an initial
random population of 290 molecules, to which we added the
best 10 molecules in the precalculated benchmark space. Add-
ing the best molecules found in the searched space helps ensure
that the search approaches start with a better initial population.

Fig. 5 shows the distribution of Fcomb for the new molecules
suggested by the different search approaches along the distri-
bution of Fcomb for the oligomers in the database (in grey). We
added the distribution of Fcomb of the molecules suggested by
BO-Learned in black in the other plots to facilitate the compar-
ison. First, compared to the molecules present in the bench-
mark (grey distribution), all the search approaches apart from
Rand suggested molecules with higher Fcomb. For example, the
mean value of Fcomb for the molecules suggested by BO-Learned
is around 0.2, where the mean value of Fcomb for the molecules
in the benchmark was close to −1.9. Second, we nd that BO-
Learned suggested molecules with overall higher Fcomb

compared to the other search approaches. BO-Learned sug-
gested the highest ratio of molecules with Fcomb higher than
0 (69% of suggested molecules), next best by this metric was BO-
Prop (60%), then SUEA (54%).
Fig. 5 Distribution of the combined property function (Fcomb) for themol
the distribution of the benchmark dataset. The black distribution shows t
The pink dashed line shows the threshold to have target property above
benchmark.

2790 | Digital Discovery, 2025, 4, 2781–2796
However, if we explore other metrics to compare the
performance of the search approaches, it is a different story.
Exploring how the approaches performed at nding molecules
with Fcomb higher than the ones in the initial benchmark
dataset, we found that BO-Mord suggested the highest number
of better performing molecules (16 molecules, Table 1), twice as
many as BO-Learned. Although BO-Learned uses a representation
of the molecules that is better at predicting their combined
property, it fails to nd molecules better than the ones in the
benchmark. BO-Prop and SUEA each only found one new
molecule better than the ones in the initial benchmark, per-
forming as good as the EA that is not model-based approach.

To assess the generality of the observations made on the rst
set of runs, we repeated all the search runs, but this time we
trained the models/representations on the total calculated
dataset at this point of 58 000 molecules, that is the original 30
000 molecules, along with the 28 000 molecules calculated in
the preceding runs. The SchNet model was retrained, and this
acts as the surrogate model for SUEA and the model to generate
the representation for BO-Learned. For the other search
approach, the new set of runs includes the best molecules found
in the 58 000 molecules dataset in the initial population. The
Fcomb distribution of the molecules in the new 58 000 dataset is
shown in Fig. S26. The performance of the search algorithms in
ecules suggested by each search approach. The grey distribution shows
he distribution from the BO-Learned search algorithm for comparison.
0 and the red dashed line shows the Fcomb of the best molecule in the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of themetrics to compare performance of the different search approaches over the entire search space. Any approaches with
pretraining components were pretrained on 20 000 molecules

Search algorithm Unique new evaluations
Unique molecules
with Fcomb > 0

Rate of discovery of
molecules with Fcomb > 0

Molecules found better than
benchmark dataset.
(outstanding molecules)

BO-Learned 2096 1439 69% 8
BO-Mord 2675 535 20% 16
BO-Prop 3868 2336 60% 1
SUEA 722 394 54% 1
EA 3614 1146 32% 1
Rand 2887 0 0% 0
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the second set runs is shown in Fig. S27 and Table 2. Similar to
the rst set of results, these ndings indicate that the molecules
proposed by BO-Learned, SUEA, and BO-Prop have in average
higher Fcomb than the ones suggested by the other search
approaches. Additionally, in this set of runs, EA identied the
highest number of molecules with Fcomb higher better than the
best molecule in the starting dataset: 7 newmolecules. Followed
by BO-Mord that found 5 new molecules. This further conrms
that the improved performance of the surrogate models to
predict the value of Fcomb on the starting dataset reduced the
chance of the algorithm to nd molecules better than the ones
in the starting dataset. This relates to the limitation of the
models to extrapolate outside of their training dataset.64

The results of the search approaches consistently show that
the algorithms that use a more accurate surrogate model help
the search nd molecules with in average higher Fcomb (SUEA,
BO-Learned, BO-Prop). For BO-Mord, the algorithm only suggests
20–31% of molecules with Fcomb > 0 as compared to 69–54% for
BO-learned. The representation used for BO-Mord did not help
distinguish molecules by their Fcomb value. EA showed a similar
performance at suggesting molecules with Fcomb > 0 (32% in the
rst and second set of runs). However, the two search algo-
rithms EA and BO-Mord, showed better performance at nding
outstanding molecules, i.e. molecules better than the current
ones in the starting dataset. This result raises the question of
whether a better representation or using a better surrogate
model can results in reduced chances of nding molecules
better than the ones we had in the starting dataset. This
observation is even more important in the case of SUEA, as the
surrogate model only considers the predicted combined prop-
erty without any information about its uncertainty. Hence using
Table 2 Summary of themetrics to compare performance of the differen
pretraining components were pretrained on 58 000 molecules. The star

Search algorithm Unique new evaluations
Unique molecul
with Fcomb > 0

BO-Learned 841 458
BO-Mord 1273 406
BO-Prop 1799 893
SUEA 1037 1004
EA 1637 544
Rand 1236 0

© 2025 The Author(s). Published by the Royal Society of Chemistry
a pretrained machine learning model can introduce a consid-
erable bias that limits the performance of the search algorithm.

3.3.3 Computational resources needed to run the algo-
rithms. In this part, we discuss the impact of the computational
time needed to run the search algorithm on the number of
molecules evaluated when using a xed computational
resource. In the two sets of runs presented above, the number of
unique new molecules that have been evaluated using the
different search approach is different (rst column of Tables 1
and 2). Although the same computational resources are allo-
cated to all the different runs, the difference is caused by three
aspects; (1) some search algorithms take more computational
time to suggest a new element to evaluate. For example, BO-
Learned needs to generate the learned representation for many
molecules before choosing the one with the highest acquisition
function. The cost of this optimisation has a signicant impact
here because the time needed to evaluate a molecule is
comparable to the time it needs to optimise the acquisition
function. Improving the algorithm used to optimise the acqui-
sition function could reduce this computational cost. (2) The
computational time to evaluate molecules can vary from 3 to
20 min depending on the size of the molecule (Fig. S29 and S30
in the SI). (3) When two separate runs simultaneously suggest
the same molecule to evaluate, the calculations are run twice.
Whereas, if a molecule that has been previously calculated, it
will not need to be recalculated. This issue mainly affects the
SUEA, as the different runs have a higher chance of suggesting
the samemolecules to evaluate at the same time. Further details
about the computation time can be found in the SI Section 8.

Additionally, it is important to note that both BO-Learned and
SUEA depend on a pretrained model, which in this instance was
trained on data generated before the search approach began. The
t search approaches over the entire search space. Any approaches with
ting dataset here refers to the dataset with 58 000 molecules

es Rate of discovery of
molecules with Fcomb > 0

Molecules found better than
starting dataset.
(outstanding molecules)

54% 4
31% 5
50% 2
86% 1
32% 7
0% 0

Digital Discovery, 2025, 4, 2781–2796 | 2791
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process of generating and training this model increases the
computational cost of these methods, potentially making them
less appealing when there is no initial data available.

3.3.4 Discussion of algorithm performance and surrogate
models. Above, we have investigated the performance of six
different search algorithms in exploring the chemical space of
donor molecules for OPV applications. Our ndings indicate
that surrogate models signicantly enhance the search algo-
rithms' ability to identify superior molecules. The effectiveness
of these algorithms in nding molecules above a certain
threshold is closely tied to the accuracy of the surrogate models.
In essence, more accurate surrogate models are generally
benecial for the search process. This observation aligns with
several other studies which emphasize the critical role of model
delity in guiding molecular discovery.61,62

Additionally, we observed that when searching the full chem-
ical space, algorithms with the best surrogate functions (such as
BO-Learned and SUEA) tend to nd fewer exceptional molecules
compared to searches using less accurate surrogate models (like
BO-Mord) or heuristic-based searches (EA). This discrepancy is
due to the surrogate models' limitations in predicting molecules
outside their training distribution, which includes these excep-
tional molecules. Furthermore, the strong performance of EA in
discovering outstanding molecules is not unique to our study;
Tripp et al. demonstrated that EA can oen outperform more
complex machine learning methods.65 Overcoming this limita-
tion in surrogate models, specically their reduced generaliz-
ability to chemical regions under-represented or absent in
training data, could be done through combining different model-
based searches with heuristic search such as EA.66

The failure of the BO based algorithms in nding
outstanding molecules is also related to the challenge of accu-
rate uncertainty prediction of molecular properties. Improved
uncertainty prediction requires an adapted molecular repre-
sentation for the target application which is used to compute
the distances/similarity between the molecules. In this work, we
investigated three different molecular representations, and
found that learned representations can outperform expert-
curated ones. Furthermore, we demonstrated that achieving
strong performance on a benchmark specically tailored to the
task does not necessarily lead to improved identication of
exceptional molecules across the entire chemical space.33,67

In the context of choosing the best search algorithm for the
application at hand, we recommend using a combination of
a surrogate model-based approach (BO-Learned in this case)
with a heuristic based approach (EA). This combination would
reduce the impact of the bias introduced by the surrogate model
or the molecular representation. Coupling this strategy with in-
depth analysis of the suggested molecules can help guide the
search toward promising regions of the chemical space. To our
knowledge, such detailed chemical space analysis is not yet fully
automated and would still require a ‘human in the loop'.68–70
3.4. Analysing the suggested molecules

We have demonstrated the use of six different search
approaches to explore the chemical space of donor molecules
2792 | Digital Discovery, 2025, 4, 2781–2796
constructed from various building blocks. In this study, we
employed an evaluation function that focuses exclusively on the
electronic and optical properties of the molecules, which can be
computed relatively quickly using xTB and xTB-sTDA. This
choice represents a compromise between relevance and
computational efficiency. While more advanced evaluation
functions are available within the same package, their use was
beyond the scope of this work. Consequently, the molecules
identied by the different search approaches can be considered
as preliminary candidates for more detailed investigations.

The Fcomb distribution of all the molecules calculated over all
the runs here (78 000 molecules) is signicantly different to that
of the initial benchmark dataset (Fig. 6c and d, where the grey
shadow shows the distribution in the benchmark dataset). In
the benchmark dataset, less than 1% of themolecules had Fcomb

higher than zero, in the nal dataset, more than 22% of the
molecules did. This result conrms the performance of the
different search algorithms compared to a random search. We
also calculated the properties for ten of the best performing
molecules using DFT/TDDFT, which conrms that the identi-
ed molecules are promising for the targeted application (more
details are in the SI Section 9). We have shown that nding
molecules with ideal optical and electronic properties that
match the requirement established is not particularly hard
given these molecules are not rare (at least within the property
range predicted by the computational setup used here). The
next step would be to build on the ndings of this work to
establish harder requirements such as the synthesizability of
the molecules, the molecular packing, and other properties
impacting the exciton lifetime and the charge carrier
transport.71–73

In Fig. 6c and d, we show the impact of the presence of
particular building blocks from a specic cluster on the
performance of the molecules. Here, we nd that the presence
of more than two building blocks from cluster 4 (with the 3
rings fused structures) in the molecule results in a higher Fcomb,
with a mean above zero. This explains their overwhelming
presence in the new dataset, almost 30 000 of the newmolecules
are in this category. In cluster 4, we can nd the benzodithio-
phene (BDT) structures. BDT and its derivatives are the donor
units in most donor polymers that show high power conversion
efficiency in OPV devices that use Y6 as the acceptor molecule
(e.g., PM6, D18 (ref. 44)). This conrms that our computational
approach agrees with the current experimental results and
efforts in nding good donor molecules for Y6. Two examples of
the best performing molecules are shown in Fig. 6a. Consid-
ering only the fragments in cluster 4, we nd that among the
same cluster, two specic building blocks are better than the
rest, these are shown in the Fig. 6b. It is interesting that the BDT
unit is not among the absolute best building blocks; for
example, 4,40-alkyl-cyclopenta[2,1-b:3,4-b0]dithiophene (CDT)
was more common in the best performing molecules. Experi-
mentally, the CDT unit is common in donor polymers which
performed better with fullerene-based acceptors.74 On the other
hand, the presence of building blocks from cluster 0 more than
once in the molecules results in an overall reduced Fcomb.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Analysis of all oligomers predicted here across all runs. (a) Examples of the best performing oligomers with their values of ES1, IP and fosc,S1.
(b) The best and worst performing fragments based on the average Fcomb of molecules containing that fragment. (c) Distribution of the combined
property grouped by oligomers with building blocks from different clusters. Here we define the dominant building block cluster for a molecule as
the cluster with the highest number of building block present in the molecule. If no cluster is dominant, we label the molecule as “mixed.” The
grey violin plots show the data in the benchmark dataset. The lines divide the distribution into quartiles. (d) number of molecules in the dataset
grouped by dominant building block cluster. The grey/darker bins show the data in the benchmark dataset.
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4 Conclusions

We have introduced stk-search, a package to run search algo-
rithms over molecules constructed from building blocks, and
easily transferable to different use cases. The package considers
the denition of the search space based upon the building block
library provided, and the connectivity process for constructing
molecules from the building blocks. The package also allows
the use of different search algorithms including (a) evolutionary
© 2025 The Author(s). Published by the Royal Society of Chemistry
algorithms which guide the exploration of the chemical space
using rules similar to species evolution (EA), (b) An enhanced
version of the EA that uses a surrogate model to improve the
selection of molecules to evaluate called Surrogate EA (SUEA),
and (c) an approach that uses the prediction of the molecules
performance using a surrogate model as well as the uncertainty
on this prediction, namely Bayesian Optimisation (BO). The
package also offers different metrics to evaluate the perfor-
mance of the search algorithms.
Digital Discovery, 2025, 4, 2781–2796 | 2793
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We used stk-search here to search the space of molecules for
application as donors for organic photovoltaic (OPV) applica-
tions. We rst assessed the overall performance of six different
search approaches (including 3 different BO with different
molecular representations) over a restricted precalculated
benchmark space of 30 000molecules. In these results we found
a strong correlation between the search approaches that sug-
gested overall better molecules considering the combined
property function (Fcomb) and their ability to nd the molecules
in the top 1% in the dataset. The explorations with BO-Learned
and SUEA managed to nd the best performing results mole-
cules with the least number or iterations. The exploration with
these search approaches found the highest number of mole-
cules in the top 1% at the end of the 400 iterations.

When using the different search approaches over a larger
search space of >1014 molecules, we found that the performance
differed signicantly to that of the smaller search space. Inmost
cases, the search approaches performed better than in the
restricted space. The search algorithms using an efficient
surrogate model (BO-Learned, BO-Prop and SUEA), showed
a considerable increase in the rate of discovery of molecules
with Fcomb above a specied target. On the other hand, the
simple EA, or the BO-Mord using Mordred-based descriptors
performed well in nding better molecules than the ones
already in the dataset. The added complexity in dening a better
representation or using a better surrogate model, only helped
guide the search toward overall better performing molecules
but fell short of nding molecules with properties better than
the original dataset.

These results shed light on how we can use different search
algorithms to explore the chemical space of molecules. We have
also targeted the question of how we can assess different search
algorithms before deploying them. Specically, we have shown
that testing the search algorithm in a benchmark dataset,
however close the benchmark is to the task at hand, does not
translate to a net improvement when deployed on a much larger
chemical space. This discrepancy stems from fundamental
differences between a small benchmark dataset and the full
search space; most notably, the benchmark's unbalanced
representation of the broader chemical space. Therefore, before
the widespread use of a new and complex chemical space
exploration method, we need to establish proper ways to eval-
uate them for the specic task. We suggest future work should
focus on establishing metrics to evaluate the search space
considered and improve the choice of a representative bench-
mark dataset to compare different search algorithms.
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