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Quantifying prediction uncertainty when applying object detection models to new, unlabeled datasets is
critical in applied machine learning. This study introduces an approach to estimate the performance of
deep learning-based object detection models for quantifying defects in transmission electron
microscopy (TEM) images, focusing on detecting irradiation-induced cavities in TEM images of metal
alloys. We developed a random forest regression model that predicts the object detection F; score,
a statistical metric used to evaluate the ability to accurately locate and classify objects of interest. The
random forest model uses features extracted from the predictions of the object detection model whose
uncertainty is being quantified, enabling fast prediction on new, unlabeled images. The mean absolute
error (MAE) for predicting F; of the trained model on test data is 0.09, and the R? score is 0.77, indicating
there is a significant correlation between the random forest regression model predicted and true defect

detection F; scores. The approach is shown to be robust across three distinct TEM image datasets with
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detection and segmentation model predictions and assess the applicability of the model to their specific

DOI: 10.1039/d4dd00351a datasets, providing valuable information about possible domain shifts and whether the model needs to

Open Access Article. Published on 04 March 2025. Downloaded on 2/12/2026 12:29:01 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1 Introduction

Electron microscopy (EM) techniques are among the most
effective tools to characterize the structure of materials. Among
the EM techniques, transmission electron microscopy (TEM)
has been widely used to study defects in materials owing to its
ability to visualize individual defects at the atomic to nanometer
scale.* The identification and annotation of objects of interest
in TEM images (e.g., atomic vacancies, dislocation loops, cavi-
ties, etc.) has traditionally been accomplished manually by
domain-expert scientists.>® However, these manual methods
suffer from human-related inconsistencies (e.g., bias toward
identifying certain features and excluding others) and are not
automatically scalable, especially given the modern EM instru-
ments' capability to generate large volumes of complex data.
The drawbacks associated with manual labeling necessitate an
automated approach, where machine learning (ML), particu-
larly deep learning (DL), has emerged as a viable solution.
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be fine-tuned or trained on additional data to be maximally effective for the desired use case.

In recent years, DL has significantly advanced the fields of
computer vision and image processing. Specifically, convolu-
tional neural networks (CNNs), due to their ability to efficiently
and accurately identify relevant features in images, have been
transformative and widely applied to identify objects within
images with high accuracy. Advanced CNNs like ResNet50,
VGG16 and U-net* have become foundational in object detec-
tion frameworks, such as the Faster Regional Convolutional
Neural Network (Faster R-CNN),” Mask R-CNN° and YOLO (you
only look once).” These and related object detection frameworks
have recently gained significant traction in materials research,
and have been employed to detect features such as void defects,
dislocation loops and nanoparticles.*** Although not directly
related to this work, models based on fully convolutional
networks (FCNs) have also been employed to locate individual
atoms in EM images."****

Overall, object detection models have achieved human
domain-expert level performance (with dramatically faster
prediction times) for characterizing the numbers, shapes and
sizes of various defect types in EM images for numerous types of
materials.®* However, it has been pointed out that the perfor-
mance of the object detection models vary with the overall
quality of EM images, the size and visual quality of individual
objects to be identified, and the selection of training and testing
data used to train the object detection model. For example,
Jacobs et al® found that the performance of a Mask R-CNN
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model for detecting defects in TEM images was affected by the
similarity between images comprising the training and testing
dataset, where it was found that testing images from a different
data source, material type or imaging condition than was
included in the training data resulted in significantly degraded
model performance. Wei et al. (2022)** demonstrated the
significant impact of STEM image quality (such as resolution
and contrast) and the similarity to the training data on the
performance of FCN-based models. It has also been observed
that the robustness of neural networks varies with EM images
taken with different experimental parameters, such as magni-
fication and electron dosage.* Finally, Jacobs et al.*> found that
a Mask R-CNN model to characterize cavities in TEM images of
irradiated metal alloys had difficulty in detecting small cavities
(i.e., those less than a few percent of the image dimension), and
Bruno et al. found that human labelers, even domain-expert
ones, will introduce biases into their ground-truth labeling
when attempting to label objects that are small or visually
ambiguous.* The examples provided above leveraged signifi-
cant scientific-domain expertise to identify when certain data
was likely to fall inside or outside the applicability domain of
the trained object detection model. Such information is not
always readily available or practical to obtain, and having some
uncertainty quantification of object detection model predic-
tions would be highly beneficial for application of object
detection models for EM image characterization.

The success of deep neural networks in the field of computer
vision is dependent on the presumption that the data used for
training and testing are drawn from the same distribution.>*>¢
The decline in performance when applied to data that deviates
from the distribution seen during training is commonly
referred to as the out-of-distribution (OOD) problem.>”** In
computer vision, OOD detection has traditionally been framed
as a classification task to distinguish between OOD and in-
distribution samples.*®*** Commonly-used image benchmarks,
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like CIFAR and ImageNet, consist predominantly of visually
distinct common objects (e.g., pictures of individual animals,
furniture, food, people, etc.). In EM imaging, however, object
variations and distinctions are typically much less obvious,
where even different domain-expert labelers will show marked
differences in apparent ground truth labeling.>*** Therefore, the
approach to treat OOD detection in EM images as a binary
classification problem is not feasible due to minute but distinct
varying imaging domains, nuanced labeling, and complex
evaluation criteria. In this work, our focus is on developing an
approach that estimates the likely accuracy of a DL defect
detection model for a given image so that the user can decide
how they wish to use the predictions from that image.

There are two main approaches to address EM image-based
DL model uncertainty, depending on its origin and the objec-
tive. In automated experimentation, data distribution may
experience OOD drift due to the acquisition of new data, leading
to decreased model performance.** The goal in such scenarios is
to enhance model performance, with current methods focusing
on the iterative training of ML models to enable adaptive
learning as the underlying data used in training is updated.*
This is an exciting approach, but involves a significant effort
associated with obtaining consistently labeled data and
retraining models to address issues. Another approach
concerns the treatment of outlier EM images, such as those that
are empty or exhibit a low signal-to-noise ratio, and therefore
lack valuable information and should be discarded. Here, the
objective is simply to flag and reject these outlier images, not
use them for retraining, and thereby ensure the integrity of the
data used for analysis.** However, determining outliers can be
challenging since model performance depends on many
factors. We take an approach similar to this second outlier
approach, although we provide a continuous prediction of
quality (i.e., predicted F; score) rather than just a classification
of in-distribution or OOD.
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Fig.1 Workflow diagram illustrating the process of estimating the defect detection F; score using a trained Mask R-CNN model. The procedure
includes using the trained Mask R-CNN to identify defects in TEM images, extracting key features from the predicted defects, and utilizing
a random forest regression model to predict the F; score, thereby estimating the performance without the need for ground truth labels.
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In this work we develop and validate a performance esti-
mation framework capable of predicting how well a trained
Mask R-CNN model is expected to locate and classify objects
when applied to new TEM images. Although we focus on one
model type and just cavity defects in irradiated metal alloys, we
expect the overall approach to be useful for quantifying the
performance of many object detection models trained on many
different types of objects and images. Crucially, our trained
random forest model can be applied to images for which no
labeled ground truth data is available, providing insight for the
expected performance of the object detection model on new,
unseen data. Fig. 1 illustrates the workflow of the performance
evaluation procedure without ground truth labels. Rather than
simplifying the problem to a binary classification of data to in-
distribution or OOD, we have developed a methodology that
predicts the defect detection F; score as a metric for a quanti-
tative evaluation of model performance. We have trained
a random forest regression model to learn the relationship
between selected features derived from the Mask R-CNN model
output (the bounding boxes and associated confidence scores)
and the object detection F; score. By processing new images
through a pre-trained Mask R-CNN model, one can subse-
quently employ our random forest regression model to estimate
the defect detection F; score. This predictive capability allows
users of our Mask R-CNN model to estimate the reliability of
their results and determine the suitability of the model to their
specific datasets. Our framework is particularly useful in
applying trained defect detection models on new images where
image quality and characteristics may be different from the
training dataset, e.g., due to domain shift and/or just poor
image quality. This work also opens new avenues for the robust
application of machine learning models in materials science,
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where understanding and quantifying uncertainty is crucial for
advancing experimental and analytical techniques.

2 Data and methods

2.1 Data acquisition

The three datasets: Set A, Set B and Set C used in our study
comprise TEM images of cavities in metal alloys which have
undergone neutron or ion irradiation. TEM images from the
three different sets vary in the material composition and/or
structure, irradiation condition, TEM instrument used, TEM
imaging conditions, and ground truth labels. Previous utiliza-
tion of Set A and Set B is documented in the work of Jacobs
et al.’® and Lynch et al.,** where detailed descriptions of these
datasets are available. Images in Set A were taken of steel alloys
with various compositions irradiated by neutrons or ions, ob-
tained at the Nuclear Oriented Materials & Examination
(NOME) Laboratory at the University of Michigan. Set B
contains images of irradiated X-750 alloy with helium bubbles
generated by Canadian Nuclear Laboratories (CNL).>* The TEM
images within Set C originate from samples of Fe and Fe-10Cr
alloys irradiated by Kr and He ions at the Intermediate-Voltage
Electron Microscopy (IVEM)-Tandem facility at Argonne
National Laboratory (ANL)."* The objects targeted for detection
are cavities (sometimes also called voids or bubbles) in TEM
images and typically exhibit circular or faceted shapes. Notably,
all three datasets include images that have imaging conditions
that are either underfocused or overfocused to form Fresnel
contrast in the images. The voids in TEM images with Fresnel
contrast appear with bright boundary pixels when captured in
the overfocus mode and with dark boundary pixels in the
underfocus condition. For the purposes of our analysis, Set A
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Fig. 2 Data generation and utilization workflow. This flowchart illustrates the sequential steps undertaken in our study, starting from the
collection of TEM images, through the training and evaluation of the Mask R-CNN model, to the feature extraction and final F; score prediction
using random forest regression. The data is distinctly categorized for Mask R-CNN training and testing, followed by a five-fold cross-validation
scheme applied in the random forest training phase, highlighting the two experimental setups: consistent source (random splits) and varied

source (grouped splits) between training and testing datasets.
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Table 1 List of splits and how they were obtained

Split Notation Mask R-CNN [ Mask R-CNN
trained on tested on
1 A&B C A&B C
2 A: over_under | A: overfocus A: underfocus
3 A:under over | A:underfocus | A: overfocus
4 B A B A
5 AB A B
6 A&B A&B A&B A&B
7 AA A A
8 B B B B
9 A: under under | A: underfocus | A: underfocus
10 A: over over A: overfocus A: overfocus

was subdivided into two subgroups - Set A: underfocus and Set
A: overfocus, which is to facilitate data partition in the training
and testing phases of the Mask R-CNN model.

The data generation and utilization workflow shown in Fig. 2
begins with a comprehensive collection of the three sets of TEM
images described above, from which a subset is used for the
training of the Mask R-CNN model, and a distinct subset of the
TEM images is deployed to test the performance of the trained
Mask R-CNN. As shown in Table 1, the data splits used to train
and test the Mask R-CNN model includes two types of splits: one
where the training and testing datasets are sourced from the
same subset (these are random splits so the test data is likely to
be in the same distribution as the training data), and another
where the testing data are sourced from a different subset than
the training data (these are splits based on distinct subsets with
known significant differences so the test data is likely outside
the distribution of training data). We will refer to these carefully
designed distinct subsets as “grouped” subsets to reflect the
distinct nature of their grouping. The method of determining
what is in each grouped subset is based on either (i) data
coming from different origins, e.g., Set A vs. Set B, and thus
represent different materials, irradiation conditions, and TEM
instruments, or (ii) data coming from different imaging modes,
where here the main difference in imaging mode is overfocus vs.
underfocus conditions. For each case, a Mask R-CNN model was
trained on the training dataset and then was applied to detect
cavities in the test images. The resulting bounding boxes and
their confidence scores on the test images were used as a basis
for creating features to train the random forest model to predict
the object detection F; score, discussed more in Section 2.3.

2.2 Mask R-CNN model and assessment

The structure and implementation of the Mask R-CNN model
used in this work is the same as that used in the work of Jacobs
et al."* (Detectron2 implementation with PyTorch backend), and
more details about model training and hyperparameters can be
found in that study. The Intersection over Union (IoU) is
a measure used to quantify the overlap between the bounding
boxes of two objects. In this study, following Jacobs et al.,** an
IoU threshold of 0.1 indicates that a prediction is considered
a true positive if at least 10% of the predicted area overlaps with

990 | Digital Discovery, 2025, 4, 987-997
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the ground truth. The confidence score is a likelihood measure
that the Mask R-CNN model region proposal contains an object
of interest. Here, a confidence threshold of 0.1 was adopted
following previous work.”> The F;-score is a measure of the
defect detection model's performance on test images and serves
as the learning target (y) for the regression model. The F; score
of each image was calculated by comparing the ground truth
manual annotations and predictions made by the Mask R-CNN
model using eqn (1):
2 2 x TP

F\-score = = 1
: precision + recall? 2 x TP+ FP + FN )

where true positives (TP) denote the number of correctly
detected defects, false positives (FP) denote the number of
predicted defects which are not defects in the ground truth
images, and false negatives (FN) denote the number of defects
labeled in the ground truth images but not predicted by the
Mask R-CNN model. A high F; score (e.g., typically 0.7 or higher,
though this value depends on the application) indicates good
performance.

2.3 Random forest model and assessment

Random forest is one of the most widely used ML methods in
materials science*** due to its robustness, ease of use, and
ability to handle nonlinear relationships between features and
the target variable. The random forest model works by con-
structing multiple decision trees during training, each of which
is fit to a separate bootstrapped sample of the training data, and
outputting the mean prediction of the individual trees. This
ensemble method helps improve accuracy and minimize over-
fitting. The performance of a random forest model may vary
with the number of trees in the forest. In our case, we utilized
100 trees to balance overall model complexity and performance.

As shown in Fig. 2, the performance of the random forest
regression model was assessed using either random five fold
cross-validation (random splits) or leave-out-group cross-
validation (grouped splits). The final model used for deploy-
ment was fit on all of the data together. The performance of the
trained model on each test dataset was evaluated using five well-
established evaluation metrics. The obtained evaluation
metrics were averaged over five test folds to reflect the overall
performance of the model. Apart from the three widely used
metrics: the coefficient of determination (R*), the root mean
square error (RMSE), and the mean absolute error (MAE), the
normalized RMSE (NRMSE) and normalized MAE (NMAE) are
also employed. NRMSE normalizes the RMSE by the standard
deviation of the ground truth F; scores in the test set being
considered, while NMAE normalizes the MAE relative to the
mean of the ground truth F; scores in the test set being
considered.

2.4 Feature engineering

The output from the Mask R-CNN model for each image is a list
of detected cavity bounding boxes and the corresponding
confidence scores. To featurize the random forest model, we
pursued an approach that selected optimal features from a long

© 2025 The Author(s). Published by the Royal Society of Chemistry
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feature candidate list derived from different quantification of
the distributions of the detected cavity sizes, cavity counts and
cavity confidence scores. Our initial feature set contained the
following candidate features, calculated for each image: (1-9)
the confidence scores (ranges from 0.1 to 1) were segmented
into 9 distinct bins, and the counts of scores within each bin
were calculated and divided by the total number of detected
defects; (10) the area ratio (defined as the combined area of all
detected cavities relative to the total image area), (11) the
average confidence score, (12) standard deviation of confidence
score, (13) average fractional detected defect bounding box size,
(14) standard deviation of fractional detected defect size, (15)
the average cavity shape as calculated by Heywood circularity,
(16) the standard deviation of cavity shape, (17) number of
defects (counts), (18) image confidence (the area weighted
average of confidence score). These 18 features were incorpo-
rated into our initial feature matrix.

We normalized all features to the same scale using the
StandardScaler tool from the scikit-learn package to prevent any
single feature from dominating the model due to its value
range. To identify the most important features for our model,
we conducted SHAP (SHapley Additive exPlanations) analysis.*”
SHAP values provide a unified measure of feature importance by
quantifying the contribution of each feature to the model's
predictions. Fig. 3 presents the SHAP value summary plot for all
feature candidates considered in the model, illustrating the
impact of each feature on the model's output. SHAP values are
used to interpret the contribution of each feature to the
predictions. Each dot represents a SHAP value for a particular
data point in the dataset, with colors indicating the feature
value from low (blue) to high (red). The color gradient reveals
how different values of the features affect the predictions. For
instance, high values of the number of high-confidence defects
(counts_0.9) (red) tend to increase the SHAP value, positively
influencing the model's output (i.e., high predicted F; score),
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while low values (blue) have the opposite effect (i.e., low pre-
dicted F; score).

The features are listed on the y-axis, where feature (1-9) are
denoted by “counts_” followed by a number. For instance,
counts_0.1 represents the number of defects with confidence
scores between 0.1 and 0.2. Feature (13) is denoted by “average
size”, and feature (14) was denoted by “std size”. Based on the
ranking from the SHAP analysis, we trained the random forest
model using between 5 and 19 features. The resulting RMSE, R?,
and MAE are plotted as a function of the number of features as
shown in Fig. 4. The model achieved the best performance, with
the lowest RMSE and highest R* score, when using the top eight
features that had the most significant impact on the predic-
tions. These eight features were therefore selected for the final
model. Notably, the number of defects with confidence scores
higher than 0.9 appears to have a greater impact on the model's
performance compared to the number of detected defects with
lower confidence scores. This observation is reasonable because
the number of high-confidence defects significantly influences
both false positives and false negatives, thereby correlating
strongly with the F; score. Additionally, the average and stan-
dard deviation of the confidence score are crucial since they
reflect the model's ability to identify high-confidence detections
reliably. Moreover, the average and standard deviation of frac-
tional defect size are important factors; detecting small defects
accurately poses a challenge for the model, influencing its
overall performance. The area ratio and image confidence were
also found to have a significant impact on the model's output
and were therefore adopted to train the random forest regres-
sion model.

3 Results and discussion

The histogram shown in Fig. 5 displays the distribution of all
the Mask R-CNN defect find F; scores of testing images

High
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Fig. 3 SHAP value analysis of all feature candidates.
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(a) Histogram of defect find F; scores. (b) The average defect find F; scores with standard deviation error bars for different subsets of data.

The dashed green and blue lines represent the average defect find F; scores across all grouped and random split data, respectively. The green and
blue shades depict the standard deviation over all data from grouped splits and random splits, respectively. Data labels indicate the different split

of training and testing datasets.

obtained by evaluating the Mask R-CNN defect predictions
against the ground truth labels on each image across different
splits. The x-axis represents the range of F; scores from 0 to 1,
and the y-axis indicates the number of data points falling within
each bin of F; scores. It appears that the distribution of F;
scores from grouped splits is somewhat uniform since there are
more than 80 instances falling within each bin. However, there
are notably more instances with higher F; score values for
random splits. The mean F; scores for various grouped splits
and random splits are plotted in Fig. 5(b), with error bars rep-
resenting the standard deviation for each split. Fig. 5(b) shows
the random splits, where training and testing conditions are
more likely to be drawn from the same distribution, have higher
mean F; scores. This result also serves as further evidence that
the performance of the Mask R-CNN model depends on the
similarity on the image domain between the training and
testing datasets.

The parity plot in Fig. 6(a) visualizes the performance of our
random forest model used to predict the defect find F;-score
from random five-fold cross-validation. The dispersion of
points along the line of parity (where the predicted score equals
the true score) suggests a moderately strong correlation,

992 | Digital Discovery, 2025, 4, 987-997

supported by an MAE score of 0.094, an RMSE score of 0.127,
and a R” score of 0.774. These metrics indicate a good level of
accuracy in the model predictions across all the data. However,
it is also observed that lower F; scores tend to be overestimated,
while higher F; scores tend to be underestimated, which is
a common behavior of regression models as they seek to
minimize overall error and balance predictions around the
mean.

We also observed that data points with true defect find F;
scores below 0.5 tend to deviate further from the parity line.
Given that grouped splits generally have lower true F; scores, we
plot the average predicted defect find F; score for each split
against the average true F, score in Fig. 6(b) to illustrate the
overall performance across different splits. These averages show
a strong alignment with the true scores, as evidenced by an MAE
of 0.047, an RMSE of 0.062, and an R” of 0.831, which surpass
the collective metrics across all data. The predictions on
random splits align more closely with the true F; scores than
those on grouped splits, where the average MAE for random
splits is 0.082 whereas the average MAE from the grouped splits
is 0.121.

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00351a

Open Access Article. Published on 04 March 2025. Downloaded on 2/12/2026 12:29:01 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

—
QO
~—

(b)

=
o

o
o

o©
o

o
>

Predicted defect find F1
©
N

o
o

00 02 04 06 0.8

True defect find F1

1.0

Fig. 6

View Article Online

Digital Discovery

1.0 o A&BC
4+ A:over_under
= % A:under_over
[T m BA
- 0.8 o AB
é o ALB_AGB
— B AA
8 0.6 ¢ BB
uq_j 4+ Awunder_under
o % A:over_over
o 0.4
[}
=l
=
©
© 0.2
|-
[a W
0.0,

0.0 0.2 0.4 0.6 0.8

True defect find F1

1.0

(a) Parity plot comparing the predicted defect find Fi-scores from the random forest model to the true scores across five test datasets

from random five-fold cross-validation. Each symbol represents a different split within the datasets, and the details of the splits can be found in
Table 1. (b) Plot of mean predicted F; scores for each split against mean true scores, with vertical and horizontal error bars denoting standard
deviation in predicted and true F; scores, respectively. Dashed lines indicate the line of perfect prediction where predicted scores match true

scores exactly.

The F; scores obtained from the test dataset and the corre-
sponding predictions from the random forest model were
categorized into intervals to construct a confusion matrix which
is shown in Fig. 7. This confusion matrix helps in evaluating the
accuracy of our model predictions across different score ranges.
The matrix shows darker shades along the diagonal from the
top left to the bottom right, indicating a higher concentration of
instances where the predicted F; scores align closely with the
true F; scores. Lighter shades off the diagonal reveal fewer
occurrences, suggesting that most predictions fall within the
correct range.

Table 2 summarizes the model performance metrics ob-
tained from both the grouped cross-validation and ten itera-
tions of random five-fold cross-validation processes. The first
row of the table summarizes metrics for the entire dataset,
showing an RMSE of 0.127, an MAE of 0.093, and an R* score of
0.774 based on 833 test images. The next five rows provide
metrics for grouped splits, ordered by the number of data points
within each split. The average metrics over the five grouped
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Fig. 7 Confusion matrix of the categorized F; score prediction.
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splits are shown in the next row shaded in light blue. Similarly,
metrics for random splits are shown in the following five rows,
with the average over random splits displayed in the last row
shaded in light green. RMSE and MAE vary the least across
different data splits. In contrast, the R* score, NRMSE, and
NMAE are influenced by the F; score range within a split, often
indicating higher errors for splits with narrower F; score ranges.
The average RMSE and MAE of the grouped splits are slightly
higher than those for all data, while the average RMSE and MAE
of the random splits are slightly lower than those for all data,
suggesting higher prediction accuracy on randomly split data.
An exception is observed in the split A: over_over, which shows
an RMSE of 0.141 and an MAE of 0.11, likely due to the limited
number of just 11 data points and the low average F; score in
this split.

In the application context of the trained random forest
model, one goal is to guide users in assessing if the results of
defect detection on certain EM images using a trained Mask R-
CNN model are reliable or not. This scenario can be framed as
a binary classification task. The F; score predictions can be
transformed into binary classifications by applying a threshold
to the defect find F; score. This precision-recall curve shown in
Fig. 8 illustrates the performance of the trained random forest
model in classifying data points with a threshold of 0.5 on the
defect find F, score. We note that the choice of threshold is
subjective, and for our present use-case the F; threshold of 0.5
broadly divides reasonably well- vs. poor-performing images
while simultaneously providing a robust ability of our random
forest model to classify such well vs. poor-performing images.
The solid blue line represents the precision of the random
forest model at various thresholds of recall. The curve starts
with a high precision close to 1.0 and gradually declines as
recall increases, indicating that the model maintains a high
precision across a wide range of recall levels before it begins to
fall off. The dashed line represents the no-skill baseline, which
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Table 2 Random forest regression model performance metrics across different data splits
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Data subset RMSE MAE R? NRMSE NMAE Number of images
All data 0.127 0.093 0.774 0.475 0.167 833
A&B C 0.130 0.096 0.714 0.457 0.221 368
A: over_under 0.138 0.096 -0.012 0.753 0.147 107
A: under_over 0.136 0.116  0.600 0.566 0.247 39
B A 0.228 0.188 -0.099 1.024 0.460 28
A B 0.147 0.108 0.247 0.715 0.377 19
Average of grouped splits  0.156 0.121  0.290 0.703 0.290 112.2
A&B A&B 0.092 0.069 0.652 0.550 0.098 195
A A 0.098 0.077 0.666 0.441 0.118 29
B B 0.100 0.077 0.645 0.639 0.102 19
A: under_under 0.103 0.077 -0.150  0.702 0.105 18
A: over_over 0.141 0.110 0.409 0.543 0.223 11
Average of random splits  0.107 0.082 0.444 0.575 0.129 54.4
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Fig. 8 Precision—recall curve for domain estimation with threshold of
0.5 on defect find F; score. The star marks the precision and recall at
the selected F; threshold of 0.5, which are 0.89 and 0.91, respectively.

indicates the performance of a model that would randomly
guess the class. The performance of the random forest model is
notably above this baseline, indicating its capability to

(a)

discriminate between in- vs. out-of-domain (based on defect
find F, threshold of 0.5) effectively.

Fig. 9 presents two plots comparing the performance of
domain classification as a function of different defect find F;
score thresholds. The left plot illustrates the domain classifi-
cation F,; score, and the right plot shows the domain classifi-
cation accuracy (Acc), both as a function of various defect find F;
thresholds. In both plots, the solid colored dots represent the
performance of the random forest model, while the lighter dots
denote a baseline for comparison. Overall, the classification
performance is significantly better than the baseline model,
with a classification F; score higher than 0.7 and classification
accuracy exceeding 0.8 when the threshold on defect find F;
score is smaller than 0.8. As the threshold increases from 0.1 to
0.7, we also observe a general trend of decreasing domain
classification F; scores and accuracy.

In addition to evaluating the overall F; score, we also trained
random forest models to predict defect find precision and recall
to gain a more nuanced understanding of our model's perfor-
mance. While the F; score provides a balanced measure of both
precision and recall, predicting these metrics independently

(b)
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Fig. 9
sification accuracy across various defect find F; thresholds.
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(@) Domain classification metric scores: precision, recall and classification F; score at various defect find F; threshold. (b) Domain clas-
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allows us to assess specific aspects of the model's capability.
Precision indicates how many of the detected defects are true
positives, highlighting the model's accuracy in defect identifi-
cation. Recall, on the other hand, measures how many actual
defects were detected, reflecting the model's ability to identify
all relevant defects.

Our model demonstrated strong performance in predicting
precision, achieving MAE of 0.094, a RMSE of 0.132, and a R®
score of 0.81. In contrast, predicting recall proved to be more
challenging. The model for recall showed an MAE of 0.14, an
RMSE of 0.192, and a R? score of 0.57. The evaluation metrics on
predicting defect find precision, recall and F; scores are
summarized in Table 3. Detailed analyses are provided in the
ESI.f The model's performance in predicting precision
surpasses that of predicting F; score, as precision directly
correlates with detected defects. However, predicting recall is
more difficult because it involves estimating defects that the
model failed to detect, which is inherently more challenging for
machine learning models.

We also attempted to train a random forest model predicting
swelling error of Mask R-CNN. However, the model shows poor
performance with an R* score of 0.131. This outcome is ex-
pected, as predicting swelling error requires knowledge of the
sizes of defects missed by the Mask R-CNN model. Without
information about these undetected defects, estimating their
sizes becomes significantly more challenging. Additional
details can be found in the ESL¥

The Mask R-CNN model and the trained RF model using all
the data we have is available on Figshare (https://doi.org/
10.6084/m9.figshare.27281400.v1). The trained Mask R-CNN
model is designed specifically for detecting and segmenting
cavity defects in TEM images, and thus, it is not intended for
use with images outside this domain. To evaluate the useful-
ness and reliability of the random forest model, we tested it on
COCO-128 images,*® which significantly differ from EM images.
We observed that Mask R-CNN often over-confidently detected
cavities in these images, despite the absence of any actual
cavities, resulting in an expected F; score of 0. The random
forest model, however, produced predicted defect F, scores
below 0.7, with more than 75% of them falling below 0.5.
Examples of Mask R-CNN output images and the histogram of
predicted F; scores from the random forest model are provided
in the ESL.7 Although these predictions are not close to 0, they
are still substantially lower than those for EM images in random
splits. This contrast, with the Mask R-CNN's overconfidence and
the moderate F; scores of the random forest, suggests that the
random forest model successfully captures features indicative

Table 3 Performance metrics of random forest models on predicting
precision, recall, and F; score

Target RMSE MAE R? NRMSE NMAE
Precision 0.132 0.094 0.81 0.435 0.163
Recall 0.192 0.140 0.57 0.656 0.198
F, score 0.127 0.093 0.774 0.475 0.167

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of domain estimation, showing potential for identifying out-of-
domain images.

4 Summary and conclusion

Our study presents a flexible and practical approach to assess the
accuracy of an object detection model on new images, particu-
larly when ground truth labels are unavailable. The approach
uses a random forest regression model to learn the F; score of the
underlying object detection model based on features from the
model detections and confidence scores, allowing F; to be pre-
dicted for new images processed by the object detection model.
We demonstrate our approach using Mask R-CNN models
trained to detect cavities in TEM images of irradiated metal
alloys. The random forest regression model's predictions of the
defect detection F; score closely mirror the true performance, as
evidenced by the MAE of 0.093, R* score of 0.774, and the high
concentration of accurate predictions in the confusion matrix.
The robustness of our method was validated across various splits
of data, though the performance on splits grouped by different
image characteristics is relatively worse than on random splits.
By enabling users to predict model performance on new,
unlabeled data, we bridge a significant gap in automated defect
detection workflows. In particular, the approach taken here could
be used to provide automatic guardrails for users of defect
detection models, warning them when prediction quality is
a concern. Moreover, the success of this methodology paves the
way for future research to extend such performance estimation to
other deep learning models in materials science and beyond.
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Figshare (https://doi.org/10.6084/m9.figshare.27281400.v1).
The code for evaluating the trained Mask R-CNN model,
extracting features from the Mask R-CNN output and for
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(https://doi.org/10.6084/m9.figshare.28306187).

Author contributions

N. L. preprocessed data from Mask R-CNN, built and trained the
random forest model, conducted feature engineering, and
wrote the manuscript. R. J. trained and tested the Mask R-CNN
model, generated outputs for the random forest model,
contributed ideas for wuseful features, and revised the
manuscript. M. L. and K. F. contributed to discussions and
revisions. V. A. contributed to discussions and explored alter-
native approaches to address the problem. D. M. contributed to
discussions, provided many ideas, revised the manuscript, and
serves as the corresponding author.

Conflicts of interest

There are no conflicts to declare.

Digital Discovery, 2025, 4, 987-997 | 995


https://doi.org/10.6084/m9.figshare.27281400.v1
https://doi.org/10.6084/m9.figshare.27281400.v1
https://doi.org/10.6084/m9.figshare.27281400.v1
https://doi.org/10.6084/m9.figshare.28306187
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00351a

Open Access Article. Published on 04 March 2025. Downloaded on 2/12/2026 12:29:01 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Acknowledgements

This research was supported by the Electric Power Research
Institute (EPRI) under award number 10012138. We utilized the
Extreme Science and Engineering Discovery Environment
(XSEDE), funded by National Science Foundation Grant ACI-
1548562. The training and testing of the Mask R-CNN model
were conducted on the Bridges-2 system through allocation TG-
DMR090023, funded by NSF award ACI-1928147, at the Pitts-
burgh Supercomputing Center (PSC).

References

1 C.-H. Lee, A. Khan, D. Luo, T. P. Santos, C. Shi, B. E. Janicek,
S. Kang, W. Zhu, N. A. Sobh, A. Schleife, B. K. Clark and
P. Y. Huang, Nano Lett., 2020, 20, 3369-3377.

2 D. Mukherjee, K. M. Roccapriore, A. Al-Najjar, A. Ghosh,
J. D. Hinkle, A. R. Lupini, R. K. Vasudevan, S. V. Kalinin,
0. S. Ovchinnikova, M. A. Ziatdinov and N. S. Rao, Microsc.
Today, 2022, 30, 10-19.

3 R. Jacobs, Comput. Mater. Sci., 2022, 211, 111527.

4 O.Ronneberger, P. Fischer and T. Brox, U-Net: Convolutional
Networks for Biomedical Image Segmentation, arXiv, 2015,
preprint, arXiv:1505.04597, DOI: 10.48550/arXiv.1505.04597.

5 S. Ren, K. He, R. Girshick and J. Sun, Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,
Advances in Neural Information Processing Systems, ed. C.
Cortes, N. Lawrence, D. Lee, M. Sugiyama and R. Garnett,

Associates, Inc., 2015, vol. 28, https://
proceedings.neurips.cc/paper_files/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

6 K. He, G. Gkioxari, P. Dollar and R. Girshick, Mask R-CNN,
2018.

7 J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only
Look Once: Unified, Real-Time Object Detection, 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 779-788, DOIL: 10.1109/CVPR.2016.91.

8 M. Shen, G. Li, D. Wu, Y. Liu, J. R. Greaves, W. Hao,
N. J. Krakauer, L. Krudy, ]J. Perez, V. Sreenivasan,
B. Sanchez, O. Torres-Velazquez, W. Li, K. G. Field and
D. Morgan, Comput. Mater. Sci., 2021, 199, 110576.

9 R. Jacobs, M. Shen, Y. Liu, W. Hao, X. Li, R. He, J. R. Greaves,
D. Wang, Z. Xie, Z. Huang, C. Wang, K. G. Field and
D. Morgan, Cell Rep. Phys. Sci., 2022, 3, 100876.

10 Q. Chen, C. Zheng, Y. Cui, Y.-R. Lin and S. J. Zinkle, Comput.
Mater. Sci., 2023, 221, 112073.

11 M. Shen, G. Li, D. Wu, Y. Yaguchi, J. C. Haley, K. G. Field and
D. Morgan, Comput. Mater. Sci., 2021, 197, 110560.

12 R. Jacobs, P. Patki, M. J. Lynch, S. Chen, D. Morgan and
K. G. Field, Sci. Rep., 2023, 13, 5178.

13 R. Jacobs, Comput. Mater. Sci., 2022, 211, 111527.

14 K. G. Field, P. Patki, N. Sharaf, K. Sun, L. Hawkins, M. Lynch,
R. Jacobs, D. D. Morgan, L. He and C. R. Field, Microsc.
Microanal., 2022, 28, 2046-2048.

15 K. G. Field, R. Jacobs, S. Mingen, M. Lynch, P. Patki, C. Field
and D. Morgan, Microsc. Microanal., 2021, 27, 2136-2137.

Curran

996 | Digital Discovery, 2025, 4, 987-997

View Article Online

Paper

16 W.Li, K. G. Field and D. Morgan, npj Comput. Mater., 2018, 4,
36.

17 E. A. Holm, R. Cohn, N. Gao, A. R. Kitahara, T. P. Matson,
B. Lei and S. R. Yarasi, Metall. Mater. Trans. A, 2020, 51,
5985-5999.

18 N. Dennler, A. Foncubierta-Rodriguez, T. Neupert and
M. Sousa, Micron, 2021, 146, 103069.

19 A. B. Oktay and A. Gurses, Micron, 2019, 120, 113-119.

20 M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao,
R. R. Unocic, R. Vasudevan, S. Jesse and S. V. Kalinin, ACS
Nano, 2017, 11, 12742-12752.

21 R. Lin, R. Zhang, C. Wang, X.-Q. Yang and H. L. Xin, Sci. Rep.,
2021, 11, 5386.

22 J. Wei, B. Blaiszik, A. Scourtas, D. Morgan and P. M. Voyles,
Microsc. Microanal., 2022, 29, 552-562.

23 K. Sytwu, L. Rangel DaCosta and M. C. Scott, Microsc.
Microanal., 2024, 30, 85-95.

24 G. Bruno, M. J. Lynch, R. Jacobs, D. D. Morgan and
K. G. Field, Microsc. Microanal., 2023, 29, 1493-1494.

25 S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. C. Pereira
and J. W. Vaughan, Mach. Learn., 2010, 79, 151-175.

26 K. He, X. Zhang, S. Ren and J. Sun, 2015 IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1026-1034.

27 D. Hendrycks and K. Gimpel, International Conference on
Learning Representations, 2017.

28 J. Yang, K. Zhou, Y. Li and Z. Liu, Int. J. Comput. Vis., 2024,
132(12), 5635-5662.

29 O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev,
A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Kiittler,
J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Petersen,
K. Simonyan, T. Schaul, H. van Hasselt, D. Silver,
T. Lillicrap, K. Calderone, P. Keet, A. Brunasso,
D. Lawrence, A. Ekermo, J. Repp and R. Tsing, arXiv, 2017,
preprint, arXiv:1708.04782, DOI: 10.48550/arXiv.1708.04782.

30 M. J. Lynch, R. Jacobs, G. Bruno, P. Patki, D. Morgan and
K. G. Field, Accelerating Domain-Aware Electron
Microscopy Analysis Using Deep Learning Models with
Synthetic Data and Image-Wide Confidence Scoring, arXiv,
2024, preprint, arXiv:2408.01558, DOLI: 10.48550/
arXiv.2408.01558.

31 S. V. Kalinin, D. Mukherjee, K. Roccapriore, B. J. Blaiszik,
A. Ghosh, M. A. Ziatdinov, A. Al-Najjar, C. Doty, S. Akers,
N. S. Rao, J. C. Agar and S. R. Spurgeon, npj Comput.
Mater., 2023, 9, 227.

32 A. Ghosh, B. G. Sumpter, O. Dyck, S. V. Kalinin and
M. Ziatdinov, npj Comput. Mater., 2021, 7, 100.

33 C. O. S. Sorzano, J. Vargas, J. M. de la Rosa-Trevin,
A. Zaldivar-Peraza, J. Oton, V. Abrishami, I. Foche,
R. Marabini, G. Caffarena and J. M. Carazo, International
Work-Conference  on  Bioinformatics and  Biomedical
Engineering, 2014.

34 C. M. Anderson, J. Klein, H. Rajakumar, C. D. Judge and
L. K. Béland, Ultramicroscopy, 2020, 217, 113068.

35 A. Jain, Curr. Opin. Solid State Mater. Sci., 2024, 33, 101189.

36 D. Morgan and R. Jacobs, Annu. Rev. Mater. Res., 2020, 50,
71-103.

© 2025 The Author(s). Published by the Royal Society of Chemistry


https://doi.org/10.48550/arXiv.1505.04597
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/arXiv.1708.04782
https://doi.org/10.48550/arXiv.2408.01558
https://doi.org/10.48550/arXiv.2408.01558
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00351a

Open Access Article. Published on 04 March 2025. Downloaded on 2/12/2026 12:29:01 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery

37 S. M. Lundberg and S.-I. Lee, Advances in Neural Information P. Dollar, Microsoft COCO: Common Objects in Context,
Processing Systems 30, Curran Associates, Inc., 2017, pp. arXiv, 2015, preprint, arXiv:1405.0312, DOI: 10.48550/
4765-4774. arXiv.1405.0312.

38 T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick and

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 987-997 | 997


https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.48550/arXiv.1405.0312
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00351a

	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a

	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a
	Predicting performance of object detection models in electron microscopy using random forestsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00351a


