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Data management and processing are crucial steps to implement streamlined and standardized data
workflows for automated and high-throughput laboratories. Electronic laboratory notebooks (ELNs) have
proven to be effective to manage data in combination with a laboratory information management
system (LIMS) to connect data and inventory. However, streamlined data processing does still pose
a challenge on an ELN especially with large data. Herein we present a Python library that allows
streamlining and automating data management of tabular data generated within a data-driven,
automated high-throughput laboratory with a focus on heterogeneous catalysis R&D. This approach
speeds up data processing and avoids errors introduced by manual data processing. Through the Python
library, raw data from individual instruments related to a project are downloaded from an ELN, merged in
a relational database fashion, processed and re-uploaded back to the ELN. Straightforward data merging
is especially important, since information stemming from multiple devices needs to be processed
together. By providing a configuration file that contains all the data management information, data
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management workflows allows standardization of data handling and contributes to the implementation
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Introduction

The emergence of automation, digitalization and high-
throughput experimentation in chemistry and chemical engi-
neering leads to the generation of large amounts of experi-
mental data in digital format.» Using statistical and machine
learning algorithms, these large datasets can be analyzed in
deeper detail to extract and correlate relevant chemical infor-
mation compared to what was previously possible through
manual data processing and analysis.>® Understanding such
large datasets will further accelerate the generation of knowl-
edge and scientific discoveries.>*
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principles in the field of heterogeneous catalysis.

To manage data within a group or infrastructure, the usage
of electronic laboratory notebooks and laboratory information
management systems (ELN/LIMS) has aided data digitalization
and allows unique identification and tracing of any changes in
data. Furthermore, it allows sharing procedures, avoid dupli-
cating documentation, provide a timestamp on procedure/data
creation, and to mitigate the risk of data loss, especially in
comparison to handwritten notes.> Experimental procedures
can be connected to an inventory system to track the
instruments/consumables that were used.® Furthermore, the
use of an ELN/LIMS enables standardized data management
and processing of experimental data from several instruments
and users. Having standardized procedures facilitates the
replication and tracing of data complying with the Findable,
Accessible, Interoperable and Reusable (FAIR) principles and
open research data requirements.”™ Many options for ELN/
LIMS are currently available. However, finding the ideal ELN
is often a challenge as individual research facilities require
specific features from an ELN. A specific example of an ELN/
LIMS is openBIS, which is open-source and tailored for experi-
mental data management that allows uploading and sharing
experimental data.®"

In the field of catalysis, various types of data related to the
synthesis, characterization and testing of catalysts are created
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Fig. 1

(a) Combination of automation, high-throughput experimentation and artificial intelligence (Al) to speed up research and development in

chemistry and catalysis. (b) Closed-loop experimental workflow combining automated high-throughput experimentation followed by data
management and processing, and Al supported understanding and optimization to propose subsequent experimentation. (c) Streamlined and
standardized data management workflow to link experimentation and data processing to allow Al-guided closed loop experimentation.

during an experimental workflow.®> Recent initiatives led to the
emergence of facilities and research laboratories performing
accelerated catalysis research and development through auto-
mation and high-throughput experimentation (Fig. 1a)."****
Such facilities generate large amounts of data from individual
instruments, and therefore having a LIMS to manage chemicals
and instruments, and the connection to an ELN with stream-
lined and standardized data management procedures has
become a requirement. Due to the heterogeneity of the instru-
ments used, the datasets come in various forms and data
structures (e.g., csv, excel based formats with varying header
rows, or instrument specific data formats). Thus, the merging of
data from individual instruments into a holistic dataset is
a challenge and important to further process the experimental
dataset. For example, to obtain turnover numbers of a given
catalytic sample, data stemming from a test reactor need to be
combined with data stemming from the catalyst synthesis
details, and its characterization. Moreover, having properly
processed and cleaned datasets allows seamless downstream
utilization in combination with statistical methods and
machine learning algorithms to accelerate closed loop catalyst
discovery and optimization (Fig. 1b).** This is enabled by
including all experimental information, and tracking the data
processing activities that were performed on the raw data.
Several key criteria for streamlined and traceable data
management workflows are required. These include data being
uploaded in a structured way to a centralized database that is
backed up and secure. The datasets from individual instru-
ments should contain embedded information to interconnect
and merge them into a unified/combined data file. In the
context of open research data (ORD),'*" the ability to easily
push whole datasets to open research data repositories'®**° is
another important feature.” Many of these criteria should be
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generally featured within an ELN/LIMS. However, implement-
ing holistic data processing within the ELN/LIMS is often
lacking which is becoming more relevant when large data are
created.

Most catalysis related data (e.g., synthesis parameters,
characterization fingerprints, catalyst performance) can be
summarized in a tabular matter (csv format/Excel sheets). This
allows implementation of data processing workflows that utilize
relationships between columns of individual datasets: e.g.,
sample vials can be equipped with a barcode which is scanned
at each individual processing step in the laboratory. The bar-
code column can then be used to relate individual datasets to
each other to combine them into one holistic dataset.

To streamline and to standardize data processing, we
present in this article a Python library for catalysis data
management (PyCatDat) that allows processing of tabular data
from openBIS, an open source ELN/LIMS (Fig. 1c).**> openBIS is
developed and continuously updated since 2007 at ETH Zurich
which is used by many research institutions globally.*** The
Python library allows the download, processing and reupload of
processed data to openBIS, thus bypassing the limited data
processing functionality of ELNs as discussed above. The code
requires a configuration file with instructions on the expected
number of files and how to merge them enabling high flexibility
on different data architectures without the need to directly
manipulate the code or require extensive coding expertise. At
the same time, the configuration file also provides traceability
on how data were processed and can be adapted to different
data processing methods (see data management demonstration
in the Results and discussion section). For heterogeneous
catalysis, the same dataset might be used in different data
processing pipelines (normalize performance by catalyst
weight, atom loading, composition, dispersion etc.). Usage of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a configuration file for each processing pipeline can facilitate
traceability and the application of FAIR principles.

Results and discussion
Data management architecture

The data management infrastructure is designed for integration
with an electronic laboratory notebook/laboratory information
management system (ELN/LIMS), in this case openBIS. It is
used to store data generated from individual instruments in
a structured way. The data management workflow is initiated by
uploading experimental data consisting of files in tabulated
data formats (e.g., csv or from Excel sheets) to openBIS. An
application programming interface (API) allows automating
data-upload (Fig. 2). Data are uploaded to openBIS either
manually or automatically using the openBIS API “Dropbox
function” (see ESI} Note 1 for further discussion) in combina-
tion with a Python script. This function allows tracing output
files generated from instruments and uploads them automati-
cally once an experiment is completed (see ESI{ Note 2 for
further discussion). This feature further highlights the impor-
tance of instrument suppliers providing options to automati-
cally generate interpretable output files upon completion of an
experiment.

The type of data can consist of information related to
synthesis, weighting of materials and their performance in
a chemical reaction. All these data files relate to each other and
the aim is to translate these relationships into a relational
database structure. This allows data from individual
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instruments to be merged and to be processed in an automated,
traceable and standardized way.

Data management codes

The Python library for catalysis data management (PyCatDat)
developed in this work manages data generated from a multi-
tude of lab equipment, e.g., automated synthesis robots, auto-
mated solid dispense tools, plate barcode readers and high-
throughput fixed-bed reactors with integrated online gas chro-
matograph (GC) data (see Data management demonstration
section).

Herein we define the notation of “Project” and “Task”. A
“Project” consists of the entirety of all experimental activities
and is split into multiple “Tasks”. A “Task” consists of an
experimental workflow, typically comprising synthesis and
testing with all intermediate activities, (e.g:) thermal treatment,
fixed-bed reactor preparation (see Data management demon-
stration section).

Upon collecting all raw data of an experimental “Task” from
each individual equipment on openBIS, its processing can be
initiated. This activity is performed with the PyCatDat library
which contains functions to securely login to openBIS and
download data (openBIS_Query.py), to read and merge data
(Read.py and Merge.py) and to process them (e.g., Proc-
ess_FixedBed.py) (Fig. 2) (see ESII Note 3 for further
discussion).

To execute the library, a configuration file in YAML format is
required which contains human-readable serialized informa-
tion. The information includes the ELN platform, the expected
data structure, and the warranted data merging/processing

openBIS DATABASE
RAW_DATA: DATASET

L [

. A001_TASKO1_SYNTHESIS

OpenBIS_Query.py
= openBIS Login
Download data

Local Server

Folder: DATAFOLDER (e.g. TASKO1)
» | * |=] AOO1_TASKO1_SYNTHESIS

ML

| AOO1_TASKO1_SOLIDDISPENSE
A001_TASKO1_REACTORLOADING
A001_TASKO1_CATALYSIS

gl

PROCESSED_DATA: DATASET

openbis_query
(data_source="DATABASE")

. ,\ A001_TASKO1_SOLIDDISPENSE
* |=] A001_TASKO1_REACTORLOADING
* |=] AOO1_TASKO1_CATALYSIS

Read.py
= Readdata
= Store structurally

* ] A0OO1_TASKO1_FULL

A

Configuration File
= YAML Format

read_data
(data_source="DATAFOLDER")

Dictionary{

Merge.py
= Merge data
= Upload to openBIS I3

Loaded Data: DICTIONARY

{A001_TASKO1_SYNTHESIS:
Column 1: Entries
Column 2: Entries

merge }
(CEICECL LG RIONAEDI | (A001_TASKO1_SOLIDDISPENSE :

Column 1: Entries
Column 2: Entries

{A001_TASKO1_REACTORLOADING:
Column 1: Entries
Column 2: Entries

b
{A001_TASKO1_CATALYSIS:
Column 1: Entries
Column 2: Entries

Fig. 2 Data management workflow of the Python library for downloading data from openBIS (openBIS_Query.py), loading the individual data
files and storing them in a dictionary (Read_Data.py), and merging the data and uploading processed data to openBIS (Merge.py).
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procedure. All functions are run by providing the location of the
data and configuration file. The configuration file stores infor-
mation that is accessed by the Python library and therefore
offers reproducibility of the data management steps in the form
of a structured file. The configuration file can be modified to
perform data management steps with different input variables,
for example a change in the openBIS platform or different file
structures that vary with projects. In addition, different types of
analysis can be performed on the same raw data by modifying
the inputs of the configuration file.

The openBIS_Query.py function initiates the data download
step from openBIS (Fig. 3a). To run this function, the “OPEN-
BIS” section in the configuration file requires information
about the openBIS platform's URL and additional optional
information such as the destination directory name, default
username and size limit of the files to download (Fig. 3b).
Thereafter, username and password inputs are required to
ensure data are accessed by the person with the appropriate
rights. The login is saved as a token to stay logged in without re-
authentication for a set period. CPU parallelization to download
files simultaneously and a data size limit can also be config-
ured. Through the function, data are downloaded from the ELN
to the user's local workstation. To download only the selected
data, openBIS follows a defined data folder path structure where
all the projects/data of a facility are located. It is possible to
choose whether all the data within a “Project” or only individual
“TASKS” are downloaded. Once data have been downloaded
from the ELN/LIMS, further data processing is performed
locally. Therefore, the library can also be expanded to access
data from other sources.

Data downloaded from openBIS (or local data) are read and
loaded into a dictionary by matching the information in the

(a)

OpenBIS Database

openbis_query

(data_source="DATABASE")
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configuration file with the folder structure using the function
Read.py. In the comment section of the configuration file,
further relevant information can be provided. For example,
information such as interruptions during experiments can be
included. In the data folder, tasks are split into subfolders,
where the subfolder names are provided in the configuration
file's “TASKS” section (e.g., TASK01, TASK02 and TASK03). The
individual raw data files are located within each subfolder. The
FILE_ID in the configuration file indicates the filename/string
that should be recognized. For example, the file containing
information about solid weighting can be called “SOLID-
DISPENSE”, which is the FILE_ID in the configuration file to
recognize the filename (Fig. 4). In the case of multiple files with
the same FILE_ID, these files will all be captured (see ESI{ Note
4 for further discussion).

Further details such as the separator of the tabular data with
comma as default and data sheet/tab for multiple sheets in an
Excel document can also be provided. The data are then stored
in a dictionary which is accessed to merge raw data files in the
next step. The dictionary stores all data grouped by “TASKS”,
“FILE_ID” and filename. Within a project, different instructions
per task can be provided to allow higher flexibility. Tasks with
identical instructions can be grouped together (see ESI{ Note 5
for further discussion).

For the subsequent merging step (Merge.py), instructions
are provided in the “MERGING_ORDER?” section of the config-
uration file (Fig. 5). The column names to perform the merging
are provided in the “TASKS” section as “SOURCE_ID” and
“TARGET _ID”. The “MERGING_ORDER” section contains the
instructions on how and in which order the “SOURCE_ID” and
“TARGET_ID” should be used for merging. For example, the file
“A001_TASKO01_SOLIDDISPENSE” contains a column with the

Local Server

Folder: DATAFOLDER
- A001_TASKO1_SYNTHESIS

o)rgenBIS

= openBIS Login
= Download data

Configuration File

(b)

OPENBIS:
URL_BASE: !!str openBIS_URL
DEFAULT_USER: !!null oéenBIS
SAVE_TOKEN: !!bool True = OpenBIS URL
PATH_STRUCTURE: !!seq ["space", "project", = Logininfo

"experiment", "object", "dataset"]
MAX_LOGIN_ATTEMPTS: !!lint 3
DOWNLOAD_WORKERS: !!int 10
DOWNLOAD_FILE_SOFT_LIMIT:
DOWNLOAD_SIZE_SOFT_LIMIT:

Ilint 15

I'lstr AGO1

Project:

TASKS:
TASKO1:

Fig.3
to accessing an openBIS instance and downloading data.
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I1float 10e+6

> = |=] A001_TASKO1_SOLIDDISPENSE
= |=] AO01_TASKO1_REACTORLOADING
= |=] AOO1_TASKO1_CATALYSIS

= OpenBIS structure

} | Download instruction

RAW_DATA: DATABASE
= Project: A001:

= TASKO1:

= Datafiles

(a) OpenBIS_Query function to access an openBIS instance and download data from there. (b) Information in the configuration file related
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Configuration: Expected Folder Structure Local Folder
Project: !!str Aeel ; . —
TASKS: Main Folder: [ ] A001
TASKO1: Sub Folder 1: [TJTASKO1
SOLID_DISPENSE: File 1: =1 A001_TASKO1_SOLIDDISPENSE
FILE_ID: !!str SOLIDDISPENSE
REACTOR_LOADING: File 2: 5| A001_TASKO1_REACTORLOADING
FILE_ID: !!str REACTORLOADING
CATALYSIS: File 3: 2] A001_TASKO1_CATALYSIS
FILE_ID: !lstr CATALYSIS
TASKO2: Sub Folder 2: [T]TASKO02
TASKe3: Sub Folder 3: [ TASK03

Fig. 4 Configuration file structure to provide information about expected file and filenames to be read based on the folder structure.

barcodes of the vial (“TARGED_ID” = Destination Barcode) that
matches the barcode column (“SOURCE_ID” = Catalysis Bar-
code) in another file (“A001_TASKO1_ REACTORLOADING”).
The content of both files will then be combined into one single
file through the selected column names.

Within the “MERGING_ORDER?” section, all the single raw
files listed will be merged into one combined file. Merge.py will
go through all the files provided in the “MERGING_ORDER”
section using the provided “FILE_ID”, “TARGET_ID” and
“SOURCE_ID”. The merging occurs step-by-step until every
individual file is combined into one file (see ESI Note 6). The
merging order reflects the sequence of the experimental work-
flow and enables tracing the order of experiments performed.

Finally, data processing (field specific calculations) can be
performed with additional instructions to the configuration file.
Based on the experimental workflows, different data processing
procedures can be tailored to the project therefore maximizing
flexibility. This includes calculating performance metrics of
fixed-bed testing such as formation rates, reactant conversion or
product selectivity. An example of processing catalysis data
from fixed-bed testing by accessing the configuration file and
the merged datasets generated from Merge.py is illustrated in

the next section (Process_FixedBed.py). This approach allows
transparent data processing procedures such as data normali-
zation, enhancing interoperability.

Data management demonstration

To illustrate the complete data management workflow, an
example of performing data management tasks is presented.
The data are based on a previously published study with real
experimental data used (Fig. S6 and S7}).>> In this dataset,
a closed-loop high-throughput experimental workflow was
conducted (Fig. 6). It consists of the synthesis of 144 heteroge-
neous catalysts (6 generations of 24 catalysts) followed by their
testing in fixed-bed mode under CO, hydrogenation conditions.
The dataset includes data that were generated from several
instruments including synthesis robots, balances, barcode
readers, fixed-bed reactors and gas chromatographs.

The synthesis robot output files contain information about
the type and amount of solid and liquid chemicals dispensed,
reaction/stirring time, stirring rate and temperature. Barcode
readers consist of handheld single vial barcode readers and
plate barcode readers reading multiple vial barcodes

RAW DATA:

Configuration: Expected Data Files

= AO001_TASKO1_SOLIDDISPENSE =

A001_TASKO01_REACTORLOADING

TASKS:
TASKO1: A001_TASKO1_SOLIDDISPENSE
SOLID DLSRENSE: Source  Target Weight Actual Weight  Destination
FILE_ID: !!str SOLIDDISPENSE Barcode (mg) (mg) Barcode
ket e E8L 1000001842 10 10.1 3000011034
CSV_SEPARATOR: !!str "," ’
TARGET_ID: !!str Destination Barcode 1000001834 10 10.3 3000011092
A001_TASKO1_REACTORLOADING
REACTOR_LOADING:
FILE_ID: !!str REACTORLOADING Catalysis
DATA_SHEET: !!int © Barcode Reactor Unit
CSV_SEPARATOR: !!str "," 3000011034 1 XR
SOURCE_ID: !!str Catalysis Barcode 3000011092 2 XR
Configuration : Merging Procedure PROCESSED DATA
MERGING_ORDER: *  AOO1_TASKO1_FULL
[SOLIDDISPENSE, FILE_ID], AQD1_TASKO1_FULL
left_id: [SOLIDDISPENSE, TARGET_ID], Source Target Actual Destination
right: [REACTORLOADING, FILE_ID], Barcode  Weight (mg) Weight (mg) Barcode Reactor  Unit
right_id: [REACTORLOADING, SOURCE_ID], 1000001842 10 10.1 3000011034 1 XR
} 1000001834 10 103 3000011092 2 XR

Fig.5 Example of the configuration file sections to provide information about merging data. Two data files with the name SOLIDDISPENSE and

REACTORLOADING are merged together through their barcode.
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Fig. 6 Experimental workflow to perform machine learning driven
optimization for synthesizing heterogeneous catalysts for CO,
hydrogenation.

simultaneously. The high-throughput fixed-bed reactors
generate files that contain process and set values for pressure,
temperature, testing time, gas flowrates and the gas concen-
trations of each reactant and product measured by online-GCs
(see the ESIY).

The experimental workflow consists of the parallel synthesis
of 24 catalysts by incipient wetness impregnation using an
automated synthesis robot, followed by thermal treatment
under air at 550 °C, automatic dispense of the catalyst at the
milligram scale and catalyst performance evaluation in fixed-
bed mode for the hydrogenation of CO, at 225-300 °C and 50
bar. The workflow is guided by artificial intelligence where
synthesis parameters were provided by a software that performs
Bayesian optimization to optimize the catalyst composition for
its catalytic performance.

In total, 9-10 files per experimental loop/task were generated
with 6 experimental loops being performed. This leads to 59 raw
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data files (Table 1). Using the Python library described above, all
9-10 files per task were first matched, merged and processed
together. The datasets from each task were then combined onto
one full dataset containing information from all 59 files. Raw
data were accessed from the openBIS ELN and processed data
were reuploaded there. It can be expected that performing such
data processing tasks manually would be more time consuming
with the risk of introducing manual error during data
processing.

Per experimental loop (Table 1), 4 individual synthesis files
were extracted from a Chemspeed Swing XL. (1) The “Comb-
VialPrep” file contains the amount of various liquid sources
(metal nitrate solutions) that were mixed to prepare a mixed
metal nitrate solution, (2) the “SolidDispense” file contains
information about the choice and mass of solid support (metal
oxide) that was dispensed, (3) the “Impregnation” file contains
the amount of mixed metal nitrate solution from the “Comb-
VialPrep” file that was added to the support described in the
“SolidDispense” file, and (4) the “ImpregnationBarcode” file
contains the barcode of the vials (referred to as impregnation
vial) that were recorded by a barcode reader on the synthesis
robot. Each file contains an entry corresponding to the vial
index (index 1-24) as the identifier.

A Hobersal furnace was used to calcine the heterogeneous
catalyst samples (550 °C for 4 h, 5 °C min~") for which no data
files were created. The catalysts were calcined inside their bar-
coded impregnation vial, keeping the same barcode during this
step. Following calcination, each vial is fitted with a specific
dispense head and an Unchained Labs Junior was used to
dispense the targeted quantity of catalysts to a barcoded vial
(referred to as “catalysis vial”). The “CatalystDispenseBarcode”
file contains information about the dispensed weight and the
barcode of the source (impregnation vial) and destination
(catalysis vial) vial.

In the next step, the dispensed catalysts from the barcoded
catalysis vial are loaded into the fixed-bed reactor. This step is
recorded in a new file (“ReactorLoading”) containing the
catalysis vial's barcode and the fixed-bed reactor number.
Results from the catalytic testing using 3 Avantium parallel
fixed-bed units 1 XR having 16 reactors and 2 XDs (XDB and
XDC) having 4 reactors each are stored in the “CATALYSIS_X” (X

Table 1 Instruments, number of files, content and file names used during the experiments of the corresponding project
Instrument File no. Features Data files
Chemspeed Swing XL 4%x6 Mixed metal solution preparation CombVialPrep

Solid dispense of metal oxide SolidDispense

Mixed metal solution addition to solid Impregnation

Vial barcode reading ImpregnationBarcode
Hobersal oven 0 — —
Unchained labs junior 1x6 Vial barcode reading and catalyst weighting CatalystDispenseBarcode
Zebra DS9308 barcode reader 1x6 Barcoded vial loading to which reactor ReactorLoading
Avantium fixed-bed reactor XR/XD & Agilent 8890 GC 3x6 Result of catalysis performance XR unit Catalysis_XR

Result of catalysis performance XD unit 1 Catalysis_XDB

Result of catalysis performance XD unit 2 Catalysis_XDC
Manually calculated 1 x 5¢ Market cost of metal Cost

“ TASKO06 did not contain any cost calculation of the metals.
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= XR, XDB or XDC) files containing the fixed-bed reactor
number, reaction conditions from process values (mass flow
controllers, pressure indicators, temperature probes), and gas
concentrations from online-GC analysis. Finally, the market
costs of the metals used to synthesize the catalysts were
manually calculated and are listed in the COST file. More details
about the experimental set-up can be found in the reference
article.”

To merge the individual files, five files (“CombVialPrep”,
“SolidDispense”, “Impregnation”, “ImpregnationBarcode” and
“COST”) are merged by matching vial indexes (Fig. 7). Per
sample, two vials were used during synthesis: (i) for mixed
metal nitrate solution preparation and (ii) for synthesizing the
catalyst by incipient wetness impregnation (impregnation vial).
Within one task, the vial indexes range from 1 to 24 where files
are merged based on the vial indexes (Fig. 7). Each index within
a task corresponds to a sample resulting in 24 samples per task.

The “CatalystDispenseBarcode” file contains two barcodes
per sample (i) barcode of the impregnation vial and (ii) barcode
of the catalyst vial. Therefore, the “CatalystDispenseBarcode”
file connects synthesis data (impregnation vial) with catalytic
testing data (catalyst vial) (Fig. 7). The “ReactorLoading” file
contains the barcode for the catalyst vial, and information
about which reactor was loaded with which catalyst (reactor
number 1-16 and unit XR, XDB or XDC). The “Reactor Loading”
file relates to the catalysis results file (“CATALYSIS_X” (X = XR,
XDB or XDC)) through the fixed-bed reactor number and unit
(Fig. 7).

An additional feature is implemented to allow data merging
in case the generated files do not contain unique column
entries. This was the case for fixed-bed testing on 3 different
Avantium units. Their output files only contain information on
the reactor number.*® Therefore, the reactor number is not
sufficient to distinguish between the units in the “CATA-
LYSIS_X” (X = XR, XDB or XDC) file and additional information
about the unit is required. The feature incorporates information
from the filename to identify which file corresponds to which
unit. Having the exact tracing of which unit and reactor was
used also allows evaluation of batch effects.*

In this example, the internal unit abbreviations were
included into the filename (e.g,

Catalyst Synthesis

CombVialPrep
SolidDis I ':‘a'ﬂjﬁ'
Pense .~ Barcode|+—

Impreg/ \ cosT

nation

E Legend

=R =R Vial Number Mixed Metal

: Nitrate Solution & Impregnation
L

+<— Dispense «—

View Article Online
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A001_TASKO1_CATALYSIS_XR_RUNO1). The data processing
workflow takes the string “XR” and adds it as a new column with
the column name “Unit” in the file. The other units will have as
“Unit” column entry XDB or XDC. The configuration file
provides the new column name and the location of the string in
the filename as the column entry. It uses “_” to first separate the
filename into individual strings and then selects the right string
based on the configuration file (see ESI{ Note 7 for further
discussion). After including the new column entry, merging can
be performed with the “ReactorLoading” file on multiple
column entries for the reactor number'™® and the unit (XR, XDB
or XDC).

Based on this file structure, automated data merging is
performed. An example Jupyter notebook with data already
downloaded from openBIS is provided in the ESII to run the
data management steps without the need to access an openBIS
platform (see ESI{ Note 8 for further discussion). All the pro-
cessed files are uploaded to an openBIS instance used by ETHZ
SwissCAT+ with A001 as the project name and tasks named
TASKOX (X =1, 2, 3, 4, 5, 6). All the data within the project are
downloaded and stored in a local folder. A001 is the main
folder, and the subfolders contain data from each task (one task
being an iteration/loop of 24 catalyst synthesis/testing). Data are
read and stored in a structured dictionary with the structure
and number of files being provided in the configuration file (see
the ESI}).

Upon merging, data processing can be executed. For project
A001, information about synthesis (combination of metal
elements and metal oxide support), the weights that were
loaded into the reactor, and the catalytic performance originate
from different files and instruments. Hence prior to merging
individual files, parts of the data processing workflow would not
be possible. Data are processed with the merged database,
inputs from the configuration file and the data processing script
(Process_FixedBed.py). The Process_FixedBed.py script along
with a configuration file allows processing output files origi-
nating from automated and/or high-throughput instruments
from Chemspeed, Unchained Labs and Avantium.

Data processing includes taking synthesis parameters from
the Chemspeed synthesis robot to calculate nominal metal
loadings of catalysts. Output data from three Avantium fixed-

CatalystTesting
ReactorLoading
(M=

CatalystDispense

Catalyst

Barcode

CATALYSIS_XR/
XDB/XDC_RUNO1

Reaction
Vial Barcode

Reactor |
Number|

il

Fig. 7 Content of the individual files and identifier to merge individual files together. The filenames and the column content required to merge

the files are shown.
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bed reactors are processed, and gas flow rates normalized by an
internal standard, reactant conversion and individual product
selectivity are calculated (see ESIi Note 9 for further discus-
sion). To calculate conversion and selectivity, the expected
reactants and products, including their number of carbon
atoms are provided in the configuration file (see ESI} Note 9 for
further discussion). Furthermore, depending on their configu-
ration a set of Avantium instruments may have the same
column name for different attributes. For example, the gas of
the first mass flow controller (MFC) of one unit may not corre-
spond to the same gas for another unit. Therefore, a renaming
process using information from the configuration file is per-
formed within the data processing step (see ESIf Note 10 for
further discussion).

By incorporating tailored features based on the instruments,
data are processed in a standardized way. Combining data from
3 individual instruments (synthesis data from a Chemspeed
robot, catalyst dispense from Unchained Labs Junior and cata-
lytic data from 3 individual Avantium Flowrence units), metrics
such as formation rates normalized by the nominal metal
loading can be calculated seamlessly. This approach is of
utmost importance for a FAIR and ORD approach in the field of
catalysis, allows avoiding human calculation mistakes, tracing
back each performed calculation and allowing simple
modification/adjustment of the calculations by external
researchers if needed.*

The processed data are then uploaded back to the ELN as
part of the processing activities and can subsequently be visu-
alized to compare the data points. To effectively visualize large
amounts of data, interactive figures/dashboards are generated
through Tableau (see ESI} Note 11 for further discussion).
Having data from synthesis, solid dispense and catalytic
performance combined and processed allows better assessment
of the data. In this case study, the experimental design for each
task is based on the results from the previous tasks and were
suggested through Bayesian optimization (Atinary SDLabs).?®
For example, the catalyst composition or catalytic performance
per task indicates the convergence of the experiments toward
a target (e.g., optimization for catalytic performance). Having
a broad visual inspection of the data enabled by the data
management workflow allows users to navigate more effectively
through the data and therefore foster its understanding and
reuse especially in the context of open research data. Addi-
tionally, such merged and processed data can be used by other
groups in combination with other databases to apply various Al/
ML algorithms.

Conclusion

To facilitate data management and processing on electronic
laboratory notebooks/laboratory information management
systems, a Python library was implemented. The library takes
raw data and a configuration file as input to perform a broad
range of data management tasks often critical in data-driven
automated and high-throughput laboratories. It includes up/
download, merging and processing of tabular data related to
heterogeneous catalysis research. The data management
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workflow is connected to an ELN, enabling data tracking and
tracing subsequent data processing. This is demonstrated with
a case study using real experimental data consisting of 59
individual files with 144 catalysts that were synthesized and
tested for CO, hydrogenation. Data are merged and processed
together into one database where catalyst performance metrics
requiring inputs from multiple files are extracted. The auto-
mated data processing workflow ultimately leads to a reduction
of human error and increased efficiency. Relying on a configu-
ration file to manage data enhances the data management
transparency. In combination with a version-controlled code
library allows tracing and reproduction of data processing
workflows going from raw to processed data without any risk of
human error. Consequently, this work contributes to paving the
way to FAIR and ORD approaches in the field of heterogeneous
catalysis.
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