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Universitat Politècnica de Catalunya, Barce
bInorganic and Organic Chemistry Dep

Computational Chemistry, Universitat de

silvia.gomez@qi.ub.es; eliseo.ruiz@qi.ub.ed
cMaterials Chemistry Department, Faculty o

Santiago de Chile, Santiago, Chile. E-mail:

† Electronic supplementary informa
https://doi.org/10.1039/d4dd00352g

Cite this: Digital Discovery, 2025, 4,
694

Received 31st October 2024
Accepted 22nd January 2025

DOI: 10.1039/d4dd00352g

rsc.li/digitaldiscovery

694 | Digital Discovery, 2025, 4, 694
ding graph neural network for
crystal structure property prediction: application to
thermal ellipsoid estimation†
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Coca, *b Daniel Aravena, *c Eliseo Ruiz *b and Javier Ruiz-Hidalgo *a

In the diffraction resolution of crystal structures, thermal ellipsoids are a critical parameter that is usually

more difficult to determine than atomic positions. These ellipsoids are quantified through Anisotropic

Displacement Parameters (ADPs), which provide critical insights into atomic vibrations within crystalline

structures. ADPs reflect the thermal behaviour and structural properties of crystal structures. However,

traditional methods to compute ADPs are computationally intensive. This paper presents CartNet,

a novel graph neural network (GNN) architecture designed to predict properties of crystal structures

efficiently by encoding the atomic structural geometry to the Cartesian axes and the temperature of the

crystal structure. Additionally, CartNet employs a neighbour equalization technique for message passing

to help emphasise the covalent and contact interactions and a novel Cholesky-based head to ensure

valid ADP predictions. Furthermore, a rotational SO(3) data augmentation technique has been proposed

during the training phase to generalize unseen rotations. To corroborate this procedure, an ADP dataset

with over 200 000 experimental crystal structures from the Cambridge Structural Database (CSD) has

been curated. The model significantly reduces computational costs and outperforms existing previously

reported methods for ADP prediction by 10.87%, while demonstrating a 34.77% improvement over the

tested theoretical computation methods. Moreover, we have employed CartNet for other already known

datasets that included different material properties, such as formation energy, band gap, total energy,

energy above the convex hull, bulk moduli, and shear moduli. The proposed architecture outperformed

previously reported methods by 7.71% in the JARVIS dataset and 13.16% in the Materials Project dataset,

proving CarNet's capability to achieve state-of-the-art results in several tasks. The project website with

online demo available at: https://www.ee.ub.edu/cartnet.
1 Introduction

Anisotropic Displacement Parameters (ADPs)1 represent a three-
dimensional ellipsoid of atomic displacements within a crystal
lattice due to thermal vibrations. These ellipsoids are funda-
mental for understanding the anisotropic nature of atomic
movements and the dynamic behaviour of materials at the
atomic scale. They provide critical insights into the structural
and thermal properties of materials, inuencing the interpre-
tation of experimental data from techniques such as single
crystal X-ray diffraction and neutron scattering. Accurate
ry and Communications Department,
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tion (ESI) available. See DOI:

–710
representation of ADPs is essential for constructing precise
structural models and understanding the physical behaviour of
materials under varying thermal conditions.

ADPs are particularly valuable in crystallography, as they
assist in identifying determination issues such as disorder or
twinning. Several studies have shown that ADPs can also be
utilized to predict thermal motion and translational and
vibrational frequencies.1,2 Furthermore, as demonstrated in
previous research, thermal properties such as heat capacity
(Cv)3,4 and vibrational entropy5,6 are directly linked to ADPs.
Additionally, ADPs have been related to the thermal expansion
of crystal structures,7,8 making them especially useful for iden-
tifying materials with negative thermal expansion. From an
experimental point of view, inconsistencies in atomic positions
are oen easily spotted using chemical intuition when solving
a crystal structure, allowing for straightforward visual identi-
cation of errors. However, such intuitive assessments are not as
straightforward when it comes to thermal ellipsoids, making
visual detection of discrepancies more challenging. As a result,
some database structures exhibit ellipsoids with seemingly
© 2025 The Author(s). Published by the Royal Society of Chemistry
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anomalous sizes and orientations. Developing theoretical
methods that enable quick evaluation of these ellipsoids can
thus serve as valuable tools for facilitating accurate structural
determination from diffraction data.

From a theoretical perspective, ADPs can be calculated using
periodic electronic structure calculations to obtain vibrational
frequencies based on the harmonic approximation.9,10 This
method requires the numerical calculation of forces at dis-
placed geometries for all atomic positions in solid-state
systems. Thus, these calculations are computationally expen-
sive and time-consuming, oen creating a bottleneck in the
process. Our contribution is particularly signicant in this
context, as deep learning methods based on graph neural
networks can dramatically reduce the computation time
required, providing a more efficient alternative to traditional
approaches.

Fig. 1 shows the full pipeline proposed for this work, named
CartNet. Our presented network uses a graph representation of
the crystal structure and, through a set of learnable encodings
and geometrical operations, predicts atomic or material
properties.

Moreover, predicting ADPs presents a unique challenge and
opportunity in the eld of machine learning for crystal structure
property prediction. Unlike most tasks typically explored in the
literature, such as formation energy, band gap, or total energy,
which are unaffected by rotation, predicting ADPs requires
models to be sensitive to rotational orientation.

In this paper, we make the following contributions:
(1) ADP dataset: we present a meticulously curated dataset of

ADPs with over 200 000 experimental crystal structures from the
Cambridge Structural Database (CSD).11

The ADPs are both temperature-dependent and rotation-
equivariant, offering a robust foundation for exploring the
necessity and impact of rotation-equivariant architectures in
crystal modelling.

This necessitates the use of architectures that can handle
properties dependent on direction, opening the door to
designing networks capable of processing rotationally depen-
dent features.

See Section 3 for a detailed description of the dataset.
(2) CartNet architecture: we introduce an architecture,

CartNet, capable of accurately predicting material properties
based on the geometry of a crystal structure.
Fig. 1 Schematic of the CartNet graph neural network architecture for a
The model predicts ADPs for all non-hydrogen atoms based on the posit
atomic and edge information using dedicated encoders. This informatio
CartLayer. Finally, the Cholesky head ensures that the output matrix is sym
purple, and grey colours represent hydrogen, nitrogen, and carbon atom
green, and blue lines correspond to the a, b, and c unit cell axes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
The key contributions of this model are as follows:
(a) Geometry and temperature encoding: we propose

a feature descriptor that efficiently encodes the complete 3D
geometry referenced to the Cartesian axis and adaptively fuses
other input attributes such as temperature.

Since the geometry is anchored to the Cartesian reference
axes, there is no need to encode the unit cell.

Cell-less encoding enables the accurate prediction of the
crystal's ADP orientation regardless of cell size.

(b) Neighbour equalization: we present a neighbour equal-
ization technique designed to address the exponential increase
in neighbours over distance, thereby enhancing the model's
ability to detect various types of bonds and force interactions
between atoms.

This technique improves the model's sensitivity to different
interaction ranges, ensuring a more precise representation of
atomic environments.

(c) Cholesky head: we introduce an output layer based on
Cholesky decomposition, which guarantees that the model
produces positive denite matrices, an essential mathematical
property requirement for valid ADP predictions.

(3) Rotation SO(3) augmentation: we propose a data augmen-
tation technique for both input features and output ADPs to
facilitate the creation of SO(3) rotation-equivariant representations.

This technique enables the model to learn rotational equiv-
ariance without requiring specic layers to enforce it, thereby
simplifying the overall architecture and reducing the number of
trainable parameters.

These contributions allowed our model to outperform
previously reported methods by 8.85% in the JARVIS dataset12

and 15.5% in the Materials Project dataset,13 vide infra.
Furthermore, in the ADP dataset examined, CartNet

demonstrated a 10.87% improvement over other previously re-
ported methods and a 34.77% improvement over the tested low-
level Generalized Gradient Approximation (GGA) Density
Functional Theory (DFT) calculations with simple dispersion
corrections.
2 Background and related work
2.1 Thermal ellipsoids

Anisotropic Displacement Parameters (ADPs) represent the
magnitudes and directions of atomic thermal vibrations within
5,50-dimethyl-2,20-bipyrazine crystal structure (CSD refcode: ETIDEQ).
ions of atoms within the unit cell. The architecture separately encodes
n is then aggregated through N iterations of message-passing via the
metric and positive-definite, generating a valid ADPmatrix. White, light
s, respectively. The parallelepiped represents the unit cell, and the red,

Digital Discovery, 2025, 4, 694–710 | 695
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crystal structures. ADPs encapsulate the statistical probability
distribution of the position of the atoms resulting from thermal
vibrations. Typically, ADPs are graphically represented using
ellipsoids within the ORTEP visualization14 that depicts a 50%
probability contour indicating the likelihood of nding the
atom within the ellipsoid's bounds.

Mathematically, ADPs are represented as a three-
dimensional tensor (3 × 3 matrix), which functions as a covari-
ance matrix for a three-dimensional Gaussian distribution. The
covariance matrix comprises variance elements along its diag-
onal for each X, Y and Z axis and covariance elements off the
diagonal, illustrating the relationships between the axes. The
covariance matrix U for a three-dimensional Gaussian distri-
bution can be expressed using eqn (1).

U ¼

2
664

VarðX Þ CovðX ;Y Þ CovðX ;ZÞ
CovðY ;XÞ VarðY Þ CovðY ;ZÞ
CovðZ;X Þ CovðZ;Y Þ VarðZÞ

3
775 (1)

Covariance matrices exhibit distinctive mathematical proper-
ties: they are symmetric, U = UT, and positive semidenite,
which entails that all matrix eigenvalues are non-negative.

Fig. 2 shows an example with the graphical representation of
the ADPs of a 5,50-dimethyl-2,20-bipyrazine unit cell. In the
gure, each atom is depicted using the thermal ellipsoid
representations of the ADPs obtained experimentally by X-ray
diffraction.

ADPs can be calculated theoretically by computing the
dynamical matrix of the crystal structure.15,16 The dynamical
matrix is a fundamental concept in solid-state physics used to
describe the vibrations of atoms in a crystal lattice, known as
phonons. It is a mathematical construct that captures how
atoms interact with each other when they are slightly displaced
from their equilibrium positions. The dynamical matrix D(q) is
computed at each point q in the Brillouin zone. The Brillouin
zone represents the fundamental region in reciprocal space that
contains all the unique wave vectors necessary to describe
a crystal structure's physical properties. The eigenvalues of the
dynamical matrix represent the phonon's frequencies un(q),
also known as phonon modes.

ADPs can be calculated by integrating all the phonon modes
for all the q points using eqn (2).
Fig. 2 Thermal ellipsoid ORTEP representations from experimental
ADPs of a 5,50-dimethyl-2,20-bipyrazine crystal structure (CSD
refcode: ETIDEQ). Light purple and grey colours represent nitrogen
and carbon atoms, respectively. Hydrogen atoms have been omitted.
The parallelepiped represents the unit cell, and the red, green, and blue
lines correspond to the a, b, and c unit cell axis.

696 | Digital Discovery, 2025, 4, 694–710
Uðj;TÞ ¼ ħ
2Nmj

X
q;n

ð1þ 2nnðq;TÞÞ
unðqÞ enðj; qÞ5e*nðj; qÞ (2)

where j is the atom, T is the temperature, ħ is the reduced Planck
constant, N is the number of unit cells,mj is the atomic mass, en
are the eigenvectors of the dynamical matrix, 5 is the outer
product, and nn is the phonon population. The phonon pop-
ulation can be described by eqn (3).

nnðq;TÞ ¼ 1

expðħunðqÞ=kBTÞ � 1
(3)

where kB is the Boltzmann constant.
This method has the limitation that it is extremely time-

consuming since it needs a different Density Functional
Theory (DFT) calculation for each of the q points. High-
performance computing (HPC) clusters are oen needed since
DFT calculations can be computationally demanding, even for
a single crystal structure.
2.2 Crystal structure property prediction with graph neural
networks

GNNs17 have been the most widely adopted neural network
architecture for modelling data with complex relational struc-
tures such as molecules18–20 or crystal structures.21–23 Unlike
traditional neural networks, which typically operate on xed-
size grid-like structures, GNNs are designed to work on graph-
structured data, where entities are represented as nodes and
relationships between them are represented as edges.

In the case of molecules, this ability to use graphs to model
the system is especially useful, since a molecule can be naturally
modelled as a graph of atoms. However, how atoms are inter-
connected by edges in the graph, denoted as neighbourhood, is
not trivial and becomes a fundamental step to achieve good
representations using GNNs.

While GNNs and message-passing mechanisms had been
introduced previously, Gilmer et al.18 popularized a unied
message-passing framework specically for quantum chemistry
predictions, leveraging iterative information exchange between
nodes (atoms) and edges (bonds) to capture local molecular
interactions. This approach laid the groundwork for subse-
quent models that further enhance predictive accuracy for
molecular properties. DimeNet24 and its successor, Dime-
Net++,25 build a GNN upon this concept by incorporating
directional message passing between pairs of interactions,
allowing these models to capture angular dependencies and
long-range interactions within molecules more effectively than
traditional message-passing methods using chemical bonds.
This advancement signicantly improves the accuracy of pre-
dicting molecular properties, such as quantum mechanical
characteristics. Notably, both DimeNet and DimeNet++ are
rotation-invariant, ensuring that their predictions remain
consistent regardless of the molecule's orientation, which is
crucial for accurate modelling in diverse molecular environ-
ments. MACE26 proposed an equivariant message-passing
approach that incorporates advanced three-dimensional
geometric information, ensuring rotational and translational
© 2025 The Author(s). Published by the Royal Society of Chemistry
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symmetries for robust generalization across diverse molecular
congurations. By enforcing rotational and translational
symmetries, MACE provides robust generalization across
diverse molecular congurations. Similarly, TensorNet27 utilizes
tensor-factorization techniques to incorporate higher-order
interactions efficiently, capturing subtle quantum effects and
long-range correlations. These approaches represent a signi-
cant evolution in molecular modeling, surpassing earlier
methods in both accuracy and computational efficiency.

On the other hand, crystal structures consist of an assembly
of atoms, ions or molecules that are ordered in a symmetric
way. The formed symmetric pattern is repeated in the three
spatial dimensions. We represent these structures using their
smallest repeating unit, the unit cell, dened by a 3 × 3 lattice
matrix encoding the three vectors that describe its geometry.
Similar GNN models have been extensively applied to crystal
property prediction, showcasing their adaptability to the unique
challenges of materials science. One critical adaptation in this
domain involves modifying the neighbourhood denition to
account for periodic boundary conditions (PBCs). PBCs are
essential for modelling the innite nature of crystalline mate-
rials. They treat the border of the simulation cell as if they were
connected to the opposite border, thus creating a continuous,
repeating structure. This modication ensures that the model
accurately captures interactions across the boundaries of the
material.

Matformer21 introduces a transformer-like GNN architecture
designed explicitly for material property prediction. It proposes
adding self-loops for each atom to encode the cell dimensions
and the PBC radius neighbourhood, thereby enhancing the
model's ability to represent the material's structure accurately.
PotNet22 advances this approach by presenting a GNN with
a dual-neighbourhood strategy. In addition to the PBC radius
neighbourhood, PotNet approximates the innite summation
of interactions for every pair of atoms in the crystal, providing
a more comprehensive representation of the material's prop-
erties. Yan et al.23 presented two GNN architectures tailored for
this task, the iConformer and eConformer. The iConformer
renes the cell to create a unique representation and uses the
angle between the cell's axis and the Cartesian vector between
atom pairs in the PBC radius neighbourhood to produce an
invariant representation. In contrast, the eConformer intro-
duces a rotation-equivariant model using tensor products,28

relying solely on Cartesian information to maintain consistency
across different orientations.

Regarding the specic problem of ADPs, current state-of-the-
art methods exhibit several limitations. One of them is that
most approaches rely solely on the distance between atoms to
create a rotationally invariant representation. Since ADPs are
expressed relative to the system's Cartesian axes (XYZ), using
only distance does not provide the necessary references. Models
that depend exclusively on distance are unable to differentiate
between the variances along the axes (Var(X), Var(Y), or Var(Z)),
oen resulting in spherical ellipsoids that fail to capture the
true anisotropy of the ADPs.

Another limitation of current state-of-the-art methods arises
from the requirement for the lattice matrix. This is particularly
© 2025 The Author(s). Published by the Royal Society of Chemistry
problematic because multiple lattice matrices can represent the
same crystal structure, as discussed in iComformer.23 Although
iComformer proposes a solution by creating a unique repre-
sentation for each cell, several challenges remain when using
this approach. The unique representation proposed by iCom-
former faces a border case when all three axes of the lattice
matrix have the same length (a = b = c). Since iComformer's
approach is based on the assumption that a < b < c, when the
lattice matrix is in this degenerate case, the model is unable to
differentiate between Var(X), Var(Y), or Var(Z), once again
resulting in spherical ellipsoids.

Our proposed solution is a cell-less architecture that directly
encodes the complete 3D geometry referenced to the Cartesian
axes instead of only Euclidean distance-based approaches. This
approach avoids the issues of border case scenarios and cell-
based overtting, as it relies entirely on the Cartesian space.
Furthermore, it allows the inclusion of PBCs, providing a more
robust and accurate representation of anisotropy in ADPs
without the need for a lattice matrix.

3 Dataset

The ADP dataset of crystal structures has been created to facil-
itate the study of atomic thermal vibrations. This dataset is
derived from the Cambridge Structural Database (CSD).11

The ADP dataset was meticulously curated from the CSD's
built-in ADP subset, applying several ltering criteria to ensure
its quality and reliability. First, only structures possessing 3D
coordinates for all atoms and anisotropic thermal displace-
ments for all non-hydrogen atoms were selected. Only non-
polymeric crystal structures with only one type of molecule in
the unit cell were considered, to avoid dispersion and errors due
to solvent molecules and counterions. Structures with an R-
factor less than 5% (R < 5%), free from errors and disorders, and
site occupancy of 1 for all atoms were included to maintain the
dataset's integrity. Structures reported at non-standard pres-
sures were also discarded.

Additionally, temperature/pressure data in the CSD can
sometimes be incomplete or missing. For pressure, it was
observed that in many cases the pressure was recorded only in
the remarks eld rather than in the dedicated pressure eld, so
structures containing any kind of remarks were discarded to
avoid extensive text parsing. For temperature, if the CSD Python
API did not provide a value, the corresponding CIF les and
experimental notes were cross-checked to verify consistency.
Structures lacking reliable temperature information were
excluded from the dataset.

Several additional ltering criteria were applied to ensure
the quality and reliability of the ADPs. While the 3D positions
of the hydrogen are saved, their thermal ellipsoids are not
included, as these are oen isotropic or undened in the CSD.
Structures containing any non-hydrogen atom with negative
or zero eigenvalues were excluded. Structures with any ellip-
soids with eigenvalue (l) ratios lmax/lmin < 8 were excluded to
avoid poorly dened or at ellipsoids. The ratio between the
ellipsoid volume and the volume of a sphere with the covalent
radius,29 Vol/Volcov, was also used as a ltering criterion.
Digital Discovery, 2025, 4, 694–710 | 697
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Fig. 3 Histogram showing the number of crystal structures within
each temperature range in the ADP dataset, displayed on a logarithmic
scale on the y axis.
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Structures were discarded if any ellipsoid had a volume
greater than 1.25 Å3 or if Vol/Volcov > 0.35. Furthermore,
structures with any ellipsoid exhibiting a volume ratio Vol/
Volcov < 10−4 at temperatures above 150 K were also excluded
to remove ellipsoids that were either too small or insuffi-
ciently dened.

At the end, 208, 042 crystal structures from the CSD met the
criteria outlined, resulting in an average number of 194.2 atoms
and 105.95 ADPs per crystal structure. Since the ADPs of
Fig. 4 Histogram illustrating the number of atoms within each ADP
volume range in the ADP dataset, presented on a logarithmic scale on
both axes.

Fig. 5 Heatmap illustrating the number of atoms per element in the ADP
indicate lower counts. The colour scale is logarithmic.

698 | Digital Discovery, 2025, 4, 694–710
hydrogen atoms are not considered, the dataset has more atoms
than ADPs per crystal.

Fig. 3 illustrates the temperature distribution across the
curated dataset. Even though the dataset spans a wide range of
temperatures, from 2 K to 573 K, most structures rely on the
range from 100 K to 300 K since this range is the most
commonly studied by diffractometry. Fig. 4 displays the distri-
bution of the ADP's volumes used for this dataset. The same
behaviour applies to the volumes, since the charts' extremes are
under-represented in our data. Section 5.2.3 discusses the
impact of this imbalance of the data on the prediction perfor-
mance of the proposed model. Fig. 5 presents a heatmap of the
atomic numbers included in this dataset. The dataset encom-
passes a wide range of atomic numbers, reecting a diverse set
of elements. It excludes some noble gases and most of the
radioactive elements, except for some radioactive actinoids.
This diversity is crucial for ensuring that the dataset can
support the development of generalised models capable of
predicting ADPs across a broad spectrum of chemical
compositions.

In this study, the dataset was randomly split into 162, 270
training, 22, 219 validation, and 23, 553 test crystal structures.
To ensure the integrity of these splits, we veried that all atom
types, temperature ranges, and volume ranges present in the
validation and test sets are also represented in the training set.
This precaution was taken to prevent the model from encoun-
tering unseen data during validation and testing, which could
otherwise lead to an inaccurate assessment of its performance.

Additionally, we ensured that repeated crystal structures
with different temperatures or distinct CSD entries were kept
together within the same split. This restriction was made to
avoid any situation in which the model might be exposed to test
or validation samples during the training phase, which could
compromise the evaluation by introducing data leakage. By
maintaining these strict controls on the dataset splits, we
ensured that the training, validation, and test sets were inde-
pendent. The splits used for this work are also publicly available
to facilitate reproducibility.
dataset. Lighter colours represent higher counts, while darker colours

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Schematic of the atom encoder used in CartNet. The encoder
processes each atomic number (Zi) using an embedding layer and its
temperature using a linear layer. The resulting encoded features are
summed and passed through a SiLU activation function, followed by an
additional linear layer and another SiLU. The final vector hi serves as the
initial node features for the CartLayer.
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4 Methodology
4.1 Model architecture

Our proposed architecture, CartNet, efficiently encodes the
geometry and any other relevant information of the crystal
structures. The geometrical structure is encoded in the edges
via Cartesian unit directions, and the input information is
encoded along the nodes. In the case of ADPs, the input infor-
mation is the temperature and the atomic number of each atom
in the structure. The atom and edge information are then iter-
atively aggregated through the CartLayers, a process that is
repeated four times to create a nal vector representation for
each atom. This nal output is then processed through
a specic head to predict the nal properties. In the case of
ADPs, the Cholesky head is used to produce mathematically
valid ADPs. The complete architecture of CartNet is depicted in
Fig. 1.

To construct the graph representation, we employ a radius-
based neighbourhood approach using PBCs for all the atoms
in the unit cell. Fig. 6 shows an example of how the graph is
created for a single atom. Specically, a cutoff radius (rc= 5 Å) is
dened around each central atom, and all atoms within this
radius are considered part of the local neighbourhood. The
choice of 5 Å is based on the analysis of the intermolecular
interaction distances described in previous studies.30 The graph
obtained by this neighbourhood captures both short-range,
usually covalent bonds, and relevant weaker intermolecular
interactions, such as hydrogen bonds, p–p stacking, halogen
bonds, cation–p and anion–p, or van der Waals interactions. By
including all neighbour atoms within this dened radius, the
graph effectively represents each atom's local environment,
which is crucial for accurately modelling the system's
behaviour.

4.1.1 Atom encoder. The atom encoder is responsible for
encoding the input information of each atom in the graph. In
the case of ADPs, this corresponds, for each atom, to its atomic
number and the global temperature of the crystal structure.
Fig. 7 shows a schematic of the atom encoder used in CartNet.

The atom type is encoded using an embedding31 layer, which
generates a feature vector corresponding to each distinct atom
Fig. 6 Representation of the graph construction process for the atom
highlighted in red colour. Covalent bonds are ignored, and the radius
around the atom (depicted in green) is defined. Any atom within this
radius is considered a neighbour of the red atom and is connected in
the graph (depicted using red lines). Periodic boundary conditions are
employed to replicate the infinite nature of the crystal.

© 2025 The Author(s). Published by the Royal Society of Chemistry
type. The temperature is standardised using the training
temperature statistics to achieve zero mean and unitary stan-
dard deviation. The standardised temperature is passed
through a linear layer to ensure dimensional compatibility with
the atom-type feature vector. The resulting temperature and
atom-type feature vectors are combined, passed through
a SiLU32 activation function, followed by another linear layer
and another SiLU. Eqn (4) describes the encoding of the atom.

hi ¼ SiLUðW2ðSiLUðEmbðZiÞ þW1ðTÞ þ b1ÞÞ þ b2Þ˛ℝdim (4)

where Zi represents the atomic number, Emb is an embedding
layer ˛ℝ2din, T is the standardized temperature in Kelvin,
W1˛ℝ1�2dim, W2˛ℝ2dim�dim, b1˛ℝ2dim, b2˛ℝdim, and dim is the
number of dimensions of the latent vector.

4.1.2 Edge encoder. The edge encoder is responsible for
encoding the geometric relationships between atoms in the
system. Fig. 8 shows a schematic of the edge encoder used in
CartNet.

The edge is dened as the connection between the receiving
atom i and the sender atom j. From each edge, the Euclidean
distance (dij) and the direction vector (vij) are calculated based
on their positions p. Eqn (5) and (6) dene the distance and
direction vector, respectively.

dij = ‖pj − pi‖ (5)

v̂ij ¼
pj � pi

dij
(6)

where pi and pj are the receiver and sender atom positions. The
distance is encoded through a Radial Basis Function (RBF) of K
elements, transforming the scalar distances into a higher-
dimensional space, allowing for a more nuanced representa-
tion of geometric relationships, as proposed by previous studies
in molecular systems.27 Eqn (7) denes the RBF at each k
element.
Digital Discovery, 2025, 4, 694–710 | 699
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Fig. 8 Schematic of the edge encoder used in CartNet. The eij and the
v̂ij are concatenated and then processed by a MLPedge to generate the
initial edge features utilized by the CartLayer.

Fig. 9 Schematic of the CartLayer used in CartNet. This layer aggre-
gates information between two neighbouring atoms, the sender atom
hi

l and the receiver atom hj
l, and their corresponding edge, eij

l. It
utilizes this aggregated information to update the receiving node's
features and the edge's latent vector. The updated receiving node, hi

l+1

and the respective edge, eij
l+1, representations are then propagated to

subsequent layers for further processing.
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rk(dij) = exp(−b(exp(−dij) − mk)
2) (7)

where b and mk are xed values that determine the centre and
width of the k-th radial basis function and K is the number of
RBFs. The mk values are equally spaced between exp(−rc) and 1,
while the b value is equal to [2K−1(1 − exp(−rc))]

−2 for all k.
Here, rc represents the cutoff radius distance used to dene the
neighbourhood.

Eqn (8) formalizes the concatenation of all rk values into
vector rij to encode distances dij in a higher dimensional space.

rij ¼ ½r0; r1;.; rK�1�˛ℝK (8)

The director vector, vij, and the RBF-transformed distances,
rij, are concatenated and passed through a Multi-Layer Percep-
tron (MLP) to produce the edge feature vectors. The MLPedge
consists of one rst linear layer that doubles the existing
dimension, a SiLU, another linear layer that returns to the
original dimension, and a nal SiLU. This distance and direc-
tion information combination ensures that the edge encoding
captures the geometric relationships necessary for accurate
modelling of the geometric structure. Eqn (9) describes the edge
encoding process mathematically.

eij ¼ MLPedge

�
rij
�
dij
� k v̂ij

�
˛ℝdim (9)

4.1.3 CartLayer. The CartLayers are responsible for aggre-
gating the information between nodes through message
passing. They consist of two key components: the gating
mechanism and the message-passing mechanism. Fig. 9 illus-
trates a schematic of the CartLayer.

Our gating mechanism considers the sender and receiver
atoms and the edge attributes connecting them and processes
them through an MLPgate. The MLPgate consists of a linear layer
that reduces the dimensions from 3dim to the dim, followed by
a SiLU, and another linear layer that does not modify the
dimensions. The gating mechanism has a dual purpose:
determining the weight of the message and updating the edge
attributes. Additionally, our gating mechanism incorporates an
envelope function inspired by previous work in molecular
systems.27 Eqn (10) describes the gating mechanism.

gateij ¼ Sigmoid
�
BN
�
MLPgate

�
hi k eij k hj

���� Env
�
dij
�
˛ℝdim

(10)
700 | Digital Discovery, 2025, 4, 694–710
Env
�
dij
� ¼ 1

2

�
cos

�
pdij
rc

�
þ 1

�
(11)

Here, hi and hj represent the hidden feature vectors of the
receiver and sender atoms, respectively, while eij represents the
hidden feature vector of the edge. BN stands for Batch
Normalization. As described by eqn (11), the envelope function
applies a cosine decay over distance.

The envelope function equalizes the inuence of edges
based on distance. This equalization helps the model to detect
the peaks from the distribution, making it easier to identify the
different interatomic interactions from our dataset.

Moreover, the envelope function also soens the inuence of
neighbours near the cutoff distance, which is particularly
valuable in noisy situations. It ensures that atoms near the
cutoff radius gradually lose inuence, preventing them from
being considered neighbours based strictly on a hard cutoff
radius. Since our dataset is derived from experimental data,
noise is expected, and the envelope function provides a robust
mechanism to handle such noise effectively. ESI Section S1†
provides further information about the envelope.

Our message-passing mechanism constructs messages by
processing the concatenated sender and receiver atom infor-
mation and edge attributes through an MLPmsg. The MLPmsg

has the same conguration as that of the MLPgate. Once the
message is created, it is weighted using the gate function, which
determines the relative importance of each feature within the
message vector. The weighted messages are aggregated at the
receiving node and passed through a batch normalization layer,
followed by a SiLU non-linearity. The gate mechanism also
updates the edge features, ensuring that the edge attributes
remain consistent with the evolving node representations. To
mitigate the issue of gradient vanishing, a skip connection is
incorporated into both the node and edge updates, preserving
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the ow of information through the network layers. Eqn
(12)–(14) mathematically describe the message used for
message passing and how the atoms and the edges are updated.

msgij ¼ MLPmsg

�
hi k eij k hj

�� gateij˛ℝdim (12)

hi
lþ1 ¼ hi

l þ SiLU

 
BN

 X
j˛N i

msgij

!!
˛ℝdim (13)

eij
lþ1 ¼ eij

l þ gateij˛ℝdim (14)

Here, hi+1 and eij+1 represent the updated node and edge
features, respectively, msgij denotes the message vector created
between atoms i and j, and N i is the neighbourhood from the
receiving atom.

4.1.4 Cholesky head. The head of our model is designed
using Cholesky decomposition to ensure that all output
matrices are symmetric and positive-denite, which is a critical
requirement for ADPs. Fig. 10 shows a schematic of the Cho-
lesky head used in CartNet.

The Cholesky decomposition says that any symmetric
positive-denite matrix, such as ADPs, can be uniquely
decomposed into the product of a lower triangular matrix and
its transpose. This decomposition can be expressed with eqn
(15).

U ¼ LLT˛ℝ3�3 (15)

where L is a lower triangular matrix, described by eqn (16).

L ¼

2
664
l11 0 0

l21 l22 0
l31 l32 l33

3
775˛ℝ3�3 (16)

In this matrix, the diagonal elements l11, l22, and l33 are always
positive, ensuring that the resulting matrix U is both symmetric
and positive-denite.

Based on this mathematical foundation, the feature vector of
each node from the nal aggregation layer is processed through
Fig. 10 Schematic of the Cholesky head used in CartNet. This layer
enforces the creation of symmetric and positive-definite output
matrices, which are necessary conditions for ADP matrices. The final
hidden state hi is processed by an MLPhead that outputs a vector of six
elements. The first three elements are activated using a softplus
function, while the remaining three remain unchanged. These six
elements are utilized to construct the lower-triangular matrix L. The
final ADP representation is obtained by multiplying Lwith its transpose,
resulting in LLT.

© 2025 The Author(s). Published by the Royal Society of Chemistry
a MLPhead to produce a feature vector oi with i = 1, ., 6. The
MLPhead consists of a linear layer that reduces the dimensions
from dim to dim/2, followed by a SiLU, and another linear layer
that reduces the dimensions from dim/2 to 6. The rst three
elements are activated using the soplus function.33 In this
context, the soplus activation ensures that the diagonal
elements of the matrix L are strictly positive, which is essential
for maintaining the positive-denite property of the output
matrix. The remaining three elements of the feature vector are
used as the lower off-diagonal elements of the matrix L. The
construction of the matrix L is as follows, where the rst three
elements of the feature vector are placed on the diagonal and
the remaining elements are placed in the lower triangular part,
as can be seen in eqn (17).

L ¼

2
664
Softplusðo1Þ 0 0

o4 Softplusðo2Þ 0

o6 o5 Softplusðo3Þ

3
775˛ℝ3�3 (17)

Finally, the ellipsoid matrix Upred is obtained by performing
a matrix multiplication between L and its transpose, as can be
seen in eqn (18).

Upred ¼ LLT˛ℝ3�3 (18)

This construction ensures that the predicted ellipsoid matrix
Upred
i is always symmetric and positive-denite, which is

essential for accurate modelling of ellipsoid matrices.
4.2 Rotation SO(3) augmentation

Rotation SO(3) augmentation was applied to promote the model
to generalize to unseen rotations. This augmentation was
implemented by multiplying a random three-dimensional
rotation matrix with the direction vector between two atoms,
as described by eqn (19).

v̂
aug
ij ¼ Rv̂ij˛ℝ1�3 (19)

In this equation, R is a random rotation matrix, where R˛ℝ3�3,
and v̂ij represents the direction vector between two atoms. Our
approach ensures that the model is regularly exposed to diverse
rotational congurations during training, helping it learn
features that generalize to previously unseen orientations.
Although this effectively increases the complexity of the
learning problem, online data augmentation is used to keep the
additional overhead manageable. By adopting this well-
established deep learning technique, we can rely on simpler
model architectures without strictly enforcing equivariance,
thereby reducing the computational cost per prediction and
enhancing overall efficiency.

The situation is particularly nuanced for the ADP dataset
because ellipsoids are inherently rotationally equivariant.
Therefore, the ellipsoids must rotate consistently with the input
data during augmentation. Eqn (20) describes how the rotation
is applied to the original Ui to rotate it. The proof of eqn (20) can
be found in the ESI Section S2.†
Digital Discovery, 2025, 4, 694–710 | 701
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U
aug
i ¼ RUiR

T˛ℝ3�3 (20)

5 Experiments and results
5.1 Computational details

The computational setup for all our experiments consisted of an
NVIDIA RTX 3090 GPU with 24GB of memory and a system
powered by 2× AMD EPYC 7313 16-core CPUs. All code imple-
mentations used PyTorch v1.13.1 (ref. 34) and PyTorch
Geometric v2.3.35 Theoretical calculations used the Vienna Ab
initio Simulation package (VASP) c6.4.3 (ref. 36–38) and Pho-
nopy v2.19.139,40 and were computed on the MareNostrum 5
HPC from the Barcelona Supercomputing Centre (BSC). The
code is publicly available in the Github repository: https://
github.com/imatge-upc/CartNet.

5.2 Results

To evaluate our model, we rst tested its prediction perfor-
mance on two well-known public datasets (JARVIS dataset12 and
the Materials Project dataset41) and our proposed ADP dataset.
By applying our method to both proprietary and public datasets,
we aimed to demonstrate its robustness and generalizability in
predicting material properties under various conditions. It is
important to note the very different nature of the materials and
properties analysed among the three datasets. The two public
datasets contain mainly simple bulk materials with properties
extracted from electronic structure calculations, and the one
developed in this work contains molecular materials using
structural information and ADPs from experimental data.

5.2.1 JARVIS dataset results. The JARVIS 3D DFT Dataset
(2021.8.18)12,42 is a comprehensive dataset consisting of
approximately 55k materials, basically bulk 3Dmaterials, where
various DFT properties were computed. The geometries of the
crystal structures were optimized using the OptB88vdW (OPT)
functional,43 which gives accurate lattice parameters. The same
functional was employed for the calculation of the different
properties. Although in the case of the band gap, to get a better
estimation of the value, additionally a small subset was also
calculated with the Tran–Blaha modied Becke Johnson (MBJ)
potential.44 The dataset provides fundamental material prop-
erties: (i) formation energy: the energy change when forming
a compound from its elements indicating thermodynamic
stability, (ii) band gap (OPT): the energy difference between
valence and conduction bands from standard DFT calculations,
Table 1 MAE results for the different tested architectures in the test sp
underlined. Arrows indicate the direction of improvement for each metr

Method
Form energy
(meV per atom) Y Band gap (OPT) (meV) Y

Matformer21 32.5 137
PotNet22 29.4 127
eComFormer23 28.4 124
iComFormer23 27:2 122

CartNet 27.05 � 0.07 115.31 � 3.36

702 | Digital Discovery, 2025, 4, 694–710
(iii) total energy: the ground-state energy of the crystal structure,
(iv) band gap (MBJ): band gap computed using the Tran–Blaha
modied Becke Johnson potential for improved accuracy, and
(v) ehull: the energy above the convex hull, measuring stability
against decomposition into other phases. Notably, the dataset
contains only 18k samples for the band gap (MBJ) property,
making it a low-data scenario.

In this study, we compared the results of our method against
those of other previously reported methods, including Mat-
former,21 PotNet,22 eComFormer,23 and iComFormer.23 To
ensure a consistent and fair evaluation, we followed the meth-
odology proposed by Matformer21 and used their proposed data
splits. We use the mean absolute error (MAE) as our evaluation
metric and report its mean and standard deviation across four
random initialization seeds to conrm that our model's
performance is robust rather than dependent on initialization.
Section S4 in the ESI† provides the detailed CartNet modica-
tions and training congurations used for predicting each
property.

As illustrated in Table 1, our model consistently performs
best across all evaluated properties. The improvements are
most notable in the total energy and band gap (OPT) predic-
tions, where our model demonstrates an improvement of 7.71%
and 5.48%, respectively, over the next-best models. The low-data
band gap (MBJ) scenario outperforms the next-best model by
approximately 2.68%.

Our model's ability to excel across various properties,
including those with fewer data samples, such as the band gap
(MBJ), highlights its adaptability and robustness. These results
suggest that our approach performs well in traditional tasks and
thrives in challenging low-data environments, providing
a comprehensive solution for crystal structure property
prediction.

5.2.2 The Materials Project dataset results. The Materials
Project Dataset-2018.6.1 (ref. 41) contains approximately 69k
structures collected from the Materials Project.13 The dataset
consists of inorganic crystalline materials, primarily bulk
materials, where various DFT properties have been computed.
The structures were optimized using the PBE45-D3(BJ)46 level of
theory. The dataset provides several essential material proper-
ties: (i) formation energy, (ii) band gap, (iii) bulk moduli:
measures the resistance of a material to deformation under
shear stress, reecting how it deforms when forces are applied
parallel to a surface and (iv) shear moduli: quanties the
resistance of a material to uniform compression, indicating
lit from the JARVIS dataset. The best result is in bold and second best
ic

Total energy
(meV per atom) Y Band gap (MBJ) (meV) Y Ehull (meV) Y

35 300 64
32 270 55
32 280 44

28:8 260 47
26.58 � 0.28 253.03 � 5.20 43.90 � 0.36

© 2025 The Author(s). Published by the Royal Society of Chemistry
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how much it compresses under external pressure. Notably, the
dataset contains only around 5.5k shear and bulk modulus
samples, making these properties particularly challenging. We
directly compared our results with those of previous studies21–23

without retraining these models, maintaining consistency
across evaluations and using the same data splits. Similarly to
the previous experiment, we employed the MAE as the evalua-
tion metric with the splits dened in Matformer21 and ran
experiments using four different random seeds, reporting both
the mean and standard deviation of the MAE. The CartNet
training congurations for each property are detailed in Section
S4 in the ESI.†

As shown in Table 2, our method achieves the best perfor-
mance across all evaluated properties. The improvements are
particularly notable for form. energy, yielding an approximately
4.33% improvement. Similarly, for bulk moduli's low-data
scenario, our model improves the MAE by approximately
13.16% over the next-best model. In the shear moduli task,
another low-data scenario, our method achieves the same
metric as the best-known reported.

These results underscore the robustness of our model,
especially in low-data environments such as bulk and shear
moduli tasks, where limited training data pose signicant
challenges. The consistent improvements across all properties
conrm that our approach is well suited for predicting a broad
range of crystal structure properties and offers substantial
advantages over existing methods.

5.2.3 ADP dataset. Our method has been compared against
two other previously reported methods for the ADP dataset for
material property prediction. eComformer and iComformer23

have been selected for comparison since the other methods are
based only on distance encoding and do not encode the
geometry referenced to a 3D basis needed for the correct
prediction of the ADP direction. To evaluate the ADPs we
computed the MAE between the U matrices. Also, the similarity
index (S12) was also calculated since it is widely used in previous
Table 2 MAE results for the different tested architectures in test split from
underlined. Arrows indicate the direction of improvement for each metr

Method Form energy (meV per atom) Y Band gap (m

Matformer21 21 211
PotNet22 18.8 204
eComFormer23 18:16 202
iComFormer23 18.26 193

CartNet 17.47 � 0.38 190.79 � 3.1

Table 3 Results for the different tested architectures in the test split from
Arrows indicate the direction of improvement for each metric

Method MAE (Å2) Y

eComformer23 6.22 × 10−3 � 0.01 ×

10−3

iComformer23 3:22� 10�3 � 0:02� 10�3

CartNet 2.87 × 10−3� 0.01 × 10−3

© 2025 The Author(s). Published by the Royal Society of Chemistry
studies47 to compare ADPs. S12 is based on the Bhattacharyya
distance and represents the percentage error of the overlap
between two multivariate Gaussian distributions.47

As shown in Fig. 4, small ADPs differ by several orders of
magnitude compared to larger ones. This disparity could lead to
biased conclusions when analysing the results using MAE,
although the S12 does not have this problem. Nevertheless, the
issue with the S12 is that it is not highly discriminative. Most of
the errors are less than 1% using this metric, which might give
the impression that the predictions are accurate. To address
these issues, we also employed an Intersection over Union (IoU)
metric over the ADP graphical ellipsoid representations. The
IoU metric provides a measurement independent of the ADP's
size, enabling us to assess whether smaller or larger ellipsoids
are well-predicted. Furthermore, if an ADP is not well-predicted,
it will have a higher impact on the IoU metric, making it more
restrictive. The IoU is computed by voxelizing the 3D space.
More details about the IoU implementation and the training
congurations can be found in Sections S3 and S4 in the ESI,†
respectively. For all models, we ran experiments using four
initialization seeds to ensure robustness against initialization
effects, reporting the mean and standard deviation.

Table 3 shows that our method achieves the best perfor-
mance in all evaluation metrics, MAE, S12 and IoU, compared
with other methods. In our experiments, CartNet outperforms
the second-best model by 10.87% in MAE, 17.58% in S12, and
2% in IoU. Furthermore, CartNet needs to train 49% fewer
parameters than the second-best model. This result suggests
that our approach can achieve state-of-the-art results without
needing specic layers to enforce the rotational equivariance.
The error introduced by using our data augmentation instead of
using equivariant layers is discussed and evaluated in Section
6.5.

Fig. 11 shows a visual comparison between the compared
methods. Even though all tested models can encode the 3D
geometry, only our approach and iComformer can encode the
the Material Project dataset. The best result is in bold and second best
ic

eV) Y Bulk moduli (log(GPa)) Y Shear moduli (log(GPa)) Y

0.043 0.073
0.04 0:065

0.0417 0.0729
0:038 0.0637

4 0.033 � 0.94 × 10−3 0.0637 � 0.0008

the ADP dataset. The best result is in bold and second best underlined.

S12 (%) Y IoU (%) [ #Params Y

2.46 � 0.01 74.22 � 0.06 5.55 M

0:91� 0:01 81:92� 0:18 4:9 M
0.75 �0.01 83.56 �0.01 2.5 M

Digital Discovery, 2025, 4, 694–710 | 703
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Fig. 11 Visual comparison of eComformer, iComformer, and CartNet
on the ADP test split. The top row shows an ellipsoid with average
anisotropy, and the bottom row shows the one with high anisotropy.
Green indicates experimental values, red shows predicted values, and
grey is their intersection. The IoU for each ellipsoid is shown above it.
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geometry so that the ellipsoids can be oriented. On the other
hand, eComformer only creates spherical ellipsoids. If we take
a closer look at the eComformer architecture, it creates an
invariant descriptor based on distance. This descriptor is then
updated by an equivariant layer based on spherical harmonics
and then by a few invariant layers based on distance. Our
intuition suggests that even though this equivariant layer
enriches the invariant information and can improve the
invariant predictions, it is not able to successfully encode the
needed information for a correct ADP orientation prediction.
Fig. 12 Scatter plot of true versus predicted ADP volumes for the test
split of the ADP dataset using CartNet. A linear regression fitted to the
data yields y = 1.0013x + 0.0021 with an R2 score of 0.91, indicating
a correlation. The scale is logarithmic for both axes.
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Entire crystal structure comparison between methods can be
found in Section S8 in the ESI.†

Fig. 12 presents a scatter plot of the predicted ADP volumes
versus the experimental values. The model achieves a coefficient
of determination (R2) of 0.91, demonstrating a strong linear
correlation between the predictions and the actual volumes.
This near-perfect linear regression indicates the model's high
accuracy in predicting ADP volumes.

In Section 3, we discussed the data imbalance concerning
temperature, volume, and elemental composition in the ADP
dataset. We analysed the error distribution for temperature,
volume, and element to determine if the model's errors align
with these imbalances. Fig. 13 shows CartNet's predicted IoU as
a function of temperature for the test split of the ADP dataset.
The IoU decreases noticeably when the temperature drops
below 80 K and when it increases above 400 K. This pattern
corresponds with the data distribution depicted in Fig. 3,
indicating higher errors in temperature regions that are
underrepresented in the dataset. Nevertheless, the IoU is stable
for the rest of the temperatures. Fig. 14 illustrates the IoU
metric for CartNet's predictions across different volume ranges
in the test split. Comparing this with Fig. 4, we observe that
higher errors occur in volume ranges with fewer data points,
especially at the extremes of the chart. Fig. 15 presents the IoU
per element for CartNet's predictions on the ADP dataset. Lower
metrics correspond to lower representation in the dataset for
some elements, such as beryllium, technetium, caesium, and
Fig. 14 Plot of the IoU error with standard deviation as a function of
the ADP volume for CartNet's predictions on the ADP test dataset.

Fig. 13 Plot of the IoU error with standard deviation as a function of
temperature for CartNet's predictions on the ADP test dataset.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Heatmap illustrating the IoU metric per element for the CartNet's predictions in the test split from the ADP dataset. Lighter colours
represent higher IoU, while darker colours indicate lower IoU.

Fig. 16 Comparison of the mean ellipsoid volume as a function of
temperature for the guanidinium pyridinium naphthalene-1,5-disul-
fonate (CSD refcode: DOWVOC) crystal structure. The blue line shows
experimental data, the green line shows predicted volumes using
experimental geometry and temperature, and the orange line shows
predictions with a fixed 215 K geometry and varying input temperature
in CartNet.
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plutonium. Conversely, elements such as xenon and neptunium
exhibit near-perfect IoU scores despite being underrepresented.
Additionally, most of the other elements show similar IoU
values, suggesting that the network is able to learn from atom
numbers that appear more frequently in the dataset and
generalize that information to other atomic numbers. Further
discussion on the performance of different atom types in
specic chemical interactions such as hydrogen bonding, p–p
stacking, and tert-butyl groups, as well as additional results on
different polymorphs, can be found in ESI Section S5.†

Moreover, we aimed to investigate whether our model could
predict ADPs at various temperatures while using the same
crystal geometry. To this end, we selected a crystal not included
in our dataset, which had been synthesised at different
temperatures. The ESI† from previous studies48 indicated that
the series of crystal structures of guanidinium pyridinium
naphthalene-1,5-disulfonate, with the CSD refcode DOWVOC,49

met these criteria. The CSD contains 14 entries for this crystal,
covering a temperature range between 155 K and 283 K, all with
well-dened ellipsoids. The list of CSD refcodes and the
respective temperature can be found in Section S7 in the ESI.†
We conducted two experiments to assess the ability of our
model to predict ADPs at any temperature xing the geometry.
In the rst experiment, we examined whether our model could
accurately predict the ADPs for all data points of this crystal
using the experimental geometries and temperatures. In the
second experiment, we evaluated whether our system could
predict ADPs by employing a xed geometry while varying the
input temperature. We used the xed geometry at 213 K and
systematically adjusted the input temperature values provided
to CartNet. We computed the mean of the ellipsoid volumes
from experiments, predicted, and predicted from the geometry
for each temperature point.

Fig. 16 presents the results of these experiments. The results
demonstrate that our model can predict ADPs across the entire
temperature range. However, the predicted volume diverges
when using a xed geometry and varying the input temperature.
These results suggest that cell expansion due to temperature
signicantly affects ADPs, as the error increases with the
© 2025 The Author(s). Published by the Royal Society of Chemistry
difference between the temperature at which we xed the
geometry and the temperature at which ADPs should be pre-
dicted. Nonetheless, when predicting ADPs around the
temperature from the xed geometry, they are estimated with
high accuracy. Further discussion about using the xed geom-
etry at 150 K and 283 K can be found in Section S7 in the ESI.†

Finally, the last experiment was to compare with traditional
theoretical methods. We compared the ADPs of our method
with DFT calculations. Due to the high computational cost of
computing ADPs with DFT, a single crystal structure (5,50-
dimethyl-2,20-bipyrazine, CSD refcode: ETIDEQ) has been
computed. The electronic structure calculation was performed
using the Vienna Ab initio Simulation Package (VASP c6.4.3)36–38

package with the optimized structure at the PBE45-D3(BJ)46 level
of theory. More details about the conguration used in elec-
tronic structure calculations can be seen in Section S6 in the
ESI.†

In the case of DFT calculations, the choice of the central
geometry for the atomic displacements can have a strong
Digital Discovery, 2025, 4, 694–710 | 705
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Table 4 Comparative ADP results between CartNet and DFT for the
5,50-dimethyl-2,20-bipyrazine crystal structure (CSD refcode: ETIDEQ).
For the DFT calculations, three configurations have been tested. First,
using atomic relaxation with a fixed volume, obtained by solving the
Vinet equation. Second, atomic relaxationwith a fixed lattice. Third, full
optimization of the geometry. DFT calculations were done using 56
CPU cores from the MareNostrum 5 (ref. 50) HPC, while CartNet
calculations were done using 1 GPU and 1 CPU core from our setup
described in Section 5.1. The best result is in bold. Arrows indicate the
direction of improvement for each metric

Method MAE (Å2) Y S12 (%) Y IoU (%) [ Time (s) Y

DFT (Vinet) 1.32 × 10−2 3.09 57.33 ∼2.88 × 106

DFT (x latt.) 1.43 × 10−2 4.12 70.75 ∼1.44 × 106

DFT (full opt.) 3.25 × 10−3 0.49 86.27 ∼2.88 × 106

CartNet 2.12 × 10−3 0.17 92.31 ∼10−2

Table 5 Ablation results in the test split of the ADP dataset. Exp. no. 1
involves full CartNet using all contributions, exp. no. 2 creates the
graph without the hydrogens, exp. no. 3 was trained without using the
envelope to equalize the neighbours, exp. no. 4 was trained without
using the direction unit vector between the neighbours, exp. no. 5 was
trained without using the temperature of the crystal structure as input,
and exp. no. 6 was trained without the SO(3) data augmentation
proposed method. The best result is in bold and second best under-
lined. Arrows indicate the direction of improvement for each metric

Exp. no. Method MAE (Å2) Y S12 (%) Y IoU (%) [

1 CartNet 2.88 × 10−3 0.75 83.53
2 w/o hydrogens 3.28 × 10−3 0.94 81.74
3 w/o envelope 3.04 × 10−3 0:77 83:21

4 w/o v̂ij 6.23 × 10−3 2.46 74.17
5 w/o temperature 3.04 × 10−3 0.85 82.22
6 w/o SO(3) Aug 3:02� 10�3 0.81 82.78
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impact on the accuracy of the calculated ADPs. In this case,
three geometries were tested: (i) a full optimization, considering
atomic positions and lattice parameters, (ii) geometry relaxation
including atoms but xing the lattice to its crystallographic
dimensions and (iii) an atomic relaxation with a xed volume,
obtained by solving the Vinet equation of state. The latter
calculation is the most sophisticated since it involves the
calculation of the change in free energy with respect to the
compression and expansion of the cell to derive a cell volume at
a given temperature. However, the best results were obtained
for the full optimization, which is a simpler method in
comparison. Regarding the computational cost of this calcula-
tion, it is interesting to observe how the xed lattice calculation
required half the geometrical displacements compared to Vinet
and full optimization, as this geometry retained inversion
symmetry aer structural optimization. Thus, the displace-
ments over symmetry equivalent atoms were redundant and,
hence, omitted.

Table 4 shows the numerical results for this comparison. As
can be seen, our model still improves the MAE by 34.77% and
the IoU by 6.04%. Additionally, CartNet shows real improve-
ment in the computation time, which was reduced by several
orders of magnitude. Fig. 17 compares the ADPs from CartNet
Fig. 17 Thermal ellipsoids representations from experimental ADPs for
DEQ) predicted using DFT and CartNet, respectively. The green regions re
values, and the grey represents the intersection between them. The num
calculated ADP. Highlighted can be seen a sample ellipsoid predicted u
represents the unit cell, and the red, green, and blue lines correspond to

706 | Digital Discovery, 2025, 4, 694–710
and the best DFT results (full optimization). In both cases,
ellipsoids closely match the experimental reference, in line with
their low MAE values.

6 Ablation studies

We conduct comprehensive ablation studies to assess the
contribution of each component in our proposed model. By
systematically removing or altering specic elements of the
architecture, we aim to understand the impact of each part on
the overall performance. This analysis allows us to identify
which components are crucial for achieving high accuracy and
provides insights into the model's inner workings.

Table 5 presents the results of removing each component of
our proposed method. The following subsections explain the
detailed experiments done and discuss their implications in the
design of our model.

6.1 Impact of the hydrogens

The ADP dataset used in this study does not contain experi-
mental ADP data for the hydrogen atoms, which makes deter-
mining how to handle these atoms during the graph
the 5,50-dimethyl-2,20-bipyrazine crystal structure (CSD refcode: ETI-
present the experimental values, the red ones represent the prediction
bers in each atom represent the IoU between the experimental and the
sing the DFT and the same ellipsoid using CartNet. The parallelepiped
the a, b, and c unit cell axes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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construction process challenging. Our proposed methodology
takes advantage of the available 3D coordinates of the hydrogen
atoms by including them as additional atoms in the graph but
inferring ellipsoids solely for the non-hydrogen atoms.
However, we also tested an approach that ignored all hydrogen
atoms during the creation of the graph and computed the
ellipsoids using only the remaining atoms.

As seen in the experiment number 2 from Table 5, the results
indicate that excluding the hydrogen atoms decreases the IoU
from 83.53% to 81.74%, resulting in a 1.32% decrease in
performance. For the other metrics, an improvement of 14.89%
can be seen in MAE and 0.19% in S12.

The results suggest that hydrogen atoms, while not directly
involved in inferring ellipsoids, contribute valuable contextual
information to the graph. This additional data benet the
model, allowing it to more accurately infer the ADPs of non-
hydrogen atoms by incorporating the effects of the covalently
bonded hydrogens and include the relevant hydrogen bond
interactions and other intermolecular forces.

6.2 Neighbour equalization

The neighbour equalization technique is a novel method for
equalizing the number of neighbours. It uses an envelope
function to weight the contributions of atoms with respect to
their distance. It addresses the challenge of distant atoms
disproportionately inuencing the aggregation process and
helps detect the peaks of the different interatomic interactions.

Experiment number 3 in Table 5 shows the results when
training CartNet without the envelope function. Compared to
full CartNet (experiment no. 1), the ADP prediction experiments
show a drop of 0.32% for the IoU, 0.02% for the S12, and 5.26%
for the MAE. This suggests that using neighbour equalization
with the envelope function is highly effective in equalizing the
neighbours.

6.3 Cartesian axis

This ablation study investigates the effect of incorporating the
Cartesian direction vector (v̂ij) between atoms in the edge
encoder on the CartNet model. The direction vector captures
important geometric information about the relative orientation
of atoms, which is expected to inuence the accuracy of ADP
predictions.

The results presented in experiment number 4 in Table 5
clearly show the signicant impact of incorporating the Carte-
sian direction unit vector in the edge encoder. The 9.36%
decrease in IoU, the 1.71% drop in the S12, and the 53.77%
reduction in MAE highlight the ability of the model to capture
the spatial relationships between atoms when using the direc-
tion vector. This suggests that the direction unit vector is
a crucial input feature for effectively encoding the geometric
information necessary for accurate ADP prediction.

6.4 Temperature

This ablation study explores the impact of including tempera-
ture as an input feature on the performance of the model in
predicting ADPs. Temperature plays a crucial role in atomic
© 2025 The Author(s). Published by the Royal Society of Chemistry
displacements, and incorporating it as an input feature can
enhance the ability of the model to capture temperature-
dependent behaviours in ADPs.

The experiment 5 in Table 5 shows the results when not
including the temperature information in the input of the
CartNet model. The decreases 1.31% in IoU, 0.08% in the S12,
and 4.63% in MAE demonstrate that the ability of the model to
capture the spatial extent of atomic displacements is enhanced
when the temperature is included. These results suggest that
temperature is essential for improving the performance of
models in predicting ADPs, particularly when considering the
thermal motion of atoms.
6.5 SO(3) data augmentation

The augmentation was explicitly designed to enhance the
model's ability to learn to generalize unseen rotations, which is
critical when dealing with 3D molecular and crystal structures
where the orientation of the input can vary.

For these experiments, we trained our model on the ADP
dataset with and without rotation SO(3) augmentation. The
conguration without augmentation exposed the model to the
data in its original orientation. In contrast, the conguration
utilizing rotation SO(3) augmentation involved randomly
applying three-dimensional rotations to the direction vectors of
the atoms during training, thereby encouraging the model to
learn features equivariant to spatial orientation.

Experiment number 6, compared with experiment number 1
from Table 5, demonstrates the positive impact of the rotation
SO(3) augmentation on model performance. The decrease of
0.75% in IoU, 0.06% in S12, and 4.63% in MAE demonstrates
that the model is more adept at generalizing to unseen orien-
tations of the input data, making it better suited for real-world
applications where molecules and crystal structures can appear
in various spatial congurations.

Since CartNet does not explicitly enforce SO(3) rotation
equivariance but learns it through data augmentation, we
wanted to evaluate the error this method introduces into the
nal predictions. To quantify this, we dened two variables:
Uorig represents the ADP predictions from the original, unro-
tated crystal structures and Urot represents the ADP predictions
from the crystal structures aer they have been rotated by
a rotation matrix R. We then compared Urot with the rotated
versions of Uorig, calculated as RUorigR

T. This methodology
allows us to isolate rotation-induced errors, ensuring that any
observed discrepancies are attributable solely to rotation effects
rather than a combination of prediction and rotation errors. To
perform this comparison, we conducted a Monte Carlo experi-
ment, applying 100 different random rotation matrices to the
test set.

The results of this experiment yielded a Mean Absolute Error
(MAE) of 1.01 × 10−3 Å2 ± 1.68 × 10−3 Å2, an S12 score of 0.65%
± 0.17%, and an Intersection over Union (IoU) of 94.96% ±

2.46%. Fig. 18 illustrates the results of this experiment.
In all cases, the ADP predictions for the rotated crystal

structures (Urot) closely matched the rotated predictions of the
original structures (RUorigR

T). These results conrm that
Digital Discovery, 2025, 4, 694–710 | 707
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Fig. 18 Visualization of rotational errors by comparing the rotated
ADP predictions from the original crystal structures (green ellipsoids,
RUorigR

T) with the ADP predictions from the rotated crystal structures
(red ellipsoids, Urot). The overlapping regions are shaded in grey,
representing the intersection between the two predictions. The IoU
values are displayed above each pair of ellipsoids.
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CartNet effectively generalizes to unseen rotations despite not
explicitly enforcing rotation equivariance.
7 Conclusions

In this work, we introduced CartNet, a novel GNN architecture
designed to predict properties of crystalline molecular-based
structures. In the specic test case examined, our model
signicantly reduces computational costs while demonstrating
improved performance relative to the low-level GGA functional
DFT calculations and current state-of-the-art learning-based
architectures. Nonetheless, more advanced DFT formulations
(e.g., hybrid functionals with many-body dispersion), which are
considerably more computationally expensive, may offer higher
accuracy and warrant further investigation to fully assess the
broader performance benets of our approach. The develop-
ment of CartNet was driven by the need to address the chal-
lenges posed by ADPs, which are crucial for understanding
thermal vibrations in crystallography.

CartNet utilizes a novel Cartesian encoding approach that
avoids reliance on the unit cell, thereby overcoming limitations
faced by previous models. The incorporation of neighbour
equalization helps the model to differentiate between various
types of bonds and interaction forces between atoms. The
Cholesky-based output layer ensures that the model generates
valid ADP predictions that align with physical requirements.
Additionally, by introducing a rotational generalization through
data augmentation, CartNet effectively learns the directional
nature of atomic vibrations without relying on specic equiv-
ariant layers. The evaluation of CartNet demonstrated its
robustness and accuracy. It outperformed previously reported
methods in other benchmarks, JARVIS and The Materials
Project, that focused on bulk materials, instead of molecular
systems, and contained structure and properties that have been
computed with DFT calculations, instead of experimental
structures and ADPs.

In addition to the model, we curated and presented
a comprehensive ADP dataset containing over 200k crystal
708 | Digital Discovery, 2025, 4, 694–710
structures of molecular systems from the Cambridge Structural
Database (CSD). This dataset spans a wide range of tempera-
tures and atomic environments, providing a valuable resource
for further research on predicting anisotropic displacements
and thermal behaviours in crystalline structures.

This work provides a more efficient and accurate method for
predicting properties in crystal structures, opening new possi-
bilities for studying different material properties and designing
new materials. Therefore, when CartNet is specically used to
predict ADPs, it can be used to evaluate the experimental results
of new systems in cases where their experimental determination
using diffraction techniques presents difficulties.

Future work could focus on predicting cell expansion to
estimate ellipsoids at other temperatures based on a xed
geometry at a specic temperature. Regarding the specic case
of the ADP, future work could explore the creation of equivar-
iant methods to generate valid ADP matrices. Moreover, due to
the large number of molecular crystal structures in the ADP
dataset, future work can study using this dataset as pre-training
for other crystal structure tasks. Finally, the efficiency and
accuracy of CartNet also highlight its potential for future crystal
structure prediction challenges, such as the 7th Blind Test51,52

organized by the Cambridge Crystallographic Data Centre
(CCDC),53 where handling highly exible or disordered systems
remains a critical obstacle.

Data availability

The code to generate the ADP dataset and recreate the results of
the paper can be found at: https://github.com/imatge-upc/
CartNet. The project website with online demo available at:
https://www.ee.ub.edu/cartnet.
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and K. Woźniak, Cryst. Growth Des., 2014, 14, 3453–3465.

6 D. W. J. Cruickshank, Acta Crystallogr., 1956, 9, 1010–1011.
7 A. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove,
J. S. O. Evans, D. A. Keen, L. Peters and M. G. Tucker,
Science, 2008, 319, 794–797.

8 P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl,
P. Giannozzi and S. Baroni, Phys. Rev. B: Condens. Matter
Mater. Phys., 1993, 48, 3156–3163.

9 V. L. Deringer, J. George, R. Dronskowski and U. Englert, Acc.
Chem. Res., 2017, 50, 1231–1239.

10 J. George, A. Wang, V. L. Deringer, R. Wang, R. Dronskowski
and U. Englert, CrystEngComm, 2015, 17, 7414–7422.

11 About the Cambridge Structural DatabasejCCDC —

ccdc.cam.ac.uk,https://www.ccdc.cam.ac.uk/solutions/
about-the-csd/, accessed 04-02-2024.

12 K. Choudhary, K. F. Garrity, A. C. Reid, B. DeCost,
A. J. Biacchi, A. R. Hight Walker, Z. Trautt, J. Hattrick-
Simpers, A. G. Kusne, A. Centrone, et al., npj Comput.
Mater., 2020, 6, 173.

13 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, APL Mater., 2013, 1, 011002.

14 M. N. Burnett and C. K. Johnson, ORTEP-III: Oak Ridge
Thermal Ellipsoid Plot Program for Crystal Structure
Illustrations, Oak Ridge National Laboratory, Technical
Report ORNL-6895, 1996.

15 N. J. Lane, S. C. Vogel, G. Hug, A. Togo, L. Chaput,
L. Hultman and M. W. Barsoum, Phys. Rev. B: Condens.
Matter Mater. Phys., 2012, 86, 214301.

16 A. Togo, J. Phys. Soc. Jpn., 2023, 92, 012001.
17 F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and

G. Monfardini, IEEE Trans. Neural Networks, 2009, 20, 61–80.
18 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and

G. E. Dahl, International Conference on Machine Learning,
2017, pp. 1263–1272.

19 R. Ramakrishnan, P. O. Dral, M. Rupp and O. A. Von
Lilienfeld, Sci. Data, 2014, 1, 1–7.

20 G. Zhou, Z. Gao, Q. Ding, H. Zheng, H. Xu, Z. Wei, L. Zhang
and G. Ke, The Eleventh International Conference on Learning
Representations, 2023.

21 K. Yan, Y. Liu, Y. Lin and S. Ji, Adv. Neural Inf. Process. Syst.,
2022, 35, 15066–15080.
© 2025 The Author(s). Published by the Royal Society of Chemistry
22 Y. Lin, K. Yan, Y. Luo, Y. Liu, X. Qian and S. Ji, International
Conference on Machine Learning, 2023, pp. 21260–21287.

23 K. Yan, C. Fu, X. Qian, X. Qian and S. Ji, International
Conference on Learning Representations, 2024.

24 J. Gasteiger, J. Groß and S. Günnemann, International
Conference on Learning Representations (ICLR), 2020.

25 J. Gasteiger, S. Giri, J. T. Margraf and S. Günnemann,
Machine Learning for Molecules Workshop, NeurIPS, 2020.

26 I. Batatia, D. P. Kovacs, G. Simm, C. Ortner and G. Csányi,
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