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ate specificity determining factors
in glycosyltransferase-B enzymes – insights from
machine learning models†

Samantha G. Hennen,a Yannick J. Bomble,a Breanna R. Urbanowiczcd

and Vivek S. Bharadwaj *b

Substrate specificity is an essential characteristic of any enzyme's function and an understanding of the

factors that determine this specificity is crucial for enzyme engineering. Unlike the structure of an

enzyme which is directly impacted by its sequence, substrate specificity as an enzyme attribute involves

a rather indirect relationship with sequence as it also depends on structural aspects that dictate substrate

accessibility and active site dynamics. In this study, we explore the performance of classifier-based

machine learning models trained on curated sequence and structural data for a class of

glycosyltransferases (GTs), namely GT-Bs, to understand their substrate specificity determining factors.

GTs enable the transfer of sugar moieties to other biomolecules such as oligosaccharides or proteins

and are found in all kingdoms of life. In plants, GTs participate in the biosynthesis of plant cell wall

biopolymers (e.g.: hemicelluloses and pectins) and are an integral part of the enzymatic machinery that

enables the storage of carbon and energy as plant biomass. To elucidate the substrate specificity of

uncharacterized GT-Bs, we constructed multi-label machine learning models (Support Vector Classifier,

K-Nearest Neighbors, Gaussian Näıve-Bayes, Random Forest) that incorporate both sequence and

structural features. These models achieve good predictive accuracies on test datasets. However, despite

our use of structural information, we highlight that there is further scope for improvement in training

these models to draw interpretable relationships between sequence, structure and substrate specificity

determining motifs in GT-Bs.
1. Introduction

Plants employ amongst nature's most efficient carbon capture
mechanisms, storing much of the world's carbon, and are
therefore a valuable resource for conversion to fuels and prod-
ucts. The polysaccharides present in the cell walls that make up
the bulk of plant biomass are synthesized, constructed, and
modied by a conglomerate of enzymes. A thorough under-
standing of these enzymes, their substrate specicity and
catalytic functions is of utmost importance for our fundamental
knowledge of how the carbon xed via photosynthesis is con-
verted and stored in plant biomass, and for facilitating the
technology-development to design tailored biopolymers for
materials.1–4 Among the various classes of enzymes involved in
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plant cell wall biosynthesis, of particular interest are glycosyl-
transferases (GTs) that catalyze the formation of glycosidic
bonds by transferring sugar moieties from sugar-nucleotide
donors to oligosaccharide acceptors.5,6 These enzymes are
responsible for the formation of complex glycopolymers that
constitute a large portion of the cell wall governing its
architecture.5

GTs are ubiquitous in both plant and animal species and
have thus far been classied into 117 families in the CAZy
database on the basis of their sequence similarity.5,7 GTs are
known to adopt one of three major structural folds: GT-A, -B,
and -C and comprise 21, 27, and 10 families identied in the
CAZy database respectively.7 Unfortunately, the structural folds
of several families have not yet been officially classied by the
CAZy database,7 due to the lack of experimental evidence. While
individual members of some families have been proposed to
adopt certain folds, such as the fucosyltransferase AtFUT1 from
the GT37 family,8 the structural, functional and mechanistic
details of the majority of GTs are still not well understood. The
GT-B fold was rst identied as a distinct folding superfamily in
2001, and is characterized by a catalytic site localized between
two Rossmann-like subdomains.9 GT-Bs are of particular
interest for their important role in the synthesis of non-
Digital Discovery
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cellulosic plant polysaccharides, a major portion of plant
biomass.5 GT-B enzymes in the GT37 and GT47 families, for
example, are key enzymes involved in xyloglucan synthesis, the
major hemicellulose in the primary cell walls of dicots.8,10–12

Despite their important role in plants and the presence of
a diverse range of monosaccharides in plants, detailed knowl-
edge of the substrate specicities of many GT-B proteins is yet to
be fully understood.

Current approaches used to investigate the molecular
mechanisms of biocatalysts oen rely on the use of experi-
mentally determined protein crystal structures to develop
functional hypotheses that form the basis for subsequent
biochemical and mechanistic investigations. While these
structures offer highly detailed information, they can be diffi-
cult and tedious to generate even for a single candidate.13–17 This
approach becomes intractable for a comprehensive exploration
of the impact of mutations or natural variants on substrate
specicities in an enzyme family or class. Fortunately, thanks to
advances in genomics, there is currently a wealth of available
sequence data, allowing for machine learning (ML) approaches
that can nd patterns throughout large numbers of sequences
and relate it to substrate specicity.18–20 Additionally, there are
now over 200 million predicted protein structures available in
the AlphaFold2 (AF2) database, allowing for structural infor-
mation for all protein coding genes from a multitude of species
to be easily considered alongside sequence data.21,22

Machine learning approaches that leverage this abundance
of data are being increasingly used to elucidate properties and
activities of enzymes and have been employed in recent studies
to predict substrate specicity for some GTs. Yang et al.
generated an activity assay for GT-1 enzymes, which is a family
known to adopt a GT-B fold form, and used decision trees
trained on this data to predict donor and acceptor substrate
specicity.23 Taujale et al. evaluated the use of tree-based
models to predict the donor specicities of GT-A sequences,
the most abundant and well-characterized of the three GT
folds.24 There has been no signicant efforts focused on pre-
dicting the specicities across diverse GT families that adopt
a GT-B fold. Predicting substrate specicity is a challenging
task. Amongst the multitude of factors that determine substrate
specicity, some are directly related to sequence e.g.: structure,
while others are consequent attributes of sequence e.g.: active
site dynamics, and many more are totally sequence-
independent e.g.: substrate chemical environments.25 Further-
more, many GT families display polyspecicity, with GT47 being
a key example wherein members utilize a variety of donors and
acceptors, making precise functional predictions even more
difficult and unreliable. It is especially challenging to connect
sequence to specicity for GT-Bs, as this fold family has little
inter-family sequence similarity, and multiple families lack
experimentally characterized structures.24,26

In this study, we curated sequence-activity data on GT-Bs,
built multi-label classier ML models, compared the perfor-
mance of four types of models (Random Forest, Support Vector
Machines, and K-Nearest Neighbors) on their ability to predict
their donor binding specicity, and attempted to connect crit-
ical residue features identied from the ML models to the
Digital Discovery
enzyme structure to identify substrate specicity determining
motifs in GT-Bs. Our approach began with curating GT-B
sequences for training and testing our models and consisted
of sequences obtained from the CAZy and Uniprot databases
that have been annotated for activity on one of seven diphos-
phate sugar substrates (GDP-Mannose, GDP-Fucose, UDP-
Galactose, UDP-Glucose, UDP-Glucuronic acid, UDP-Xylose,
UDP-Rhamnose). To handle samples with other known donor
substrates that are not represented by the seven substrates, we
employed an eighth substrate class, “Other”. This was followed
by the description of these GT-B sequences in terms of sequence
features such as residue-based polarity, hydrophobicity, and
charge, as well as structural features, including solvent acces-
sible surface area and secondary structure (obtained from AF2
predicted structures) to build our ML models. Additionally, due
to the large diversity within GT-B families in sequence and
structure, only the residues in the Rossmann-like subdomains
and catalytic site in the AF2 structural models were aligned and
featurized. This was done to generate more meaningful
multiple sequence alignments (MSAs), as well as focus the
model on positions more likely to dictate substrate specicity.
Furthermore, unlike previous studies, these models have been
built to predict multiple substrates for each enzyme, as this is
an important consideration for GT families that are known to
utilize multiple donor substrates, such as GT1, GT4, GT31, and
GT47. The trained models have proved to be accurate with the
KNN model achieving cross-validation and test scores of 94%
and 85%, respectively. We then performed a conservation
analysis on the set of residues whose features contribute most
to decision-making in the model and translate it to the enzyme
structure and results of docking calculations to gauge their
importance in substrate-binding.

2. Methods
2.1. Dataset collection

The training dataset comprised GT-B enzymes from 145 species
and subspecies gathered from the UniProt database (ESI
Fig. 1†). To conrm GT-B identity, only families previously
shown to adopt a GT-B fold, as indicated in the Carbohydrate
Active Enzymes (CAZy) database, were included in the dataset.
Further, only UniProt-reviewed proteins were considered to
ensure high quality data.7 UniProt catalytic activity information
was mined to determine donor substrate specicity, with
proteins utilizing a donor substrate known to participate in
plant carbohydrate biosynthesis selected for the dataset. Five
GT47, four GT37, and ve GT61 enzymes were also added, as
they are known to adopt a GT-B fold, with their substrates were
identied from previous literature and the CAZy
database.7,8,10,11,13,27–30 Proteins were labelled with all UniProt-
identied substrates. Sequences with their donor substrates
listed as a generic NDP-a-D-glucose donor substrate were
excluded. Sequences with a donor substrate appearing less than
three times in the dataset were also excluded, as at least three
examples are needed for representation in the training, cross-
validation, and test sets. This curation resulted in a dataset
with seven unique donor substrates (GDP-a-D-mannose (GDP-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The KNN donor prediction F1 scores on the test set subsets are shown, where proteins sequences above the full sequence identity
similarity cutoffs to any training set sequences were excluded

Max identity (%) Sequences Unique labels Test F1 score Average substrate MCC score

75 100 8 85.0% � 35.7% 71.3%
70 88 8 82.9% � 37.6% 69.4%
65 81 7 81.4% � 38.8% 64.1%
60 76 7 80.2% � 39.8% 63.7%
55 69 7 78.2% � 41.3% 62.2%
50 57 7 75.4% � 43.1% 57.6%
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Man), GDP-L-b-fucose (GDP-Fuc), UDP-a-D-galactose (UDP-Gal),
UDP-a-D-glucose (UDP-Glc), UDP-a-D-glucuronic acid (UDP-
Glcua), UDP-a-D-xylose (UDP-Xyl), and UDP-b-L-rhamnose
(UDP-Rha)). To account for the models' ability to predict unseen
classes i.e. substrates outside the seven unique donors, we
included an eighth class designated as “Other” in the test and
training datasets.31 This involved adding 39 sequences with
a known substrate not included in the seven donors to assess
performance on samples with an unrepresented donor.

As the structural diversity of these enzymes is likely to cause
inaccurate sequence alignments, only sections of the sequence
corresponding to the characteristic Rossmann-like domains9

and catalytic regions were used in training. Each residue's
secondary structure assignment was made using AF2 structures
for each sequence and PyMOL.32 To conrm validity of the AF2
models, residues were assessed for condence, which found an
average 96.4% of residues for each truncated training and
testing set structure had a pLDDT score of at least 70%. While
a Rossmann-like fold is generally considered to have six to seven
b-strands in each sheet, many structures in the dataset con-
tained less, therefore sheets of at least four strands were
considered sufficient for our curation. Fourteen proteins from
the dataset were excluded from this analysis for lack of clear
Rossmann domains. This curation eventually resulted in 513
GT-B proteins (dataset hosted at https://github.com/
vbharadwcomosci/GTB_substrate_prediction/tree/main/Data)
to be further split into training and test sets. The percent shared
identity was calculated for all sequence pairs, with the test set
sequences chosen if they contained less than 75% identity to
any training sequences. This resulted in nal training and test
datasets of 413 and 100 sequences, respectively. The training
dataset contained 19 GT-B families with seven distinct donors
and an eighth “Other” class for unrepresented substrates (ESI
Fig. 2† and Table 1). To further assess model robustness,
additional test subsets were generated to exclude proteins of
identity score cutoffs of 70%, 65%, 60%, 55%, and 50%with any
training sequence.
2.2. Featurization

The reduced sequences were aligned with Clustal Omega to
create a multiple sequence alignment (MSA).33 Highly gapped
residue positions in the aligned sequences were removed from
the MSA to select only the most relevant features, and those
that might have a relationship to structure. The MSA used in
© 2025 The Author(s). Published by the Royal Society of Chemistry
previous ML work on GT-A fold enzymes was curated similarly,
with positions of over 15% gaps instead removed.14 This cutoff
was increased to 50% in this work, as the lower cutoff would
result in few remaining positions in the highly dissimilar GT-B
fold enzymes, resulting in 803 removed MSA positions. The
MSA was then converted to a dataset of feature vectors rep-
resenting each sequence, featurized for residue property
values. Each residue within the MSA was featurized with
AAIndex assigned values for hydrophobicity, residue volume,
accessible surface area (ASA), polarity, and charge.34 Solvent
accessible surface area (SASA) and categorical secondary
structure values were also assigned for each residue from AF2
structures by BioPython and PyMOL, respectively.32,35 ASA and
SASA differ as SASA accounts for the position of the amino acid
residue in the structure, while ASA is dependent only on
residue identity. AF2 residues with pLDDT scores below 70%
are considered low-condence predictions by AF2, and as such
were assigned values of 0 for solvent accessible surface area
and secondary structure to avoid inputting potentially incor-
rect data. Feature values were normalized between 0 to 1 for
each feature type to prevent overemphasis on features with
larger values. SASA values were normalized relative to each
structure. As most models only allow non-null feature values,
gapped positions received values of 0. Finally, to remove
redundant features, 431 features with high correlation (>90%)
in the training dataset were removed prior to cross-validation
splitting. This renement was performed as the unltered
feature vectors could result in inefficient, overt models. This
curation resulted in 1739 features to be further rened during
model training.

To maintain identical feature length between training and
test sets, each test sequence was individually aligned to the
unltered training MSA. As the training MSA is a xed length,
the test set sequences always resulted in an alignment within
range of the training set length. The test sequences and struc-
tures were then featurized for the same features used in the
training set.
2.3. Model training

Four classier ML model types (Random Forest (RF), K-Nearest
Neighbors (KNN), Gaussian Näıve Bayes (GNB), and Support
Vector (SV)) from the Scikit-Learn Python package were trained
for classication with the 413 sequences in the training set.36

Due to known GT substrate promiscuity, these models were
Digital Discovery
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Fig. 1 An overview of model featurization and training for GT-B fold glycosyltransferases. In step 1, the AF2 structures were collected and
reduced to the Rossmann-like domains. For step 2, a multiple sequence alignment was constructed and sequences were featurized based on
amino-acid properties such as hydrophobicity, volume, accessible surface area, polarity, charge, and structure-based amino acid properties –
solvent accessible surface area and secondary structure. Highly gappedMSA positions and highly correlated positions in the featurized MSAwere
removed. The GTs were also labelled with the substrates to which they are confirmed to bind for prediction. Next, several model types were
trained on feature subsets in step 3, and their hyperparameters were tuned to identify optimal values. Finally, these models were assessed on the
test set in step 4.
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built to allow for multi-label prediction.23 An overview of the
model featurization and training protocol is depicted in Fig. 1.

Hyperparameters, such as the number of trees in an RF
model, control a model's complexity and can drastically alter
performance, thus it is necessary to evaluate several combina-
tions. Furthermore, different feature lengths should be evalu-
ated to determine the minimum features needed for high
accuracy to maximize efficiency and reduce overtting. There-
fore, hyperparameter tuning and feature selection was per-
formed and optimized with leave-one-out cross-validation. A
grid search was used to compare every combination of hyper-
parameters. Test set sequences were kept separate from those
used for training and cross-validation for later performance
assessment and were not used in the feature selection and
Digital Discovery
hyperparameter tuning grid search. F1 scores were averaged for
each multi-label sample and used as the evaluation metric. To
select the feature subset with optimal model performance,
Scikit-Learn's chi2 SelectKBest was used to select various
feature subsets for model training.37 For each feature length
between 50 and 1000, in multiples of 50, the model was trained
with every combination of hyperparameters and assessed for
performance. All hyperparameter search ranges can be found in
ESI Table 2.†

2.4. Family based model

To ensure that the model was learning more signicant rela-
tionships than simple family identications, it was also trained
with family number as its only feature and its cross-validation
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and test set performance compared to the model of higher
complexity. The training and test sets were kept identical. All
models (SVC, RF, KNN and GNB) were trained with this single-
family feature and their hyperparameters tuned with an iden-
tical protocol as the more complex model.

2.5. Identifying and comparing conserved regions and
binding sites

Residue positions used by the optimized model were assessed for
consensus to elucidate relationships between conserved residues
and substrate specicity. GT-B fold enzymes that bind UDP-Glc
were considered here as it is a commonly observed donor
substrate with known activity and is utilized by enzymes in several
different families. As these families have dissimilar sequences
(and structures), this evaluation was intended to explore the
presence of structural components that might dictate substrate
specicity. Residue positions whose features contributed to the
optimized model were assessed for consensus of residue type
(hydrophobic, polar, positive versus negatively charged) due to the
minimal conservation between GT-B fold families. To elucidate
the high consensus residues and their potential relationship to
ligand binding, docking simulations were performed with repre-
sentative structures from multiple families. While there are
machine learning-based docking sowares available, such as
DiffDock, their performance on sugar nucleotide molecules
remains untested.38 Instead, a physics-based model, AutoDock
Vina39,40 was used for simulation and blind-docking simulations
were run on GT4, GT20 and GT28 candidate structures with UDP-
Glc as the ligand. The GT structures were shortened to the
Rossmann regions used in the ML models. 100 potential ligand
poses were produced with the exhaustiveness parameter set to
320. High consensus residues were mapped onto the docked
enzyme–substrate complexes to assess their role in binding.

2.6. Application to other genera

The trained and tuned models were used to predict substrate
specicities of uncharacterized GT sequences from four
dissimilar chlorophyte genera exclusive to the training dataset –
Populus, Spirodela, Chlamydomonas, and Eucalyptus. While the
training and testing sets where restricted to only Uniprot-
reviewed sequences that are also classied as GT-Bs by CAZy,
this curation resulted in a minimal number of uncharacterized
sequences. for these genera. Therefore, we included Uniprot-
unreviewed sequences and additional UniProt-classied GT-B
fold enzymes in addition to the CAZy-classied GT-B
sequences. Each protein sequence and structure were pared
down to the Rossmann-like domains and the catalytic region.
Any sequences without available AF2 structures, with AF2
structures of low condence (residues < 70% condence) or
lacking clear Rossmann-like domains were excluded. The nal
sets for Populus, Spirodela, Chlamydomonas, and Eucalyptus
included 308, 146, 162, and 375 enzymes respectively. Aer
reducing the sequences and structures to the Rossmann-like
domains, alignment to the training MSA and featurization,
our optimized models were used to predict their potential
donor substrate specicity.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3. Results
3.1. The characteristic Rossmann-like fold anchors plant
GT-B structures

The GT-B fold was rst described for the bacterial T4 b-gluco-
syltransferase,41 and has since been found in many GT families
including GT28, GT35 etc.42 The characteristic aspects of the GT-
B fold consist of two Rossmann fold subdomains and a loop
connecting them that plausibly acts as a hinge to mediate
catalysis and specicity.42 The Rossmann fold itself is known to
be one of the most ancient, prevalent and functionally diverse
protein folds that involve nucleoside-based cofactors43,44 While
experimental structures for GT-Bs from non-plant systems such
as bacterial and animal kingdoms have been available for some
time,6,45 structural characterization of plant GT-Bs have been less
forthcoming. Recently, the Rossmann-like fold was established
as one of the hallmark features for the plant fucosyltransferase
from A. thaliana classied as a GT37.15 With particular interest in
plant-based GT-Bs and in anticipation of the challenges pre-
sented by the inherent structural diversity of GT-Bs, we analyzed
the AF2 structures of all the sequences being considered in this
study. We decided to parse the sequences to look for sections
that correspond the characteristic Rossmann-like subdomains.
Our analysis veried that almost all the sequences had charac-
teristic Rossmann-like subdomains, with a few exceptions either
too short or containing too few b-strands. This is illustrated in
Fig. 2 where these domains in candidate structures from 19
distinct GT-B families are highlighted. All of them have a N-and
C-terminal Rossmann-like subdomains. The non-Rossmann-like
fold domains of the structures are hidden for the sake of clarity.
The GT-B binding and catalytic active site are likely situated at
the interface of the two Rossmann-like subdomains.
3.2. Trained models yield high accuracy on cross-validation
and test-sets

The ability of the four multi-label ML models to accurately
predict the correct donor substrate specicity of the training set
sequences was evaluated using cross-validation and test scores.
Varying the feature lengths resulted in models with very similar
cross-validation scores. As such, the model feature length and
corresponding hyperparameters used for further evaluation
were chosen by considering optimal test scores (with <1%
difference in cross-validation score from the model with best
cross-validation score). All models achieved cross-validation F1
scores of at least 84%. The models showed more variance in
their test scores, with scores of 43–59% for the GNB, SVC, and
RF models, but up to 85% for the KNN model. The KNN model
with 550 features had the best balance for cross-validation
(94.2% ± 23.4%) and test scores (85.0% ± 35.7%) (Fig. 3 and
ESI Table 3†). The standard deviations for the KNN model are
high due to all predictions being binary. To conrm that these
550 selected features for the test set are within the applicability
domain of the training set, an applicability domain analysis
with the standardization approach was performed on the
features from both data sets. None of the test set samples were
classied as outliers with this method and the full results can be
Digital Discovery
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Fig. 2 Representative structures for 19 plant GT-B families represented in the dataset (rendered using PyMOL), with b-sheets shown in magenta
and a-helices in green. While there is significant diversity in the structure and size of these proteins, all structures contain the characteristic
Rossman-like subdomains. The structures are all aligned such that the N-terminal subdomain is on the left while the C-terminal is on the right.
Sections of each structure that are not part of the Rossman-like subdomains are depicted transparently for clarity.
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found in the ESI† (AD_Test_Set_Output.csv, AD_Train_Se-
t_Output.csv).46 The hyperparameters and feature lengths for
the chosen models, with optimal cross-validation and test set
scores, can be found in ESI Table 4.† As the dataset's substrate
representation is imbalanced, an additional metric – the
Matthew's Correlation Coefficient (MCC), was evaluated for
each of the test set substrates to assess the model's performance
on all labels (Fig. 3C). Finally, a confusion matrix was also
generated for the test set predictions (Fig. 3D). The model
achieved accuracy over 70% for seven of the eight substrates.
The remaining substrate, UDP-Rha, appeared only three times
in the training set, likely leading to its poorer performance.
Substrates with more abundant samples in the training set,
even only eight for UDP-Xyl, had much higher accuracy.
3.3. Clustering reveals unique structural motifs within GT-B
families

To visualize any trends in model classications, a dimension-
ality reduction was conducted for the feature vectors from the
Digital Discovery
KNN model using the t-distributed Stochastic Neighbor
Embedding (t-SNE) method.47 In Fig. 3E, each dot on the plot
represents a substrate classication for a test sequence by the
model, with shaded regions indicating the GT family to which
the sequence belongs. There is signicant clustering of GT
sequences binding the same substrate, which might be central
to the KNNmodel's high accuracy. While much of the clustering
is likely due to family identity, there are some distinctive clus-
tering features. One of these is the fact that some sequences
from the same family cluster in different locations based on
substrate specicity as exemplied by GT28 sequences orga-
nizing into three clusters, two labelled with UDP-Glc and one
with UDP-Gal. Notably, the UDP-Gal cluster is located nearer to
the GT4 sequences that also have UDP-Gal specicity. The other
interesting observation is that the GT1 sequences are a very
dispersed cluster, likely due to great donor and acceptor diver-
sity observed for these enzymes.48 An analysis of the acceptor
substrates, curated in a similar fashion as the donor substrates
(see Section 2.1), found GT1 enzymes that use UDP-Glc as
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (A) F1 cross-validation scores and (B) test scores indicate that KNNmodel performs the best with the GNBmodel performing theworst. (C)
The Matthews correlation coefficient scores reveal substrate-level accuracies for the best performing KNN model. The number of test set
samples for each substrate is indicated. (D) A confusion matrix for the test set indicates substrates that are mis-classified by the model. (E)
Dimensionality reduction of the 550 selected features from the KNN model with t-distributed Stochastic Neighbor Embedding (t-SNE) reveals
unique family and substrate-based clustering.
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a donor bind dozens of distinct acceptors, including several
different benzoxazinoids and avonols.

Notably, the t-SNE analysis shows several UDP-Glc sequences
as clustering into distinct groups within their respective fami-
lies, from GT1, GT20 and GT28. This clustering was further
inspected by comparing structures from each cluster with
signicant structural differences found between the clusters
(Fig. 4). Two of the GT1 clusters (Fig. 4A(2) and A(3)) are in close
proximity in the t-SNE analysis (Fig. 4A(1)), and representative
structures from each cluster show high similarity with minor
differences in a helix locations. Conversely, a representative
© 2025 The Author(s). Published by the Royal Society of Chemistry
structure from a more distant cluster shows much more
signicant structural difference (Fig. 4A(3)). A similar assess-
ment for the GT20 clusters shows similar structural differences,
with two of the clusters containing additional b strands from
the third cluster (Fig. 4B(2)–B(4)). The assessment for the GT28
clusters shows more subtle differences, most signicantly in
shorter b strands in one of the clusters (Fig. 4C(2)–C(3)). This
analysis indicates that the 550 feature t-SNE analysis is able to
encode structural differences within GT families.

To ensure that the accuracy of results is not driven by high
sequence similarity between the testing and training datasets,
Digital Discovery
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Fig. 4 (A(1), B(1) and C(1)) t-SNE plots derived from Fig. 3E focusing on specific regions is shown only for UDP-Glc binding sequences from
families GT1, GT20, and GT28, respectively. (A(2)–A(4), B(2)–B(4), C(2)–C(3)) Structures from each cluster are shown with selected distinguishing
structural features indicated.
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we created testing data subsets that excluded proteins that
share high sequence identity with the training dataset
sequences and evaluated the KNN model on these subsets.
Unsurprisingly, the model accuracy declines on subsets with
lower shared identity. MCC scores were again calculated for
each substrate in the given set and the average shown in Table
1. The overall F1 score declines at lower shared identity values
but remains ∼75% at only 50% shared identity suggesting that
the model accuracies not due to high-sequence similarities in
the training set. The average MCC score similarly declines at
lower identity cutoffs, but maintains high performance on the
GDP-Man, GDP-Fuc, UDP-Glc, UDP-Xyl and “Other” substrates
(samples with UDP-Gal as their donor are not present at lower
identity cutoffs.)

Furthermore, to ensure that our 550-feature KNN model's
substrate classications are not merely family-based, we also
Digital Discovery
built single-feature models and trained them with just the
family identier as its feature (ESI Fig. 3†). This analysis veried
the importance of including the complete feature set in model
training, with the best test set scores of 85% for the complete
feature model and only 46% for the family-based model.

3.4. Relating conserved residues to structure

To assess whether the features used by the ML model could
elucidate common structural features between dissimilar
families, residues involved in features used by the KNN model
were evaluated for consensus. Enzymes active on UDP-Glc were
chosen for this evaluation, as these enzymes comprise 204 of
the 413 total sequences and represent seven distinct families.
GT-B fold families GT1, GT3, GT4, GT5, GT20, GT28, and GT41
participate in UDP-Glc binding and are represented by 70, 15,
16, 2, 62, 37 and 2 sequences respectively. Conservation
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The residues corresponding to the MSA positions with property consensus over 90% within sequences from GT families 4, 20 and 28,
and is restricted to enzymes that utilize UDP-Glc as a donor. NC indicates that no conservation was observed in that particular structure, while
other structures from the same family do have conservation at that MSA position

MSA position

23 24 25 26 63 89 518 663 759 766 800 1022 1026 1028

A2WYE9 (GT4) I196 V197 L198 I199 V222 L243 M391 M458 I517 F524 I539 L609 E613 A615
Q9LRA7 (GT20) NC I62 I63 V64 L94 Y106 L249 I306 I349 M356 I375 L445 NC I451
P54166 (GT28) V7 L8 I9 L10 V19 NC M134 I179 V218 L225 V236 I284 E288 NC
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amongst residues contributing to the 550 substrate-specicity
determining features of the KNN model was assessed with
a 90% cutoff within each family as well as amongst all families.
While there were only two conserved residues between all seven
families, higher conservation could be found between subsets
of families. We chose to focus conservation analysis on GT4, 20
Fig. 5 (A) Venn diagram showing the distribution of residues (MSA posit
involved in detecting substrate specificities for GT4, GT20 and GT28 fam
regions indicate the portion of residues (MSA positions) that are comm
property. (B–D) The a-helices are color-coded based on the Venn diagra
GT28 structures in blue. (B–D) Structural regions used in model training
families depicted in licorice representations. 14, 12, and 12 of these pos
respectively.

© 2025 The Author(s). Published by the Royal Society of Chemistry
and 28, as they have abundant UDP-Glc specic samples, with
14 residues conserved in each family over 90% (Table 2). Fig. 5A
depicts a Venn diagram that shows the number of conserved
residues within each family, between any two families and
amongst all three families. For example, within 16 GT4 family
enzymes that bind UDP-Glc, there are 68 positions conserved in
ions) that are part of the 550 features used by the KNN model and are
ilies constituting 16, 62 and 37 sequences respectively. The overlapped
only conserved amongst any two and all three families for the same
m with the GT4 structures depicted in salmon, GT20 in pale green and
are shown with the 14 conserved MSA positions common to all three
itions are conserved in the example GT4, GT20 and GT28 structures
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the 550 features used by the KNNmodel. A similar analysis of 62
GT20 sequences that bind UDP-Glc reveals 65 conserved posi-
tions that belong to the KNN feature set. Similarly, amongst the
37 GT28 sequences, there are 105 conserved MSA positions.

Since the GT4, GT20 and GT28 families share UDP-Glc as
a common nucleotide sugar donor substrate and exhibit
structural similarity in their Rossmann domains, it is not far-
fetched to imagine that the 14 residue positions within the
KNN features with consensus above 90% in each family might
reveal common structural motifs responsible for the selectivity
for this substrate (Fig. 5A). Residues corresponding to these
positions are listed in Table 2 for a representative structure
from each family. Unsurprisingly, these residues exhibit similar
placement in all three structures (Fig. 5B–D).

The direct involvement of these conserved residues in
substrate binding was investigated by docking UDP-Glc to each
of these enzymes using Autodock Vina. As expected, all docked
poses (shown in ESI Fig. 4†) for the three candidate enzymes
were observed to be at the interface between the N-terminal and
C-terminal Rossmann-like subdomains, which contain the
presumed active site. Only one position in the GT20 structure
Fig. 6 Application of the optimized KNN model to uncharacterized
GT-B fold enzymes in diverse plants. Donor substrate classifications
for the uncharacterized proteins from Populus, Spirodela, Chlamy-
domona and Eucalyptus are shown as the fraction of total sequences
in the species dataset.

Digital Discovery
and two positions in the GT28 structure are observed to be at
the putative substrate binding site. Therefore, a signicant
relationship between the conserved residues and their role in
substrate binding could not be established.
3.5. Model extension to uncharacterized sequences from
other plant genera

Finally, the optimized KNN model was applied to uncharac-
terized GT-B fold enzyme sequences from distinct plant genera
to predict their substrate specicities, including Populus, Spi-
rodela, Chlamydomonas, and Eucalyptus (Fig. 6). The datasets
contain 308, 146, 162, and 375 enzyme sequences, respectively.
These genera were chosen in part due to their distinct physi-
ology, a consequence of different carbohydrate composition
proles of their cell walls. The species-specic distribution of
families for this dataset is listed in ESI Table 5.†While the KNN
model can generate predictions for multiple substrates, no
enzymes in any of the sets were predicted to be substrate
promiscuous. The predictions for each genera reect similar
distributions of substrates, with a notable difference in the
number of “Other” substrates predicted. An abundance of
sequences in the Populus and Chlamydomonas sets receive the
“Other” classication, while almost all sequences in the Euca-
lyptus set are classied as specic for one of the seven repre-
sented donors. The Eucalyptus set also has a much higher
percentage of samples classied as specic to UDP-Glc than the
other sets.
4. Discussion

Understanding the substrate scope and specicity of glycosyl
transferases is crucial for our understanding of natural
biosynthetic mechanisms of carbohydrate polymer synthesis. In
this work, we develop and evaluate the efficacy of ML classier
models for the prediction of nucleotide donor substrates of
uncharacterized GT-B fold enzymes. A major challenge we
encountered was the curation of existing experimental data –

namely the annotation of sequences and their activity for rele-
vant nucleotide-sugar donor substrates. We collated an exten-
sive dataset of GT-B sequences with experimentally
characterized activities on seven donor nucleotide sugars. This
data was used to train four different classier models, amongst
which the KNN classier demonstrated the best performance
for predictions on the training set, while also being generaliz-
able to the test set. The feature vectors used by the KNN model
formed the basis for further dimensionality reduction and
residue conservation analyses. The dimensionality reduction
analysis revealed both substrate-based and family-based clus-
tering of sequences. We also noticed multiple sub-clusters for
sequences from the same family (GT1, GT20 and GT28) and
with activity on the same substrate (UDP-Glc). Structural anal-
ysis of sequences within these sub-clusters revealed subtle
differences and indicated unique structural motifs for these
subclusters. Furthermore, we assessed the KNN model's
feature-set for its ability to relate protein sequence to conserved
structural regions and binding sites. While some limited
© 2025 The Author(s). Published by the Royal Society of Chemistry
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structural consensus was revealed, our analysis did not reveal
a strong relationship between the suggested binding sites and
regions of high consensus.

Previous work has successfully used similar substrate activity
classiers, individually or as ensembles, for a variety of enzyme
classes like bacterial nitrilases, thiolases and the GT1 family
which adopts the GT-B fold.23,49,50 A general enzyme prediction
model has also been developed using neural networks.
However, its accuracy notably declines on substrates not well
represented in its training set, such as the donor substrates
common to GT-Bs, demonstrating the need for more specic
enzyme class models.51 Thus, RF, SVC and KNN models were
applied to our dataset of 413 samples, with an additional
challenge presented by these samples being derived from highly
dissimilar families adopting the GT-B fold. While enzymes from
these families share a distinct structural Rossmann fold motif,
they exhibit high sequence dissimilarity. Therefore, we incor-
porated structural data as well, through both reducing
sequences to only the Rossmann domains and featurizing AF2
structures for solvent secondary surface area and secondary
structure. Notably, an additional nding of this work is the
inclusion of SASA and secondary structure features made little
difference in test accuracy (ESI Fig. 5†). Liu et al.made a similar
discovery in their work on residue pKa prediction, where they
Fig. 7 A phylogenetic tree constructed from the 413 full-length training
for each sequence. (B) shows this tree overlayed with the GT family iden

© 2025 The Author(s). Published by the Royal Society of Chemistry
also found SASA data to make little difference in accuracy.52 A
potential reason for this lack of improvement may be that the
AF2 structural data is a function of sequence and is already
incorporated into the feature data. Additional features instead
derived from molecular dynamics simulations and docking
simulations, such as RMSF and binding affinity data, may
provide necessary physics-based information for substrate
classication.50,53

A phylogenetic analysis reveals one of the inherent
complexities involved in resolving substrate-specicity deter-
mining factors in GT-Bs. Fig. 7A shows the phylogenetic tree as
generated from the full-length sequence alignment of all 413
training sequences using the NJ method.54 There is a clear
family-based ordering of the sequences in this phylogenetic
tree. However, an overlay of the substrate specicities on the
same tree (Fig. 7B) reveals that there are families that act on
multiple substrates (e.g.: GT1), and there are multiple families
that act on the same substrate (e.g. UDP-Glc being acted on by
GT1s, GT4s and GT20s). This clearly is consistent with experi-
mental data that substrate-specicity is not family-based among
GTs. Other possible reasons for lack of a relationship between
conserved residues and binding sites include allosteric effects
from these regions, or simply that common features among
these proteins are not necessarily related to binding. Alternative
sequences. (A) shows this tree overlayed with a single donor substrate
tification for each sequence.
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ML model frameworks which more directly incorporate struc-
tural information, such as graph neural networks, may have
more success in correlating the identied important residues
with the substrate binding site.55

A further limitation of this work concerns the training data
quality. Many of the training set sequencesmay in fact have activity
on several additional donor substrates, but this has not been
experimentally studied and therefore cannot be included in the
substrate labels. The enzymes in this dataset had only one
substrate listed on the database, but many may very well be less
selective polyspecic enzymes. Despite this limitation, most
enzymes are listed with the substrate used for their primary func-
tion(s), and so the KNNmodel would remain accurate in predicting
the substrates for which the enzyme has the most activity.

While the models trained in this work focus exclusively on
donor substrate prediction, extending these models for
acceptor prediction is an important consideration for future
work. However, this portends some considerable challenges
including, due to inconsistent acceptor substrate labelling on
databases and the ability of GTs to act on acceptor substrates
with varying architectures.56

5. Conclusion

GT-B substrate specicity has been a challenge to characterize for
diverse families due to a lack of shared sequence similarity,
limited curated substrate specicity data and a paucity of struc-
tural information. This work presents the rst in-depth effort on
using a data-driven approach to elucidate the substrate-
specicity dictating features in GT-Bs. Our breakthrough
approach involved curating the rst database of GT-B sequences
with experimentally characterized donor activities. We then
established that the Rossmann fold domain anchors all GT-B
structures and used it as the basis to build effective multiple
sequence alignments for this highly diverse fold of enzymes. To
account for the fact that many GT-Bs are polyspecic (i.e. have
activities on different donor substrates), our ML models were
built as multi-label classiers. The models were trained on both
features from the protein sequence as well as AF2 predicted
structures. While our study demonstrates that (1) current clas-
sier ML models may be adapted to include structural data on
these enzymes and (2) can predict substrate specicities for GT-
Bs with reasonable accuracies but (3) interpretability does not
allow for direct elucidation of structural features and (4) they are
still severely limited by the paucity of curated biochemical and
structural data on these enzymes. In the future, we envisage the
development of other ML approaches e.g. large-language models
and foundational models for these predictive tasks that might be
more adept at learning from a larger protein sequence and
structural space, and which may be adapted specically to the
nature of available characterized experimental and physics-based
modelling data on these enzymes.

Data availability

The code and datasets used for the GT-B sequence substrate
specicity predictor tool (GTBPredict) have been archived and
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made available to the public at the following link: https://
github.com/vbharadwcomosci/GTB_substrate_prediction. The
code and the associated datasets have also been hosted on
Zenodo with the following DOI: https://doi.org/10.5281/
zenodo.15786055.
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55 V. Gligorijević, P. D. Renfrew, T. Kosciolek, J. K. Leman,
D. Berenberg, T. Vatanen, C. Chandler, B. C. Taylor,
I. M. Fisk, H. Vlamakis, et al., Structure-based protein
function prediction using graph convolutional networks,
Nat. Commun., 2021, 12(1), 3168, DOI: 10.1038/s41467-021-
23303-9.

56 A. Biswas and M. Thattai, Promiscuity and specicity of
eukaryotic glycosyltransferases, Biochem. Soc. Trans., 2020,
48(3), 891–900, DOI: 10.1042/BST20190651.
Digital Discovery

https://doi.org/10.1021/acs.jcim.3c00999
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1042/BST20190651
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00338a

	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a

	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a

	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a
	Decoding substrate specificity determining factors in glycosyltransferase-B enzymes tnqh_x2013 insights from machine learning modelsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00338a


