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very from porous organic cage
literature using a large language model†

Yaoyi Su,‡a Siyuan Yang,‡ab Yuanhan Liu,a Aiting Kai,ab Linjiang Chen*cd

and Ming Liu *ab

Porous organic cages (POCs) are an emerging subclass of porous materials, drawing increasing attention

due to their structural tunability, modularity and processibility, with the research in this area rapidly

expanding. Nevertheless, it is a time-consuming and labour-intensive process to obtain sufficient

information from the extensive literature on organic molecular cages. This article presents a GPT-4-

based literature reading method that incorporates multi-label text classification and a follow-up

information extraction, in which the potential of GPT-4 can be fully exploited to rapidly extract valid

information from the literature. In the process of multi-label text classification, the prompt-engineered

GPT-4 demonstrated the ability to label text with proper recall rates according to the type of information

contained in the text, including authors, affiliations, synthetic procedures, surface area, and the

Cambridge Crystallographic Data Centre (CCDC) number of corresponding cages. Additionally, GPT-4

demonstrated proficiency in information extraction, effectively transforming labeled text into concise

tabulated data. Furthermore, we built a chatbot based on this database, allowing for quick and

comprehensive searching across the entire database and responding to cage-related questions.
Introduction

Porous organic cages (POCs) are an emerging subclass of
porous materials, distinguished by their unique structural
tunability and ease of processing. Like other porous materials,
POCs have adjustable pore structures, which make them suit-
able for a wide range of applications, including gas adsorption
and separation,1–4 molecular detection,5,6 and use as catalyst
carriers.7–9 The pioneering work on organic cage molecules was
rst reported by Lehn et al. in 1969, where they introduced
a three-dimensional cryptand for cation binding.10 It is not until
2009 that Tozawa et al. discovered a series of rigid imine cages
exhibiting permanent porosity in the solid state.1 Since then,
signicant interest has emerged in the design, synthesis, and
application of POCs, which vary in their building units, shapes,
and sizes.11,12 The synthesis of POCs is inherently complex,
requiring a range of organic reactions and intricate
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experimental procedures.13 To replicate these syntheses,
researchers must refer to the detailed synthetic steps outlined
in the literature. Beyond the synthesis itself, information on the
specic surface area, crystal structure, and topology of POCs is
essential due to its relevance to their applications. However,
extracting this information from the extensive body of literature
is both time-consuming and labor-intensive.

Large language models (LLMs) like Generative Pre-trained
Transformer (GPT) can generate responses based on patterns
and statistical principles learned during their pre-training
phase.14 These models can interact dynamically, adapting to the
context of a conversation to simulate human-like dialogue and
communication. With hundreds of millions of parameters, GPT
has shown exceptional performance and dominance in various
elds, including natural language processing (NLP),15,16 medical
imaging analysis,17,18 and chemical and biological research,19,20

garnering widespread recognition and acclaim for its capabilities.
Prompt engineering has become a crucial technique in LLMs

for optimizing and ne-tuning them to perform specic tasks
and achieve desired outcomes. This technique involves creating
high-quality prompts that guide LLMs to generate accurate
results.21,22 The process involves selecting the appropriate type
of prompt, adjusting their size and structure, and sequencing
them effectively according to the task requirements. Zheng et al.
used prompt engineering to guide GPT-3.5 in extracting
synthetic texts from the literature related to Metal–Organic
Frameworks (MOFs) with a precision accuracy exceeding 90%.23

Aerwards, the same group also used a prompt-learning
Digital Discovery, 2025, 4, 403–410 | 403
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strategy to facilitate MOF material synthesis experiments
through a symbiotic human-AI collaboration.24 They later
applied a similar approach to guide the discovery and optimi-
zation of synthesis conditions for MOFs and Covalent Organic
Frameworks (COFs).25 In 2024, Lu et al. successfully predicted
the yield of ammonia catalytic reduction with up to 86% accu-
racy by incorporating pre-existing experimental data in the
prompt project.26

In this study, we employed prompt engineering to guide
GPT-4 in performing multi-label text classication, a task more
complex than binary classication and a signicant challenge
for large language models. Literature paragraphs were labeled
based on the information they contained, such as authors, cage
names, synthetic procedures, surface area, and the CCDC
number of the corresponding cages. These labeled paragraphs
were then used as the input for GPT-4 to extract and tabulate
information into the cage knowledge database. Each row in the
database contains details such as the cage name, corresponding
synthetic procedures, monomers and their synthesis proce-
dures, cage stoichiometry, surface area, and CCDC number. The
accuracy of GPT-4's multi-label classication and information
extraction was assessed by comparing its results with manually
curated data, which served as the ground truth. Ultimately, the
cage knowledge database was used to develop a chatbot capable
of reliably answering a variety of cage-related questions.
Methodology

While the GPT model has shown promising performance for
various linguistic tasks,15–20 directly using it to read entire
bodies of literature and extract specic information about POCs
presents signicant challenges. To address this, we imple-
mented a two-step process for literature analysis using GPT-4
(Fig. 1), consisting of multi-label text classication followed by
information extraction.

In the rst step, the articles were divided into text segments.
Each text segment was assigned a categorical label using a GPT-
Fig. 1 The workflow of GPT-based information extraction from the lite
literature.

404 | Digital Discovery, 2025, 4, 403–410
4 model trained with prompt engineering techniques (ESI,
Section S2†). Since topology is described in a well-dened and
xed format, Python code was employed to identify specic
sequences, as this method is more cost-effective compared to
using GPT-4. In the second step, the selected text containing
relevant information was further organized into tabulated data
by both human experts and GPT-4. The veried answers were
then compiled into a database, which was subsequently used
for constructing chatbots.

Preparation of literature

We searched for literature in the Web of Science database using
the keyword ‘porous organic cage’. Literature that focuses only
on applications of reported POCs rather than synthesis of new
POCs was excluded, resulting in 153 articles. These papers were
authored by 34 different research groups and published across
seven publishers to ensure diversity in writing styles and
formats. The POCs covered are primarily imine-type cages, with
a smaller portion consisting of alkyne-type cages, aryl ether-type
cages, and others.

GPT-based multi-label text classication

In this step, selected POC literature was segmented into para-
graphs and labeled using a prompt-engineered GPT-4 model.
We used PyPDF2 code to convert the pdf le into a split text, and
then the symbols at the end of the text was used to determine
whether the text is the end of a sentence.27 If it is not the end, it
is connected to the next text. This operation combines several
text segments in a logical manner, thereby reducing the number
of segments to be processed. A set of prompts was developed to
train GPT-4 to generate labels for each paragraph, focusing on
key aspects required by chemists, such as authors, affiliations,
synthetic procedures, surface area, and CCDC numbers. To
reduce ambiguity during labeling and lter out texts with
insufficient information, additional categories were included,
such as incomplete synthesis, additional authors, references,
and others. The explanation for each label is provided in
rature. The workflow of GPT-based information extraction from the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Detailed description of each category

Category Description Required

Comprehensive synthesis Contained comprehensive experimental conditions of the chemical reaction. The chemical
reaction conditions must appear with clear information about the reaction temperature,
reaction time, reactants, products, solvents, and their amounts

3

CCDC Contained CCDC number 3

Surface area Contained information on the specic surface area of a compound 3

This paper's authors Contained information about the authors of this paper 3

Affiliation Contained information about the authors' organizations, cities, nationalities etc. 3

Extra authors Contained authors of other articles, such as background descriptions
Incomprehensive synthesis Contained incomprehensive experimental conditions of the chemical reaction
References Contained references
Others Paragraphs that exceed all of the previously mentioned categories
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Table 1. For each labeling task, we devised 2–3 prompts per
label, as detailed in ESI, Section S2.†Wemanually labelled each
paragraph to serve as ground truth. The accuracy of the GPT-4
labelling was then assessed by comparing it to the ground truth,
and evaluated using precision, recall, and F1 score.

Precision and recall were calculated as follows:

Precision ¼ TP

TPþ FP

Recall ¼ TP

TPþ FN

where TP, FP, and FN represent True Positive, False Positive,
and False Negative, respectively.

The F1 score is a reconciled average of precision and recall:

F1 score ¼ 2

1

Precision
þ 1

Recall

Information extraction & tabulation

All the paragraphs labeled with authors, affiliations, synthesis
procedures, surface area, topology and CCDC numbers during
themanual labelling process were used as textual input for GPT-
4 to extract and tabulate relevant information, regardless of
whether GPT-4 correctly classied the paragraphs. This process
resulted in a POC database that improved the quality of the
data, enabling more efficient interpretation and analysis. Each
entry in the database systematically summarizes the relevant
information, ensuring that key details—such as the cage name,
topology, surface area, CCDC number, cage synthesis, mono-
mer names, and monomer synthesis—are presented in
a coherent and standardized format. We also manually extrac-
ted the same type of information as the cage knowledge data-
base for the evaluation of GPT-4. The GPT-generated table was
then compared with our manually created cage knowledge
database using the Bidirectional Encoder Representation from
Transformers (BERT) score. The BERT score is calculated as
follows: the generated text and the reference text are encoded in
the BERT model to obtain their respective vector representa-
tions. Subsequently, the similarity of two input texts is
© 2025 The Author(s). Published by the Royal Society of Chemistry
calculated by computing the cosine similarity of the vector
representation for each of the two words.28
Database utilization and analysis

Having utilized text mining techniques to construct a cage
knowledge database, our aim was to leverage this resource to its
fullest potential. The cage knowledge database was then fed to
a prompt-engineered GPT-4 assistant, enabling it to answer
questions based on the database. Additionally, a user interface
was built using Tkinter, a python's open source graphical User
Interface (GUI) platform.29 In order to fully explore the value of
the database, we conducted statistical analysis of the synthesis
strategy, topology, crystal structure from CCDC, and surface
area in the database.
Results and discussion
Text classication

In the multi-label text classication, as shown in Fig. 2a, all text
segments were processed by GPT-4 with prompt engineering.
Labels were then generated and evaluated by comparing them
with manually labeled text, which served as the standard, to
assess the accuracy of the GPT-4 model.

Fig. 2b shows the distribution of different text categories,
revealing that most of the text in the original documents falls
under the categories of references and other sections. The key
information we needed—such as authors, affiliations, specic
surface areas, CCDC numbers, and experimental procedures—
constitutes less than 10% of the total text content. This indi-
cates that the GPT-4 classication process signicantly reduces
the volume of text to be processed in the tabulation step,
lowering the corresponding costs.

The recall and precision results are illustrated in Fig. 2c. The
“comprehensive synthesis” category had the highest recall rate
at 0.74, which can be attributed to distinctive markers in the
text, such as frequently mentioned compound names and
amounts. However, there was a signicant drop in precision for
this category, down to 0.61. Observing the actual-versus-pre-
dicted category matrix (ESI, Fig. S1†), the primary error came
from misidentifying segments that should have been labeled as
“incomprehensive synthesis” as “comprehensive synthesis”.
Digital Discovery, 2025, 4, 403–410 | 405
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Fig. 2 Examples of prompt engineering and labels in text classification (a), visualization of the percentage distribution of various categories (b),
and the recall values for each category and overall (c).
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This highlights that even with prompt engineering designed to
differentiate between comprehensive and incomprehensive
synthesis, some errors persist. Texts under the “this paper's
authors”, “Affiliation”, and “CCDC number” categories had
similar recall rates of 0.67, 0.67, and 0.66, respectively. However,
the precision for “this paper's authors” was notably higher than
for “Affiliation” and “CCDC number”, showing a marked
difference between precision and recall. Specic surface area
information had both low recall and precision, likely because,
while it has the identier “m2 g−1”, it is oen confused with
similar terms like “m2 s−1” and “m/z”. The recall and precision
of the surface area and CCDC numbers, which should be readily
identiable due to their distinct identiers, were found to be
unsatisfactory. This outcome can be attributed to redundant
texts signicantly interfering with the encoding and decoding
process of GPT-4. Evidence for this conclusion is present in the
406 | Digital Discovery, 2025, 4, 403–410
actual-versus-predicted category matrix (ESI, Fig S1†), which
shows that the recall of CCDC is 66.44%, with 25.17% of the
information misclassied as “others.” Similarly, the recall for
surface area is 47.71%, while information classied as “others”
accounts for 43.13%, a value comparable to the recall.
Information extraction & tabulation

A typical example of tabulated information compiled from an
article by both manual work and GPT-4 is shown in Fig. 3a for
comparison. As observed, there is considerable similarity
between the GPT-4 output and the manual results, with many
matching parts and only minor differences. The name, topology
and CCDC number of the molecular cages were accurately
extracted with 100% text similarity. For the other sections, text
similarity was less than 100%. These differences can be easily
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 A typical example of tabulated information generated by GPT-4 from one paper (a), the similarities between GPT-4 and manual infor-
mation extraction (b), and the distribution of synthesis context similarity (c).
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identied by comparing the two texts visually. To facilitate this
comparison, Fig. 3a highlights the differing text portions in red.

For the monomers, differences arose in the naming of the
same compound (BPDDP), while other differences were
primarily due to redundant text being extracted by GPT-4.
Specically, GPT-4 included titles along with the synthetic
routes for cages and monomers, while manual work did not.
Regarding surface area, GPT-4's response included more
information than the manual response, providing additional
comparisons of surface area between BPPOC and another
compound, BTPOC. This suggests that GPT-4 has the potential
to offer additional information, enhancing researchers' under-
standing of cage-related knowledge.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The results of the BERT score calculation, shown in Fig. 3b,
indicate that the average similarity score across all information
in the articles was 0.9155. In particular, with a score of 0.9357,
the CCDC numbers showed the highest similarity. The simi-
larity scores for specic surface area, synthetic routes of
molecular cages, names and synthetic routes of monomers were
also relatively high, each reaching a value of around 0.90. The
lowest similarity score of 0.8405 was observed for the informa-
tion related to the topology, mainly because a signicant part of
the relevant information could not be successfully extracted
from the text and was therefore labelled as “None”.

Based on the complexity of their synthesis, the articles
studied were systematically categorized into three different
Digital Discovery, 2025, 4, 403–410 | 407
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classes: class I represents articles in which only a single POC has
been reported; class II represents articles reporting multiple
POCs without transformation relationships between them,
usually synthesized in parallel using the same reaction type but
different building blocks; class III represents articles that re-
ported multiple POCs with transforming relationships among
them. Analysis of the statistical graph shows a trend that, in
general, the accuracy of information extraction gradually
decreases as the complexity of the articles increases. However,
in the extraction of topologies, articles in the second class had
a considerably higher similarity than those in the rst class,
contrary to the general trend.

The distribution of similarity was further analyzed using the
molecular cage synthetic route as a representative example
(Fig. 3c). The analysis shows that most similarities are above 0.8,
with a signicant proportion exceeding 0.9. However, a few
samples had notably lower similarity. Upon reviewing these
cases, we found that low similarity scores were mainly due to
unsuccessful extractions, resulting in a single word “None” or
very short answers. A typical example of this error was the vague
description “Condensation of a pyridine system” replacing
a comprehensive synthesis route. Fortunately, such instances are
rare and do not signicantly impact GPT-4's overall performance.

In the task of information extraction and tabulation, GPT-4
demonstrated strong capabilities in processing input text and
extracting multiple categories of information simultaneously.
This feature can signicantly aid researchers by allowing for
quicker reading and summarization of new papers. With GPT-
4's assistance, researchers can save considerable time and effort
Fig. 4 Illustration of the interactive dialogue system underpinned by the
refine responses for simple questions (a) and limited capacity to generate
(b).

408 | Digital Discovery, 2025, 4, 403–410
in literature review, enabling them to focus more on tasks that
require innovation and creativity.

Database utilization of the chatbot

Fig. 4a demonstrates that the GPT-4 model can effectively study
and interpret the database to respond to user queries, as shown
in a classic example. When asked about the reducing agent for
the conversion of CC3 to RCC3, GPT-4 provided the correct
answer “NaBH4” based on our knowledge. Additionally, GPT-4
not only provided synthetic routes with detailed information
about reactants, solvents, and catalysts but also included
methodologies for synthesizing reactants when detailed exper-
imental procedures are requested. Beyond simple questions
related to a single research paper, the chatbot can also address
more complex queries. However, when faced with more
systematic and intricate questions, the accuracy and
completeness of the answers tend to decline. Fig. 4b highlights
this issue: when prompted to list all the molecular cages
documented by a specic scientist, the chatbot produced only
16 responses, failing to generate the complete list of 59 entries.
Repeated experiments have conrmed that this outcome is not
due to randomness but stems from the limitations of GPT-4.
Although GPT-4 has a context limit of up to 128K, it still
struggles to effectively process lengthy dialogues or texts.30

These results offer substantial evidence that GPT-4 is capable
of answering questions based on the information contained
within the database. The types of questions it can address are
diverse and not limited to a specic subset. GPT-4's responses
are comprehensive enough to aid chemists in obtaining relevant
information without the need to read the full text. Additionally,
GPT-4 model which demonstrates the high capacity to generate and
partially correct response for more systematic and intricate questions

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Statistical analysis of the chemistries involved in synthesis (a), topology (b), CCDC structures (c) and surface areas (d) of cages.
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the system can meet practical demands in the eld, such as
providing detailed guidance for the synthesis of organic cages.

Database analysis

In order to summarize the information in the database, the
synthetic chemistries, topologies, crystallographic structures,
and surface areas of the entries were analyzed.

Approximately 64% of the cages in the database were formed
via imine condensation, with 11.63% being reduced from these
imine precursors. This indicates that imine chemistry currently
dominates the synthesis of porous organic cages (POCs). Addi-
tionally, 12.68% of the cages were synthesized via ether bonds,
while other synthetic methods, such as amides and boronic
esters, were also observed (Fig. 5a).

In terms of topologies, the analysis shows that [2 + 3]-cages
account for 42.89%, which is nearly half of all entries in the
database. Additionally, [4 + 6]-cages and [8 + 12]-cages are
relatively prevalent, comprising 19.75% and 8.49% of the total,
respectively (Fig. 5b).

Surface area provides guidance for exploring cage porosity
and identifying potential applications. The density and
accessible surface area (ASAs) of 253 entries were calculated
using the Zeo++ soware package (Fig. 5c).31 The probe radius
was set as 1.82 Å, which is the kinetic radius of a nitrogen
molecule. The results revealed a negative correlation between
density and accessible surface area (ASA). Lower densities,
around 0.5 g cm−3, correspond to ASAs exceeding 3000 m2 g−1

(red circle, Table S2†). Non-accessible surface area (NASA)
values are generally lower, with signicant values observed
only within the density range of 1.00–1.25 g cm−3 (green
circle). This is due to the inherent low surface area of high-
density crystal structures.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Analysis of experimental surface area data revealed that
approximately 60 POCs exhibit surface areas exceeding 500 m2

g−1, with 12 entries surpassing 1500 m2 g−1 (Fig. 5d). With the
exception of a boronic ester-based cage, all high-surface-area
cages were imine-based. This suggested that imine-based
cages are currently one of the most promising methods for
achieving high surface areas.
Conclusions

In this study, we developed a GPT-based system for extracting
information from academic literature focused on organic
molecular cages, resulting in a comprehensive molecular cage
information database. Specically, we evaluated the prociency
of the GPT-4 model in extracting and organizing detailed data
on organic molecular cages from a large body of scientic
literature. The resulting database, along with the associated
interactive dialogue system, offers a valuable resource for
advancing research in the design, synthesis, and application of
molecular cages. Furthermore, the database created in this
work provides a crucial resource for future machine learning
and experimental studies aimed at discovering new POCs.
However, the dialogue system shows limitations in answering
more complex questions. Future efforts will focus on enhancing
the search capabilities of the system. Additionally, the database
can be updated dynamically, allowing newly reported organic
molecular cages to be incorporated through the process out-
lined in this article. Looking forward, LLMs, in conjunction
with other rapidly evolving AI tools and lab-automation tech-
niques, have the potential to signicantly accelerate the
discovery of new molecules, such as POCs and beyond.
Digital Discovery, 2025, 4, 403–410 | 409
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Data availability

The data supporting this article can be found in the ESI. Raw
data, the resulting database of POCs and custom codes for this
work, including scripts for the directly runnable chatbot, as well
as the results of text classication and information tabulariza-
tion, are available at https://doi.org/10.5281/zenodo.14511583.
The version of the code employed for this study is Version v1.
The codes are also available at https://github.com/syy1213/
LLMs-GPT-4-Cage.

The codes and required python modules for text classica-
tion, information tabularization and the directly runnable
chatbot can be found at https://hub.docker.com/r/syy12137059/
cage_gpt/tags.
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